1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/abstractCompiler.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/disassembler.hpp"
  38 #include "gc/shared/gcLocker.inline.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "interpreter/interpreterRuntime.hpp"
  41 #include "logging/log.hpp"
  42 #include "memory/metaspaceShared.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "memory/universe.inline.hpp"
  45 #include "oops/klass.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "prims/forte.hpp"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/vframe.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/dtrace.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/hashtable.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 
  76 // Shared stub locations
  77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  83 address             SharedRuntime::_resolve_static_call_entry;
  84 
  85 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  89 
  90 #ifdef COMPILER2
  91 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  92 #endif // COMPILER2
  93 
  94 
  95 //----------------------------generate_stubs-----------------------------------
  96 void SharedRuntime::generate_stubs() {
  97   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  98   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  99   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 100   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 101   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 102   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 103   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 104 
 105 #if COMPILER2_OR_JVMCI
 106   // Vectors are generated only by C2 and JVMCI.
 107   bool support_wide = is_wide_vector(MaxVectorSize);
 108   if (support_wide) {
 109     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 110   }
 111 #endif // COMPILER2_OR_JVMCI
 112   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 113   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 114 
 115   generate_deopt_blob();
 116 
 117 #ifdef COMPILER2
 118   generate_uncommon_trap_blob();
 119 #endif // COMPILER2
 120 }
 121 
 122 #include <math.h>
 123 
 124 // Implementation of SharedRuntime
 125 
 126 #ifndef PRODUCT
 127 // For statistics
 128 int SharedRuntime::_ic_miss_ctr = 0;
 129 int SharedRuntime::_wrong_method_ctr = 0;
 130 int SharedRuntime::_resolve_static_ctr = 0;
 131 int SharedRuntime::_resolve_virtual_ctr = 0;
 132 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 133 int SharedRuntime::_implicit_null_throws = 0;
 134 int SharedRuntime::_implicit_div0_throws = 0;
 135 int SharedRuntime::_throw_null_ctr = 0;
 136 
 137 int SharedRuntime::_nof_normal_calls = 0;
 138 int SharedRuntime::_nof_optimized_calls = 0;
 139 int SharedRuntime::_nof_inlined_calls = 0;
 140 int SharedRuntime::_nof_megamorphic_calls = 0;
 141 int SharedRuntime::_nof_static_calls = 0;
 142 int SharedRuntime::_nof_inlined_static_calls = 0;
 143 int SharedRuntime::_nof_interface_calls = 0;
 144 int SharedRuntime::_nof_optimized_interface_calls = 0;
 145 int SharedRuntime::_nof_inlined_interface_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 147 int SharedRuntime::_nof_removable_exceptions = 0;
 148 
 149 int SharedRuntime::_new_instance_ctr=0;
 150 int SharedRuntime::_new_array_ctr=0;
 151 int SharedRuntime::_multi1_ctr=0;
 152 int SharedRuntime::_multi2_ctr=0;
 153 int SharedRuntime::_multi3_ctr=0;
 154 int SharedRuntime::_multi4_ctr=0;
 155 int SharedRuntime::_multi5_ctr=0;
 156 int SharedRuntime::_mon_enter_stub_ctr=0;
 157 int SharedRuntime::_mon_exit_stub_ctr=0;
 158 int SharedRuntime::_mon_enter_ctr=0;
 159 int SharedRuntime::_mon_exit_ctr=0;
 160 int SharedRuntime::_partial_subtype_ctr=0;
 161 int SharedRuntime::_jbyte_array_copy_ctr=0;
 162 int SharedRuntime::_jshort_array_copy_ctr=0;
 163 int SharedRuntime::_jint_array_copy_ctr=0;
 164 int SharedRuntime::_jlong_array_copy_ctr=0;
 165 int SharedRuntime::_oop_array_copy_ctr=0;
 166 int SharedRuntime::_checkcast_array_copy_ctr=0;
 167 int SharedRuntime::_unsafe_array_copy_ctr=0;
 168 int SharedRuntime::_generic_array_copy_ctr=0;
 169 int SharedRuntime::_slow_array_copy_ctr=0;
 170 int SharedRuntime::_find_handler_ctr=0;
 171 int SharedRuntime::_rethrow_ctr=0;
 172 
 173 int     SharedRuntime::_ICmiss_index                    = 0;
 174 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 175 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 176 
 177 
 178 void SharedRuntime::trace_ic_miss(address at) {
 179   for (int i = 0; i < _ICmiss_index; i++) {
 180     if (_ICmiss_at[i] == at) {
 181       _ICmiss_count[i]++;
 182       return;
 183     }
 184   }
 185   int index = _ICmiss_index++;
 186   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 187   _ICmiss_at[index] = at;
 188   _ICmiss_count[index] = 1;
 189 }
 190 
 191 void SharedRuntime::print_ic_miss_histogram() {
 192   if (ICMissHistogram) {
 193     tty->print_cr("IC Miss Histogram:");
 194     int tot_misses = 0;
 195     for (int i = 0; i < _ICmiss_index; i++) {
 196       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 197       tot_misses += _ICmiss_count[i];
 198     }
 199     tty->print_cr("Total IC misses: %7d", tot_misses);
 200   }
 201 }
 202 #endif // PRODUCT
 203 
 204 #if INCLUDE_ALL_GCS
 205 
 206 // G1 write-barrier pre: executed before a pointer store.
 207 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 208   if (orig == NULL) {
 209     assert(false, "should be optimized out");
 210     return;
 211   }
 212   assert(oopDesc::is_oop(orig, true /* ignore mark word */), "Error");
 213   // store the original value that was in the field reference
 214   thread->satb_mark_queue().enqueue(orig);
 215 JRT_END
 216 
 217 // G1 write-barrier post: executed after a pointer store.
 218 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 219   thread->dirty_card_queue().enqueue(card_addr);
 220 JRT_END
 221 
 222 #endif // INCLUDE_ALL_GCS
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 226   return x * y;
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return x;
 233   } else {
 234     return x / y;
 235   }
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return 0;
 242   } else {
 243     return x % y;
 244   }
 245 JRT_END
 246 
 247 
 248 const juint  float_sign_mask  = 0x7FFFFFFF;
 249 const juint  float_infinity   = 0x7F800000;
 250 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 251 const julong double_infinity  = CONST64(0x7FF0000000000000);
 252 
 253 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 254 #ifdef _WIN64
 255   // 64-bit Windows on amd64 returns the wrong values for
 256   // infinity operands.
 257   union { jfloat f; juint i; } xbits, ybits;
 258   xbits.f = x;
 259   ybits.f = y;
 260   // x Mod Infinity == x unless x is infinity
 261   if (((xbits.i & float_sign_mask) != float_infinity) &&
 262        ((ybits.i & float_sign_mask) == float_infinity) ) {
 263     return x;
 264   }
 265   return ((jfloat)fmod_winx64((double)x, (double)y));
 266 #else
 267   return ((jfloat)fmod((double)x,(double)y));
 268 #endif
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 273 #ifdef _WIN64
 274   union { jdouble d; julong l; } xbits, ybits;
 275   xbits.d = x;
 276   ybits.d = y;
 277   // x Mod Infinity == x unless x is infinity
 278   if (((xbits.l & double_sign_mask) != double_infinity) &&
 279        ((ybits.l & double_sign_mask) == double_infinity) ) {
 280     return x;
 281   }
 282   return ((jdouble)fmod_winx64((double)x, (double)y));
 283 #else
 284   return ((jdouble)fmod((double)x,(double)y));
 285 #endif
 286 JRT_END
 287 
 288 #ifdef __SOFTFP__
 289 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 322   return (jfloat)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 334   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 338   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 342   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 // Functions to return the opposite of the aeabi functions for nan.
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 // Intrinsics make gcc generate code for these.
 383 float  SharedRuntime::fneg(float f)   {
 384   return -f;
 385 }
 386 
 387 double SharedRuntime::dneg(double f)  {
 388   return -f;
 389 }
 390 
 391 #endif // __SOFTFP__
 392 
 393 #if defined(__SOFTFP__) || defined(E500V2)
 394 // Intrinsics make gcc generate code for these.
 395 double SharedRuntime::dabs(double f)  {
 396   return (f <= (double)0.0) ? (double)0.0 - f : f;
 397 }
 398 
 399 #endif
 400 
 401 #if defined(__SOFTFP__) || defined(PPC)
 402 double SharedRuntime::dsqrt(double f) {
 403   return sqrt(f);
 404 }
 405 #endif
 406 
 407 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jfloat) max_jint)
 411     return max_jint;
 412   if (x <= (jfloat) min_jint)
 413     return min_jint;
 414   return (jint) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jfloat) max_jlong)
 422     return max_jlong;
 423   if (x <= (jfloat) min_jlong)
 424     return min_jlong;
 425   return (jlong) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jdouble) max_jint)
 433     return max_jint;
 434   if (x <= (jdouble) min_jint)
 435     return min_jint;
 436   return (jint) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 441   if (g_isnan(x))
 442     return 0;
 443   if (x >= (jdouble) max_jlong)
 444     return max_jlong;
 445   if (x <= (jdouble) min_jlong)
 446     return min_jlong;
 447   return (jlong) x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 452   return (jfloat)x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 462   return (jdouble)x;
 463 JRT_END
 464 
 465 // Exception handling across interpreter/compiler boundaries
 466 //
 467 // exception_handler_for_return_address(...) returns the continuation address.
 468 // The continuation address is the entry point of the exception handler of the
 469 // previous frame depending on the return address.
 470 
 471 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 472   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 473   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 474 
 475   // Reset method handle flag.
 476   thread->set_is_method_handle_return(false);
 477 
 478 #if INCLUDE_JVMCI
 479   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 480   // and other exception handler continuations do not read it
 481   thread->set_exception_pc(NULL);
 482 #endif // INCLUDE_JVMCI
 483 
 484   // The fastest case first
 485   CodeBlob* blob = CodeCache::find_blob(return_address);
 486   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 487   if (nm != NULL) {
 488     // Set flag if return address is a method handle call site.
 489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 490     // native nmethods don't have exception handlers
 491     assert(!nm->is_native_method(), "no exception handler");
 492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 493     if (nm->is_deopt_pc(return_address)) {
 494       // If we come here because of a stack overflow, the stack may be
 495       // unguarded. Reguard the stack otherwise if we return to the
 496       // deopt blob and the stack bang causes a stack overflow we
 497       // crash.
