G1BarrierSet_merge

0 /*
1  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
3  *
4  * This code is free software; you can redistribute it and/or modify it
5  * under the terms of the GNU General Public License version 2 only, as
6  * published by the Free Software Foundation.
7  *
8  * This code is distributed in the hope that it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
11  * version 2 for more details (a copy is included in the LICENSE file that
12  * accompanied this code).
13  *
14  * You should have received a copy of the GNU General Public License version
15  * 2 along with this work; if not, write to the Free Software Foundation,
16  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
17  *
18  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
19  * or visit www.oracle.com if you need additional information or have any
20  * questions.
21  *
22  */
23 
24 #include "precompiled.hpp"
25 #include "c1/c1_Compilation.hpp"
26 #include "c1/c1_Defs.hpp"
27 #include "c1/c1_FrameMap.hpp"
28 #include "c1/c1_Instruction.hpp"
29 #include "c1/c1_LIRAssembler.hpp"
30 #include "c1/c1_LIRGenerator.hpp"
31 #include "c1/c1_ValueStack.hpp"
32 #include "ci/ciArrayKlass.hpp"
33 #include "ci/ciInstance.hpp"
34 #include "ci/ciObjArray.hpp"
35 #include "ci/ciUtilities.hpp"
36 #include "gc/shared/cardTable.hpp"
37 #include "gc/shared/cardTableModRefBS.hpp"
38 #include "runtime/arguments.hpp"
39 #include "runtime/sharedRuntime.hpp"
40 #include "runtime/stubRoutines.hpp"
41 #include "runtime/vm_version.hpp"
42 #include "utilities/bitMap.inline.hpp"
43 #include "utilities/macros.hpp"
44 #if INCLUDE_ALL_GCS
45 #include "gc/g1/heapRegion.hpp"
46 #endif // INCLUDE_ALL_GCS
47 #ifdef TRACE_HAVE_INTRINSICS
48 #include "trace/traceMacros.hpp"
49 #endif
50 
51 #ifdef ASSERT
52 #define __ gen()->lir(__FILE__, __LINE__)->
53 #else
54 #define __ gen()->lir()->
55 #endif
56 
57 #ifndef PATCHED_ADDR
58 #define PATCHED_ADDR  (max_jint)
59 #endif
60 
61 void PhiResolverState::reset(int max_vregs) {
62   // Initialize array sizes
63   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
64   _virtual_operands.trunc_to(0);
65   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
66   _other_operands.trunc_to(0);
67   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
68   _vreg_table.trunc_to(0);
69 }
70 
71 
72 
73 //--------------------------------------------------------------
74 // PhiResolver
75 
76 // Resolves cycles:
77 //
78 //  r1 := r2  becomes  temp := r1
79 //  r2 := r1           r1 := r2
80 //                     r2 := temp
81 // and orders moves:
82 //
83 //  r2 := r3  becomes  r1 := r2
84 //  r1 := r2           r2 := r3
85 
86 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
87  : _gen(gen)
88  , _state(gen->resolver_state())
89  , _temp(LIR_OprFact::illegalOpr)
90 {
91   // reinitialize the shared state arrays
92   _state.reset(max_vregs);
93 }
94 
95 
96 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
97   assert(src->is_valid(), "");
98   assert(dest->is_valid(), "");
99   __ move(src, dest);
100 }
101 
102 
103 void PhiResolver::move_temp_to(LIR_Opr dest) {
104   assert(_temp->is_valid(), "");
105   emit_move(_temp, dest);
106   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
107 }
108 
109 
110 void PhiResolver::move_to_temp(LIR_Opr src) {
111   assert(_temp->is_illegal(), "");
112   _temp = _gen->new_register(src->type());
113   emit_move(src, _temp);
114 }
115 
116 
117 // Traverse assignment graph in depth first order and generate moves in post order
118 // ie. two assignments: b := c, a := b start with node c:
119 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
120 // Generates moves in this order: move b to a and move c to b
121 // ie. cycle a := b, b := a start with node a
122 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
123 // Generates moves in this order: move b to temp, move a to b, move temp to a
124 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
125   if (!dest->visited()) {
126     dest->set_visited();
127     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
128       move(dest, dest->destination_at(i));
129     }
130   } else if (!dest->start_node()) {
131     // cylce in graph detected
132     assert(_loop == NULL, "only one loop valid!");
133     _loop = dest;
134     move_to_temp(src->operand());
135     return;
136   } // else dest is a start node
137 
138   if (!dest->assigned()) {
139     if (_loop == dest) {
140       move_temp_to(dest->operand());
141       dest->set_assigned();
142     } else if (src != NULL) {
143       emit_move(src->operand(), dest->operand());
144       dest->set_assigned();
145     }
146   }
147 }
148 
149 
150 PhiResolver::~PhiResolver() {
151   int i;
152   // resolve any cycles in moves from and to virtual registers
153   for (i = virtual_operands().length() - 1; i >= 0; i --) {
154     ResolveNode* node = virtual_operands().at(i);
155     if (!node->visited()) {
156       _loop = NULL;
157       move(NULL, node);
158       node->set_start_node();
159       assert(_temp->is_illegal(), "move_temp_to() call missing");
160     }
161   }
162 
163   // generate move for move from non virtual register to abitrary destination
164   for (i = other_operands().length() - 1; i >= 0; i --) {
165     ResolveNode* node = other_operands().at(i);
166     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
167       emit_move(node->operand(), node->destination_at(j)->operand());
168     }
169   }
170 }
171 
172 
173 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
174   ResolveNode* node;
175   if (opr->is_virtual()) {
176     int vreg_num = opr->vreg_number();
177     node = vreg_table().at_grow(vreg_num, NULL);
178     assert(node == NULL || node->operand() == opr, "");
179     if (node == NULL) {
180       node = new ResolveNode(opr);
181       vreg_table().at_put(vreg_num, node);
182     }
183     // Make sure that all virtual operands show up in the list when
184     // they are used as the source of a move.
185     if (source && !virtual_operands().contains(node)) {
186       virtual_operands().append(node);
187     }
188   } else {
189     assert(source, "");
190     node = new ResolveNode(opr);
191     other_operands().append(node);
192   }
193   return node;
194 }
195 
196 
197 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
198   assert(dest->is_virtual(), "");
199   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
200   assert(src->is_valid(), "");
201   assert(dest->is_valid(), "");
202   ResolveNode* source = source_node(src);
203   source->append(destination_node(dest));
204 }
205 
206 
207 //--------------------------------------------------------------
208 // LIRItem
209 
210 void LIRItem::set_result(LIR_Opr opr) {
211   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
212   value()->set_operand(opr);
213 
214   if (opr->is_virtual()) {
215     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
216   }
217 
218   _result = opr;
219 }
220 
221 void LIRItem::load_item() {
222   if (result()->is_illegal()) {
223     // update the items result
224     _result = value()->operand();
225   }
226   if (!result()->is_register()) {
227     LIR_Opr reg = _gen->new_register(value()->type());
228     __ move(result(), reg);
229     if (result()->is_constant()) {
230       _result = reg;
231     } else {
232       set_result(reg);
233     }
234   }
235 }
236 
237 
238 void LIRItem::load_for_store(BasicType type) {
239   if (_gen->can_store_as_constant(value(), type)) {
240     _result = value()->operand();
241     if (!_result->is_constant()) {
242       _result = LIR_OprFact::value_type(value()->type());
243     }
244   } else if (type == T_BYTE || type == T_BOOLEAN) {
245     load_byte_item();
246   } else {
247     load_item();
248   }
249 }
250 
251 void LIRItem::load_item_force(LIR_Opr reg) {
252   LIR_Opr r = result();
253   if (r != reg) {
254 #if !defined(ARM) && !defined(E500V2)
255     if (r->type() != reg->type()) {
256       // moves between different types need an intervening spill slot
257       r = _gen->force_to_spill(r, reg->type());
258     }
259 #endif
260     __ move(r, reg);
261     _result = reg;
262   }
263 }
264 
265 ciObject* LIRItem::get_jobject_constant() const {
266   ObjectType* oc = type()->as_ObjectType();
267   if (oc) {
268     return oc->constant_value();
269   }
270   return NULL;
271 }
272 
273 
274 jint LIRItem::get_jint_constant() const {
275   assert(is_constant() && value() != NULL, "");
276   assert(type()->as_IntConstant() != NULL, "type check");
277   return type()->as_IntConstant()->value();
278 }
279 
280 
281 jint LIRItem::get_address_constant() const {
282   assert(is_constant() && value() != NULL, "");
283   assert(type()->as_AddressConstant() != NULL, "type check");
284   return type()->as_AddressConstant()->value();
285 }
286 
287 
288 jfloat LIRItem::get_jfloat_constant() const {
289   assert(is_constant() && value() != NULL, "");
290   assert(type()->as_FloatConstant() != NULL, "type check");
291   return type()->as_FloatConstant()->value();
292 }
293 
294 
295 jdouble LIRItem::get_jdouble_constant() const {
296   assert(is_constant() && value() != NULL, "");
297   assert(type()->as_DoubleConstant() != NULL, "type check");
298   return type()->as_DoubleConstant()->value();
299 }
300 
301 
302 jlong LIRItem::get_jlong_constant() const {
303   assert(is_constant() && value() != NULL, "");
304   assert(type()->as_LongConstant() != NULL, "type check");
305   return type()->as_LongConstant()->value();
306 }
307 
308 
309 
310 //--------------------------------------------------------------
311 
312 
313 void LIRGenerator::init() {
314   _bs = Universe::heap()->barrier_set();
315 }
316 
317 
318 void LIRGenerator::block_do_prolog(BlockBegin* block) {
319 #ifndef PRODUCT
320   if (PrintIRWithLIR) {
321     block->print();
322   }
323 #endif
324 
325   // set up the list of LIR instructions
326   assert(block->lir() == NULL, "LIR list already computed for this block");
327   _lir = new LIR_List(compilation(), block);
328   block->set_lir(_lir);
329 
330   __ branch_destination(block->label());
331 
332   if (LIRTraceExecution &&
333       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
334       !block->is_set(BlockBegin::exception_entry_flag)) {
335     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
336     trace_block_entry(block);
337   }
338 }
339 
340 
341 void LIRGenerator::block_do_epilog(BlockBegin* block) {
342 #ifndef PRODUCT
343   if (PrintIRWithLIR) {
344     tty->cr();
345   }
346 #endif
347 
348   // LIR_Opr for unpinned constants shouldn't be referenced by other
349   // blocks so clear them out after processing the block.
350   for (int i = 0; i < _unpinned_constants.length(); i++) {
351     _unpinned_constants.at(i)->clear_operand();
352   }
353   _unpinned_constants.trunc_to(0);
354 
355   // clear our any registers for other local constants
356   _constants.trunc_to(0);
357   _reg_for_constants.trunc_to(0);
358 }
359 
360 
361 void LIRGenerator::block_do(BlockBegin* block) {
362   CHECK_BAILOUT();
363 
364   block_do_prolog(block);
365   set_block(block);
366 
367   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
368     if (instr->is_pinned()) do_root(instr);
369   }
370 
371   set_block(NULL);
372   block_do_epilog(block);
373 }
374 
375 
376 //-------------------------LIRGenerator-----------------------------
377 
378 // This is where the tree-walk starts; instr must be root;
379 void LIRGenerator::do_root(Value instr) {
380   CHECK_BAILOUT();
381 
382   InstructionMark im(compilation(), instr);
383 
384   assert(instr->is_pinned(), "use only with roots");
385   assert(instr->subst() == instr, "shouldn't have missed substitution");
386 
387   instr->visit(this);
388 
389   assert(!instr->has_uses() || instr->operand()->is_valid() ||
390          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
391 }
392 
393 
394 // This is called for each node in tree; the walk stops if a root is reached
395 void LIRGenerator::walk(Value instr) {
396   InstructionMark im(compilation(), instr);
397   //stop walk when encounter a root
398   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
399     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
400   } else {
401     assert(instr->subst() == instr, "shouldn't have missed substitution");
402     instr->visit(this);
403     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
404   }
405 }
406 
407 
408 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
409   assert(state != NULL, "state must be defined");
410 
411 #ifndef PRODUCT
412   state->verify();
413 #endif
414 
415   ValueStack* s = state;
416   for_each_state(s) {
417     if (s->kind() == ValueStack::EmptyExceptionState) {
418       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
419       continue;
420     }
421 
422     int index;
423     Value value;
424     for_each_stack_value(s, index, value) {
425       assert(value->subst() == value, "missed substitution");
426       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
427         walk(value);
428         assert(value->operand()->is_valid(), "must be evaluated now");
429       }
430     }
431 
432     int bci = s->bci();
433     IRScope* scope = s->scope();
434     ciMethod* method = scope->method();
435 
436     MethodLivenessResult liveness = method->liveness_at_bci(bci);
437     if (bci == SynchronizationEntryBCI) {
438       if (x->as_ExceptionObject() || x->as_Throw()) {
439         // all locals are dead on exit from the synthetic unlocker
440         liveness.clear();
441       } else {
442         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
443       }
444     }
445     if (!liveness.is_valid()) {
446       // Degenerate or breakpointed method.
447       bailout("Degenerate or breakpointed method");
448     } else {
449       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
450       for_each_local_value(s, index, value) {
451         assert(value->subst() == value, "missed substition");
452         if (liveness.at(index) && !value->type()->is_illegal()) {
453           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
454             walk(value);
455             assert(value->operand()->is_valid(), "must be evaluated now");
456           }
457         } else {
458           // NULL out this local so that linear scan can assume that all non-NULL values are live.
