1 /*
  2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
 26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
 27 
 28 #include "gc/shared/adaptiveSizePolicy.hpp"
 29 #include "gc/shared/collectedHeap.hpp"
 30 #include "gc/shared/collectorPolicy.hpp"
 31 #include "gc/shared/generation.hpp"
 32 
 33 class StrongRootsScope;
 34 class SubTasksDone;
 35 class WorkGang;
 36 
 37 // A "GenCollectedHeap" is a CollectedHeap that uses generational
 38 // collection.  It has two generations, young and old.
 39 class GenCollectedHeap : public CollectedHeap {
 40   friend class GenCollectorPolicy;
 41   friend class Generation;
 42   friend class DefNewGeneration;
 43   friend class TenuredGeneration;
 44   friend class ConcurrentMarkSweepGeneration;
 45   friend class CMSCollector;
 46   friend class GenMarkSweep;
 47   friend class VM_GenCollectForAllocation;
 48   friend class VM_GenCollectFull;
 49   friend class VM_GenCollectFullConcurrent;
 50   friend class VM_GC_HeapInspection;
 51   friend class VM_HeapDumper;
 52   friend class HeapInspection;
 53   friend class GCCauseSetter;
 54   friend class VMStructs;
 55 public:
 56   friend class VM_PopulateDumpSharedSpace;
 57 
 58   enum GenerationType {
 59     YoungGen,
 60     OldGen
 61   };
 62 
 63 private:
 64   Generation* _young_gen;
 65   Generation* _old_gen;
 66 
 67   // The singleton CardTable Remembered Set.
 68   CardTableRS* _rem_set;
 69 
 70   // The generational collector policy.
 71   GenCollectorPolicy* _gen_policy;
 72 
 73   // Indicates that the most recent previous incremental collection failed.
 74   // The flag is cleared when an action is taken that might clear the
 75   // condition that caused that incremental collection to fail.
 76   bool _incremental_collection_failed;
 77 
 78   // In support of ExplicitGCInvokesConcurrent functionality
 79   unsigned int _full_collections_completed;
 80 
 81   // Collects the given generation.
 82   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
 83                           bool run_verification, bool clear_soft_refs,
 84                           bool restore_marks_for_biased_locking);
 85 
 86   // Reserve aligned space for the heap as needed by the contained generations.
 87   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 88 
 89   // Initialize ("weak") refs processing support
 90   void ref_processing_init();
 91 
 92 protected:
 93 
 94   // The set of potentially parallel tasks in root scanning.
 95   enum GCH_strong_roots_tasks {
 96     GCH_PS_Universe_oops_do,
 97     GCH_PS_JNIHandles_oops_do,
 98     GCH_PS_ObjectSynchronizer_oops_do,
 99     GCH_PS_FlatProfiler_oops_do,
100     GCH_PS_Management_oops_do,
101     GCH_PS_SystemDictionary_oops_do,
102     GCH_PS_ClassLoaderDataGraph_oops_do,
103     GCH_PS_jvmti_oops_do,
104     GCH_PS_CodeCache_oops_do,
105     GCH_PS_aot_oops_do,
106     GCH_PS_younger_gens,
107     // Leave this one last.
108     GCH_PS_NumElements
109   };
110 
111   // Data structure for claiming the (potentially) parallel tasks in
112   // (gen-specific) roots processing.
113   SubTasksDone* _process_strong_tasks;
114 
115   GCMemoryManager* _young_manager;
116   GCMemoryManager* _old_manager;
117 
118   // Helper functions for allocation
119   HeapWord* attempt_allocation(size_t size,
120                                bool   is_tlab,
121                                bool   first_only);
122 
123   // Helper function for two callbacks below.
124   // Considers collection of the first max_level+1 generations.
125   void do_collection(bool           full,
126                      bool           clear_all_soft_refs,
127                      size_t         size,
128                      bool           is_tlab,
129                      GenerationType max_generation);
130 
131   // Callback from VM_GenCollectForAllocation operation.
132   // This function does everything necessary/possible to satisfy an
133   // allocation request that failed in the youngest generation that should
134   // have handled it (including collection, expansion, etc.)
135   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
136 
137   // Callback from VM_GenCollectFull operation.