 498       bool guard_pages_enabled = thread->stack_guards_enabled();
 499       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 500       if (thread->reserved_stack_activation() != thread->stack_base()) {
 501         thread->set_reserved_stack_activation(thread->stack_base());
 502       }
 503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 504       return SharedRuntime::deopt_blob()->unpack_with_exception();
 505     } else {
 506       return nm->exception_begin();
 507     }
 508   }
 509 
 510   // Entry code
 511   if (StubRoutines::returns_to_call_stub(return_address)) {
 512     return StubRoutines::catch_exception_entry();
 513   }
 514   // Interpreted code
 515   if (Interpreter::contains(return_address)) {
 516     return Interpreter::rethrow_exception_entry();
 517   }
 518 
 519   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 520   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 521 
 522 #ifndef PRODUCT
 523   { ResourceMark rm;
 524     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 525     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 526     tty->print_cr("b) other problem");
 527   }
 528 #endif // PRODUCT
 529 
 530   ShouldNotReachHere();
 531   return NULL;
 532 }
 533 
 534 
 535 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 536   return raw_exception_handler_for_return_address(thread, return_address);
 537 JRT_END
 538 
 539 
 540 address SharedRuntime::get_poll_stub(address pc) {
 541   address stub;
 542   // Look up the code blob
 543   CodeBlob *cb = CodeCache::find_blob(pc);
 544 
 545   // Should be an nmethod
 546   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 547 
 548   // Look up the relocation information
 549   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 550     "safepoint polling: type must be poll");
 551 
 552 #ifdef ASSERT
 553   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 554     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 555     Disassembler::decode(cb);
 556     fatal("Only polling locations are used for safepoint");
 557   }
 558 #endif
 559 
 560   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 561   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 562   if (at_poll_return) {
 563     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 564            "polling page return stub not created yet");
 565     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 566   } else if (has_wide_vectors) {
 567     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 568            "polling page vectors safepoint stub not created yet");
 569     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 570   } else {
 571     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 572            "polling page safepoint stub not created yet");
 573     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 574   }
 575   log_debug(safepoint)("... found polling page %s exception at pc = "
 576                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 577                        at_poll_return ? "return" : "loop",
 578                        (intptr_t)pc, (intptr_t)stub);
 579   return stub;
 580 }
 581 
 582 
 583 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 584   assert(caller.is_interpreted_frame(), "");
 585   int args_size = ArgumentSizeComputer(sig).size() + 1;
 586   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 587   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 588   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 589   return result;
 590 }
 591 
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 594   if (JvmtiExport::can_post_on_exceptions()) {
 595     vframeStream vfst(thread, true);
 596     methodHandle method = methodHandle(thread, vfst.method());
 597     address bcp = method()->bcp_from(vfst.bci());
 598     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 599   }
 600   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 601 }
 602 
 603 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 604   Handle h_exception = Exceptions::new_exception(thread, name, message);
 605   throw_and_post_jvmti_exception(thread, h_exception);
 606 }
 607 
 608 // The interpreter code to call this tracing function is only
 609 // called/generated when UL is on for redefine, class and has the right level
 610 // and tags. Since obsolete methods are never compiled, we don't have
 611 // to modify the compilers to generate calls to this function.
 612 //
 613 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 614     JavaThread* thread, Method* method))
 615   if (method->is_obsolete()) {
 616     // We are calling an obsolete method, but this is not necessarily
 617     // an error. Our method could have been redefined just after we
 618     // fetched the Method* from the constant pool.
 619     ResourceMark rm;
 620     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 629   assert(cm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632 #if INCLUDE_JVMCI
 633   if (cm->is_compiled_by_jvmci()) {
 634     // lookup exception handler for this pc
 635     int catch_pco = ret_pc - cm->code_begin();
 636     ExceptionHandlerTable table(cm);
 637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 638     if (t != NULL) {
 639       return cm->code_begin() + t->pco();
 640     } else {
 641       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 642     }
 643   }
 644 #endif // INCLUDE_JVMCI
 645 
 646   nmethod* nm = cm->as_nmethod();
 647   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 648   // determine handler bci, if any
 649   EXCEPTION_MARK;
 650 
 651   int handler_bci = -1;
 652   int scope_depth = 0;
 653   if (!force_unwind) {
 654     int bci = sd->bci();
 655     bool recursive_exception = false;
 656     do {
 657       bool skip_scope_increment = false;
 658       // exception handler lookup
 659       Klass* ek = exception->klass();
 660       methodHandle mh(THREAD, sd->method());
 661       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 662       if (HAS_PENDING_EXCEPTION) {
 663         recursive_exception = true;
 664         // We threw an exception while trying to find the exception handler.
 665         // Transfer the new exception to the exception handle which will
 666         // be set into thread local storage, and do another lookup for an
 667         // exception handler for this exception, this time starting at the
 668         // BCI of the exception handler which caused the exception to be
 669         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 670         // argument to ensure that the correct exception is thrown (4870175).
 671         recursive_exception_occurred = true;
 672         exception = Handle(THREAD, PENDING_EXCEPTION);
 673         CLEAR_PENDING_EXCEPTION;
 674         if (handler_bci >= 0) {
 675           bci = handler_bci;
 676           handler_bci = -1;
 677           skip_scope_increment = true;
 678         }
 679       }
 680       else {
 681         recursive_exception = false;
 682       }
 683       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 684         sd = sd->sender();
 685         if (sd != NULL) {
 686           bci = sd->bci();
 687         }
 688         ++scope_depth;
 689       }
 690     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 691   }
 692 
 693   // found handling method => lookup exception handler
 694   int catch_pco = ret_pc - nm->code_begin();
 695 
 696   ExceptionHandlerTable table(nm);
 697   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 698   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 699     // Allow abbreviated catch tables.  The idea is to allow a method
 700     // to materialize its exceptions without committing to the exact
 701     // routing of exceptions.  In particular this is needed for adding
 702     // a synthetic handler to unlock monitors when inlining
 703     // synchronized methods since the unlock path isn't represented in
 704     // the bytecodes.
 705     t = table.entry_for(catch_pco, -1, 0);
 706   }
 707 
 708 #ifdef COMPILER1
 709   if (t == NULL && nm->is_compiled_by_c1()) {
 710     assert(nm->unwind_handler_begin() != NULL, "");
 711     return nm->unwind_handler_begin();
 712   }
 713 #endif
 714 
 715   if (t == NULL) {
 716     ttyLocker ttyl;
 717     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 718     tty->print_cr("   Exception:");
 719     exception->print();
 720     tty->cr();
 721     tty->print_cr(" Compiled exception table :");
 722     table.print();
 723     nm->print_code();
 724     guarantee(false, "missing exception handler");
 725     return NULL;
 726   }
 727 
 728   return nm->code_begin() + t->pco();
 729 }
 730 
 731 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 732   // These errors occur only at call sites
 733   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 734 JRT_END
 735 
 736 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 737   // These errors occur only at call sites
 738   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 739 JRT_END
 740 
 741 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 750   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 751   // cache sites (when the callee activation is not yet set up) so we are at a call site
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 756   throw_StackOverflowError_common(thread, false);
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 760   throw_StackOverflowError_common(thread, true);
 761 JRT_END
 762 
 763 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 764   // We avoid using the normal exception construction in this case because
 765   // it performs an upcall to Java, and we're already out of stack space.
 766   Thread* THREAD = thread;
 767   Klass* k = SystemDictionary::StackOverflowError_klass();
 768   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 769   if (delayed) {
 770     java_lang_Throwable::set_message(exception_oop,
 771                                      Universe::delayed_stack_overflow_error_message());
 772   }
 773   Handle exception (thread, exception_oop);
 774   if (StackTraceInThrowable) {
 775     java_lang_Throwable::fill_in_stack_trace(exception);
 776   }
 777   // Increment counter for hs_err file reporting
 778   Atomic::inc(&Exceptions::_stack_overflow_errors);
 779   throw_and_post_jvmti_exception(thread, exception);
 780 }
 781 
 782 #if INCLUDE_JVMCI
 783 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 784   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 785   thread->set_jvmci_implicit_exception_pc(pc);
 786   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 787   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 788 }
 789 #endif // INCLUDE_JVMCI
 790 
 791 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 792                                                            address pc,
 793                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 794 {
 795   address target_pc = NULL;
 796 
 797   if (Interpreter::contains(pc)) {
 798 #ifdef CC_INTERP
 799     // C++ interpreter doesn't throw implicit exceptions
 800     ShouldNotReachHere();
 801 #else
 802     switch (exception_kind) {
 803       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 804       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 805       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 806       default:                      ShouldNotReachHere();
 807     }
 808 #endif // !CC_INTERP
 809   } else {
 810     switch (exception_kind) {
 811       case STACK_OVERFLOW: {
 812         // Stack overflow only occurs upon frame setup; the callee is
 813         // going to be unwound. Dispatch to a shared runtime stub
 814         // which will cause the StackOverflowError to be fabricated
 815         // and processed.
 816         // Stack overflow should never occur during deoptimization:
 817         // the compiled method bangs the stack by as much as the
 818         // interpreter would need in case of a deoptimization. The
 819         // deoptimization blob and uncommon trap blob bang the stack
 820         // in a debug VM to verify the correctness of the compiled
 821         // method stack banging.
 822         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 823         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 824         return StubRoutines::throw_StackOverflowError_entry();
 825       }
 826 
 827       case IMPLICIT_NULL: {
 828         if (VtableStubs::contains(pc)) {
 829           // We haven't yet entered the callee frame. Fabricate an
 830           // exception and begin dispatching it in the caller. Since
 831           // the caller was at a call site, it's safe to destroy all
 832           // caller-saved registers, as these entry points do.
 833           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 834 
 835           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 836           if (vt_stub == NULL) return NULL;
 837 
 838           if (vt_stub->is_abstract_method_error(pc)) {
 839             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 840             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 841             return StubRoutines::throw_AbstractMethodError_entry();
 842           } else {
 843             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 844             return StubRoutines::throw_NullPointerException_at_call_entry();
 845           }
 846         } else {
 847           CodeBlob* cb = CodeCache::find_blob(pc);
 848 
 849           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 850           if (cb == NULL) return NULL;
 851 
 852           // Exception happened in CodeCache. Must be either:
 853           // 1. Inline-cache check in C2I handler blob,
 854           // 2. Inline-cache check in nmethod, or
 855           // 3. Implicit null exception in nmethod
 856 
 857           if (!cb->is_compiled()) {
 858             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 859             if (!is_in_blob) {
 860               // Allow normal crash reporting to handle this
 861               return NULL;
 862             }
 863             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 864             // There is no handler here, so we will simply unwind.
 865             return StubRoutines::throw_NullPointerException_at_call_entry();
 866           }
 867 
 868           // Otherwise, it's a compiled method.  Consult its exception handlers.
 869           CompiledMethod* cm = (CompiledMethod*)cb;
 870           if (cm->inlinecache_check_contains(pc)) {
 871             // exception happened inside inline-cache check code
 872             // => the nmethod is not yet active (i.e., the frame
 873             // is not set up yet) => use return address pushed by
 874             // caller => don't push another return address
 875             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 876             return StubRoutines::throw_NullPointerException_at_call_entry();
 877           }
 878 
 879           if (cm->method()->is_method_handle_intrinsic()) {
 880             // exception happened inside MH dispatch code, similar to a vtable stub
 881             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 882             return StubRoutines::throw_NullPointerException_at_call_entry();
 883           }
 884 
 885 #ifndef PRODUCT
 886           _implicit_null_throws++;
 887 #endif
 888 #if INCLUDE_JVMCI
 889           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 890             // If there's no PcDesc then we'll die way down inside of
 891             // deopt instead of just getting normal error reporting,
 892             // so only go there if it will succeed.
 893             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 894           } else {
 895 #endif // INCLUDE_JVMCI
 896           assert (cm->is_nmethod(), "Expect nmethod");
 897           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 898 #if INCLUDE_JVMCI
 899           }
 900 #endif // INCLUDE_JVMCI
 901           // If there's an unexpected fault, target_pc might be NULL,
 902           // in which case we want to fall through into the normal
 903           // error handling code.
 904         }
 905 
 906         break; // fall through
 907       }
 908 
 909 
 910       case IMPLICIT_DIVIDE_BY_ZERO: {
 911         CompiledMethod* cm = CodeCache::find_compiled(pc);
 912         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 913 #ifndef PRODUCT
 914         _implicit_div0_throws++;
 915 #endif
 916 #if INCLUDE_JVMCI
 917         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 918           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 919         } else {
 920 #endif // INCLUDE_JVMCI
 921         target_pc = cm->continuation_for_implicit_exception(pc);
 922 #if INCLUDE_JVMCI
 923         }
 924 #endif // INCLUDE_JVMCI
 925         // If there's an unexpected fault, target_pc might be NULL,
 926         // in which case we want to fall through into the normal
 927         // error handling code.