459           s->invalidate_local(index);
460         }
461       }
462     }
463   }
464 
465   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException))
466 }
467 
468 
469 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
470   return state_for(x, x->exception_state());
471 }
472 
473 
474 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
475   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
476    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
477    * the class. */
478   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
479     assert(info != NULL, "info must be set if class is not loaded");
480     __ klass2reg_patch(NULL, r, info);
481   } else {
482     // no patching needed
483     __ metadata2reg(obj->constant_encoding(), r);
484   }
485 }
486 
487 
488 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
489                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
490   CodeStub* stub = new RangeCheckStub(range_check_info, index);
491   if (index->is_constant()) {
492     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
493                 index->as_jint(), null_check_info);
494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
495   } else {
496     cmp_reg_mem(lir_cond_aboveEqual, index, array,
497                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
499   }
500 }
501 
502 
503 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
504   CodeStub* stub = new RangeCheckStub(info, index, true);
505   if (index->is_constant()) {
506     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
507     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
508   } else {
509     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
510                 java_nio_Buffer::limit_offset(), T_INT, info);
511     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
512   }
513   __ move(index, result);
514 }
515 
516 
517 
518 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op,
519   LIR_Opr result_op = result;
520   LIR_Opr left_op   = left;
521   LIR_Opr right_op  = right;
522 
523   if (TwoOperandLIRForm && left_op != result_op) {
524     assert(right_op != result_op, "malformed");
525     __ move(left_op, result_op);
526     left_op = result_op;
527   }
528 
529   switch(code) {
530     case Bytecodes::_dadd:
531     case Bytecodes::_fadd:
532     case Bytecodes::_ladd:
533     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
534     case Bytecodes::_fmul:
535     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
536 
537     case Bytecodes::_dmul:
538       {
539         if (is_strictfp) {
540           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
541         } else {
542           __ mul(left_op, right_op, result_op); break;
543         }
544       }
545       break;
546 
547     case Bytecodes::_imul:
548       {
549         bool did_strength_reduce = false;
550 
551         if (right->is_constant()) {
552           jint c = right->as_jint();
553           if (c > 0 && is_power_of_2(c)) {
554             // do not need tmp here
555             __ shift_left(left_op, exact_log2(c), result_op);
556             did_strength_reduce = true;
557           } else {
558             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
559           }
560         }
561         // we couldn't strength reduce so just emit the multiply
562         if (!did_strength_reduce) {
563           __ mul(left_op, right_op, result_op);
564         }
565       }
566       break;
567 
568     case Bytecodes::_dsub:
569     case Bytecodes::_fsub:
570     case Bytecodes::_lsub:
571     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
572 
573     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
574     // ldiv and lrem are implemented with a direct runtime call
575 
576     case Bytecodes::_ddiv:
577       {
578         if (is_strictfp) {
579           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
580         } else {
581           __ div (left_op, right_op, result_op); break;
582         }
583       }
584       break;
585 
586     case Bytecodes::_drem:
587     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
588 
589     default: ShouldNotReachHere();
590   }
591 }
592 
593 
594 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
595   arithmetic_op(code, result, left, right, false, tmp);
596 }
597 
598 
599 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
600   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
601 }
602 
603 
604 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp
605   arithmetic_op(code, result, left, right, is_strictfp, tmp);
606 }
607 
608 
609 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
610 
611   if (TwoOperandLIRForm && value != result_op
612       // Only 32bit right shifts require two operand form on S390.
613       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
614     assert(count != result_op, "malformed");
615     __ move(value, result_op);
616     value = result_op;
617   }
618 
619   assert(count->is_constant() || count->is_register(), "must be");
620   switch(code) {
621   case Bytecodes::_ishl:
622   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
623   case Bytecodes::_ishr:
624   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
625   case Bytecodes::_iushr:
626   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
627   default: ShouldNotReachHere();
628   }
629 }
630 
631 
632 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
633   if (TwoOperandLIRForm && left_op != result_op) {
634     assert(right_op != result_op, "malformed");
635     __ move(left_op, result_op);
636     left_op = result_op;
637   }
638 
639   switch(code) {
640     case Bytecodes::_iand:
641     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
642 
643     case Bytecodes::_ior:
644     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
645 
646     case Bytecodes::_ixor:
647     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
648 
649     default: ShouldNotReachHere();
650   }
651 }
652 
653 
654 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_e
655   if (!GenerateSynchronizationCode) return;
656   // for slow path, use debug info for state after successful locking
657   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
658   __ load_stack_address_monitor(monitor_no, lock);
659   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
660   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
661 }
662 
663 
664 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
665   if (!GenerateSynchronizationCode) return;
666   // setup registers
667   LIR_Opr hdr = lock;
668   lock = new_hdr;
669   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
670   __ load_stack_address_monitor(monitor_no, lock);
671   __ unlock_object(hdr, object, lock, scratch, slow_path);
672 }
673 
674 #ifndef PRODUCT
675 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
676   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
677     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
678   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
679     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
680   }
681 }
682 #endif
683 
684 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr 
685   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
686   // If klass is not loaded we do not know if the klass has finalizers:
687   if (UseFastNewInstance && klass->is_loaded()
688       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
689 
690     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
691 
692     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
693 
694     assert(klass->is_loaded(), "must be loaded");
695     // allocate space for instance
696     assert(klass->size_helper() >= 0, "illegal instance size");
697     const int instance_size = align_object_size(klass->size_helper());
698     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
699                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
700   } else {
701     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
702     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
703     __ branch_destination(slow_path->continuation());
704   }
705 }
706 
707 
708 static bool is_constant_zero(Instruction* inst) {
709   IntConstant* c = inst->type()->as_IntConstant();
710   if (c) {
711     return (c->value() == 0);
712   }
713   return false;
714 }
715 
716 
717 static bool positive_constant(Instruction* inst) {
718   IntConstant* c = inst->type()->as_IntConstant();
719   if (c) {
720     return (c->value() >= 0);
721   }
722   return false;
723 }
724 
725 
726 static ciArrayKlass* as_array_klass(ciType* type) {
727   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
728     return (ciArrayKlass*)type;
729   } else {
730     return NULL;
731   }
732 }
733 
734 static ciType* phi_declared_type(Phi* phi) {
735   ciType* t = phi->operand_at(0)->declared_type();
736   if (t == NULL) {
737     return NULL;
738   }
739   for(int i = 1; i < phi->operand_count(); i++) {
740     if (t != phi->operand_at(i)->declared_type()) {
741       return NULL;
742     }
743   }
744   return t;
745 }
746 
747 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
748   Instruction* src     = x->argument_at(0);
749   Instruction* src_pos = x->argument_at(1);
750   Instruction* dst     = x->argument_at(2);
751   Instruction* dst_pos = x->argument_at(3);
752   Instruction* length  = x->argument_at(4);
753 
754   // first try to identify the likely type of the arrays involved
755   ciArrayKlass* expected_type = NULL;
756   bool is_exact = false, src_objarray = false, dst_objarray = false;
757   {
758     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
759     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
760     Phi* phi;
761     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
762       src_declared_type = as_array_klass(phi_declared_type(phi));
763     }
764     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
765     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
766     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
767       dst_declared_type = as_array_klass(phi_declared_type(phi));
768     }
769 
770     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
771       // the types exactly match so the type is fully known
772       is_exact = true;
773       expected_type = src_exact_type;
774     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
775       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
776       ciArrayKlass* src_type = NULL;
777       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
778         src_type = (ciArrayKlass*) src_exact_type;
779       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
780         src_type = (ciArrayKlass*) src_declared_type;
781       }
782       if (src_type != NULL) {
783         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
784           is_exact = true;
785           expected_type = dst_type;
786         }
787       }
788     }
789     // at least pass along a good guess
790     if (expected_type == NULL) expected_type = dst_exact_type;
791     if (expected_type == NULL) expected_type = src_declared_type;
792     if (expected_type == NULL) expected_type = dst_declared_type;
793 
794     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_
795     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_
796   }
797 
798   // if a probable array type has been identified, figure out if any
799   // of the required checks for a fast case can be elided.
800   int flags = LIR_OpArrayCopy::all_flags;
801 
802   if (!src_objarray)
803     flags &= ~LIR_OpArrayCopy::src_objarray;
804   if (!dst_objarray)
805     flags &= ~LIR_OpArrayCopy::dst_objarray;
806 
807   if (!x->arg_needs_null_check(0))
808     flags &= ~LIR_OpArrayCopy::src_null_check;
809   if (!x->arg_needs_null_check(2))
810     flags &= ~LIR_OpArrayCopy::dst_null_check;
811 
812 
813   if (expected_type != NULL) {
814     Value length_limit = NULL;
815 
816     IfOp* ifop = length->as_IfOp();
817     if (ifop != NULL) {
818       // look for expressions like min(v, a.length) which ends up as
819       //   x > y ? y : x  or  x >= y ? y : x
820       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
821           ifop->x() == ifop->fval() &&
822           ifop->y() == ifop->tval()) {
823         length_limit = ifop->y();
824       }
825     }
826 
827     // try to skip null checks and range checks
828     NewArray* src_array = src->as_NewArray();
829     if (src_array != NULL) {
830       flags &= ~LIR_OpArrayCopy::src_null_check;
831       if (length_limit != NULL &&
832           src_array->length() == length_limit &&
833           is_constant_zero(src_pos)) {
834         flags &= ~LIR_OpArrayCopy::src_range_check;
835       }
836     }
837 
838     NewArray* dst_array = dst->as_NewArray();
839     if (dst_array != NULL) {
840       flags &= ~LIR_OpArrayCopy::dst_null_check;
841       if (length_limit != NULL &&
842           dst_array->length() == length_limit &&
843           is_constant_zero(dst_pos)) {
844         flags &= ~LIR_OpArrayCopy::dst_range_check;
845       }
846     }
847 
848     // check from incoming constant values
849     if (positive_constant(src_pos))
850       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
851     if (positive_constant(dst_pos))
852       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
853     if (positive_constant(length))
854       flags &= ~LIR_OpArrayCopy::length_positive_check;
855 
856     // see if the range check can be elided, which might also imply
857     // that src or dst is non-null.
858     ArrayLength* al = length->as_ArrayLength();
859     if (al != NULL) {
860       if (al->array() == src) {
861         // it's the length of the source array
862         flags &= ~LIR_OpArrayCopy::length_positive_check;
863         flags &= ~LIR_OpArrayCopy::src_null_check;
864         if (is_constant_zero(src_pos))
865           flags &= ~LIR_OpArrayCopy::src_range_check;
866       }
867       if (al->array() == dst) {
868         // it's the length of the destination array
869         flags &= ~LIR_OpArrayCopy::length_positive_check;
870         flags &= ~LIR_OpArrayCopy::dst_null_check;
871         if (is_constant_zero(dst_pos))
872           flags &= ~LIR_OpArrayCopy::dst_range_check;
873       }
874     }
875     if (is_exact) {
876       flags &= ~LIR_OpArrayCopy::type_check;
877     }
878   }
879 
880   IntConstant* src_int = src_pos->type()->as_IntConstant();
881   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
882   if (src_int && dst_int) {
883     int s_offs = src_int->value();
884     int d_offs = dst_int->value();
885     if (src_int->value() >= dst_int->value()) {
886       flags &= ~LIR_OpArrayCopy::overlapping;
887     }
888     if (expected_type != NULL) {
889       BasicType t = expected_type->element_type()->basic_type();
890       int element_size = type2aelembytes(t);
891       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
892           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
893         flags &= ~LIR_OpArrayCopy::unaligned;
894       }
895     }
896   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
897     // src and dest positions are the same, or dst is zero so assume
898     // nonoverlapping copy.
899     flags &= ~LIR_OpArrayCopy::overlapping;
900   }
901 
902   if (src == dst) {
903     // moving within a single array so no type checks are needed
904     if (flags & LIR_OpArrayCopy::type_check) {
905       flags &= ~LIR_OpArrayCopy::type_check;
906     }
907   }
908   *flagsp = flags;
909   *expected_typep = (ciArrayKlass*)expected_type;
910 }
911 
912 
913 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
914   assert(opr->is_register(), "why spill if item is not register?");
915 
916   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
917     LIR_Opr result = new_register(T_FLOAT);
918     set_vreg_flag(result, must_start_in_memory);
919     assert(opr->is_register(), "only a register can be spilled");
920     assert(opr->value_type()->is_float(), "rounding only for floats available");
921     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
922     return result;
923   }
924   return opr;
925 }
926 
927 
928 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
929   assert(type2size[t] == type2size[value->type()],
930          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
931   if (!value->is_register()) {
932     // force into a register
933     LIR_Opr r = new_register(value->type());
934     __ move(value, r);
935     value = r;
936   }
937 
938   // create a spill location
939   LIR_Opr tmp = new_register(t);
940   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
941 
942   // move from register to spill
943   __ move(value, tmp);
944   return tmp;
945 }
946 
947 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
948   if (if_instr->should_profile()) {
949     ciMethod* method = if_instr->profiled_method();
950     assert(method != NULL, "method should be set if branch is profiled");
951     ciMethodData* md = method->method_data_or_null();
952     assert(md != NULL, "Sanity");
953     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
954     assert(data != NULL, "must have profiling data");
955     assert(data->is_BranchData(), "need BranchData for two-way branches");
956     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
957     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
958     if (if_instr->is_swapped()) {
959       int t = taken_count_offset;
960       taken_count_offset = not_taken_count_offset;
961       not_taken_count_offset = t;
962     }
963 
964     LIR_Opr md_reg = new_register(T_METADATA);
965     __ metadata2reg(md->constant_encoding(), md_reg);
966 
967     LIR_Opr data_offset_reg = new_pointer_register();
968     __ cmove(lir_cond(cond),
969              LIR_OprFact::intptrConst(taken_count_offset),
970              LIR_OprFact::intptrConst(not_taken_count_offset),
971              data_offset_reg, as_BasicType(if_instr->x()->type()));
972 
973     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
974     LIR_Opr data_reg = new_pointer_register();
975     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
976     __ move(data_addr, data_reg);
977     // Use leal instead of add to avoid destroying condition codes on x86
978     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
979     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
980     __ move(data_reg, data_addr);
981   }
982 }
983 
984 // Phi technique:
985 // This is about passing live values from one basic block to the other.
986 // In code generated with Java it is rather rare that more than one
987 // value is on the stack from one basic block to the other.
988 // We optimize our technique for efficient passing of one value
989 // (of type long, int, double..) but it can be extended.
990 // When entering or leaving a basic block, all registers and all spill
991 // slots are release and empty. We use the released registers
992 // and spill slots to pass the live values from one block
993 // to the other. The topmost value, i.e., the value on TOS of expression
994 // stack is passed in registers. All other values are stored in spilling
995 // area. Every Phi has an index which designates its spill slot
996 // At exit of a basic block, we fill the register(s) and spill slots.
997 // At entry of a basic block, the block_prolog sets up the content of phi nodes
998 // and locks necessary registers and spilling slots.