138   // Perform a full collection of the first max_level+1 generations.
139   virtual void do_full_collection(bool clear_all_soft_refs);
140   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
141 
142   // Does the "cause" of GC indicate that
143   // we absolutely __must__ clear soft refs?
144   bool must_clear_all_soft_refs();
145 
146   GenCollectedHeap(GenCollectorPolicy *policy);
147 
148   virtual void check_gen_kinds() = 0;
149 
150 public:
151 
152   // Returns JNI_OK on success
153   virtual jint initialize();
154 
155   // Does operations required after initialization has been done.
156   void post_initialize();
157 
158   Generation* young_gen() const { return _young_gen; }
159   Generation* old_gen()   const { return _old_gen; }
160 
161   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
162   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
163 
164   // The generational collector policy.
165   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
166 
167   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
168 
169   // Adaptive size policy
170   virtual AdaptiveSizePolicy* size_policy() {
171     return gen_policy()->size_policy();
172   }
173 
174   // Return the (conservative) maximum heap alignment
175   static size_t conservative_max_heap_alignment() {
176     return Generation::GenGrain;
177   }
178 
179   size_t capacity() const;
180   size_t used() const;
181 
182   // Save the "used_region" for both generations.
183   void save_used_regions();
184 
185   size_t max_capacity() const;
186 
187   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
188 
189   // We may support a shared contiguous allocation area, if the youngest
190   // generation does.
191   bool supports_inline_contig_alloc() const;
192   HeapWord* volatile* top_addr() const;
193   HeapWord** end_addr() const;
194 
195   // Perform a full collection of the heap; intended for use in implementing
196   // "System.gc". This implies as full a collection as the CollectedHeap
197   // supports. Caller does not hold the Heap_lock on entry.
198   virtual void collect(GCCause::Cause cause);
199 
200   // The same as above but assume that the caller holds the Heap_lock.
201   void collect_locked(GCCause::Cause cause);
202 
203   // Perform a full collection of generations up to and including max_generation.
204   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
205   void collect(GCCause::Cause cause, GenerationType max_generation);
206 
207   // Returns "TRUE" iff "p" points into the committed areas of the heap.
208   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
209   // be expensive to compute in general, so, to prevent
210   // their inadvertent use in product jvm's, we restrict their use to
211   // assertion checking or verification only.
212   bool is_in(const void* p) const;
213 
214   // Returns true if the reference is to an object in the reserved space
215   // for the young generation.
216   // Assumes the the young gen address range is less than that of the old gen.
217   bool is_in_young(oop p);
218 
219 #ifdef ASSERT
220   bool is_in_partial_collection(const void* p);
221 #endif
222 
223   virtual bool is_scavengable(oop obj) {
224     return is_in_young(obj);
225   }
226 
227   // Optimized nmethod scanning support routines
228   virtual void register_nmethod(nmethod* nm);
229   virtual void verify_nmethod(nmethod* nmethod);
230 
231   // Iteration functions.
232   void oop_iterate_no_header(OopClosure* cl);
233   void oop_iterate(ExtendedOopClosure* cl);
234   void object_iterate(ObjectClosure* cl);
235   void safe_object_iterate(ObjectClosure* cl);
236   Space* space_containing(const void* addr) const;
237 
238   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
239   // each address in the (reserved) heap is a member of exactly
240   // one block.  The defining characteristic of a block is that it is
241   // possible to find its size, and thus to progress forward to the next
242   // block.  (Blocks may be of different sizes.)  Thus, blocks may
243   // represent Java objects, or they might be free blocks in a
244   // free-list-based heap (or subheap), as long as the two kinds are
245   // distinguishable and the size of each is determinable.
246 
247   // Returns the address of the start of the "block" that contains the
248   // address "addr".  We say "blocks" instead of "object" since some heaps
249   // may not pack objects densely; a chunk may either be an object or a
250   // non-object.
251   virtual HeapWord* block_start(const void* addr) const;
252 
253   // Requires "addr" to be the start of a chunk, and returns its size.
254   // "addr + size" is required to be the start of a new chunk, or the end
255   // of the active area of the heap. Assumes (and verifies in non-product
256   // builds) that addr is in the allocated part of the heap and is
257   // the start of a chunk.