 928         break; // fall through
 929       }
 930 
 931       default: ShouldNotReachHere();
 932     }
 933 
 934     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 935 
 936     if (exception_kind == IMPLICIT_NULL) {
 937 #ifndef PRODUCT
 938       // for AbortVMOnException flag
 939       Exceptions::debug_check_abort("java.lang.NullPointerException");
 940 #endif //PRODUCT
 941       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 942     } else {
 943 #ifndef PRODUCT
 944       // for AbortVMOnException flag
 945       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 946 #endif //PRODUCT
 947       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 948     }
 949     return target_pc;
 950   }
 951 
 952   ShouldNotReachHere();
 953   return NULL;
 954 }
 955 
 956 
 957 /**
 958  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 959  * installed in the native function entry of all native Java methods before
 960  * they get linked to their actual native methods.
 961  *
 962  * \note
 963  * This method actually never gets called!  The reason is because
 964  * the interpreter's native entries call NativeLookup::lookup() which
 965  * throws the exception when the lookup fails.  The exception is then
 966  * caught and forwarded on the return from NativeLookup::lookup() call
 967  * before the call to the native function.  This might change in the future.
 968  */
 969 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 970 {
 971   // We return a bad value here to make sure that the exception is
 972   // forwarded before we look at the return value.
 973   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 974 }
 975 JNI_END
 976 
 977 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 978   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 979 }
 980 
 981 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 982 #if INCLUDE_JVMCI
 983   if (!obj->klass()->has_finalizer()) {
 984     return;
 985   }
 986 #endif // INCLUDE_JVMCI
 987   assert(oopDesc::is_oop(obj), "must be a valid oop");
 988   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 989   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 990 JRT_END
 991 
 992 
 993 jlong SharedRuntime::get_java_tid(Thread* thread) {
 994   if (thread != NULL) {
 995     if (thread->is_Java_thread()) {
 996       oop obj = ((JavaThread*)thread)->threadObj();
 997       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 998     }
 999   }
1000   return 0;
1001 }
1002 
1003 /**
1004  * This function ought to be a void function, but cannot be because
1005  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1006  * 6254741.  Once that is fixed we can remove the dummy return value.
1007  */
1008 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1009   return dtrace_object_alloc_base(Thread::current(), o, size);
1010 }
1011 
1012 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1013   assert(DTraceAllocProbes, "wrong call");
1014   Klass* klass = o->klass();
1015   Symbol* name = klass->name();
1016   HOTSPOT_OBJECT_ALLOC(
1017                    get_java_tid(thread),
1018                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1019   return 0;
1020 }
1021 
1022 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1023     JavaThread* thread, Method* method))
1024   assert(DTraceMethodProbes, "wrong call");
1025   Symbol* kname = method->klass_name();
1026   Symbol* name = method->name();
1027   Symbol* sig = method->signature();
1028   HOTSPOT_METHOD_ENTRY(
1029       get_java_tid(thread),
1030       (char *) kname->bytes(), kname->utf8_length(),
1031       (char *) name->bytes(), name->utf8_length(),
1032       (char *) sig->bytes(), sig->utf8_length());
1033   return 0;
1034 JRT_END
1035 
1036 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1037     JavaThread* thread, Method* method))
1038   assert(DTraceMethodProbes, "wrong call");
1039   Symbol* kname = method->klass_name();
1040   Symbol* name = method->name();
1041   Symbol* sig = method->signature();
1042   HOTSPOT_METHOD_RETURN(
1043       get_java_tid(thread),
1044       (char *) kname->bytes(), kname->utf8_length(),
1045       (char *) name->bytes(), name->utf8_length(),
1046       (char *) sig->bytes(), sig->utf8_length());
1047   return 0;
1048 JRT_END
1049 
1050 
1051 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1052 // for a call current in progress, i.e., arguments has been pushed on stack
1053 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1054 // vtable updates, etc.  Caller frame must be compiled.
1055 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1056   ResourceMark rm(THREAD);
1057 
1058   // last java frame on stack (which includes native call frames)
1059   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1060 
1061   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1062 }
1063 
1064 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1065   CompiledMethod* caller = vfst.nm();
1066 
1067   nmethodLocker caller_lock(caller);
1068 
1069   address pc = vfst.frame_pc();
1070   { // Get call instruction under lock because another thread may be busy patching it.
1071     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1072     return caller->attached_method_before_pc(pc);
1073   }
1074   return NULL;
1075 }
1076 
1077 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1078 // for a call current in progress, i.e., arguments has been pushed on stack
1079 // but callee has not been invoked yet.  Caller frame must be compiled.
1080 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1081                                               vframeStream& vfst,
1082                                               Bytecodes::Code& bc,
1083                                               CallInfo& callinfo, TRAPS) {
1084   Handle receiver;
1085   Handle nullHandle;  //create a handy null handle for exception returns
1086 
1087   assert(!vfst.at_end(), "Java frame must exist");
1088 
1089   // Find caller and bci from vframe
1090   methodHandle caller(THREAD, vfst.method());
1091   int          bci   = vfst.bci();
1092 
1093   Bytecode_invoke bytecode(caller, bci);
1094   int bytecode_index = bytecode.index();
1095 
1096   methodHandle attached_method = extract_attached_method(vfst);
1097   if (attached_method.not_null()) {
1098     methodHandle callee = bytecode.static_target(CHECK_NH);
1099     vmIntrinsics::ID id = callee->intrinsic_id();
1100     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1101     // it attaches statically resolved method to the call site.
1102     if (MethodHandles::is_signature_polymorphic(id) &&
1103         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1104       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1105 
1106       // Adjust invocation mode according to the attached method.
1107       switch (bc) {
1108         case Bytecodes::_invokeinterface:
1109           if (!attached_method->method_holder()->is_interface()) {
1110             bc = Bytecodes::_invokevirtual;
1111           }
1112           break;
1113         case Bytecodes::_invokehandle:
1114           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1115             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1116                                               : Bytecodes::_invokevirtual;
1117           }
1118           break;
1119         default:
1120           break;
1121       }
1122     }
1123   } else {
1124     bc = bytecode.invoke_code();
1125   }
1126 
1127   bool has_receiver = bc != Bytecodes::_invokestatic &&
1128                       bc != Bytecodes::_invokedynamic &&
1129                       bc != Bytecodes::_invokehandle;
1130 
1131   // Find receiver for non-static call
1132   if (has_receiver) {
1133     // This register map must be update since we need to find the receiver for
1134     // compiled frames. The receiver might be in a register.
1135     RegisterMap reg_map2(thread);
1136     frame stubFrame   = thread->last_frame();
1137     // Caller-frame is a compiled frame
1138     frame callerFrame = stubFrame.sender(&reg_map2);
1139 
1140     if (attached_method.is_null()) {
1141       methodHandle callee = bytecode.static_target(CHECK_NH);
1142       if (callee.is_null()) {
1143         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1144       }
1145     }
1146 
1147     // Retrieve from a compiled argument list
1148     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1149 
1150     if (receiver.is_null()) {
1151       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1152     }
1153   }
1154 
1155   // Resolve method
1156   if (attached_method.not_null()) {
1157     // Parameterized by attached method.
1158     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1159   } else {
1160     // Parameterized by bytecode.
1161     constantPoolHandle constants(THREAD, caller->constants());
1162     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1163   }
1164 
1165 #ifdef ASSERT
1166   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1167   if (has_receiver) {
1168     assert(receiver.not_null(), "should have thrown exception");
1169     Klass* receiver_klass = receiver->klass();
1170     Klass* rk = NULL;
1171     if (attached_method.not_null()) {
1172       // In case there's resolved method attached, use its holder during the check.
1173       rk = attached_method->method_holder();
1174     } else {
1175       // Klass is already loaded.
1176       constantPoolHandle constants(THREAD, caller->constants());
1177       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1178     }
1179     Klass* static_receiver_klass = rk;
1180     methodHandle callee = callinfo.selected_method();
1181     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1182            "actual receiver must be subclass of static receiver klass");
1183     if (receiver_klass->is_instance_klass()) {
1184       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1185         tty->print_cr("ERROR: Klass not yet initialized!!");
1186         receiver_klass->print();
1187       }
1188       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1189     }
1190   }
1191 #endif
1192 
1193   return receiver;
1194 }
1195 
1196 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1197   ResourceMark rm(THREAD);
1198   // We need first to check if any Java activations (compiled, interpreted)
1199   // exist on the stack since last JavaCall.  If not, we need
1200   // to get the target method from the JavaCall wrapper.
1201   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1202   methodHandle callee_method;
1203   if (vfst.at_end()) {
1204     // No Java frames were found on stack since we did the JavaCall.
1205     // Hence the stack can only contain an entry_frame.  We need to
1206     // find the target method from the stub frame.
1207     RegisterMap reg_map(thread, false);
1208     frame fr = thread->last_frame();
1209     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1210     fr = fr.sender(&reg_map);
1211     assert(fr.is_entry_frame(), "must be");
1212     // fr is now pointing to the entry frame.
1213     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1214   } else {
1215     Bytecodes::Code bc;
1216     CallInfo callinfo;
1217     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1218     callee_method = callinfo.selected_method();
1219   }
1220   assert(callee_method()->is_method(), "must be");
1221   return callee_method;
1222 }
1223 
1224 // Resolves a call.
1225 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1226                                            bool is_virtual,
1227                                            bool is_optimized, TRAPS) {
1228   methodHandle callee_method;
1229   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1230   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1231     int retry_count = 0;
1232     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1233            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1234       // If has a pending exception then there is no need to re-try to
1235       // resolve this method.
1236       // If the method has been redefined, we need to try again.
1237       // Hack: we have no way to update the vtables of arrays, so don't
1238       // require that java.lang.Object has been updated.
1239 
1240       // It is very unlikely that method is redefined more than 100 times
1241       // in the middle of resolve. If it is looping here more than 100 times
1242       // means then there could be a bug here.
1243       guarantee((retry_count++ < 100),
1244                 "Could not resolve to latest version of redefined method");
1245       // method is redefined in the middle of resolve so re-try.
1246       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1247     }
1248   }
1249   return callee_method;
1250 }
1251 
1252 // Resolves a call.  The compilers generate code for calls that go here
1253 // and are patched with the real destination of the call.
1254 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1255                                            bool is_virtual,
1256                                            bool is_optimized, TRAPS) {
1257 
1258   ResourceMark rm(thread);
1259   RegisterMap cbl_map(thread, false);
1260   frame caller_frame = thread->last_frame().sender(&cbl_map);
1261 
1262   CodeBlob* caller_cb = caller_frame.cb();
1263   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1264   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1265 
1266   // make sure caller is not getting deoptimized
1267   // and removed before we are done with it.
1268   // CLEANUP - with lazy deopt shouldn't need this lock
1269   nmethodLocker caller_lock(caller_nm);
1270 
1271   // determine call info & receiver
1272   // note: a) receiver is NULL for static calls
1273   //       b) an exception is thrown if receiver is NULL for non-static calls
1274   CallInfo call_info;
1275   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1276   Handle receiver = find_callee_info(thread, invoke_code,
1277                                      call_info, CHECK_(methodHandle()));
1278   methodHandle callee_method = call_info.selected_method();
1279 
1280   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1281          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1282          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1283          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1284          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1285 
1286   assert(caller_nm->is_alive(), "It should be alive");
1287 
1288 #ifndef PRODUCT
1289   // tracing/debugging/statistics
1290   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1291                 (is_virtual) ? (&_resolve_virtual_ctr) :
1292                                (&_resolve_static_ctr);
1293   Atomic::inc(addr);
1294 
1295   if (TraceCallFixup) {
1296     ResourceMark rm(thread);
1297     tty->print("resolving %s%s (%s) call to",
1298       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1299       Bytecodes::name(invoke_code));
1300     callee_method->print_short_name(tty);
1301     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1302                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1303   }
1304 #endif
1305 
1306   // JSR 292 key invariant:
1307   // If the resolved method is a MethodHandle invoke target, the call
1308   // site must be a MethodHandle call site, because the lambda form might tail-call
1309   // leaving the stack in a state unknown to either caller or callee
1310   // TODO detune for now but we might need it again
1311 //  assert(!callee_method->is_compiled_lambda_form() ||
1312 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1313 
1314   // Compute entry points. This might require generation of C2I converter
1315   // frames, so we cannot be holding any locks here. Furthermore, the
1316   // computation of the entry points is independent of patching the call.  We
1317   // always return the entry-point, but we only patch the stub if the call has
1318   // not been deoptimized.  Return values: For a virtual call this is an
1319   // (cached_oop, destination address) pair. For a static call/optimized
1320   // virtual this is just a destination address.
1321 
1322   StaticCallInfo static_call_info;
1323   CompiledICInfo virtual_call_info;
1324 
1325   // Make sure the callee nmethod does not get deoptimized and removed before
1326   // we are done patching the code.
1327   CompiledMethod* callee = callee_method->code();
1328 
1329   if (callee != NULL) {
1330     assert(callee->is_compiled(), "must be nmethod for patching");
1331   }
1332 
1333   if (callee != NULL && !callee->is_in_use()) {
1334     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1335     callee = NULL;
1336   }
1337   nmethodLocker nl_callee(callee);
1338 #ifdef ASSERT
1339   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1340 #endif
1341 
1342   bool is_nmethod = caller_nm->is_nmethod();
1343 
1344   if (is_virtual) {
1345     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1346     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1347     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1348     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1349                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1350                      CHECK_(methodHandle()));
1351   } else {
1352     // static call
1353     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1354   }
1355 
1356   // grab lock, check for deoptimization and potentially patch caller
1357   {
1358     MutexLocker ml_patch(CompiledIC_lock);
1359 
1360     // Lock blocks for safepoint during which both nmethods can change state.
1361 
1362     // Now that we are ready to patch if the Method* was redefined then
1363     // don't update call site and let the caller retry.
1364     // Don't update call site if callee nmethod was unloaded or deoptimized.
1365     // Don't update call site if callee nmethod was replaced by an other nmethod
1366     // which may happen when multiply alive nmethod (tiered compilation)
1367     // will be supported.
1368     if (!callee_method->is_old() &&
1369         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1370 #ifdef ASSERT
1371       // We must not try to patch to jump to an already unloaded method.
1372       if (dest_entry_point != 0) {
1373         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1374         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1375                "should not call unloaded nmethod");
1376       }
1377 #endif
1378       if (is_virtual) {
1379         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1380         if (inline_cache->is_clean()) {
1381           inline_cache->set_to_monomorphic(virtual_call_info);
1382         }
1383       } else {
1384         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1385         if (ssc->is_clean()) ssc->set(static_call_info);
1386       }
1387     }
1388 
1389   } // unlock CompiledIC_lock
1390 
1391   return callee_method;
1392 }
1393 
1394 
1395 // Inline caches exist only in compiled code
1396 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1397 #ifdef ASSERT
1398   RegisterMap reg_map(thread, false);
1399   frame stub_frame = thread->last_frame();
1400   assert(stub_frame.is_runtime_frame(), "sanity check");
1401   frame caller_frame = stub_frame.sender(&reg_map);
1402   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1403 #endif /* ASSERT */
1404 
1405   methodHandle callee_method;
1406   JRT_BLOCK
1407     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1408     // Return Method* through TLS
1409     thread->set_vm_result_2(callee_method());
1410   JRT_BLOCK_END
1411   // return compiled code entry point after potential safepoints
1412   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1413   return callee_method->verified_code_entry();
1414 JRT_END
1415 
1416 
1417 // Handle call site that has been made non-entrant
1418 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1419   // 6243940 We might end up in here if the callee is deoptimized
1420   // as we race to call it.  We don't want to take a safepoint if
1421   // the caller was interpreted because the caller frame will look
1422   // interpreted to the stack walkers and arguments are now
1423   // "compiled" so it is much better to make this transition
1424   // invisible to the stack walking code. The i2c path will
1425   // place the callee method in the callee_target. It is stashed
1426   // there because if we try and find the callee by normal means a
1427   // safepoint is possible and have trouble gc'ing the compiled args.
1428   RegisterMap reg_map(thread, false);
1429   frame stub_frame = thread->last_frame();
1430   assert(stub_frame.is_runtime_frame(), "sanity check");
1431   frame caller_frame = stub_frame.sender(&reg_map);
1432 
1433   if (caller_frame.is_interpreted_frame() ||
1434       caller_frame.is_entry_frame()) {
1435     Method* callee = thread->callee_target();
1436     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1437     thread->set_vm_result_2(callee);
1438     thread->set_callee_target(NULL);
1439     return callee->get_c2i_entry();
1440   }
1441 
1442   // Must be compiled to compiled path which is safe to stackwalk
1443   methodHandle callee_method;
1444   JRT_BLOCK
1445     // Force resolving of caller (if we called from compiled frame)
1446     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1447     thread->set_vm_result_2(callee_method());
1448   JRT_BLOCK_END
1449   // return compiled code entry point after potential safepoints
1450   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1451   return callee_method->verified_code_entry();
1452 JRT_END
1453 
1454 // Handle abstract method call
1455 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1456   return StubRoutines::throw_AbstractMethodError_entry();
1457 JRT_END
1458 
1459 
1460 // resolve a static call and patch code
1461 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1462   methodHandle callee_method;
1463   JRT_BLOCK
1464     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1465     thread->set_vm_result_2(callee_method());
1466   JRT_BLOCK_END
1467   // return compiled code entry point after potential safepoints
1468   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1469   return callee_method->verified_code_entry();
1470 JRT_END
1471 
1472 
1473 // resolve virtual call and update inline cache to monomorphic
1474 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1475   methodHandle callee_method;
1476   JRT_BLOCK
1477     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1478     thread->set_vm_result_2(callee_method());
1479   JRT_BLOCK_END
1480   // return compiled code entry point after potential safepoints
1481   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1482   return callee_method->verified_code_entry();
1483 JRT_END
1484 
1485 
1486 // Resolve a virtual call that can be statically bound (e.g., always
1487 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1488 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1489   methodHandle callee_method;
1490   JRT_BLOCK
1491     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1492     thread->set_vm_result_2(callee_method());
1493   JRT_BLOCK_END
1494   // return compiled code entry point after potential safepoints
1495   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1496   return callee_method->verified_code_entry();
1497 JRT_END
1498 
1499 
1500 
1501 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1502   ResourceMark rm(thread);
1503   CallInfo call_info;
1504   Bytecodes::Code bc;
1505 
1506   // receiver is NULL for static calls. An exception is thrown for NULL
1507   // receivers for non-static calls
1508   Handle receiver = find_callee_info(thread, bc, call_info,
1509                                      CHECK_(methodHandle()));
1510   // Compiler1 can produce virtual call sites that can actually be statically bound
1511   // If we fell thru to below we would think that the site was going megamorphic
1512   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1513   // we'd try and do a vtable dispatch however methods that can be statically bound
1514   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1515   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1516   // plain ic_miss) and the site will be converted to an optimized virtual call site
1517   // never to miss again. I don't believe C2 will produce code like this but if it
1518   // did this would still be the correct thing to do for it too, hence no ifdef.
1519   //
1520   if (call_info.resolved_method()->can_be_statically_bound()) {
1521     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1522     if (TraceCallFixup) {
1523       RegisterMap reg_map(thread, false);
1524       frame caller_frame = thread->last_frame().sender(&reg_map);
1525       ResourceMark rm(thread);
1526       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1527       callee_method->print_short_name(tty);
1528       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1529       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1530     }
1531     return callee_method;
1532   }
1533 
1534   methodHandle callee_method = call_info.selected_method();
1535 
1536   bool should_be_mono = false;
1537 
1538 #ifndef PRODUCT
1539   Atomic::inc(&_ic_miss_ctr);
1540 
1541   // Statistics & Tracing
1542   if (TraceCallFixup) {
1543     ResourceMark rm(thread);
1544     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1545     callee_method->print_short_name(tty);
1546     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1547   }
1548 
1549   if (ICMissHistogram) {
1550     MutexLocker m(VMStatistic_lock);
1551     RegisterMap reg_map(thread, false);
1552     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1553     // produce statistics under the lock
1554     trace_ic_miss(f.pc());
1555   }
1556 #endif
1557 
1558   // install an event collector so that when a vtable stub is created the
1559   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1560   // event can't be posted when the stub is created as locks are held
1561   // - instead the event will be deferred until the event collector goes
1562   // out of scope.
1563   JvmtiDynamicCodeEventCollector event_collector;
1564 
1565   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1566   { MutexLocker ml_patch (CompiledIC_lock);
1567     RegisterMap reg_map(thread, false);
1568     frame caller_frame = thread->last_frame().sender(&reg_map);
1569     CodeBlob* cb = caller_frame.cb();
1570     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1571     if (cb->is_compiled()) {
1572       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1573       bool should_be_mono = false;
1574       if (inline_cache->is_optimized()) {
1575         if (TraceCallFixup) {
1576           ResourceMark rm(thread);
1577           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1578           callee_method->print_short_name(tty);
1579           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1580         }
1581         should_be_mono = true;
1582       } else if (inline_cache->is_icholder_call()) {
1583         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1584         if (ic_oop != NULL) {
1585 
1586           if (receiver()->klass() == ic_oop->holder_klass()) {
1587             // This isn't a real miss. We must have seen that compiled code
1588             // is now available and we want the call site converted to a
1589             // monomorphic compiled call site.
1590             // We can't assert for callee_method->code() != NULL because it
1591             // could have been deoptimized in the meantime
1592             if (TraceCallFixup) {
1593               ResourceMark rm(thread);
1594               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1595               callee_method->print_short_name(tty);
1596               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1597             }
1598             should_be_mono = true;
1599           }
1600         }
1601       }
1602 
1603       if (should_be_mono) {
1604 
1605         // We have a path that was monomorphic but was going interpreted
1606         // and now we have (or had) a compiled entry. We correct the IC
1607         // by using a new icBuffer.
1608         CompiledICInfo info;
1609         Klass* receiver_klass = receiver()->klass();
1610         inline_cache->compute_monomorphic_entry(callee_method,
1611                                                 receiver_klass,
1612                                                 inline_cache->is_optimized(),
1613                                                 false, caller_nm->is_nmethod(),
1614                                                 info, CHECK_(methodHandle()));
1615         inline_cache->set_to_monomorphic(info);
1616       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1617         // Potential change to megamorphic
1618         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1619         if (!successful) {
1620           inline_cache->set_to_clean();
1621         }
1622       } else {
1623         // Either clean or megamorphic
1624       }
1625     } else {
1626       fatal("Unimplemented");
1627     }
1628   } // Release CompiledIC_lock
1629 
1630   return callee_method;
1631 }
1632 
1633 //
1634 // Resets a call-site in compiled code so it will get resolved again.
1635 // This routines handles both virtual call sites, optimized virtual call
1636 // sites, and static call sites. Typically used to change a call sites
1637 // destination from compiled to interpreted.
1638 //
1639 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1640   ResourceMark rm(thread);
1641   RegisterMap reg_map(thread, false);
1642   frame stub_frame = thread->last_frame();
1643   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1644   frame caller = stub_frame.sender(&reg_map);
1645 
1646   // Do nothing if the frame isn't a live compiled frame.
1647   // nmethod could be deoptimized by the time we get here
1648   // so no update to the caller is needed.
1649 
1650   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1651 
1652     address pc = caller.pc();
1653 
1654     // Check for static or virtual call
1655     bool is_static_call = false;
1656     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1657 
1658     // Default call_addr is the location of the "basic" call.
1659     // Determine the address of the call we a reresolving. With
1660     // Inline Caches we will always find a recognizable call.
1661     // With Inline Caches disabled we may or may not find a
1662     // recognizable call. We will always find a call for static
1663     // calls and for optimized virtual calls. For vanilla virtual
1664     // calls it depends on the state of the UseInlineCaches switch.
1665     //
1666     // With Inline Caches disabled we can get here for a virtual call
1667     // for two reasons:
1668     //   1 - calling an abstract method. The vtable for abstract methods
1669     //       will run us thru handle_wrong_method and we will eventually
1670     //       end up in the interpreter to throw the ame.
1671     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1672     //       call and between the time we fetch the entry address and
1673     //       we jump to it the target gets deoptimized. Similar to 1
1674     //       we will wind up in the interprter (thru a c2i with c2).
1675     //
1676     address call_addr = NULL;
1677     {
1678       // Get call instruction under lock because another thread may be
1679       // busy patching it.
1680       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1681       // Location of call instruction
1682       call_addr = caller_nm->call_instruction_address(pc);
1683     }
1684     // Make sure nmethod doesn't get deoptimized and removed until
1685     // this is done with it.
1686     // CLEANUP - with lazy deopt shouldn't need this lock
1687     nmethodLocker nmlock(caller_nm);
1688 
1689     if (call_addr != NULL) {
1690       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1691       int ret = iter.next(); // Get item
1692       if (ret) {
1693         assert(iter.addr() == call_addr, "must find call");
1694         if (iter.type() == relocInfo::static_call_type) {
1695           is_static_call = true;
1696         } else {
1697           assert(iter.type() == relocInfo::virtual_call_type ||
1698                  iter.type() == relocInfo::opt_virtual_call_type
1699                 , "unexpected relocInfo. type");
1700         }
1701       } else {
1702         assert(!UseInlineCaches, "relocation info. must exist for this address");
1703       }
1704 
1705       // Cleaning the inline cache will force a new resolve. This is more robust
1706       // than directly setting it to the new destination, since resolving of calls
1707       // is always done through the same code path. (experience shows that it
1708       // leads to very hard to track down bugs, if an inline cache gets updated
1709       // to a wrong method). It should not be performance critical, since the
1710       // resolve is only done once.
1711 
1712       bool is_nmethod = caller_nm->is_nmethod();
1713       MutexLocker ml(CompiledIC_lock);
1714       if (is_static_call) {
1715         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1716         ssc->set_to_clean();
1717       } else {
1718         // compiled, dispatched call (which used to call an interpreted method)
1719         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1720         inline_cache->set_to_clean();
1721       }
1722     }
1723   }
1724 
1725   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1726 
1727 
1728 #ifndef PRODUCT
1729   Atomic::inc(&_wrong_method_ctr);
1730 
1731   if (TraceCallFixup) {
1732     ResourceMark rm(thread);
1733     tty->print("handle_wrong_method reresolving call to");
1734     callee_method->print_short_name(tty);
1735     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1736   }
1737 #endif
1738 
1739   return callee_method;
1740 }
1741 
1742 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1743   // The faulting unsafe accesses should be changed to throw the error
1744   // synchronously instead. Meanwhile the faulting instruction will be
1745   // skipped over (effectively turning it into a no-op) and an
1746   // asynchronous exception will be raised which the thread will
1747   // handle at a later point. If the instruction is a load it will
1748   // return garbage.
1749 
1750   // Request an async exception.
1751   thread->set_pending_unsafe_access_error();
1752 
1753   // Return address of next instruction to execute.
1754   return next_pc;
1755 }
1756 
1757 #ifdef ASSERT
1758 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1759                                                                 const BasicType* sig_bt,
1760                                                                 const VMRegPair* regs) {
1761   ResourceMark rm;
1762   const int total_args_passed = method->size_of_parameters();
1763   const VMRegPair*    regs_with_member_name = regs;
1764         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1765 
1766   const int member_arg_pos = total_args_passed - 1;
1767   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1768   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1769 
1770   const bool is_outgoing = method->is_method_handle_intrinsic();
1771   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1772 
1773   for (int i = 0; i < member_arg_pos; i++) {
1774     VMReg a =    regs_with_member_name[i].first();
1775     VMReg b = regs_without_member_name[i].first();
1776     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1777   }
1778   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1779 }
1780 #endif
1781 
1782 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1783   if (destination != entry_point) {
1784     CodeBlob* callee = CodeCache::find_blob(destination);
1785     // callee == cb seems weird. It means calling interpreter thru stub.
1786     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1787       // static call or optimized virtual
1788       if (TraceCallFixup) {
1789         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1790         moop->print_short_name(tty);
1791         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1792       }
1793       return true;
1794     } else {
1795       if (TraceCallFixup) {
1796         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1797         moop->print_short_name(tty);
1798         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1799       }
1800       // assert is too strong could also be resolve destinations.
1801       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1802     }
1803   } else {
1804     if (TraceCallFixup) {
1805       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1806       moop->print_short_name(tty);
1807       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1808     }
1809   }
1810   return false;
1811 }
1812 
1813 // ---------------------------------------------------------------------------
1814 // We are calling the interpreter via a c2i. Normally this would mean that
1815 // we were called by a compiled method. However we could have lost a race
1816 // where we went int -> i2c -> c2i and so the caller could in fact be
1817 // interpreted. If the caller is compiled we attempt to patch the caller
1818 // so he no longer calls into the interpreter.
1819 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1820   Method* moop(method);
1821 
1822   address entry_point = moop->from_compiled_entry_no_trampoline();
1823 
1824   // It's possible that deoptimization can occur at a call site which hasn't
1825   // been resolved yet, in which case this function will be called from
1826   // an nmethod that has been patched for deopt and we can ignore the
1827   // request for a fixup.
1828   // Also it is possible that we lost a race in that from_compiled_entry
1829   // is now back to the i2c in that case we don't need to patch and if
1830   // we did we'd leap into space because the callsite needs to use
1831   // "to interpreter" stub in order to load up the Method*. Don't
1832   // ask me how I know this...
1833 
1834   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1835   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1836     return;
1837   }
1838 
1839   // The check above makes sure this is a nmethod.
1840   CompiledMethod* nm = cb->as_compiled_method_or_null();
1841   assert(nm, "must be");
1842 
1843   // Get the return PC for the passed caller PC.
1844   address return_pc = caller_pc + frame::pc_return_offset;
1845 
1846   // There is a benign race here. We could be attempting to patch to a compiled
1847   // entry point at the same time the callee is being deoptimized. If that is
1848   // the case then entry_point may in fact point to a c2i and we'd patch the
1849   // call site with the same old data. clear_code will set code() to NULL
1850   // at the end of it. If we happen to see that NULL then we can skip trying
1851   // to patch. If we hit the window where the callee has a c2i in the
1852   // from_compiled_entry and the NULL isn't present yet then we lose the race
1853   // and patch the code with the same old data. Asi es la vida.
1854 
1855   if (moop->code() == NULL) return;
1856 
1857   if (nm->is_in_use()) {
1858 
1859     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1860     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1861     if (NativeCall::is_call_before(return_pc)) {
1862       ResourceMark mark;
1863       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1864       //
1865       // bug 6281185. We might get here after resolving a call site to a vanilla
1866       // virtual call. Because the resolvee uses the verified entry it may then
1867       // see compiled code and attempt to patch the site by calling us. This would
1868       // then incorrectly convert the call site to optimized and its downhill from
1869       // there. If you're lucky you'll get the assert in the bugid, if not you've
1870       // just made a call site that could be megamorphic into a monomorphic site
1871       // for the rest of its life! Just another racing bug in the life of
1872       // fixup_callers_callsite ...
1873       //
1874       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1875       iter.next();
1876       assert(iter.has_current(), "must have a reloc at java call site");
1877       relocInfo::relocType typ = iter.reloc()->type();
1878       if (typ != relocInfo::static_call_type &&
1879            typ != relocInfo::opt_virtual_call_type &&
1880            typ != relocInfo::static_stub_type) {
1881         return;
1882       }
1883       address destination = call->destination();
1884       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1885         call->set_destination_mt_safe(entry_point);
1886       }
1887     }
1888   }
1889 IRT_END
1890 
1891 
1892 // same as JVM_Arraycopy, but called directly from compiled code
1893 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1894                                                 oopDesc* dest, jint dest_pos,
1895                                                 jint length,
1896                                                 JavaThread* thread)) {
1897 #ifndef PRODUCT
1898   _slow_array_copy_ctr++;
1899 #endif
1900   // Check if we have null pointers
1901   if (src == NULL || dest == NULL) {
1902     THROW(vmSymbols::java_lang_NullPointerException());
1903   }
1904   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1905   // even though the copy_array API also performs dynamic checks to ensure
1906   // that src and dest are truly arrays (and are conformable).
1907   // The copy_array mechanism is awkward and could be removed, but
1908   // the compilers don't call this function except as a last resort,
1909   // so it probably doesn't matter.
1910   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1911                                         (arrayOopDesc*)dest, dest_pos,
1912                                         length, thread);
1913 }
1914 JRT_END
1915 
1916 // The caller of generate_class_cast_message() (or one of its callers)
1917 // must use a ResourceMark in order to correctly free the result.
1918 char* SharedRuntime::generate_class_cast_message(
1919     JavaThread* thread, Klass* caster_klass) {
1920 
1921   // Get target class name from the checkcast instruction
1922   vframeStream vfst(thread, true);
1923   assert(!vfst.at_end(), "Java frame must exist");
1924   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1925   Klass* target_klass = vfst.method()->constants()->klass_at(
1926     cc.index(), thread);
1927   return generate_class_cast_message(caster_klass, target_klass);
1928 }
1929 
1930 // The caller of class_loader_and_module_name() (or one of its callers)
1931 // must use a ResourceMark in order to correctly free the result.
1932 const char* class_loader_and_module_name(Klass* klass) {
1933   const char* delim = "/";
1934   size_t delim_len = strlen(delim);
1935 
1936   const char* fqn = klass->external_name();
1937   // Length of message to return; always include FQN
1938   size_t msglen = strlen(fqn) + 1;
1939 
1940   bool has_cl_name = false;
1941   bool has_mod_name = false;
1942   bool has_version = false;
1943 
1944   // Use class loader name, if exists and not builtin
1945   const char* class_loader_name = "";
1946   ClassLoaderData* cld = klass->class_loader_data();
1947   assert(cld != NULL, "class_loader_data should not be NULL");
1948   if (!cld->is_builtin_class_loader_data()) {
1949     // If not builtin, look for name
1950     oop loader = klass->class_loader();
1951     if (loader != NULL) {
1952       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1953       if (class_loader_name_oop != NULL) {
1954         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1955         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1956           has_cl_name = true;
1957           msglen += strlen(class_loader_name) + delim_len;
1958         }
1959       }
1960     }
1961   }
1962 
1963   const char* module_name = "";
1964   const char* version = "";
1965   Klass* bottom_klass = klass->is_objArray_klass() ?
1966     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1967   if (bottom_klass->is_instance_klass()) {
1968     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1969     // Use module name, if exists
1970     if (module->is_named()) {
1971       has_mod_name = true;
1972       module_name = module->name()->as_C_string();
1973       msglen += strlen(module_name);
1974       // Use version if exists and is not a jdk module
1975       if (module->is_non_jdk_module() && module->version() != NULL) {
1976         has_version = true;
1977         version = module->version()->as_C_string();
1978         msglen += strlen("@") + strlen(version);
1979       }
1980     }
1981   } else {
1982     // klass is an array of primitives, so its module is java.base
1983     module_name = JAVA_BASE_NAME;
1984   }
1985 
1986   if (has_cl_name || has_mod_name) {
1987     msglen += delim_len;
1988   }
1989 
1990   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
1991 
1992   // Just return the FQN if error in allocating string
1993   if (message == NULL) {
1994     return fqn;
1995   }
1996 
1997   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
1998                class_loader_name,
1999                (has_cl_name) ? delim : "",
2000                (has_mod_name) ? module_name : "",
2001                (has_version) ? "@" : "",
2002                (has_version) ? version : "",
2003                (has_cl_name || has_mod_name) ? delim : "",
2004                fqn);
2005   return message;
2006 }
2007 
2008 char* SharedRuntime::generate_class_cast_message(
2009     Klass* caster_klass, Klass* target_klass) {
2010 
2011   const char* caster_name = class_loader_and_module_name(caster_klass);
2012 
2013   const char* target_name = class_loader_and_module_name(target_klass);
2014 
2015   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2016 
2017   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2018   if (message == NULL) {
2019     // Shouldn't happen, but don't cause even more problems if it does
2020     message = const_cast<char*>(caster_klass->external_name());
2021   } else {
2022     jio_snprintf(message,
2023                  msglen,
2024                  "%s cannot be cast to %s",
2025                  caster_name,
2026                  target_name);
2027   }
2028   return message;
2029 }
2030 
2031 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2032   (void) JavaThread::current()->reguard_stack();
2033 JRT_END
2034 
2035 
2036 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2037 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2038   // Disable ObjectSynchronizer::quick_enter() in default config
2039   // on AARCH64 and ARM until JDK-8153107 is resolved.
2040   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2041       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2042       !SafepointSynchronize::is_synchronizing()) {
2043     // Only try quick_enter() if we're not trying to reach a safepoint
2044     // so that the calling thread reaches the safepoint more quickly.
2045     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2046   }
2047   // NO_ASYNC required because an async exception on the state transition destructor
2048   // would leave you with the lock held and it would never be released.
2049   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2050   // and the model is that an exception implies the method failed.
2051   JRT_BLOCK_NO_ASYNC
2052   oop obj(_obj);
2053   if (PrintBiasedLockingStatistics) {
2054     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2055   }
2056   Handle h_obj(THREAD, obj);
2057   if (UseBiasedLocking) {
2058     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2059     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2060   } else {
2061     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2062   }
2063   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2064   JRT_BLOCK_END
2065 JRT_END
2066 
2067 // Handles the uncommon cases of monitor unlocking in compiled code
2068 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2069    oop obj(_obj);
2070   assert(JavaThread::current() == THREAD, "invariant");
2071   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2072   // testing was unable to ever fire the assert that guarded it so I have removed it.
2073   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2074 #undef MIGHT_HAVE_PENDING
2075 #ifdef MIGHT_HAVE_PENDING
2076   // Save and restore any pending_exception around the exception mark.
2077   // While the slow_exit must not throw an exception, we could come into
2078   // this routine with one set.
2079   oop pending_excep = NULL;
2080   const char* pending_file;
2081   int pending_line;
2082   if (HAS_PENDING_EXCEPTION) {
2083     pending_excep = PENDING_EXCEPTION;
2084     pending_file  = THREAD->exception_file();
2085     pending_line  = THREAD->exception_line();
2086     CLEAR_PENDING_EXCEPTION;
2087   }
2088 #endif /* MIGHT_HAVE_PENDING */
2089 
2090   {
2091     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2092     EXCEPTION_MARK;
2093     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2094   }
2095 
2096 #ifdef MIGHT_HAVE_PENDING
2097   if (pending_excep != NULL) {
2098     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2099   }
2100 #endif /* MIGHT_HAVE_PENDING */
2101 JRT_END
2102 
2103 #ifndef PRODUCT
2104 
2105 void SharedRuntime::print_statistics() {
2106   ttyLocker ttyl;
2107   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2108 
2109   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2110 
2111   SharedRuntime::print_ic_miss_histogram();
2112 
2113   if (CountRemovableExceptions) {
2114     if (_nof_removable_exceptions > 0) {
2115       Unimplemented(); // this counter is not yet incremented
2116       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2117     }
2118   }
2119 
2120   // Dump the JRT_ENTRY counters
2121   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2122   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2123   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2124   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2125   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2126   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2127   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2128 
2129   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2130   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2131   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2132   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2133   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2134 
2135   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2136   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2137   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2138   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2139   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2140   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2141   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2142   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2143   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2144   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2145   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2146   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2147   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2148   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2149   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2150   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2151 
2152   AdapterHandlerLibrary::print_statistics();
2153 
2154   if (xtty != NULL)  xtty->tail("statistics");
2155 }
2156 
2157 inline double percent(int x, int y) {
2158   return 100.0 * x / MAX2(y, 1);
2159 }
2160 
2161 class MethodArityHistogram {
2162  public:
2163   enum { MAX_ARITY = 256 };
2164  private:
2165   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2166   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2167   static int _max_arity;                      // max. arity seen
2168   static int _max_size;                       // max. arg size seen
2169 
2170   static void add_method_to_histogram(nmethod* nm) {
2171     Method* m = nm->method();
2172     ArgumentCount args(m->signature());
2173     int arity   = args.size() + (m->is_static() ? 0 : 1);
2174     int argsize = m->size_of_parameters();
2175     arity   = MIN2(arity, MAX_ARITY-1);
2176     argsize = MIN2(argsize, MAX_ARITY-1);
2177     int count = nm->method()->compiled_invocation_count();
2178     _arity_histogram[arity]  += count;
2179     _size_histogram[argsize] += count;
2180     _max_arity = MAX2(_max_arity, arity);
2181     _max_size  = MAX2(_max_size, argsize);
2182   }
2183 
2184   void print_histogram_helper(int n, int* histo, const char* name) {
2185     const int N = MIN2(5, n);
2186     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2187     double sum = 0;
2188     double weighted_sum = 0;
2189     int i;
2190     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2191     double rest = sum;
2192     double percent = sum / 100;
2193     for (i = 0; i <= N; i++) {
2194       rest -= histo[i];
2195       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2196     }
2197     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2198     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2199   }
2200 
2201   void print_histogram() {
2202     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2203     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2204     tty->print_cr("\nSame for parameter size (in words):");
2205     print_histogram_helper(_max_size, _size_histogram, "size");
2206     tty->cr();
2207   }
2208 
2209  public:
2210   MethodArityHistogram() {
2211     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2212     _max_arity = _max_size = 0;
2213     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2214     CodeCache::nmethods_do(add_method_to_histogram);
2215     print_histogram();
2216   }
2217 };
2218 
2219 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2220 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2221 int MethodArityHistogram::_max_arity;
2222 int MethodArityHistogram::_max_size;
2223 
2224 void SharedRuntime::print_call_statistics(int comp_total) {
2225   tty->print_cr("Calls from compiled code:");
2226   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2227   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2228   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2229   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2230   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2231   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2232   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2233   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2234   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2235   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2236   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2237   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2238   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2239   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2240   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2241   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2242   tty->cr();
2243   tty->print_cr("Note 1: counter updates are not MT-safe.");
2244   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2245   tty->print_cr("        %% in nested categories are relative to their category");
2246   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2247   tty->cr();
2248 
2249   MethodArityHistogram h;
2250 }
2251 #endif
2252 
2253 
2254 // A simple wrapper class around the calling convention information
2255 // that allows sharing of adapters for the same calling convention.
2256 class AdapterFingerPrint : public CHeapObj<mtCode> {
2257  private:
2258   enum {
2259     _basic_type_bits = 4,
2260     _basic_type_mask = right_n_bits(_basic_type_bits),
2261     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2262     _compact_int_count = 3
2263   };
2264   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2265   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2266 
2267   union {
2268     int  _compact[_compact_int_count];
2269     int* _fingerprint;
2270   } _value;
2271   int _length; // A negative length indicates the fingerprint is in the compact form,
2272                // Otherwise _value._fingerprint is the array.
2273 
2274   // Remap BasicTypes that are handled equivalently by the adapters.
2275   // These are correct for the current system but someday it might be
2276   // necessary to make this mapping platform dependent.
2277   static int adapter_encoding(BasicType in) {
2278     switch (in) {
2279       case T_BOOLEAN:
2280       case T_BYTE:
2281       case T_SHORT:
2282       case T_CHAR:
2283         // There are all promoted to T_INT in the calling convention
2284         return T_INT;
2285 
2286       case T_OBJECT:
2287       case T_ARRAY:
2288         // In other words, we assume that any register good enough for
2289         // an int or long is good enough for a managed pointer.
2290 #ifdef _LP64
2291         return T_LONG;
2292 #else
2293         return T_INT;
2294 #endif
2295 
2296       case T_INT:
2297       case T_LONG:
2298       case T_FLOAT:
2299       case T_DOUBLE:
2300       case T_VOID:
2301         return in;
2302 
2303       default:
2304         ShouldNotReachHere();
2305         return T_CONFLICT;
2306     }
2307   }
2308 
2309  public:
2310   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2311     // The fingerprint is based on the BasicType signature encoded
2312     // into an array of ints with eight entries per int.
2313     int* ptr;
2314     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2315     if (len <= _compact_int_count) {
2316       assert(_compact_int_count == 3, "else change next line");
2317       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2318       // Storing the signature encoded as signed chars hits about 98%
2319       // of the time.