999 
1000 
1001 // move current value to referenced phi function
1002 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1003   Phi* phi = sux_val->as_Phi();
1004   // cur_val can be null without phi being null in conjunction with inlining
1005   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1006     Phi* cur_phi = cur_val->as_Phi();
1007     if (cur_phi != NULL && cur_phi->is_illegal()) {
1008       // Phi and local would need to get invalidated
1009       // (which is unexpected for Linear Scan).
1010       // But this case is very rare so we simply bail out.
1011       bailout("propagation of illegal phi");
1012       return;
1013     }
1014     LIR_Opr operand = cur_val->operand();
1015     if (operand->is_illegal()) {
1016       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1017              "these can be produced lazily");
1018       operand = operand_for_instruction(cur_val);
1019     }
1020     resolver->move(operand, operand_for_instruction(phi));
1021   }
1022 }
1023 
1024 
1025 // Moves all stack values into their PHI position
1026 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1027   BlockBegin* bb = block();
1028   if (bb->number_of_sux() == 1) {
1029     BlockBegin* sux = bb->sux_at(0);
1030     assert(sux->number_of_preds() > 0, "invalid CFG");
1031 
1032     // a block with only one predecessor never has phi functions
1033     if (sux->number_of_preds() > 1) {
1034       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1035       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1036 
1037       ValueStack* sux_state = sux->state();
1038       Value sux_value;
1039       int index;
1040 
1041       assert(cur_state->scope() == sux_state->scope(), "not matching");
1042       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1043       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1044 
1045       for_each_stack_value(sux_state, index, sux_value) {
1046         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1047       }
1048 
1049       for_each_local_value(sux_state, index, sux_value) {
1050         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1051       }
1052 
1053       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1054     }
1055   }
1056 }
1057 
1058 
1059 LIR_Opr LIRGenerator::new_register(BasicType type) {
1060   int vreg = _virtual_register_number;
1061   // add a little fudge factor for the bailout, since the bailout is
1062   // only checked periodically.  This gives a few extra registers to
1063   // hand out before we really run out, which helps us keep from
1064   // tripping over assertions.
1065   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1066     bailout("out of virtual registers");
1067     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1068       // wrap it around
1069       _virtual_register_number = LIR_OprDesc::vreg_base;
1070     }
1071   }
1072   _virtual_register_number += 1;
1073   return LIR_OprFact::virtual_register(vreg, type);
1074 }
1075 
1076 
1077 // Try to lock using register in hint
1078 LIR_Opr LIRGenerator::rlock(Value instr) {
1079   return new_register(instr->type());
1080 }
1081 
1082 
1083 // does an rlock and sets result
1084 LIR_Opr LIRGenerator::rlock_result(Value x) {
1085   LIR_Opr reg = rlock(x);
1086   set_result(x, reg);
1087   return reg;
1088 }
1089 
1090 
1091 // does an rlock and sets result
1092 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1093   LIR_Opr reg;
1094   switch (type) {
1095   case T_BYTE:
1096   case T_BOOLEAN:
1097     reg = rlock_byte(type);
1098     break;
1099   default:
1100     reg = rlock(x);
1101     break;
1102   }
1103 
1104   set_result(x, reg);
1105   return reg;
1106 }
1107 
1108 
1109 //---------------------------------------------------------------------
1110 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1111   ObjectType* oc = value->type()->as_ObjectType();
1112   if (oc) {
1113     return oc->constant_value();
1114   }
1115   return NULL;
1116 }
1117 
1118 
1119 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1120   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1121   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1122 
1123   // no moves are created for phi functions at the begin of exception
1124   // handlers, so assign operands manually here
1125   for_each_phi_fun(block(), phi,
1126                    operand_for_instruction(phi));
1127 
1128   LIR_Opr thread_reg = getThreadPointer();
1129   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1130                exceptionOopOpr());
1131   __ move_wide(LIR_OprFact::oopConst(NULL),
1132                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1133   __ move_wide(LIR_OprFact::oopConst(NULL),
1134                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1135 
1136   LIR_Opr result = new_register(T_OBJECT);
1137   __ move(exceptionOopOpr(), result);
1138   set_result(x, result);
1139 }
1140 
1141 
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 //                        visitor functions
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //----------------------------------------------------------------------
1150 //----------------------------------------------------------------------
1151 
1152 void LIRGenerator::do_Phi(Phi* x) {
1153   // phi functions are never visited directly
1154   ShouldNotReachHere();
1155 }
1156 
1157 
1158 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1159 void LIRGenerator::do_Constant(Constant* x) {
1160   if (x->state_before() != NULL) {
1161     // Any constant with a ValueStack requires patching so emit the patch here
1162     LIR_Opr reg = rlock_result(x);
1163     CodeEmitInfo* info = state_for(x, x->state_before());
1164     __ oop2reg_patch(NULL, reg, info);
1165   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1166     if (!x->is_pinned()) {
1167       // unpinned constants are handled specially so that they can be
1168       // put into registers when they are used multiple times within a
1169       // block.  After the block completes their operand will be
1170       // cleared so that other blocks can't refer to that register.
1171       set_result(x, load_constant(x));
1172     } else {
1173       LIR_Opr res = x->operand();
1174       if (!res->is_valid()) {
1175         res = LIR_OprFact::value_type(x->type());
1176       }
1177       if (res->is_constant()) {
1178         LIR_Opr reg = rlock_result(x);
1179         __ move(res, reg);
1180       } else {
1181         set_result(x, res);
1182       }
1183     }
1184   } else {
1185     set_result(x, LIR_OprFact::value_type(x->type()));
1186   }
1187 }
1188 
1189 
1190 void LIRGenerator::do_Local(Local* x) {
1191   // operand_for_instruction has the side effect of setting the result
1192   // so there's no need to do it here.
1193   operand_for_instruction(x);
1194 }
1195 
1196 
1197 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1198   Unimplemented();
1199 }
1200 
1201 
1202 void LIRGenerator::do_Return(Return* x) {
1203   if (compilation()->env()->dtrace_method_probes()) {
1204     BasicTypeList signature;
1205     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1206     signature.append(T_METADATA); // Method*
1207     LIR_OprList* args = new LIR_OprList();
1208     args->append(getThreadPointer());
1209     LIR_Opr meth = new_register(T_METADATA);
1210     __ metadata2reg(method()->constant_encoding(), meth);
1211     args->append(meth);
1212     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1213   }
1214 
1215   if (x->type()->is_void()) {
1216     __ return_op(LIR_OprFact::illegalOpr);
1217   } else {
1218     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1219     LIRItem result(x->result(), this);
1220 
1221     result.load_item_force(reg);
1222     __ return_op(result.result());
1223   }
1224   set_no_result(x);
1225 }
1226 
1227 // Examble: ref.get()
1228 // Combination of LoadField and g1 pre-write barrier
1229 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1230 
1231   const int referent_offset = java_lang_ref_Reference::referent_offset;
1232   guarantee(referent_offset > 0, "referent offset not initialized");
1233 
1234   assert(x->number_of_arguments() == 1, "wrong type");
1235 
1236   LIRItem reference(x->argument_at(0), this);
1237   reference.load_item();
1238 
1239   // need to perform the null check on the reference objecy
1240   CodeEmitInfo* info = NULL;
1241   if (x->needs_null_check()) {
1242     info = state_for(x);
1243   }
1244 
1245   LIR_Address* referent_field_adr =
1246     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1247 
1248   LIR_Opr result = rlock_result(x);
1249 
1250   __ load(referent_field_adr, result, info);
1251 
1252   // Register the value in the referent field with the pre-barrier
1253   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1254               result /* pre_val */,
1255               false  /* do_load */,
1256               false  /* patch */,
1257               NULL   /* info */);
1258 }
1259 
1260 // Example: clazz.isInstance(object)
1261 void LIRGenerator::do_isInstance(Intrinsic* x) {
1262   assert(x->number_of_arguments() == 2, "wrong type");
1263 
1264   // TODO could try to substitute this node with an equivalent InstanceOf
1265   // if clazz is known to be a constant Class. This will pick up newly found
1266   // constants after HIR construction. I'll leave this to a future change.
1267 
1268   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1269   // could follow the aastore example in a future change.
1270 
1271   LIRItem clazz(x->argument_at(0), this);
1272   LIRItem object(x->argument_at(1), this);
1273   clazz.load_item();
1274   object.load_item();
1275   LIR_Opr result = rlock_result(x);
1276 
1277   // need to perform null check on clazz
1278   if (x->needs_null_check()) {
1279     CodeEmitInfo* info = state_for(x);
1280     __ null_check(clazz.result(), info);
1281   }
1282 
1283   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1284                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1285                                      x->type(),
1286                                      NULL); // NULL CodeEmitInfo results in a leaf call
1287   __ move(call_result, result);
1288 }
1289 
1290 // Example: object.getClass ()
1291 void LIRGenerator::do_getClass(Intrinsic* x) {
1292   assert(x->number_of_arguments() == 1, "wrong type");
1293 
1294   LIRItem rcvr(x->argument_at(0), this);
1295   rcvr.load_item();
1296   LIR_Opr temp = new_register(T_METADATA);
1297   LIR_Opr result = rlock_result(x);
1298 
1299   // need to perform the null check on the rcvr
1300   CodeEmitInfo* info = NULL;
1301   if (x->needs_null_check()) {
1302     info = state_for(x);
1303   }
1304 
1305   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1306   // meaning of these two is mixed up (see JDK-8026837).
1307   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1308   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1309   // mirror = ((OopHandle)mirror)->resolve();
1310   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1311 }
1312 
1313 // java.lang.Class::isPrimitive()
1314 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1315   assert(x->number_of_arguments() == 1, "wrong type");
1316 
1317   LIRItem rcvr(x->argument_at(0), this);
1318   rcvr.load_item();
1319   LIR_Opr temp = new_register(T_METADATA);
1320   LIR_Opr result = rlock_result(x);
1321 
1322   CodeEmitInfo* info = NULL;
1323   if (x->needs_null_check()) {
1324     info = state_for(x);
1325   }
1326 
1327   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1328   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1329   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1330 }
1331 
1332 
1333 // Example: Thread.currentThread()
1334 void LIRGenerator::do_currentThread(Intrinsic* x) {
1335   assert(x->number_of_arguments() == 0, "wrong type");
1336   LIR_Opr reg = rlock_result(x);
1337   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1338 }
1339 
1340 
1341 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1342   assert(x->number_of_arguments() == 1, "wrong type");
1343   LIRItem receiver(x->argument_at(0), this);
1344 
1345   receiver.load_item();
1346   BasicTypeList signature;
1347   signature.append(T_OBJECT); // receiver
1348   LIR_OprList* args = new LIR_OprList();
1349   args->append(receiver.result());
1350   CodeEmitInfo* info = state_for(x, x->state());
1351   call_runtime(&signature, args,
1352                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1353                voidType, info);
1354 
1355   set_no_result(x);
1356 }
1357 
1358 
1359 //------------------------local access--------------------------------------
1360 
1361 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1362   if (x->operand()->is_illegal()) {
1363     Constant* c = x->as_Constant();
1364     if (c != NULL) {
1365       x->set_operand(LIR_OprFact::value_type(c->type()));
1366     } else {
1367       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1368       // allocate a virtual register for this local or phi
1369       x->set_operand(rlock(x));
1370       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1371     }
1372   }
1373   return x->operand();
1374 }
1375 
1376 
1377 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1378   if (opr->is_virtual()) {
1379     return instruction_for_vreg(opr->vreg_number());
1380   }
1381   return NULL;
1382 }
1383 
1384 
1385 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1386   if (reg_num < _instruction_for_operand.length()) {
1387     return _instruction_for_operand.at(reg_num);
1388   }
1389   return NULL;
1390 }
1391 
1392 
1393 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1394   if (_vreg_flags.size_in_bits() == 0) {
1395     BitMap2D temp(100, num_vreg_flags);
1396     _vreg_flags = temp;
1397   }
1398   _vreg_flags.at_put_grow(vreg_num, f, true);
1399 }
1400 
1401 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1402   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1403     return false;
1404   }
1405   return _vreg_flags.at(vreg_num, f);
1406 }
1407 
1408 
1409 // Block local constant handling.  This code is useful for keeping
1410 // unpinned constants and constants which aren't exposed in the IR in
1411 // registers.  Unpinned Constant instructions have their operands
1412 // cleared when the block is finished so that other blocks can't end
1413 // up referring to their registers.
1414 
1415 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1416   assert(!x->is_pinned(), "only for unpinned constants");
1417   _unpinned_constants.append(x);
1418   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1419 }
1420 
1421 
1422 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1423   BasicType t = c->type();
1424   for (int i = 0; i < _constants.length(); i++) {
1425     LIR_Const* other = _constants.at(i);
1426     if (t == other->type()) {
1427       switch (t) {
1428       case T_INT:
1429       case T_FLOAT:
1430         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1431         break;
1432       case T_LONG:
1433       case T_DOUBLE:
1434         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1435         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1436         break;
1437       case T_OBJECT:
1438         if (c->as_jobject() != other->as_jobject()) continue;
1439         break;
1440       default:
1441         break;
1442       }
1443       return _reg_for_constants.at(i);
1444     }
1445   }
1446 
1447   LIR_Opr result = new_register(t);
1448   __ move((LIR_Opr)c, result);
1449   _constants.append(c);
1450   _reg_for_constants.append(result);
1451   return result;
1452 }
1453 
1454 // Various barriers
1455 
1456 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1457                                bool do_load, bool patch, CodeEmitInfo* info) {
1458   // Do the pre-write barrier, if any.
1459   switch (_bs->kind()) {
1460 #if INCLUDE_ALL_GCS
1461     case BarrierSet::G1BarrierSet:
1462       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1463       break;
1464 #endif // INCLUDE_ALL_GCS
1465     case BarrierSet::CardTableModRef:
1466       // No pre barriers
1467       break;
1468     default      :
1469       ShouldNotReachHere();
1470 
1471   }
1472 }
1473 
1474 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1475   switch (_bs->kind()) {
1476 #if INCLUDE_ALL_GCS
1477     case BarrierSet::G1BarrierSet:
1478       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1479       break;
1480 #endif // INCLUDE_ALL_GCS
1481     case BarrierSet::CardTableModRef:
1482       CardTableModRef_post_barrier(addr,  new_val);
1483       break;
1484     default      :
1485       ShouldNotReachHere();
1486     }
1487 }
1488 
1489 ////////////////////////////////////////////////////////////////////////
1490 #if INCLUDE_ALL_GCS
1491 
1492 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1493                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1494   // First we test whether marking is in progress.