258   virtual size_t block_size(const HeapWord* addr) const;
259 
260   // Requires "addr" to be the start of a block, and returns "TRUE" iff
261   // the block is an object. Assumes (and verifies in non-product
262   // builds) that addr is in the allocated part of the heap and is
263   // the start of a chunk.
264   virtual bool block_is_obj(const HeapWord* addr) const;
265 
266   // Section on TLAB's.
267   virtual bool supports_tlab_allocation() const;
268   virtual size_t tlab_capacity(Thread* thr) const;
269   virtual size_t tlab_used(Thread* thr) const;
270   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
271   virtual HeapWord* allocate_new_tlab(size_t size);
272 
273   // Can a compiler initialize a new object without store barriers?
274   // This permission only extends from the creation of a new object
275   // via a TLAB up to the first subsequent safepoint.
276   virtual bool can_elide_tlab_store_barriers() const {
277     return true;
278   }
279 
280   // We don't need barriers for stores to objects in the
281   // young gen and, a fortiori, for initializing stores to
282   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
283   // only and may need to be re-examined in case other
284   // kinds of collectors are implemented in the future.
285   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
286     return is_in_young(new_obj);
287   }
288 
289   // The "requestor" generation is performing some garbage collection
290   // action for which it would be useful to have scratch space.  The
291   // requestor promises to allocate no more than "max_alloc_words" in any
292   // older generation (via promotion say.)   Any blocks of space that can
293   // be provided are returned as a list of ScratchBlocks, sorted by
294   // decreasing size.
295   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
296   // Allow each generation to reset any scratch space that it has
297   // contributed as it needs.
298   void release_scratch();
299 
300   // Ensure parsability: override
301   virtual void ensure_parsability(bool retire_tlabs);
302 
303   // Time in ms since the longest time a collector ran in
304   // in any generation.
305   virtual jlong millis_since_last_gc();
306 
307   // Total number of full collections completed.
308   unsigned int total_full_collections_completed() {
309     assert(_full_collections_completed <= _total_full_collections,
310            "Can't complete more collections than were started");
311     return _full_collections_completed;
312   }
313 
314   // Update above counter, as appropriate, at the end of a stop-world GC cycle
315   unsigned int update_full_collections_completed();
316   // Update above counter, as appropriate, at the end of a concurrent GC cycle
317   unsigned int update_full_collections_completed(unsigned int count);
318 
319   // Update "time of last gc" for all generations to "now".
320   void update_time_of_last_gc(jlong now) {
321     _young_gen->update_time_of_last_gc(now);
322     _old_gen->update_time_of_last_gc(now);
323   }
324 
325   // Update the gc statistics for each generation.
326   void update_gc_stats(Generation* current_generation, bool full) {
327     _old_gen->update_gc_stats(current_generation, full);
328   }
329 
330   bool no_gc_in_progress() { return !is_gc_active(); }
331 
332   // Override.
333   void prepare_for_verify();
334 
335   // Override.
336   void verify(VerifyOption option);
337 
338   // Override.
339   virtual void print_on(outputStream* st) const;
340   virtual void print_gc_threads_on(outputStream* st) const;
341   virtual void gc_threads_do(ThreadClosure* tc) const;
342   virtual void print_tracing_info() const;
343 
344   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
345 
346   // The functions below are helper functions that a subclass of
347   // "CollectedHeap" can use in the implementation of its virtual
348   // functions.
349 
350   class GenClosure : public StackObj {
351    public:
352     virtual void do_generation(Generation* gen) = 0;
353   };
354 
355   // Apply "cl.do_generation" to all generations in the heap
356   // If "old_to_young" determines the order.
357   void generation_iterate(GenClosure* cl, bool old_to_young);
358 
359   // Return "true" if all generations have reached the
360   // maximal committed limit that they can reach, without a garbage
361   // collection.
362   virtual bool is_maximal_no_gc() const;
363 
364   // This function returns the CardTableRS object that allows us to scan
365   // generations in a fully generational heap.
366   CardTableRS* rem_set() { return _rem_set; }
367 
368   // Convenience function to be used in situations where the heap type can be
369   // asserted to be this type.