2320       _length = -len;
2321       ptr = _value._compact;
2322     } else {
2323       _length = len;
2324       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2325       ptr = _value._fingerprint;
2326     }
2327 
2328     // Now pack the BasicTypes with 8 per int
2329     int sig_index = 0;
2330     for (int index = 0; index < len; index++) {
2331       int value = 0;
2332       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2333         int bt = ((sig_index < total_args_passed)
2334                   ? adapter_encoding(sig_bt[sig_index++])
2335                   : 0);
2336         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2337         value = (value << _basic_type_bits) | bt;
2338       }
2339       ptr[index] = value;
2340     }
2341   }
2342 
2343   ~AdapterFingerPrint() {
2344     if (_length > 0) {
2345       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2346     }
2347   }
2348 
2349   int value(int index) {
2350     if (_length < 0) {
2351       return _value._compact[index];
2352     }
2353     return _value._fingerprint[index];
2354   }
2355   int length() {
2356     if (_length < 0) return -_length;
2357     return _length;
2358   }
2359 
2360   bool is_compact() {
2361     return _length <= 0;
2362   }
2363 
2364   unsigned int compute_hash() {
2365     int hash = 0;
2366     for (int i = 0; i < length(); i++) {
2367       int v = value(i);
2368       hash = (hash << 8) ^ v ^ (hash >> 5);
2369     }
2370     return (unsigned int)hash;
2371   }
2372 
2373   const char* as_string() {
2374     stringStream st;
2375     st.print("0x");
2376     for (int i = 0; i < length(); i++) {
2377       st.print("%08x", value(i));
2378     }
2379     return st.as_string();
2380   }
2381 
2382   bool equals(AdapterFingerPrint* other) {
2383     if (other->_length != _length) {
2384       return false;
2385     }
2386     if (_length < 0) {
2387       assert(_compact_int_count == 3, "else change next line");
2388       return _value._compact[0] == other->_value._compact[0] &&
2389              _value._compact[1] == other->_value._compact[1] &&
2390              _value._compact[2] == other->_value._compact[2];
2391     } else {
2392       for (int i = 0; i < _length; i++) {
2393         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2394           return false;
2395         }
2396       }
2397     }
2398     return true;
2399   }
2400 };
2401 
2402 
2403 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2404 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2405   friend class AdapterHandlerTableIterator;
2406 
2407  private:
2408 
2409 #ifndef PRODUCT
2410   static int _lookups; // number of calls to lookup
2411   static int _buckets; // number of buckets checked
2412   static int _equals;  // number of buckets checked with matching hash
2413   static int _hits;    // number of successful lookups
2414   static int _compact; // number of equals calls with compact signature
2415 #endif
2416 
2417   AdapterHandlerEntry* bucket(int i) {
2418     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2419   }
2420 
2421  public:
2422   AdapterHandlerTable()
2423     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2424 
2425   // Create a new entry suitable for insertion in the table
2426   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2427     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2428     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2429     if (DumpSharedSpaces) {
2430       ((CDSAdapterHandlerEntry*)entry)->init();
2431     }
2432     return entry;
2433   }
2434 
2435   // Insert an entry into the table
2436   void add(AdapterHandlerEntry* entry) {
2437     int index = hash_to_index(entry->hash());
2438     add_entry(index, entry);
2439   }
2440 
2441   void free_entry(AdapterHandlerEntry* entry) {
2442     entry->deallocate();
2443     BasicHashtable<mtCode>::free_entry(entry);
2444   }
2445 
2446   // Find a entry with the same fingerprint if it exists
2447   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2448     NOT_PRODUCT(_lookups++);
2449     AdapterFingerPrint fp(total_args_passed, sig_bt);
2450     unsigned int hash = fp.compute_hash();
2451     int index = hash_to_index(hash);
2452     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2453       NOT_PRODUCT(_buckets++);
2454       if (e->hash() == hash) {
2455         NOT_PRODUCT(_equals++);
2456         if (fp.equals(e->fingerprint())) {
2457 #ifndef PRODUCT
2458           if (fp.is_compact()) _compact++;
2459           _hits++;
2460 #endif
2461           return e;
2462         }
2463       }
2464     }
2465     return NULL;
2466   }
2467 
2468 #ifndef PRODUCT
2469   void print_statistics() {
2470     ResourceMark rm;
2471     int longest = 0;
2472     int empty = 0;
2473     int total = 0;
2474     int nonempty = 0;
2475     for (int index = 0; index < table_size(); index++) {
2476       int count = 0;
2477       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2478         count++;
2479       }
2480       if (count != 0) nonempty++;
2481       if (count == 0) empty++;
2482       if (count > longest) longest = count;
2483       total += count;
2484     }
2485     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2486                   empty, longest, total, total / (double)nonempty);
2487     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2488                   _lookups, _buckets, _equals, _hits, _compact);
2489   }
2490 #endif
2491 };
2492 
2493 
2494 #ifndef PRODUCT
2495 
2496 int AdapterHandlerTable::_lookups;
2497 int AdapterHandlerTable::_buckets;
2498 int AdapterHandlerTable::_equals;
2499 int AdapterHandlerTable::_hits;
2500 int AdapterHandlerTable::_compact;
2501 
2502 #endif
2503 
2504 class AdapterHandlerTableIterator : public StackObj {
2505  private:
2506   AdapterHandlerTable* _table;
2507   int _index;
2508   AdapterHandlerEntry* _current;
2509 
2510   void scan() {
2511     while (_index < _table->table_size()) {
2512       AdapterHandlerEntry* a = _table->bucket(_index);
2513       _index++;
2514       if (a != NULL) {
2515         _current = a;
2516         return;
2517       }
2518     }
2519   }
2520 
2521  public:
2522   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2523     scan();
2524   }
2525   bool has_next() {
2526     return _current != NULL;
2527   }
2528   AdapterHandlerEntry* next() {
2529     if (_current != NULL) {
2530       AdapterHandlerEntry* result = _current;
2531       _current = _current->next();
2532       if (_current == NULL) scan();
2533       return result;
2534     } else {
2535       return NULL;
2536     }
2537   }
2538 };
2539 
2540 
2541 // ---------------------------------------------------------------------------
2542 // Implementation of AdapterHandlerLibrary
2543 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2544 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2545 const int AdapterHandlerLibrary_size = 16*K;
2546 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2547 
2548 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2549   // Should be called only when AdapterHandlerLibrary_lock is active.
2550   if (_buffer == NULL) // Initialize lazily
2551       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2552   return _buffer;
2553 }
2554 
2555 extern "C" void unexpected_adapter_call() {
2556   ShouldNotCallThis();
2557 }
2558 
2559 void AdapterHandlerLibrary::initialize() {
2560   if (_adapters != NULL) return;
2561   _adapters = new AdapterHandlerTable();
2562 
2563   // Create a special handler for abstract methods.  Abstract methods
2564   // are never compiled so an i2c entry is somewhat meaningless, but
2565   // throw AbstractMethodError just in case.
2566   // Pass wrong_method_abstract for the c2i transitions to return
2567   // AbstractMethodError for invalid invocations.
2568   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2569   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2570                                                               StubRoutines::throw_AbstractMethodError_entry(),
2571                                                               wrong_method_abstract, wrong_method_abstract);
2572 }
2573 
2574 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2575                                                       address i2c_entry,
2576                                                       address c2i_entry,
2577                                                       address c2i_unverified_entry) {
2578   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2579 }
2580 
2581 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2582   AdapterHandlerEntry* entry = get_adapter0(method);
2583   if (method->is_shared()) {
2584     // See comments around Method::link_method()
2585     MutexLocker mu(AdapterHandlerLibrary_lock);
2586     if (method->adapter() == NULL) {
2587       method->update_adapter_trampoline(entry);
2588     }
2589     address trampoline = method->from_compiled_entry();
2590     if (*(int*)trampoline == 0) {
2591       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2592       MacroAssembler _masm(&buffer);
2593       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2594       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2595 
2596       if (PrintInterpreter) {
2597         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2598       }
2599     }
2600   }
2601 
2602   return entry;
2603 }
2604 
2605 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2606   // Use customized signature handler.  Need to lock around updates to
2607   // the AdapterHandlerTable (it is not safe for concurrent readers
2608   // and a single writer: this could be fixed if it becomes a
2609   // problem).
2610 
2611   ResourceMark rm;
2612 
2613   NOT_PRODUCT(int insts_size);
2614   AdapterBlob* new_adapter = NULL;
2615   AdapterHandlerEntry* entry = NULL;
2616   AdapterFingerPrint* fingerprint = NULL;
2617   {
2618     MutexLocker mu(AdapterHandlerLibrary_lock);
2619     // make sure data structure is initialized
2620     initialize();
2621 
2622     if (method->is_abstract()) {
2623       return _abstract_method_handler;
2624     }
2625 
2626     // Fill in the signature array, for the calling-convention call.
2627     int total_args_passed = method->size_of_parameters(); // All args on stack
2628 
2629     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2630     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2631     int i = 0;
2632     if (!method->is_static())  // Pass in receiver first
2633       sig_bt[i++] = T_OBJECT;
2634     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2635       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2636       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2637         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2638     }
2639     assert(i == total_args_passed, "");
2640 
2641     // Lookup method signature's fingerprint
2642     entry = _adapters->lookup(total_args_passed, sig_bt);
2643 
2644 #ifdef ASSERT
2645     AdapterHandlerEntry* shared_entry = NULL;
2646     // Start adapter sharing verification only after the VM is booted.
2647     if (VerifyAdapterSharing && (entry != NULL)) {
2648       shared_entry = entry;
2649       entry = NULL;
2650     }
2651 #endif
2652 
2653     if (entry != NULL) {
2654       return entry;
2655     }
2656 
2657     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2658     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2659 
2660     // Make a C heap allocated version of the fingerprint to store in the adapter
2661     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2662 
2663     // StubRoutines::code2() is initialized after this function can be called. As a result,
2664     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2665     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2666     // stub that ensure that an I2C stub is called from an interpreter frame.
2667     bool contains_all_checks = StubRoutines::code2() != NULL;
2668 
2669     // Create I2C & C2I handlers
2670     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2671     if (buf != NULL) {
2672       CodeBuffer buffer(buf);
2673       short buffer_locs[20];
2674       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2675                                              sizeof(buffer_locs)/sizeof(relocInfo));
2676 
2677       MacroAssembler _masm(&buffer);
2678       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2679                                                      total_args_passed,
2680                                                      comp_args_on_stack,
2681                                                      sig_bt,
2682                                                      regs,
2683                                                      fingerprint);
2684 #ifdef ASSERT
2685       if (VerifyAdapterSharing) {
2686         if (shared_entry != NULL) {
2687           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2688           // Release the one just created and return the original
2689           _adapters->free_entry(entry);
2690           return shared_entry;
2691         } else  {
2692           entry->save_code(buf->code_begin(), buffer.insts_size());
2693         }
2694       }
2695 #endif
2696 
2697       new_adapter = AdapterBlob::create(&buffer);
2698       NOT_PRODUCT(insts_size = buffer.insts_size());
2699     }
2700     if (new_adapter == NULL) {
2701       // CodeCache is full, disable compilation
2702       // Ought to log this but compile log is only per compile thread
2703       // and we're some non descript Java thread.
2704       return NULL; // Out of CodeCache space
2705     }
2706     entry->relocate(new_adapter->content_begin());
2707 #ifndef PRODUCT
2708     // debugging suppport
2709     if (PrintAdapterHandlers || PrintStubCode) {
2710       ttyLocker ttyl;
2711       entry->print_adapter_on(tty);
2712       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2713                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2714                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2715       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2716       if (Verbose || PrintStubCode) {
2717         address first_pc = entry->base_address();
2718         if (first_pc != NULL) {
2719           Disassembler::decode(first_pc, first_pc + insts_size);
2720           tty->cr();
2721         }
2722       }
2723     }
2724 #endif
2725     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2726     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2727     if (contains_all_checks || !VerifyAdapterCalls) {
2728       _adapters->add(entry);
2729     }
2730   }
2731   // Outside of the lock
2732   if (new_adapter != NULL) {
2733     char blob_id[256];
2734     jio_snprintf(blob_id,
2735                  sizeof(blob_id),
2736                  "%s(%s)@" PTR_FORMAT,
2737                  new_adapter->name(),
2738                  fingerprint->as_string(),
2739                  new_adapter->content_begin());
2740     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2741 
2742     if (JvmtiExport::should_post_dynamic_code_generated()) {
2743       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2744     }
2745   }
2746   return entry;
2747 }
2748 
2749 address AdapterHandlerEntry::base_address() {
2750   address base = _i2c_entry;
2751   if (base == NULL)  base = _c2i_entry;
2752   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2753   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2754   return base;
2755 }
2756 
2757 void AdapterHandlerEntry::relocate(address new_base) {
2758   address old_base = base_address();
2759   assert(old_base != NULL, "");
2760   ptrdiff_t delta = new_base - old_base;
2761   if (_i2c_entry != NULL)
2762     _i2c_entry += delta;
2763   if (_c2i_entry != NULL)
2764     _c2i_entry += delta;
2765   if (_c2i_unverified_entry != NULL)
2766     _c2i_unverified_entry += delta;
2767   assert(base_address() == new_base, "");
2768 }
2769 
2770 
2771 void AdapterHandlerEntry::deallocate() {
2772   delete _fingerprint;
2773 #ifdef ASSERT
2774   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2775 #endif
2776 }
2777 
2778 
2779 #ifdef ASSERT
2780 // Capture the code before relocation so that it can be compared
2781 // against other versions.  If the code is captured after relocation
2782 // then relative instructions won't be equivalent.
2783 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2784   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2785   _saved_code_length = length;
2786   memcpy(_saved_code, buffer, length);
2787 }
2788 
2789 
2790 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2791   if (length != _saved_code_length) {
2792     return false;
2793   }
2794 
2795   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2796 }
2797 #endif
2798 
2799 
2800 /**
2801  * Create a native wrapper for this native method.  The wrapper converts the
2802  * Java-compiled calling convention to the native convention, handles
2803  * arguments, and transitions to native.  On return from the native we transition
2804  * back to java blocking if a safepoint is in progress.
2805  */
2806 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2807   ResourceMark rm;
2808   nmethod* nm = NULL;
2809 
2810   assert(method->is_native(), "must be native");
2811   assert(method->is_method_handle_intrinsic() ||
2812          method->has_native_function(), "must have something valid to call!");
2813 
2814   {
2815     // Perform the work while holding the lock, but perform any printing outside the lock
2816     MutexLocker mu(AdapterHandlerLibrary_lock);
2817     // See if somebody beat us to it
2818     if (method->code() != NULL) {
2819       return;
2820     }
2821 
2822     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2823     assert(compile_id > 0, "Must generate native wrapper");
2824 
2825 
2826     ResourceMark rm;
2827     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2828     if (buf != NULL) {
2829       CodeBuffer buffer(buf);
2830       double locs_buf[20];
2831       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2832       MacroAssembler _masm(&buffer);
2833 
2834       // Fill in the signature array, for the calling-convention call.
2835       const int total_args_passed = method->size_of_parameters();
2836 
2837       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2838       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2839       int i=0;
2840       if (!method->is_static())  // Pass in receiver first
2841         sig_bt[i++] = T_OBJECT;
2842       SignatureStream ss(method->signature());
2843       for (; !ss.at_return_type(); ss.next()) {
2844         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2845         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2846           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2847       }
2848       assert(i == total_args_passed, "");
2849       BasicType ret_type = ss.type();
2850 
2851       // Now get the compiled-Java layout as input (or output) arguments.
2852       // NOTE: Stubs for compiled entry points of method handle intrinsics
2853       // are just trampolines so the argument registers must be outgoing ones.
2854       const bool is_outgoing = method->is_method_handle_intrinsic();
2855       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2856 
2857       // Generate the compiled-to-native wrapper code
2858       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2859 
2860       if (nm != NULL) {
2861         method->set_code(method, nm);
2862 
2863         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2864         if (directive->PrintAssemblyOption) {
2865           nm->print_code();
2866         }
2867         DirectivesStack::release(directive);
2868       }
2869     }
2870   } // Unlock AdapterHandlerLibrary_lock
2871 
2872 
2873   // Install the generated code.
2874   if (nm != NULL) {
2875     const char *msg = method->is_static() ? "(static)" : "";
2876     CompileTask::print_ul(nm, msg);
2877     if (PrintCompilation) {
2878       ttyLocker ttyl;
2879       CompileTask::print(tty, nm, msg);
2880     }
2881     nm->post_compiled_method_load_event();
2882   }
2883 }
2884 
2885 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2886   assert(thread == JavaThread::current(), "must be");
2887   // The code is about to enter a JNI lazy critical native method and
2888   // _needs_gc is true, so if this thread is already in a critical
2889   // section then just return, otherwise this thread should block
2890   // until needs_gc has been cleared.
2891   if (thread->in_critical()) {
2892     return;
2893   }
2894   // Lock and unlock a critical section to give the system a chance to block
2895   GCLocker::lock_critical(thread);
2896   GCLocker::unlock_critical(thread);
2897 JRT_END
2898 
2899 // -------------------------------------------------------------------------
2900 // Java-Java calling convention
2901 // (what you use when Java calls Java)
2902 
2903 //------------------------------name_for_receiver----------------------------------
2904 // For a given signature, return the VMReg for parameter 0.
2905 VMReg SharedRuntime::name_for_receiver() {
2906   VMRegPair regs;
2907   BasicType sig_bt = T_OBJECT;
2908   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2909   // Return argument 0 register.  In the LP64 build pointers
2910   // take 2 registers, but the VM wants only the 'main' name.
2911   return regs.first();
2912 }
2913 
2914 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2915   // This method is returning a data structure allocating as a
2916   // ResourceObject, so do not put any ResourceMarks in here.
2917   char *s = sig->as_C_string();
2918   int len = (int)strlen(s);
2919   s++; len--;                   // Skip opening paren
2920 
2921   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2922   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2923   int cnt = 0;
2924   if (has_receiver) {
2925     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2926   }
2927 
2928   while (*s != ')') {          // Find closing right paren
2929     switch (*s++) {            // Switch on signature character
2930     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2931     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2932     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2933     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2934     case 'I': sig_bt[cnt++] = T_INT;     break;
2935     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2936     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2937     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2938     case 'V': sig_bt[cnt++] = T_VOID;    break;
2939     case 'L':                   // Oop
2940       while (*s++ != ';');   // Skip signature
2941       sig_bt[cnt++] = T_OBJECT;
2942       break;
2943     case '[': {                 // Array
2944       do {                      // Skip optional size
2945         while (*s >= '0' && *s <= '9') s++;
2946       } while (*s++ == '[');   // Nested arrays?
2947       // Skip element type
2948       if (s[-1] == 'L')
2949         while (*s++ != ';'); // Skip signature
2950       sig_bt[cnt++] = T_ARRAY;
2951       break;
2952     }
2953     default : ShouldNotReachHere();
2954     }
2955   }
2956 
2957   if (has_appendix) {
2958     sig_bt[cnt++] = T_OBJECT;
2959   }
2960 
2961   assert(cnt < 256, "grow table size");
2962 
2963   int comp_args_on_stack;
2964   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2965 
2966   // the calling convention doesn't count out_preserve_stack_slots so
2967   // we must add that in to get "true" stack offsets.
2968 
2969   if (comp_args_on_stack) {
2970     for (int i = 0; i < cnt; i++) {
2971       VMReg reg1 = regs[i].first();
2972       if (reg1->is_stack()) {
2973         // Yuck
2974         reg1 = reg1->bias(out_preserve_stack_slots());
2975       }
2976       VMReg reg2 = regs[i].second();
2977       if (reg2->is_stack()) {
2978         // Yuck
2979         reg2 = reg2->bias(out_preserve_stack_slots());
2980       }
2981       regs[i].set_pair(reg2, reg1);
2982     }
2983   }
2984 
2985   // results
2986   *arg_size = cnt;
2987   return regs;
2988 }
2989 
2990 // OSR Migration Code
2991 //
2992 // This code is used convert interpreter frames into compiled frames.  It is
2993 // called from very start of a compiled OSR nmethod.  A temp array is
2994 // allocated to hold the interesting bits of the interpreter frame.  All
2995 // active locks are inflated to allow them to move.  The displaced headers and
2996 // active interpreter locals are copied into the temp buffer.  Then we return
2997 // back to the compiled code.  The compiled code then pops the current
2998 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2999 // copies the interpreter locals and displaced headers where it wants.
3000 // Finally it calls back to free the temp buffer.
3001 //
3002 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3003 
3004 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3005 
3006   //
3007   // This code is dependent on the memory layout of the interpreter local
3008   // array and the monitors. On all of our platforms the layout is identical
3009   // so this code is shared. If some platform lays the their arrays out
3010   // differently then this code could move to platform specific code or
3011   // the code here could be modified to copy items one at a time using
3012   // frame accessor methods and be platform independent.
3013 
3014   frame fr = thread->last_frame();
3015   assert(fr.is_interpreted_frame(), "");
3016   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3017 
3018   // Figure out how many monitors are active.
3019   int active_monitor_count = 0;
3020   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3021        kptr < fr.interpreter_frame_monitor_begin();
3022        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3023     if (kptr->obj() != NULL) active_monitor_count++;
3024   }
3025 
3026   // QQQ we could place number of active monitors in the array so that compiled code
3027   // could double check it.
3028 
3029   Method* moop = fr.interpreter_frame_method();
3030   int max_locals = moop->max_locals();
3031   // Allocate temp buffer, 1 word per local & 2 per active monitor
3032   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3033   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3034 
3035   // Copy the locals.  Order is preserved so that loading of longs works.
3036   // Since there's no GC I can copy the oops blindly.
3037   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3038   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3039                        (HeapWord*)&buf[0],
3040                        max_locals);
3041 
3042   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3043   int i = max_locals;
3044   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3045        kptr2 < fr.interpreter_frame_monitor_begin();
3046        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3047     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3048       BasicLock *lock = kptr2->lock();
3049       // Inflate so the displaced header becomes position-independent
3050       if (lock->displaced_header()->is_unlocked())
3051         ObjectSynchronizer::inflate_helper(kptr2->obj());
3052       // Now the displaced header is free to move
3053       buf[i++] = (intptr_t)lock->displaced_header();
3054       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3055     }
3056   }
3057   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3058 
3059   return buf;
3060 JRT_END
3061 
3062 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3063   FREE_C_HEAP_ARRAY(intptr_t, buf);
3064 JRT_END
3065 
3066 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3067   AdapterHandlerTableIterator iter(_adapters);
3068   while (iter.has_next()) {
3069     AdapterHandlerEntry* a = iter.next();
3070     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3071   }
3072   return false;
3073 }
3074 
3075 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3076   AdapterHandlerTableIterator iter(_adapters);
3077   while (iter.has_next()) {
3078     AdapterHandlerEntry* a = iter.next();
3079     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3080       st->print("Adapter for signature: ");
3081       a->print_adapter_on(tty);
3082       return;
3083     }
3084   }
3085   assert(false, "Should have found handler");
3086 }
3087 
3088 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3089   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3090                p2i(this), fingerprint()->as_string(),
3091                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3092 
3093 }
3094 
3095 #if INCLUDE_CDS
3096 
3097 void CDSAdapterHandlerEntry::init() {
3098   assert(DumpSharedSpaces, "used during dump time only");
3099   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3100   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3101 };
3102 
3103 #endif // INCLUDE_CDS
3104 
3105 
3106 #ifndef PRODUCT
3107 
3108 void AdapterHandlerLibrary::print_statistics() {
3109   _adapters->print_statistics();
3110 }
3111 
3112 #endif /* PRODUCT */
3113 
3114 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3115   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3116   if (thread->stack_reserved_zone_disabled()) {
3117   thread->enable_stack_reserved_zone();
3118   }
3119   thread->set_reserved_stack_activation(thread->stack_base());
3120 JRT_END
3121 
3122 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3123   ResourceMark rm(thread);
3124   frame activation;
3125   CompiledMethod* nm = NULL;
3126   int count = 1;
3127 
3128   assert(fr.is_java_frame(), "Must start on Java frame");
3129 
3130   while (true) {
3131     Method* method = NULL;
3132     bool found = false;
3133     if (fr.is_interpreted_frame()) {
3134       method = fr.interpreter_frame_method();
3135       if (method != NULL && method->has_reserved_stack_access()) {
3136         found = true;
3137       }
3138     } else {
3139       CodeBlob* cb = fr.cb();
3140       if (cb != NULL && cb->is_compiled()) {
3141         nm = cb->as_compiled_method();
3142         method = nm->method();
3143         // scope_desc_near() must be used, instead of scope_desc_at() because on
3144         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3145         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3146           method = sd->method();
3147           if (method != NULL && method->has_reserved_stack_access()) {
3148             found = true;
3149       }
3150     }
3151       }
3152     }
3153     if (found) {
3154       activation = fr;
3155       warning("Potentially dangerous stack overflow in "
3156               "ReservedStackAccess annotated method %s [%d]",
3157               method->name_and_sig_as_C_string(), count++);
3158       EventReservedStackActivation event;
3159       if (event.should_commit()) {
3160         event.set_method(method);
3161         event.commit();
3162       }
3163     }
3164     if (fr.is_first_java_frame()) {
3165       break;
3166     } else {
3167       fr = fr.java_sender();
3168     }
3169   }
3170   return activation;
3171 }