1495   BasicType flag_type;
1496   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1497     flag_type = T_INT;
1498   } else {
1499     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1500               "Assumption");
1501     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1502     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1503     flag_type = T_BOOLEAN;
1504   }
1505   LIR_Opr thrd = getThreadPointer();
1506   LIR_Address* mark_active_flag_addr =
1507     new LIR_Address(thrd,
1508                     in_bytes(JavaThread::satb_mark_queue_offset() +
1509                              SATBMarkQueue::byte_offset_of_active()),
1510                     flag_type);
1511   // Read the marking-in-progress flag.
1512   LIR_Opr flag_val = new_register(T_INT);
1513   __ load(mark_active_flag_addr, flag_val);
1514   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1515 
1516   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1517 
1518   CodeStub* slow;
1519 
1520   if (do_load) {
1521     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1522     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1523 
1524     if (patch)
1525       pre_val_patch_code = lir_patch_normal;
1526 
1527     pre_val = new_register(T_OBJECT);
1528 
1529     if (!addr_opr->is_address()) {
1530       assert(addr_opr->is_register(), "must be");
1531       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1532     }
1533     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1534   } else {
1535     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1536     assert(pre_val->is_register(), "must be");
1537     assert(pre_val->type() == T_OBJECT, "must be an object");
1538     assert(info == NULL, "sanity");
1539 
1540     slow = new G1PreBarrierStub(pre_val);
1541   }
1542 
1543   __ branch(lir_cond_notEqual, T_INT, slow);
1544   __ branch_destination(slow->continuation());
1545 }
1546 
1547 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1548   // If the "new_val" is a constant NULL, no barrier is necessary.
1549   if (new_val->is_constant() &&
1550       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1551 
1552   if (!new_val->is_register()) {
1553     LIR_Opr new_val_reg = new_register(T_OBJECT);
1554     if (new_val->is_constant()) {
1555       __ move(new_val, new_val_reg);
1556     } else {
1557       __ leal(new_val, new_val_reg);
1558     }
1559     new_val = new_val_reg;
1560   }
1561   assert(new_val->is_register(), "must be a register at this point");
1562 
1563   if (addr->is_address()) {
1564     LIR_Address* address = addr->as_address_ptr();
1565     LIR_Opr ptr = new_pointer_register();
1566     if (!address->index()->is_valid() && address->disp() == 0) {
1567       __ move(address->base(), ptr);
1568     } else {
1569       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1570       __ leal(addr, ptr);
1571     }
1572     addr = ptr;
1573   }
1574   assert(addr->is_register(), "must be a register at this point");
1575 
1576   LIR_Opr xor_res = new_pointer_register();
1577   LIR_Opr xor_shift_res = new_pointer_register();
1578   if (TwoOperandLIRForm ) {
1579     __ move(addr, xor_res);
1580     __ logical_xor(xor_res, new_val, xor_res);
1581     __ move(xor_res, xor_shift_res);
1582     __ unsigned_shift_right(xor_shift_res,
1583                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1584                             xor_shift_res,
1585                             LIR_OprDesc::illegalOpr());
1586   } else {
1587     __ logical_xor(addr, new_val, xor_res);
1588     __ unsigned_shift_right(xor_res,
1589                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1590                             xor_shift_res,
1591                             LIR_OprDesc::illegalOpr());
1592   }
1593 
1594   if (!new_val->is_register()) {
1595     LIR_Opr new_val_reg = new_register(T_OBJECT);
1596     __ leal(new_val, new_val_reg);
1597     new_val = new_val_reg;
1598   }
1599   assert(new_val->is_register(), "must be a register at this point");
1600 
1601   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1602 
1603   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1604   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1605   __ branch_destination(slow->continuation());
1606 }
1607 
1608 #endif // INCLUDE_ALL_GCS
1609 ////////////////////////////////////////////////////////////////////////
1610 
1611 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1612   LIR_Const* card_table_base = new LIR_Const(ci_card_table_address());
1613   if (addr->is_address()) {
1614     LIR_Address* address = addr->as_address_ptr();
1615     // ptr cannot be an object because we use this barrier for array card marks
1616     // and addr can point in the middle of an array.
1617     LIR_Opr ptr = new_pointer_register();
1618     if (!address->index()->is_valid() && address->disp() == 0) {
1619       __ move(address->base(), ptr);
1620     } else {
1621       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1622       __ leal(addr, ptr);
1623     }
1624     addr = ptr;
1625   }
1626   assert(addr->is_register(), "must be a register at this point");
1627 
1628 #ifdef CARDTABLEMODREF_POST_BARRIER_HELPER
1629   CardTableModRef_post_barrier_helper(addr, card_table_base);
1630 #else
1631   LIR_Opr tmp = new_pointer_register();
1632   if (TwoOperandLIRForm) {
1633     __ move(addr, tmp);
1634     __ unsigned_shift_right(tmp, CardTable::card_shift, tmp);
1635   } else {
1636     __ unsigned_shift_right(addr, CardTable::card_shift, tmp);
1637   }
1638 
1639   LIR_Address* card_addr;
1640   if (can_inline_as_constant(card_table_base)) {
1641     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1642   } else {
1643     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1644   }
1645 
1646   LIR_Opr dirty = LIR_OprFact::intConst(CardTable::dirty_card_val());
1647   if (UseCondCardMark) {
1648     LIR_Opr cur_value = new_register(T_INT);
1649     if (UseConcMarkSweepGC) {
1650       __ membar_storeload();
1651     }
1652     __ move(card_addr, cur_value);
1653 
1654     LabelObj* L_already_dirty = new LabelObj();
1655     __ cmp(lir_cond_equal, cur_value, dirty);
1656     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1657     __ move(dirty, card_addr);
1658     __ branch_destination(L_already_dirty->label());
1659   } else {
1660     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1661       __ membar_storestore();
1662     }
1663     __ move(dirty, card_addr);
1664   }
1665 #endif
1666 }
1667 
1668 
1669 //------------------------field access--------------------------------------
1670 
1671 // Comment copied form templateTable_i486.cpp
1672 // ----------------------------------------------------------------------------
1673 // Volatile variables demand their effects be made known to all CPU's in
1674 // order.  Store buffers on most chips allow reads & writes to reorder; the
1675 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1676 // memory barrier (i.e., it's not sufficient that the interpreter does not
1677 // reorder volatile references, the hardware also must not reorder them).
1678 //
1679 // According to the new Java Memory Model (JMM):
1680 // (1) All volatiles are serialized wrt to each other.
1681 // ALSO reads & writes act as aquire & release, so:
1682 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1683 // the read float up to before the read.  It's OK for non-volatile memory refs
1684 // that happen before the volatile read to float down below it.
1685 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1686 // that happen BEFORE the write float down to after the write.  It's OK for
1687 // non-volatile memory refs that happen after the volatile write to float up
1688 // before it.
1689 //
1690 // We only put in barriers around volatile refs (they are expensive), not
1691 // _between_ memory refs (that would require us to track the flavor of the
1692 // previous memory refs).  Requirements (2) and (3) require some barriers
1693 // before volatile stores and after volatile loads.  These nearly cover
1694 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1695 // case is placed after volatile-stores although it could just as well go
1696 // before volatile-loads.
1697 
1698 
1699 void LIRGenerator::do_StoreField(StoreField* x) {
1700   bool needs_patching = x->needs_patching();
1701   bool is_volatile = x->field()->is_volatile();
1702   BasicType field_type = x->field_type();
1703   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1704 
1705   CodeEmitInfo* info = NULL;
1706   if (needs_patching) {
1707     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1708     info = state_for(x, x->state_before());
1709   } else if (x->needs_null_check()) {
1710     NullCheck* nc = x->explicit_null_check();
1711     if (nc == NULL) {
1712       info = state_for(x);
1713     } else {
1714       info = state_for(nc);
1715     }
1716   }
1717 
1718 
1719   LIRItem object(x->obj(), this);
1720   LIRItem value(x->value(),  this);
1721 
1722   object.load_item();
1723 
1724   if (is_volatile || needs_patching) {
1725     // load item if field is volatile (fewer special cases for volatiles)
1726     // load item if field not initialized
1727     // load item if field not constant
1728     // because of code patching we cannot inline constants
1729     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1730       value.load_byte_item();
1731     } else  {
1732       value.load_item();
1733     }
1734   } else {
1735     value.load_for_store(field_type);
1736   }
1737 
1738   set_no_result(x);
1739 
1740 #ifndef PRODUCT
1741   if (PrintNotLoaded && needs_patching) {
1742     tty->print_cr("   ###class not loaded at store_%s bci %d",
1743                   x->is_static() ?  "static" : "field", x->printable_bci());
1744   }
1745 #endif
1746 
1747   if (x->needs_null_check() &&
1748       (needs_patching ||
1749        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1750     // Emit an explicit null check because the offset is too large.
1751     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1752     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1753     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1754   }
1755 
1756   LIR_Address* address;
1757   if (needs_patching) {
1758     // we need to patch the offset in the instruction so don't allow
1759     // generate_address to try to be smart about emitting the -1.
1760     // Otherwise the patching code won't know how to find the
1761     // instruction to patch.
1762     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1763   } else {
1764     address = generate_address(object.result(), x->offset(), field_type);
1765   }
1766 
1767   if (is_volatile && os::is_MP()) {
1768     __ membar_release();
1769   }
1770 
1771   if (is_oop) {
1772     // Do the pre-write barrier, if any.
1773     pre_barrier(LIR_OprFact::address(address),
1774                 LIR_OprFact::illegalOpr /* pre_val */,
1775                 true /* do_load*/,
1776                 needs_patching,
1777                 (info ? new CodeEmitInfo(info) : NULL));
1778   }
1779 
1780   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1781   if (needs_atomic_access && !needs_patching) {
1782     volatile_field_store(value.result(), address, info);
1783   } else {
1784     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1785     __ store(value.result(), address, info, patch_code);
1786   }
1787 
1788   if (is_oop) {
1789     // Store to object so mark the card of the header
1790     post_barrier(object.result(), value.result());
1791   }
1792 
1793   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1794     __ membar();
1795   }
1796 }
1797 
1798 
1799 void LIRGenerator::do_LoadField(LoadField* x) {
1800   bool needs_patching = x->needs_patching();
1801   bool is_volatile = x->field()->is_volatile();
1802   BasicType field_type = x->field_type();
1803 
1804   CodeEmitInfo* info = NULL;
1805   if (needs_patching) {
1806     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1807     info = state_for(x, x->state_before());
1808   } else if (x->needs_null_check()) {
1809     NullCheck* nc = x->explicit_null_check();
1810     if (nc == NULL) {
1811       info = state_for(x);
1812     } else {
1813       info = state_for(nc);
1814     }
1815   }
1816 
1817   LIRItem object(x->obj(), this);
1818 
1819   object.load_item();
1820 
1821 #ifndef PRODUCT
1822   if (PrintNotLoaded && needs_patching) {
1823     tty->print_cr("   ###class not loaded at load_%s bci %d",
1824                   x->is_static() ?  "static" : "field", x->printable_bci());
1825   }
1826 #endif
1827 
1828   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1829   if (x->needs_null_check() &&
1830       (needs_patching ||
1831        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1832        stress_deopt)) {
1833     LIR_Opr obj = object.result();
1834     if (stress_deopt) {
1835       obj = new_register(T_OBJECT);
1836       __ move(LIR_OprFact::oopConst(NULL), obj);
1837     }
1838     // Emit an explicit null check because the offset is too large.
1839     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1840     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1841     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1842   }
1843 
1844   LIR_Opr reg = rlock_result(x, field_type);
1845   LIR_Address* address;
1846   if (needs_patching) {
1847     // we need to patch the offset in the instruction so don't allow
1848     // generate_address to try to be smart about emitting the -1.
1849     // Otherwise the patching code won't know how to find the
1850     // instruction to patch.
1851     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1852   } else {
1853     address = generate_address(object.result(), x->offset(), field_type);
1854   }
1855 
1856   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1857     __ membar();
1858   }
1859 
1860   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1861   if (needs_atomic_access && !needs_patching) {
1862     volatile_field_load(address, reg, info);
1863   } else {
1864     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1865     __ load(address, reg, info, patch_code);
1866   }
1867 
1868   if (is_volatile && os::is_MP()) {
1869     __ membar_acquire();
1870   }
1871 }
1872 
1873 
1874 //------------------------java.nio.Buffer.checkIndex------------------------
1875 
1876 // int java.nio.Buffer.checkIndex(int)
1877 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1878   // NOTE: by the time we are in checkIndex() we are guaranteed that
1879   // the buffer is non-null (because checkIndex is package-private and
1880   // only called from within other methods in the buffer).
1881   assert(x->number_of_arguments() == 2, "wrong type");
1882   LIRItem buf  (x->argument_at(0), this);
1883   LIRItem index(x->argument_at(1), this);
1884   buf.load_item();
1885   index.load_item();
1886 
1887   LIR_Opr result = rlock_result(x);
1888   if (GenerateRangeChecks) {
1889     CodeEmitInfo* info = state_for(x);
1890     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1891     if (index.result()->is_constant()) {
1892       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1893       __ branch(lir_cond_belowEqual, T_INT, stub);
1894     } else {
1895       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1896                   java_nio_Buffer::limit_offset(), T_INT, info);
1897       __ branch(lir_cond_aboveEqual, T_INT, stub);
1898     }
1899     __ move(index.result(), result);
1900   } else {
1901     // Just load the index into the result register
1902     __ move(index.result(), result);
1903   }
1904 }
1905 
1906 
1907 //------------------------array access--------------------------------------
1908 
1909 
1910 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1911   LIRItem array(x->array(), this);
1912   array.load_item();
1913   LIR_Opr reg = rlock_result(x);
1914 
1915   CodeEmitInfo* info = NULL;
1916   if (x->needs_null_check()) {
1917     NullCheck* nc = x->explicit_null_check();
1918     if (nc == NULL) {
1919       info = state_for(x);
1920     } else {
1921       info = state_for(nc);
1922     }
1923     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1924       LIR_Opr obj = new_register(T_OBJECT);
1925       __ move(LIR_OprFact::oopConst(NULL), obj);
1926       __ null_check(obj, new CodeEmitInfo(info));
1927     }
1928   }
1929   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1930 }
1931 
1932 
1933 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1934   bool use_length = x->length() != NULL;
1935   LIRItem array(x->array(), this);
1936   LIRItem index(x->index(), this);
1937   LIRItem length(this);
1938   bool needs_range_check = x->compute_needs_range_check();
1939 
1940   if (use_length && needs_range_check) {
1941     length.set_instruction(x->length());
1942     length.load_item();
1943   }
1944 
1945   array.load_item();
1946   if (index.is_constant() && can_inline_as_constant(x->index())) {
1947     // let it be a constant
1948     index.dont_load_item();
1949   } else {
1950     index.load_item();
1951   }
1952 
1953   CodeEmitInfo* range_check_info = state_for(x);
1954   CodeEmitInfo* null_check_info = NULL;
1955   if (x->needs_null_check()) {
1956     NullCheck* nc = x->explicit_null_check();
1957     if (nc != NULL) {
1958       null_check_info = state_for(nc);
1959     } else {
1960       null_check_info = range_check_info;
1961     }
1962     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1963       LIR_Opr obj = new_register(T_OBJECT);
1964       __ move(LIR_OprFact::oopConst(NULL), obj);
1965       __ null_check(obj, new CodeEmitInfo(null_check_info));
1966     }
1967   }
1968 
1969   // emit array address setup early so it schedules better
1970   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1971 
1972   if (GenerateRangeChecks && needs_range_check) {
1973     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1974       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1975     } else if (use_length) {
1976       // TODO: use a (modified) version of array_range_check that does not require a
1977       //       constant length to be loaded to a register
1978       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1979       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1980     } else {
1981       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1982       // The range check performs the null check, so clear it out for the load
1983       null_check_info = NULL;
1984     }
1985   }
1986 
1987   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1988 }
1989 
1990 
1991 void LIRGenerator::do_NullCheck(NullCheck* x) {
1992   if (x->can_trap()) {
1993     LIRItem value(x->obj(), this);
1994     value.load_item();
1995     CodeEmitInfo* info = state_for(x);
1996     __ null_check(value.result(), info);
1997   }
1998 }
1999 
2000 
2001 void LIRGenerator::do_TypeCast(TypeCast* x) {
2002   LIRItem value(x->obj(), this);
2003   value.load_item();
2004   // the result is the same as from the node we are casting
2005   set_result(x, value.result());
2006 }
2007 
2008 
2009 void LIRGenerator::do_Throw(Throw* x) {
2010   LIRItem exception(x->exception(), this);
2011   exception.load_item();
2012   set_no_result(x);
2013   LIR_Opr exception_opr = exception.result();
2014   CodeEmitInfo* info = state_for(x, x->state());
2015 
2016 #ifndef PRODUCT
2017   if (PrintC1Statistics) {
2018     increment_counter(Runtime1::throw_count_address(), T_INT);
2019   }
2020 #endif
2021 
2022   // check if the instruction has an xhandler in any of the nested scopes
2023   bool unwind = false;
2024   if (info->exception_handlers()->length() == 0) {
2025     // this throw is not inside an xhandler
2026     unwind = true;
2027   } else {
2028     // get some idea of the throw type
2029     bool type_is_exact = true;
2030     ciType* throw_type = x->exception()->exact_type();
2031     if (throw_type == NULL) {
2032       type_is_exact = false;
2033       throw_type = x->exception()->declared_type();
2034     }
2035     if (throw_type != NULL && throw_type->is_instance_klass()) {
2036       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2037       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2038     }
2039   }
2040 
2041   // do null check before moving exception oop into fixed register
2042   // to avoid a fixed interval with an oop during the null check.
2043   // Use a copy of the CodeEmitInfo because debug information is
2044   // different for null_check and throw.
2045   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2046     // if the exception object wasn't created using new then it might be null.
2047     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2048   }
2049 
2050   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2051     // we need to go through the exception lookup path to get JVMTI
2052     // notification done
2053     unwind = false;
2054   }
2055 
2056   // move exception oop into fixed register
2057   __ move(exception_opr, exceptionOopOpr());
2058 
2059   if (unwind) {
2060     __ unwind_exception(exceptionOopOpr());
2061   } else {
2062     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2063   }
2064 }
2065 
2066 
2067 void LIRGenerator::do_RoundFP(RoundFP* x) {
2068   LIRItem input(x->input(), this);
2069   input.load_item();
2070   LIR_Opr input_opr = input.result();
2071   assert(input_opr->is_register(), "why round if value is not in a register?");
2072   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2073   if (input_opr->is_single_fpu()) {
2074     set_result(x, round_item(input_opr)); // This code path not currently taken
2075   } else {
2076     LIR_Opr result = new_register(T_DOUBLE);
2077     set_vreg_flag(result, must_start_in_memory);
2078     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2079     set_result(x, result);
2080   }
2081 }
2082 
2083 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2084 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2085 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2086   LIRItem base(x->base(), this);
2087   LIRItem idx(this);
2088 
2089   base.load_item();
2090   if (x->has_index()) {
2091     idx.set_instruction(x->index());
2092     idx.load_nonconstant();
2093   }
2094 
2095   LIR_Opr reg = rlock_result(x, x->basic_type());
2096 
2097   int   log2_scale = 0;
2098   if (x->has_index()) {
2099     log2_scale = x->log2_scale();
2100   }
2101 
2102   assert(!x->has_index() || idx.value() == x->index(), "should match");
2103 
2104   LIR_Opr base_op = base.result();
2105   LIR_Opr index_op = idx.result();
2106 #ifndef _LP64
2107   if (base_op->type() == T_LONG) {
2108     base_op = new_register(T_INT);
2109     __ convert(Bytecodes::_l2i, base.result(), base_op);
2110   }
2111   if (x->has_index()) {
2112     if (index_op->type() == T_LONG) {
2113       LIR_Opr long_index_op = index_op;
2114       if (index_op->is_constant()) {
2115         long_index_op = new_register(T_LONG);
2116         __ move(index_op, long_index_op);
2117       }
2118       index_op = new_register(T_INT);
2119       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2120     } else {
2121       assert(x->index()->type()->tag() == intTag, "must be");
2122     }
2123   }
2124   // At this point base and index should be all ints.
2125   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2126   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2127 #else
2128   if (x->has_index()) {
2129     if (index_op->type() == T_INT) {
2130       if (!index_op->is_constant()) {
2131         index_op = new_register(T_LONG);
2132         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2133       }
2134     } else {
2135       assert(index_op->type() == T_LONG, "must be");
2136       if (index_op->is_constant()) {
2137         index_op = new_register(T_LONG);
2138         __ move(idx.result(), index_op);
2139       }
2140     }
2141   }
2142   // At this point base is a long non-constant
2143   // Index is a long register or a int constant.
2144   // We allow the constant to stay an int because that would allow us a more compact encoding by
2145   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2146   // move it into a register first.
2147   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2148   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2149                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2150 #endif
2151 
2152   BasicType dst_type = x->basic_type();
2153 
2154   LIR_Address* addr;
2155   if (index_op->is_constant()) {
2156     assert(log2_scale == 0, "must not have a scale");
2157     assert(index_op->type() == T_INT, "only int constants supported");
2158     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2159   } else {
2160 #ifdef X86
2161     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2162 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2163     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2164 #else
2165     if (index_op->is_illegal() || log2_scale == 0) {
2166       addr = new LIR_Address(base_op, index_op, dst_type);
2167     } else {
2168       LIR_Opr tmp = new_pointer_register();
2169       __ shift_left(index_op, log2_scale, tmp);
2170       addr = new LIR_Address(base_op, tmp, dst_type);
2171     }
2172 #endif
2173   }
2174 
2175   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2176     __ unaligned_move(addr, reg);
2177   } else {
2178     if (dst_type == T_OBJECT && x->is_wide()) {
2179       __ move_wide(addr, reg);
2180     } else {
2181       __ move(addr, reg);
2182     }
2183   }
2184 }
2185 
2186 
2187 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2188   int  log2_scale = 0;
2189   BasicType type = x->basic_type();
2190 
2191   if (x->has_index()) {
2192     log2_scale = x->log2_scale();
2193   }
2194 
2195   LIRItem base(x->base(), this);
2196   LIRItem value(x->value(), this);
2197   LIRItem idx(this);
2198 
2199   base.load_item();
2200   if (x->has_index()) {
2201     idx.set_instruction(x->index());
2202     idx.load_item();
2203   }
2204 
2205   if (type == T_BYTE || type == T_BOOLEAN) {
2206     value.load_byte_item();
2207   } else {
2208     value.load_item();
2209   }
2210 
2211   set_no_result(x);
2212 
2213   LIR_Opr base_op = base.result();
2214   LIR_Opr index_op = idx.result();
2215 
2216 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2217   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2218 #else
2219 #ifndef _LP64
2220   if (base_op->type() == T_LONG) {
2221     base_op = new_register(T_INT);
2222     __ convert(Bytecodes::_l2i, base.result(), base_op);
2223   }
2224   if (x->has_index()) {
2225     if (index_op->type() == T_LONG) {
2226       index_op = new_register(T_INT);
2227       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2228     }
2229   }
2230   // At this point base and index should be all ints and not constants
2231   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2232   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2233 #else
2234   if (x->has_index()) {
2235     if (index_op->type() == T_INT) {
2236       index_op = new_register(T_LONG);
2237       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2238     }
2239   }
2240   // At this point base and index are long and non-constant
2241   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2242   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2243 #endif
2244 
2245   if (log2_scale != 0) {
2246     // temporary fix (platform dependent code without shift on Intel would be better)
2247     // TODO: ARM also allows embedded shift in the address
2248     LIR_Opr tmp = new_pointer_register();
2249     if (TwoOperandLIRForm) {
2250       __ move(index_op, tmp);
2251       index_op = tmp;
2252     }
2253     __ shift_left(index_op, log2_scale, tmp);
2254     if (!TwoOperandLIRForm) {
2255       index_op = tmp;
2256     }
2257   }
2258 
2259   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2260 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2261   __ move(value.result(), addr);
2262 }
2263 
2264 
2265 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2266   BasicType type = x->basic_type();
2267   LIRItem src(x->object(), this);
2268   LIRItem off(x->offset(), this);
2269 
2270   off.load_item();
2271   src.load_item();
2272 
2273   LIR_Opr value = rlock_result(x, x->basic_type());
2274 
2275   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2276     __ membar();
2277   }
2278 
2279   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2280 
2281 #if INCLUDE_ALL_GCS
2282   // We might be reading the value of the referent field of a
2283   // Reference object in order to attach it back to the live
2284   // object graph. If G1 is enabled then we need to record
2285   // the value that is being returned in an SATB log buffer.
2286   //
2287   // We need to generate code similar to the following...
2288   //
2289   // if (offset == java_lang_ref_Reference::referent_offset) {
2290   //   if (src != NULL) {
2291   //     if (klass(src)->reference_type() != REF_NONE) {
2292   //       pre_barrier(..., value, ...);
2293   //     }
2294   //   }
2295   // }
2296 
2297   if (UseG1GC && type == T_OBJECT) {
2298     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2299     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2300     bool gen_source_check = true;    // Assume we need to check the src object for null.
2301     bool gen_type_check = true;      // Assume we need to check the reference_type.
2302 
2303     if (off.is_constant()) {
2304       jlong off_con = (off.type()->is_int() ?
2305                         (jlong) off.get_jint_constant() :
2306                         off.get_jlong_constant());
2307 
2308 
2309       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2310         // The constant offset is something other than referent_offset.
2311         // We can skip generating/checking the remaining guards and
2312         // skip generation of the code stub.
2313         gen_pre_barrier = false;
2314       } else {
2315         // The constant offset is the same as referent_offset -
2316         // we do not need to generate a runtime offset check.
2317         gen_offset_check = false;
2318       }
2319     }
2320 
2321     // We don't need to generate stub if the source object is an array
2322     if (gen_pre_barrier && src.type()->is_array()) {
2323       gen_pre_barrier = false;
2324     }
2325 
2326     if (gen_pre_barrier) {
2327       // We still need to continue with the checks.
2328       if (src.is_constant()) {
2329         ciObject* src_con = src.get_jobject_constant();
2330         guarantee(src_con != NULL, "no source constant");
2331 
2332         if (src_con->is_null_object()) {
2333           // The constant src object is null - We can skip
2334           // generating the code stub.
2335           gen_pre_barrier = false;
2336         } else {
2337           // Non-null constant source object. We still have to generate
2338           // the slow stub - but we don't need to generate the runtime
2339           // null object check.
2340           gen_source_check = false;
2341         }
2342       }
2343     }
2344     if (gen_pre_barrier && !PatchALot) {
2345       // Can the klass of object be statically determined to be
2346       // a sub-class of Reference?
2347       ciType* type = src.value()->declared_type();
2348       if ((type != NULL) && type->is_loaded()) {
2349         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2350           gen_type_check = false;
2351         } else if (type->is_klass() &&
2352                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2353           // Not Reference and not Object klass.
2354           gen_pre_barrier = false;
2355         }
2356       }
2357     }
2358 
2359     if (gen_pre_barrier) {
2360       LabelObj* Lcont = new LabelObj();
2361 
2362       // We can have generate one runtime check here. Let's start with
2363       // the offset check.
2364       if (gen_offset_check) {
2365         // if (offset != referent_offset) -> continue
2366         // If offset is an int then we can do the comparison with the
2367         // referent_offset constant; otherwise we need to move
2368         // referent_offset into a temporary register and generate
2369         // a reg-reg compare.
2370 
2371         LIR_Opr referent_off;
2372 
2373         if (off.type()->is_int()) {
2374           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2375         } else {
2376           assert(off.type()->is_long(), "what else?");
2377           referent_off = new_register(T_LONG);
2378           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2379         }
2380         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2381         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2382       }
2383       if (gen_source_check) {
2384         // offset is a const and equals referent offset
2385         // if (source == null) -> continue
2386         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2387         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2388       }
2389       LIR_Opr src_klass = new_register(T_OBJECT);
2390       if (gen_type_check) {
2391         // We have determined that offset == referent_offset && src != null.
2392         // if (src->_klass->_reference_type == REF_NONE) -> continue
2393         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2394         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2395         LIR_Opr reference_type = new_register(T_INT);
2396         __ move(reference_type_addr, reference_type);
2397         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2398         __ branch(lir_cond_equal, T_INT, Lcont->label());
2399       }
2400       {
2401         // We have determined that src->_klass->_reference_type != REF_NONE
2402         // so register the value in the referent field with the pre-barrier.
2403         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2404                     value  /* pre_val */,
2405                     false  /* do_load */,
2406                     false  /* patch */,
2407                     NULL   /* info */);
2408       }
2409       __ branch_destination(Lcont->label());
2410     }
2411   }
2412 #endif // INCLUDE_ALL_GCS
2413 
2414   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2415 
2416   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2417   if (type == T_BOOLEAN) {
2418     LabelObj* equalZeroLabel = new LabelObj();
2419     __ cmp(lir_cond_equal, value, 0);
2420     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2421     __ move(LIR_OprFact::intConst(1), value);
2422     __ branch_destination(equalZeroLabel->label());
2423   }
2424 }
2425 
2426 
2427 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2428   BasicType type = x->basic_type();
2429   LIRItem src(x->object(), this);
2430   LIRItem off(x->offset(), this);
2431   LIRItem data(x->value(), this);
2432 
2433   src.load_item();
2434   if (type == T_BOOLEAN || type == T_BYTE) {
2435     data.load_byte_item();
2436   } else {
2437     data.load_item();
2438   }
2439   off.load_item();
2440 
2441   set_no_result(x);
2442 
2443   if (x->is_volatile() && os::is_MP()) __ membar_release();
2444   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2445   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2446 }
2447 
2448 
2449 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2450   int lng = x->length();
2451 
2452   for (int i = 0; i < lng; i++) {
2453     SwitchRange* one_range = x->at(i);
2454     int low_key = one_range->low_key();
2455     int high_key = one_range->high_key();
2456     BlockBegin* dest = one_range->sux();
2457     if (low_key == high_key) {
2458       __ cmp(lir_cond_equal, value, low_key);
2459       __ branch(lir_cond_equal, T_INT, dest);
2460     } else if (high_key - low_key == 1) {
2461       __ cmp(lir_cond_equal, value, low_key);
2462       __ branch(lir_cond_equal, T_INT, dest);
2463       __ cmp(lir_cond_equal, value, high_key);
2464       __ branch(lir_cond_equal, T_INT, dest);
2465     } else {
2466       LabelObj* L = new LabelObj();
2467       __ cmp(lir_cond_less, value, low_key);
2468       __ branch(lir_cond_less, T_INT, L->label());
2469       __ cmp(lir_cond_lessEqual, value, high_key);
2470       __ branch(lir_cond_lessEqual, T_INT, dest);
2471       __ branch_destination(L->label());
2472     }
2473   }
2474   __ jump(default_sux);
2475 }
2476 
2477 
2478 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2479   SwitchRangeList* res = new SwitchRangeList();
2480   int len = x->length();
2481   if (len > 0) {
2482     BlockBegin* sux = x->sux_at(0);
2483     int key = x->lo_key();
2484     BlockBegin* default_sux = x->default_sux();
2485     SwitchRange* range = new SwitchRange(key, sux);
2486     for (int i = 0; i < len; i++, key++) {
2487       BlockBegin* new_sux = x->sux_at(i);
2488       if (sux == new_sux) {
2489         // still in same range
2490         range->set_high_key(key);
2491       } else {
2492         // skip tests which explicitly dispatch to the default
2493         if (sux != default_sux) {
2494           res->append(range);
2495         }
2496         range = new SwitchRange(key, new_sux);
2497       }
2498       sux = new_sux;
2499     }
2500     if (res->length() == 0 || res->last() != range)  res->append(range);
2501   }
2502   return res;
2503 }
2504 
2505 
2506 // we expect the keys to be sorted by increasing value
2507 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2508   SwitchRangeList* res = new SwitchRangeList();
2509   int len = x->length();
2510   if (len > 0) {
2511     BlockBegin* default_sux = x->default_sux();
2512     int key = x->key_at(0);
2513     BlockBegin* sux = x->sux_at(0);
2514     SwitchRange* range = new SwitchRange(key, sux);
2515     for (int i = 1; i < len; i++) {
2516       int new_key = x->key_at(i);
2517       BlockBegin* new_sux = x->sux_at(i);
2518       if (key+1 == new_key && sux == new_sux) {
2519         // still in same range
2520         range->set_high_key(new_key);
2521       } else {
2522         // skip tests which explicitly dispatch to the default
2523         if (range->sux() != default_sux) {
2524           res->append(range);
2525         }
2526         range = new SwitchRange(new_key, new_sux);
2527       }
2528       key = new_key;
2529       sux = new_sux;
2530     }
2531     if (res->length() == 0 || res->last() != range)  res->append(range);
2532   }
2533   return res;
2534 }
2535 
2536 
2537 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2538   LIRItem tag(x->tag(), this);
2539   tag.load_item();
2540   set_no_result(x);
2541 
2542   if (x->is_safepoint()) {
2543     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2544   }
2545 
2546   // move values into phi locations
2547   move_to_phi(x->state());
2548 
2549   int lo_key = x->lo_key();
2550   int hi_key = x->hi_key();
2551   int len = x->length();
2552   LIR_Opr value = tag.result();
2553   if (UseTableRanges) {
2554     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2555   } else {
2556     for (int i = 0; i < len; i++) {
2557       __ cmp(lir_cond_equal, value, i + lo_key);
2558       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2559     }
2560     __ jump(x->default_sux());
2561   }
2562 }
2563 
2564 
2565 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2566   LIRItem tag(x->tag(), this);
2567   tag.load_item();
2568   set_no_result(x);
2569 
2570   if (x->is_safepoint()) {
2571     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2572   }
2573 
2574   // move values into phi locations
2575   move_to_phi(x->state());
2576 
2577   LIR_Opr value = tag.result();
2578   if (UseTableRanges) {
2579     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2580   } else {
2581     int len = x->length();
2582     for (int i = 0; i < len; i++) {
2583       __ cmp(lir_cond_equal, value, x->key_at(i));
2584       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2585     }
2586     __ jump(x->default_sux());
2587   }
2588 }
2589 
2590 
2591 void LIRGenerator::do_Goto(Goto* x) {
2592   set_no_result(x);
2593 
2594   if (block()->next()->as_OsrEntry()) {
2595     // need to free up storage used for OSR entry point
2596     LIR_Opr osrBuffer = block()->next()->operand();
2597     BasicTypeList signature;
2598     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2599     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2600     __ move(osrBuffer, cc->args()->at(0));
2601     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2602                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2603   }
2604 
2605   if (x->is_safepoint()) {
2606     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2607 
2608     // increment backedge counter if needed
2609     CodeEmitInfo* info = state_for(x, state);
2610     increment_backedge_counter(info, x->profiled_bci());
2611     CodeEmitInfo* safepoint_info = state_for(x, state);
2612     __ safepoint(safepoint_poll_register(), safepoint_info);
2613   }
2614 
2615   // Gotos can be folded Ifs, handle this case.
2616   if (x->should_profile()) {
2617     ciMethod* method = x->profiled_method();
2618     assert(method != NULL, "method should be set if branch is profiled");
2619     ciMethodData* md = method->method_data_or_null();
2620     assert(md != NULL, "Sanity");
2621     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2622     assert(data != NULL, "must have profiling data");
2623     int offset;
2624     if (x->direction() == Goto::taken) {
2625       assert(data->is_BranchData(), "need BranchData for two-way branches");
2626       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2627     } else if (x->direction() == Goto::not_taken) {
2628       assert(data->is_BranchData(), "need BranchData for two-way branches");
2629       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2630     } else {
2631       assert(data->is_JumpData(), "need JumpData for branches");
2632       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2633     }
2634     LIR_Opr md_reg = new_register(T_METADATA);
2635     __ metadata2reg(md->constant_encoding(), md_reg);
2636 
2637     increment_counter(new LIR_Address(md_reg, offset,
2638                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2639   }
2640 
2641   // emit phi-instruction move after safepoint since this simplifies
2642   // describing the state as the safepoint.
2643   move_to_phi(x->state());
2644 
2645   __ jump(x->default_sux());
2646 }
2647 
2648 /**
2649  * Emit profiling code if needed for arguments, parameters, return value types
2650  *
2651  * @param md                    MDO the code will update at runtime
2652  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2653  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2654  * @param profiled_k            current profile
2655  * @param obj                   IR node for the object to be profiled
2656  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2657  *                              Set once we find an update to make and use for next ones.
2658  * @param not_null              true if we know obj cannot be null
2659  * @param signature_at_call_k   signature at call for obj
2660  * @param callee_signature_k    signature of callee for obj
2661  *                              at call and callee signatures differ at method handle call
2662  * @return                      the only klass we know will ever be seen at this profile point
2663  */
2664 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2665                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2666                                     ciKlass* callee_signature_k) {
2667   ciKlass* result = NULL;
2668   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2669   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2670   // known not to be null or null bit already set and already set to
2671   // unknown: nothing we can do to improve profiling
2672   if (!do_null && !do_update) {
2673     return result;
2674   }
2675 
2676   ciKlass* exact_klass = NULL;
2677   Compilation* comp = Compilation::current();
2678   if (do_update) {
2679     // try to find exact type, using CHA if possible, so that loading
2680     // the klass from the object can be avoided
2681     ciType* type = obj->exact_type();
2682     if (type == NULL) {
2683       type = obj->declared_type();
2684       type = comp->cha_exact_type(type);
2685     }
2686     assert(type == NULL || type->is_klass(), "type should be class");
2687     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2688 
2689     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2690   }
2691 
2692   if (!do_null && !do_update) {
2693     return result;
2694   }
2695 
2696   ciKlass* exact_signature_k = NULL;
2697   if (do_update) {
2698     // Is the type from the signature exact (the only one possible)?
2699     exact_signature_k = signature_at_call_k->exact_klass();
2700     if (exact_signature_k == NULL) {
2701       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2702     } else {
2703       result = exact_signature_k;
2704       // Known statically. No need to emit any code: prevent
2705       // LIR_Assembler::emit_profile_type() from emitting useless code
2706       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2707     }
2708     // exact_klass and exact_signature_k can be both non NULL but
2709     // different if exact_klass is loaded after the ciObject for
2710     // exact_signature_k is created.
2711     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2712       // sometimes the type of the signature is better than the best type
2713       // the compiler has
2714       exact_klass = exact_signature_k;
2715     }
2716     if (callee_signature_k != NULL &&
2717         callee_signature_k != signature_at_call_k) {
2718       ciKlass* improved_klass = callee_signature_k->exact_klass();
2719       if (improved_klass == NULL) {
2720         improved_klass = comp->cha_exact_type(callee_signature_k);
2721       }
2722       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2723         exact_klass = exact_signature_k;
2724       }
2725     }
2726     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2727   }
2728 
2729   if (!do_null && !do_update) {
2730     return result;
2731   }
2732 
2733   if (mdp == LIR_OprFact::illegalOpr) {
2734     mdp = new_register(T_METADATA);
2735     __ metadata2reg(md->constant_encoding(), mdp);
2736     if (md_base_offset != 0) {
2737       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2738       mdp = new_pointer_register();
2739       __ leal(LIR_OprFact::address(base_type_address), mdp);
2740     }
2741   }
2742   LIRItem value(obj, this);
2743   value.load_item();
2744   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2745                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2746   return result;
2747 }
2748 
2749 // profile parameters on entry to the root of the compilation
2750 void LIRGenerator::profile_parameters(Base* x) {
2751   if (compilation()->profile_parameters()) {
2752     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2753     ciMethodData* md = scope()->method()->method_data_or_null();
2754     assert(md != NULL, "Sanity");
2755 
2756     if (md->parameters_type_data() != NULL) {
2757       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2758       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2759       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2760       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2761         LIR_Opr src = args->at(i);
2762         assert(!src->is_illegal(), "check");
2763         BasicType t = src->type();
2764         if (t == T_OBJECT || t == T_ARRAY) {
2765           intptr_t profiled_k = parameters->type(j);
2766           Local* local = x->state()->local_at(java_index)->as_Local();
2767           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2768                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2769                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2770           // If the profile is known statically set it once for all and do not emit any code
2771           if (exact != NULL) {
2772             md->set_parameter_type(j, exact);
2773           }
2774           j++;
2775         }
2776         java_index += type2size[t];
2777       }
2778     }
2779   }
2780 }
2781 
2782 void LIRGenerator::do_Base(Base* x) {
2783   __ std_entry(LIR_OprFact::illegalOpr);
2784   // Emit moves from physical registers / stack slots to virtual registers
2785   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2786   IRScope* irScope = compilation()->hir()->top_scope();
2787   int java_index = 0;
2788   for (int i = 0; i < args->length(); i++) {
2789     LIR_Opr src = args->at(i);
2790     assert(!src->is_illegal(), "check");
2791     BasicType t = src->type();
2792 
2793     // Types which are smaller than int are passed as int, so
2794     // correct the type which passed.
2795     switch (t) {
2796     case T_BYTE:
2797     case T_BOOLEAN:
2798     case T_SHORT:
2799     case T_CHAR:
2800       t = T_INT;
2801       break;
2802     default:
2803       break;
2804     }
2805 
2806     LIR_Opr dest = new_register(t);
2807     __ move(src, dest);
2808 
2809     // Assign new location to Local instruction for this local
2810     Local* local = x->state()->local_at(java_index)->as_Local();
2811     assert(local != NULL, "Locals for incoming arguments must have been created");
2812 #ifndef __SOFTFP__
2813     // The java calling convention passes double as long and float as int.
2814     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2815 #endif // __SOFTFP__
2816     local->set_operand(dest);
2817     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2818     java_index += type2size[t];
2819   }
2820 
2821   if (compilation()->env()->dtrace_method_probes()) {
2822     BasicTypeList signature;
2823     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2824     signature.append(T_METADATA); // Method*
2825     LIR_OprList* args = new LIR_OprList();
2826     args->append(getThreadPointer());
2827     LIR_Opr meth = new_register(T_METADATA);
2828     __ metadata2reg(method()->constant_encoding(), meth);
2829     args->append(meth);
2830     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2831   }
2832 
2833   if (method()->is_synchronized()) {
2834     LIR_Opr obj;
2835     if (method()->is_static()) {
2836       obj = new_register(T_OBJECT);
2837       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2838     } else {
2839       Local* receiver = x->state()->local_at(0)->as_Local();
2840       assert(receiver != NULL, "must already exist");
2841       obj = receiver->operand();
2842     }
2843     assert(obj->is_valid(), "must be valid");
2844 
2845     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2846       LIR_Opr lock = syncLockOpr();
2847       __ load_stack_address_monitor(0, lock);
2848 
2849       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, 
2850       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2851 
2852       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2853       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2854     }
2855   }
2856   if (compilation()->age_code()) {
2857     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2858     decrement_age(info);
2859   }
2860   // increment invocation counters if needed
2861   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2862     profile_parameters(x);
2863     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, fa
2864     increment_invocation_counter(info);
2865   }
2866 
2867   // all blocks with a successor must end with an unconditional jump
2868   // to the successor even if they are consecutive
2869   __ jump(x->default_sux());
2870 }
2871 
2872 
2873 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2874   // construct our frame and model the production of incoming pointer
2875   // to the OSR buffer.
2876   __ osr_entry(LIR_Assembler::osrBufferPointer());
2877   LIR_Opr result = rlock_result(x);
2878   __ move(LIR_Assembler::osrBufferPointer(), result);
2879 }
2880 
2881 
2882 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2883   assert(args->length() == arg_list->length(),
2884          "args=%d, arg_list=%d", args->length(), arg_list->length());
2885   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2886     LIRItem* param = args->at(i);
2887     LIR_Opr loc = arg_list->at(i);
2888     if (loc->is_register()) {
2889       param->load_item_force(loc);
2890     } else {
2891       LIR_Address* addr = loc->as_address_ptr();
2892       param->load_for_store(addr->type());
2893       if (addr->type() == T_OBJECT) {
2894         __ move_wide(param->result(), addr);
2895       } else
2896         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2897           __ unaligned_move(param->result(), addr);
2898         } else {
2899           __ move(param->result(), addr);
2900         }
2901     }
2902   }
2903 
2904   if (x->has_receiver()) {
2905     LIRItem* receiver = args->at(0);
2906     LIR_Opr loc = arg_list->at(0);
2907     if (loc->is_register()) {
2908       receiver->load_item_force(loc);
2909     } else {
2910       assert(loc->is_address(), "just checking");
2911       receiver->load_for_store(T_OBJECT);
2912       __ move_wide(receiver->result(), loc->as_address_ptr());
2913     }
2914   }
2915 }
2916 
2917 
2918 // Visits all arguments, returns appropriate items without loading them
2919 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2920   LIRItemList* argument_items = new LIRItemList();
2921   if (x->has_receiver()) {
2922     LIRItem* receiver = new LIRItem(x->receiver(), this);
2923     argument_items->append(receiver);
2924   }
2925   for (int i = 0; i < x->number_of_arguments(); i++) {
2926     LIRItem* param = new LIRItem(x->argument_at(i), this);
2927     argument_items->append(param);
2928   }
2929   return argument_items;
2930 }
2931 
2932 
2933 // The invoke with receiver has following phases:
2934 //   a) traverse and load/lock receiver;
2935 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2936 //   c) push receiver on stack
2937 //   d) load each of the items and push on stack
2938 //   e) unlock receiver
2939 //   f) move receiver into receiver-register %o0
2940 //   g) lock result registers and emit call operation
2941 //
2942 // Before issuing a call, we must spill-save all values on stack
2943 // that are in caller-save register. "spill-save" moves those registers
2944 // either in a free callee-save register or spills them if no free
2945 // callee save register is available.
2946 //
2947 // The problem is where to invoke spill-save.
2948 // - if invoked between e) and f), we may lock callee save
2949 //   register in "spill-save" that destroys the receiver register
2950 //   before f) is executed
2951 // - if we rearrange f) to be earlier (by loading %o0) it
2952 //   may destroy a value on the stack that is currently in %o0
2953 //   and is waiting to be spilled
2954 // - if we keep the receiver locked while doing spill-save,
2955 //   we cannot spill it as it is spill-locked
2956 //
2957 void LIRGenerator::do_Invoke(Invoke* x) {
2958   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2959 
2960   LIR_OprList* arg_list = cc->args();
2961   LIRItemList* args = invoke_visit_arguments(x);
2962   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2963 
2964   // setup result register
2965   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2966   if (x->type() != voidType) {
2967     result_register = result_register_for(x->type());
2968   }
2969 
2970   CodeEmitInfo* info = state_for(x, x->state());
2971 
2972   invoke_load_arguments(x, args, arg_list);
2973 
2974   if (x->has_receiver()) {
2975     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2976     receiver = args->at(0)->result();
2977   }
2978 
2979   // emit invoke code
2980   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2981 
2982   // JSR 292
2983   // Preserve the SP over MethodHandle call sites, if needed.
2984   ciMethod* target = x->target();
2985   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2986                                   target->is_method_handle_intrinsic() ||
2987                                   target->is_compiled_lambda_form());
2988   if (is_method_handle_invoke) {
2989     info->set_is_method_handle_invoke(true);
2990     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2991         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2992     }
2993   }
2994 
2995   switch (x->code()) {
2996     case Bytecodes::_invokestatic:
2997       __ call_static(target, result_register,
2998                      SharedRuntime::get_resolve_static_call_stub(),
2999                      arg_list, info);
3000       break;
3001     case Bytecodes::_invokespecial:
3002     case Bytecodes::_invokevirtual:
3003     case Bytecodes::_invokeinterface:
3004       // for loaded and final (method or class) target we still produce an inline cache,
3005       // in order to be able to call mixed mode
3006       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3007         __ call_opt_virtual(target, receiver, result_register,
3008                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3009                             arg_list, info);
3010       } else if (x->vtable_index() < 0) {
3011         __ call_icvirtual(target, receiver, result_register,
3012                           SharedRuntime::get_resolve_virtual_call_stub(),
3013                           arg_list, info);
3014       } else {
3015         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3016         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3017         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3018       }
3019       break;
3020     case Bytecodes::_invokedynamic: {
3021       __ call_dynamic(target, receiver, result_register,
3022                       SharedRuntime::get_resolve_static_call_stub(),
3023                       arg_list, info);
3024       break;
3025     }
3026     default:
3027       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3028       break;
3029   }
3030 
3031   // JSR 292
3032   // Restore the SP after MethodHandle call sites, if needed.
3033   if (is_method_handle_invoke
3034       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3035     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3036   }
3037 
3038   if (x->type()->is_float() || x->type()->is_double()) {
3039     // Force rounding of results from non-strictfp when in strictfp
3040     // scope (or when we don't know the strictness of the callee, to
3041     // be safe.)
3042     if (method()->is_strict()) {
3043       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3044         result_register = round_item(result_register);
3045       }
3046     }
3047   }
3048 
3049   if (result_register->is_valid()) {
3050     LIR_Opr result = rlock_result(x);
3051     __ move(result_register, result);
3052   }
3053 }
3054 
3055 
3056 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3057   assert(x->number_of_arguments() == 1, "wrong type");
3058   LIRItem value       (x->argument_at(0), this);
3059   LIR_Opr reg = rlock_result(x);
3060   value.load_item();
3061   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3062   __ move(tmp, reg);
3063 }
3064 
3065 
3066 
3067 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3068 void LIRGenerator::do_IfOp(IfOp* x) {
3069 #ifdef ASSERT
3070   {
3071     ValueTag xtag = x->x()->type()->tag();
3072     ValueTag ttag = x->tval()->type()->tag();
3073     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3074     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3075     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3076   }
3077 #endif
3078 
3079   LIRItem left(x->x(), this);
3080   LIRItem right(x->y(), this);
3081   left.load_item();
3082   if (can_inline_as_constant(right.value())) {
3083     right.dont_load_item();
3084   } else {
3085     right.load_item();
3086   }
3087 
3088   LIRItem t_val(x->tval(), this);
3089   LIRItem f_val(x->fval(), this);
3090   t_val.dont_load_item();
3091   f_val.dont_load_item();
3092   LIR_Opr reg = rlock_result(x);
3093 
3094   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3095   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3096 }
3097 
3098 #ifdef TRACE_HAVE_INTRINSICS
3099 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3100   CodeEmitInfo* info = state_for(x);
3101   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3102 
3103   assert(info != NULL, "must have info");
3104   LIRItem arg(x->argument_at(0), this);
3105 
3106   arg.load_item();
3107   LIR_Opr klass = new_register(T_METADATA);
3108   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3109   LIR_Opr id = new_register(T_LONG);
3110   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3111   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3112 
3113   __ move(trace_id_addr, id);
3114   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3115   __ store(id, trace_id_addr);
3116 
3117 #ifdef TRACE_ID_META_BITS
3118   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3119 #endif
3120 #ifdef TRACE_ID_CLASS_SHIFT
3121   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3122 #endif
3123 
3124   __ move(id, rlock_result(x));
3125 }
3126 
3127 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3128   LabelObj* L_end = new LabelObj();
3129 
3130   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3131                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3132                                            T_OBJECT);
3133   LIR_Opr result = rlock_result(x);
3134   __ move_wide(jobj_addr, result);
3135   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3136   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3137   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3138 
3139   __ branch_destination(L_end->label());
3140 }
3141 
3142 #endif
3143 
3144 
3145 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3146   assert(x->number_of_arguments() == 0, "wrong type");
3147   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3148   BasicTypeList signature;
3149   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3150   LIR_Opr reg = result_register_for(x->type());
3151   __ call_runtime_leaf(routine, getThreadTemp(),
3152                        reg, new LIR_OprList());
3153   LIR_Opr result = rlock_result(x);
3154   __ move(reg, result);
3155 }
3156 
3157 
3158 
3159 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3160   switch (x->id()) {
3161   case vmIntrinsics::_intBitsToFloat      :
3162   case vmIntrinsics::_doubleToRawLongBits :
3163   case vmIntrinsics::_longBitsToDouble    :
3164   case vmIntrinsics::_floatToRawIntBits   : {
3165     do_FPIntrinsics(x);
3166     break;
3167   }
3168 
3169 #ifdef TRACE_HAVE_INTRINSICS
3170   case vmIntrinsics::_getClassId:
3171     do_ClassIDIntrinsic(x);
3172     break;
3173   case vmIntrinsics::_getBufferWriter:
3174     do_getBufferWriter(x);
3175     break;
3176   case vmIntrinsics::_counterTime:
3177     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3178     break;
3179 #endif
3180 
3181   case vmIntrinsics::_currentTimeMillis:
3182     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3183     break;
3184 
3185   case vmIntrinsics::_nanoTime:
3186     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3187     break;
3188 
3189   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3190   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3191   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3192   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3193   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3194 
3195   case vmIntrinsics::_dlog:           // fall through
3196   case vmIntrinsics::_dlog10:         // fall through
3197   case vmIntrinsics::_dabs:           // fall through
3198   case vmIntrinsics::_dsqrt:          // fall through
3199   case vmIntrinsics::_dtan:           // fall through
3200   case vmIntrinsics::_dsin :          // fall through
3201   case vmIntrinsics::_dcos :          // fall through
3202   case vmIntrinsics::_dexp :          // fall through
3203   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3204   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3205 
3206   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3207   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3208 
3209   // java.nio.Buffer.checkIndex
3210   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3211 
3212   case vmIntrinsics::_compareAndSetObject:
3213     do_CompareAndSwap(x, objectType);
3214     break;
3215   case vmIntrinsics::_compareAndSetInt:
3216     do_CompareAndSwap(x, intType);
3217     break;
3218   case vmIntrinsics::_compareAndSetLong:
3219     do_CompareAndSwap(x, longType);
3220     break;
3221 
3222   case vmIntrinsics::_loadFence :
3223     if (os::is_MP()) __ membar_acquire();
3224     break;
3225   case vmIntrinsics::_storeFence:
3226     if (os::is_MP()) __ membar_release();
3227     break;
3228   case vmIntrinsics::_fullFence :
3229     if (os::is_MP()) __ membar();
3230     break;
3231   case vmIntrinsics::_onSpinWait:
3232     __ on_spin_wait();
3233     break;
3234   case vmIntrinsics::_Reference_get:
3235     do_Reference_get(x);
3236     break;
3237 
3238   case vmIntrinsics::_updateCRC32:
3239   case vmIntrinsics::_updateBytesCRC32:
3240   case vmIntrinsics::_updateByteBufferCRC32:
3241     do_update_CRC32(x);
3242     break;
3243 
3244   case vmIntrinsics::_updateBytesCRC32C:
3245   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3246     do_update_CRC32C(x);
3247     break;
3248 
3249   case vmIntrinsics::_vectorizedMismatch:
3250     do_vectorizedMismatch(x);
3251     break;
3252 
3253   default: ShouldNotReachHere(); break;
3254   }
3255 }
3256 
3257 void LIRGenerator::profile_arguments(ProfileCall* x) {
3258   if (compilation()->profile_arguments()) {
3259     int bci = x->bci_of_invoke();
3260     ciMethodData* md = x->method()->method_data_or_null();
3261     ciProfileData* data = md->bci_to_data(bci);
3262     if (data != NULL) {
3263       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3264           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3265         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3266         int base_offset = md->byte_offset_of_slot(data, extra);
3267         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3268         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->ar
3269 
3270         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3271         int start = 0;
3272         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_
3273         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3274           // first argument is not profiled at call (method handle invoke)
3275           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3276           start = 1;
3277         }
3278         ciSignature* callee_signature = x->callee()->signature();
3279         // method handle call to virtual method
3280         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3281         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3282 
3283         bool ignored_will_link;
3284         ciSignature* signature_at_call = NULL;
3285         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3286         ciSignatureStream signature_at_call_stream(signature_at_call);
3287 
3288         // if called through method handle invoke, some arguments may have been popped
3289         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3290           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3291           ciKlass* exact = profile_type(md, base_offset, off,
3292               args->type(i), x->profiled_arg_at(i+start), mdp,
3293               !x->arg_needs_null_check(i+start),
3294               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3295           if (exact != NULL) {
3296             md->set_argument_type(bci, i, exact);
3297           }
3298         }
3299       } else {
3300 #ifdef ASSERT
3301         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3302         int n = x->nb_profiled_args();
3303         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3304             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3305             "only at JSR292 bytecodes");
3306 #endif
3307       }
3308     }
3309   }
3310 }
3311 
3312 // profile parameters on entry to an inlined method
3313 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3314   if (compilation()->profile_parameters() && x->inlined()) {
3315     ciMethodData* md = x->callee()->method_data_or_null();
3316     if (md != NULL) {
3317       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3318       if (parameters_type_data != NULL) {
3319         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3320         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3321         bool has_receiver = !x->callee()->is_static();
3322         ciSignature* sig = x->callee()->signature();
3323         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3324         int i = 0; // to iterate on the Instructions
3325         Value arg = x->recv();
3326         bool not_null = false;
3327         int bci = x->bci_of_invoke();
3328         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3329         // The first parameter is the receiver so that's what we start
3330         // with if it exists. One exception is method handle call to
3331         // virtual method: the receiver is in the args list
3332         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3333           i = 1;
3334           arg = x->profiled_arg_at(0);
3335           not_null = !x->arg_needs_null_check(0);
3336         }
3337         int k = 0; // to iterate on the profile data
3338         for (;;) {
3339           intptr_t profiled_k = parameters->type(k);
3340           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3341                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3342                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3343           // If the profile is known statically set it once for all and do not emit any code
3344           if (exact != NULL) {
3345             md->set_parameter_type(k, exact);
3346           }
3347           k++;
3348           if (k >= parameters_type_data->number_of_parameters()) {
3349 #ifdef ASSERT
3350             int extra = 0;
3351             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3352                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3353                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3354               extra += 1;
3355             }
3356             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit
3357 #endif
3358             break;
3359           }
3360           arg = x->profiled_arg_at(i);
3361           not_null = !x->arg_needs_null_check(i);
3362           i++;
3363         }
3364       }
3365     }
3366   }
3367 }
3368 
3369 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3370   // Need recv in a temporary register so it interferes with the other temporaries
3371   LIR_Opr recv = LIR_OprFact::illegalOpr;
3372   LIR_Opr mdo = new_register(T_OBJECT);
3373   // tmp is used to hold the counters on SPARC
3374   LIR_Opr tmp = new_pointer_register();
3375 
3376   if (x->nb_profiled_args() > 0) {
3377     profile_arguments(x);
3378   }
3379 
3380   // profile parameters on inlined method entry including receiver
3381   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3382     profile_parameters_at_call(x);
3383   }
3384 
3385   if (x->recv() != NULL) {
3386     LIRItem value(x->recv(), this);
3387     value.load_item();
3388     recv = new_register(T_OBJECT);
3389     __ move(value.result(), recv);
3390   }
3391   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3392 }
3393 
3394 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3395   int bci = x->bci_of_invoke();
3396   ciMethodData* md = x->method()->method_data_or_null();
3397   ciProfileData* data = md->bci_to_data(bci);
3398   if (data != NULL) {
3399     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3400     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3401     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3402 
3403     bool ignored_will_link;
3404     ciSignature* signature_at_call = NULL;
3405     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3406 
3407     // The offset within the MDO of the entry to update may be too large
3408     // to be used in load/store instructions on some platforms. So have
3409     // profile_type() compute the address of the profile in a register.
3410     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3411         ret->type(), x->ret(), mdp,
3412         !x->needs_null_check(),
3413         signature_at_call->return_type()->as_klass(),
3414         x->callee()->signature()->return_type()->as_klass());
3415     if (exact != NULL) {
3416       md->set_return_type(bci, exact);
3417     }
3418   }
3419 }
3420 
3421 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3422   // We can safely ignore accessors here, since c2 will inline them anyway,
3423   // accessors are also always mature.
3424   if (!x->inlinee()->is_accessor()) {
3425     CodeEmitInfo* info = state_for(x, x->state(), true);
3426     // Notify the runtime very infrequently only to take care of counter overflows
3427     int freq_log = Tier23InlineeNotifyFreqLog;
3428     double scale;
3429     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3430       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3431     }
3432     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3433   }
3434 }
3435 
3436 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3437   int freq_log = 0;
3438   int level = compilation()->env()->comp_level();
3439   if (level == CompLevel_limited_profile) {
3440     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3441   } else if (level == CompLevel_full_profile) {
3442     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3443   } else {
3444     ShouldNotReachHere();
3445   }
3446   // Increment the appropriate invocation/backedge counter and notify the runtime.
3447   double scale;
3448   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3449     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3450   }
3451   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3452 }
3453 
3454 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3455   ciMethod* method = info->scope()->method();
3456   MethodCounters* mc_adr = method->ensure_method_counters();
3457   if (mc_adr != NULL) {
3458     LIR_Opr mc = new_pointer_register();
3459     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3460     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3461     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3462     LIR_Opr result = new_register(T_INT);
3463     __ load(counter, result);
3464     __ sub(result, LIR_OprFact::intConst(1), result);
3465     __ store(result, counter);
3466     // DeoptimizeStub will reexecute from the current state in code info.
3467     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3468                                          Deoptimization::Action_make_not_entrant);
3469     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3470     __ branch(lir_cond_lessEqual, T_INT, deopt);
3471   }
3472 }
3473 
3474 
3475 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3476                                                 ciMethod *method, int frequency,
3477                                                 int bci, bool backedge, bool notify) {
3478   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3479   int level = _compilation->env()->comp_level();
3480   assert(level > CompLevel_simple, "Shouldn't be here");
3481 
3482   int offset = -1;
3483   LIR_Opr counter_holder = NULL;
3484   if (level == CompLevel_limited_profile) {
3485     MethodCounters* counters_adr = method->ensure_method_counters();
3486     if (counters_adr == NULL) {
3487       bailout("method counters allocation failed");
3488       return;
3489     }
3490     counter_holder = new_pointer_register();
3491     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3492     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3493                                  MethodCounters::invocation_counter_offset());
3494   } else if (level == CompLevel_full_profile) {
3495     counter_holder = new_register(T_METADATA);
3496     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3497                                  MethodData::invocation_counter_offset());
3498     ciMethodData* md = method->method_data_or_null();
3499     assert(md != NULL, "Sanity");
3500     __ metadata2reg(md->constant_encoding(), counter_holder);
3501   } else {
3502     ShouldNotReachHere();
3503   }
3504   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3505   LIR_Opr result = new_register(T_INT);
3506   __ load(counter, result);
3507   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3508   __ store(result, counter);
3509   if (notify && (!backedge || UseOnStackReplacement)) {
3510     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3511     // The bci for info can point to cmp for if's we want the if bci
3512     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3513     int freq = frequency << InvocationCounter::count_shift;
3514     if (freq == 0) {
3515       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3516     } else {
3517       LIR_Opr mask = load_immediate(freq, T_INT);
3518       __ logical_and(result, mask, result);
3519       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3520       __ branch(lir_cond_equal, T_INT, overflow);
3521     }
3522     __ branch_destination(overflow->continuation());
3523   }
3524 }
3525 
3526 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3527   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3528   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3529 
3530   if (x->pass_thread()) {
3531     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3532     args->append(getThreadPointer());
3533   }
3534 
3535   for (int i = 0; i < x->number_of_arguments(); i++) {
3536     Value a = x->argument_at(i);
3537     LIRItem* item = new LIRItem(a, this);
3538     item->load_item();
3539     args->append(item->result());
3540     signature->append(as_BasicType(a->type()));
3541   }
3542 
3543   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3544   if (x->type() == voidType) {
3545     set_no_result(x);
3546   } else {
3547     __ move(result, rlock_result(x));
3548   }
3549 }
3550 
3551 #ifdef ASSERT
3552 void LIRGenerator::do_Assert(Assert *x) {
3553   ValueTag tag = x->x()->type()->tag();
3554   If::Condition cond = x->cond();
3555 
3556   LIRItem xitem(x->x(), this);
3557   LIRItem yitem(x->y(), this);
3558   LIRItem* xin = &xitem;
3559   LIRItem* yin = &yitem;
3560 
3561   assert(tag == intTag, "Only integer assertions are valid!");
3562 
3563   xin->load_item();
3564   yin->dont_load_item();
3565 
3566   set_no_result(x);
3567 
3568   LIR_Opr left = xin->result();
3569   LIR_Opr right = yin->result();
3570 
3571   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3572 }
3573 #endif
3574 
3575 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3576 
3577 
3578   Instruction *a = x->x();
3579   Instruction *b = x->y();
3580   if (!a || StressRangeCheckElimination) {
3581     assert(!b || StressRangeCheckElimination, "B must also be null");
3582 
3583     CodeEmitInfo *info = state_for(x, x->state());
3584     CodeStub* stub = new PredicateFailedStub(info);
3585 
3586     __ jump(stub);
3587   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3588     int a_int = a->type()->as_IntConstant()->value();
3589     int b_int = b->type()->as_IntConstant()->value();
3590 
3591     bool ok = false;
3592 
3593     switch(x->cond()) {
3594       case Instruction::eql: ok = (a_int == b_int); break;
3595       case Instruction::neq: ok = (a_int != b_int); break;
3596       case Instruction::lss: ok = (a_int < b_int); break;
3597       case Instruction::leq: ok = (a_int <= b_int); break;
3598       case Instruction::gtr: ok = (a_int > b_int); break;
3599       case Instruction::geq: ok = (a_int >= b_int); break;
3600       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3601       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3602       default: ShouldNotReachHere();
3603     }
3604 
3605     if (ok) {
3606 
3607       CodeEmitInfo *info = state_for(x, x->state());
3608       CodeStub* stub = new PredicateFailedStub(info);
3609 
3610       __ jump(stub);
3611     }
3612   } else {
3613 
3614     ValueTag tag = x->x()->type()->tag();
3615     If::Condition cond = x->cond();
3616     LIRItem xitem(x->x(), this);
3617     LIRItem yitem(x->y(), this);
3618     LIRItem* xin = &xitem;
3619     LIRItem* yin = &yitem;
3620 
3621     assert(tag == intTag, "Only integer deoptimizations are valid!");
3622 
3623     xin->load_item();
3624     yin->dont_load_item();
3625     set_no_result(x);
3626 
3627     LIR_Opr left = xin->result();
3628     LIR_Opr right = yin->result();
3629 
3630     CodeEmitInfo *info = state_for(x, x->state());
3631     CodeStub* stub = new PredicateFailedStub(info);
3632 
3633     __ cmp(lir_cond(cond), left, right);
3634     __ branch(lir_cond(cond), right->type(), stub);
3635   }
3636 }
3637 
3638 
3639 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3640   LIRItemList args(1);
3641   LIRItem value(arg1, this);
3642   args.append(&value);
3643   BasicTypeList signature;
3644   signature.append(as_BasicType(arg1->type()));
3645 
3646   return call_runtime(&signature, &args, entry, result_type, info);
3647 }
3648 
3649 
3650 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3651   LIRItemList args(2);
3652   LIRItem value1(arg1, this);
3653   LIRItem value2(arg2, this);
3654   args.append(&value1);
3655   args.append(&value2);
3656   BasicTypeList signature;
3657   signature.append(as_BasicType(arg1->type()));
3658   signature.append(as_BasicType(arg2->type()));
3659 
3660   return call_runtime(&signature, &args, entry, result_type, info);
3661 }
3662 
3663 
3664 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3665                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3666   // get a result register
3667   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3668   LIR_Opr result = LIR_OprFact::illegalOpr;
3669   if (result_type->tag() != voidTag) {
3670     result = new_register(result_type);
3671     phys_reg = result_register_for(result_type);
3672   }
3673 
3674   // move the arguments into the correct location
3675   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3676   assert(cc->length() == args->length(), "argument mismatch");
3677   for (int i = 0; i < args->length(); i++) {
3678     LIR_Opr arg = args->at(i);
3679     LIR_Opr loc = cc->at(i);
3680     if (loc->is_register()) {
3681       __ move(arg, loc);
3682     } else {
3683       LIR_Address* addr = loc->as_address_ptr();
3684 //           if (!can_store_as_constant(arg)) {
3685 //             LIR_Opr tmp = new_register(arg->type());
3686 //             __ move(arg, tmp);
3687 //             arg = tmp;
3688 //           }
3689       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3690         __ unaligned_move(arg, addr);
3691       } else {
3692         __ move(arg, addr);
3693       }
3694     }
3695   }
3696 
3697   if (info) {
3698     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3699   } else {
3700     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3701   }
3702   if (result->is_valid()) {
3703     __ move(phys_reg, result);
3704   }
3705   return result;
3706 }
3707 
3708 
3709 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3710                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3711   // get a result register
3712   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3713   LIR_Opr result = LIR_OprFact::illegalOpr;
3714   if (result_type->tag() != voidTag) {
3715     result = new_register(result_type);
3716     phys_reg = result_register_for(result_type);
3717   }
3718 
3719   // move the arguments into the correct location
3720   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3721 
3722   assert(cc->length() == args->length(), "argument mismatch");
3723   for (int i = 0; i < args->length(); i++) {
3724     LIRItem* arg = args->at(i);
3725     LIR_Opr loc = cc->at(i);
3726     if (loc->is_register()) {
3727       arg->load_item_force(loc);
3728     } else {
3729       LIR_Address* addr = loc->as_address_ptr();
3730       arg->load_for_store(addr->type());
3731       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3732         __ unaligned_move(arg->result(), addr);
3733       } else {
3734         __ move(arg->result(), addr);
3735       }
3736     }
3737   }
3738 
3739   if (info) {
3740     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3741   } else {
3742     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3743   }
3744   if (result->is_valid()) {
3745     __ move(phys_reg, result);
3746   }
3747   return result;
3748 }
3749 
3750 void LIRGenerator::do_MemBar(MemBar* x) {
3751   if (os::is_MP()) {
3752     LIR_Code code = x->code();
3753     switch(code) {
3754       case lir_membar_acquire   : __ membar_acquire(); break;
3755       case lir_membar_release   : __ membar_release(); break;
3756       case lir_membar           : __ membar(); break;
3757       case lir_membar_loadload  : __ membar_loadload(); break;
3758       case lir_membar_storestore: __ membar_storestore(); break;
3759       case lir_membar_loadstore : __ membar_loadstore(); break;
3760       case lir_membar_storeload : __ membar_storeload(); break;
3761       default                   : ShouldNotReachHere(); break;
3762     }
3763   }
3764 }
3765 
3766 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3767   if (x->check_boolean()) {
3768     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3769     if (TwoOperandLIRForm) {
3770       __ move(value, value_fixed);
3771       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3772     } else {
3773       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3774     }
3775     LIR_Opr klass = new_register(T_METADATA);
3776     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3777     null_check_info = NULL;
3778     LIR_Opr layout = new_register(T_INT);
3779     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3780     int diffbit = Klass::layout_helper_boolean_diffbit();
3781     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3782     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3783     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3784     value = value_fixed;
3785   }
3786   return value;
3787 }
--- EOF ---