370   static GenCollectedHeap* heap();
371 
372   // The ScanningOption determines which of the roots
373   // the closure is applied to:
374   // "SO_None" does none;
375   enum ScanningOption {
376     SO_None                =  0x0,
377     SO_AllCodeCache        =  0x8,
378     SO_ScavengeCodeCache   = 0x10
379   };
380 
381  protected:
382   void process_roots(StrongRootsScope* scope,
383                      ScanningOption so,
384                      OopClosure* strong_roots,
385                      OopClosure* weak_roots,
386                      CLDClosure* strong_cld_closure,
387                      CLDClosure* weak_cld_closure,
388                      CodeBlobToOopClosure* code_roots);
389 
390   void process_string_table_roots(StrongRootsScope* scope,
391                                   OopClosure* root_closure);
392 
393   // Accessor for memory state verification support
394   NOT_PRODUCT(
395     virtual size_t skip_header_HeapWords() { return 0; }
396   )
397 
398   virtual void gc_prologue(bool full);
399   virtual void gc_epilogue(bool full);
400 
401  public:
402   void young_process_roots(StrongRootsScope* scope,
403                            OopsInGenClosure* root_closure,
404                            OopsInGenClosure* old_gen_closure,
405                            CLDClosure* cld_closure);
406 
407   void full_process_roots(StrongRootsScope* scope,
408                           bool is_adjust_phase,
409                           ScanningOption so,
410                           bool only_strong_roots,
411                           OopsInGenClosure* root_closure,
412                           CLDClosure* cld_closure);
413 
414   // Apply "root_closure" to all the weak roots of the system.
415   // These include JNI weak roots, string table,
416   // and referents of reachable weak refs.
417   void gen_process_weak_roots(OopClosure* root_closure);
418 
419   // Set the saved marks of generations, if that makes sense.
420   // In particular, if any generation might iterate over the oops
421   // in other generations, it should call this method.
422   void save_marks();
423 
424   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
425   // allocated since the last call to save_marks in generations at or above
426   // "level".  The "cur" closure is
427   // applied to references in the generation at "level", and the "older"
428   // closure to older generations.
429 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
430   void oop_since_save_marks_iterate(GenerationType start_gen,           \
431                                     OopClosureType* cur,                \
432                                     OopClosureType* older);
433 
434   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
435 
436 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
437 
438   // Returns "true" iff no allocations have occurred since the last
439   // call to "save_marks".
440   bool no_allocs_since_save_marks();
441 
442   // Returns true if an incremental collection is likely to fail.
443   // We optionally consult the young gen, if asked to do so;
444   // otherwise we base our answer on whether the previous incremental
445   // collection attempt failed with no corrective action as of yet.
446   bool incremental_collection_will_fail(bool consult_young) {
447     // The first disjunct remembers if an incremental collection failed, even
448     // when we thought (second disjunct) that it would not.
449     return incremental_collection_failed() ||
450            (consult_young && !_young_gen->collection_attempt_is_safe());
451   }
452 
453   // If a generation bails out of an incremental collection,
454   // it sets this flag.
455   bool incremental_collection_failed() const {
456     return _incremental_collection_failed;
457   }
458   void set_incremental_collection_failed() {
459     _incremental_collection_failed = true;
460   }
461   void clear_incremental_collection_failed() {
462     _incremental_collection_failed = false;
463   }
464 
465   // Promotion of obj into gen failed.  Try to promote obj to higher
466   // gens in ascending order; return the new location of obj if successful.
467   // Otherwise, try expand-and-allocate for obj in both the young and old
468   // generation; return the new location of obj if successful.  Otherwise, return NULL.
469   oop handle_failed_promotion(Generation* old_gen,
470                               oop obj,
471                               size_t obj_size);
472 
473 
474 private:
475   // Override
476   void check_for_non_bad_heap_word_value(HeapWord* addr,
477     size_t size) PRODUCT_RETURN;
478 
479   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
480   // in an essential way: compaction is performed across generations, by
481   // iterating over spaces.
482   void prepare_for_compaction();
483 
484   // Perform a full collection of the generations up to and including max_generation.
485   // This is the low level interface used by the public versions of
486   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
487   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
488 
489   // Save the tops of the spaces in all generations
490   void record_gen_tops_before_GC() PRODUCT_RETURN;
491 };
492 
493 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP