1 /*
  2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/g1/dirtyCardQueue.hpp"
 27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
 28 #include "gc/g1/g1CardTable.inline.hpp"
 29 #include "gc/g1/g1CollectedHeap.inline.hpp"
 30 #include "gc/g1/g1ConcurrentRefine.hpp"
 31 #include "gc/g1/g1FromCardCache.hpp"
 32 #include "gc/g1/g1GCPhaseTimes.hpp"
 33 #include "gc/g1/g1HotCardCache.hpp"
 34 #include "gc/g1/g1OopClosures.inline.hpp"
 35 #include "gc/g1/g1RemSet.hpp"
 36 #include "gc/g1/g1SATBCardTableModRefBS.inline.hpp"
 37 #include "gc/g1/heapRegion.inline.hpp"
 38 #include "gc/g1/heapRegionManager.inline.hpp"
 39 #include "gc/g1/heapRegionRemSet.hpp"
 40 #include "gc/shared/gcTraceTime.inline.hpp"
 41 #include "gc/shared/suspendibleThreadSet.hpp"
 42 #include "memory/iterator.hpp"
 43 #include "memory/resourceArea.hpp"
 44 #include "oops/oop.inline.hpp"
 45 #include "utilities/align.hpp"
 46 #include "utilities/globalDefinitions.hpp"
 47 #include "utilities/intHisto.hpp"
 48 #include "utilities/stack.inline.hpp"
 49 
 50 // Collects information about the overall remembered set scan progress during an evacuation.
 51 class G1RemSetScanState : public CHeapObj<mtGC> {
 52 private:
 53   class G1ClearCardTableTask : public AbstractGangTask {
 54     G1CollectedHeap* _g1h;
 55     uint* _dirty_region_list;
 56     size_t _num_dirty_regions;
 57     size_t _chunk_length;
 58 
 59     size_t volatile _cur_dirty_regions;
 60   public:
 61     G1ClearCardTableTask(G1CollectedHeap* g1h,
 62                          uint* dirty_region_list,
 63                          size_t num_dirty_regions,
 64                          size_t chunk_length) :
 65       AbstractGangTask("G1 Clear Card Table Task"),
 66       _g1h(g1h),
 67       _dirty_region_list(dirty_region_list),
 68       _num_dirty_regions(num_dirty_regions),
 69       _chunk_length(chunk_length),
 70       _cur_dirty_regions(0) {
 71 
 72       assert(chunk_length > 0, "must be");
 73     }
 74 
 75     static size_t chunk_size() { return M; }
 76 
 77     void work(uint worker_id) {
 78       G1CardTable* ct = _g1h->card_table();
 79 
 80       while (_cur_dirty_regions < _num_dirty_regions) {
 81         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
 82         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
 83 
 84         for (size_t i = next; i < max; i++) {
 85           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
 86           if (!r->is_survivor()) {
 87             ct->clear(MemRegion(r->bottom(), r->end()));
 88           }
 89         }
 90       }
 91     }
 92   };
 93 
 94   size_t _max_regions;
 95 
 96   // Scan progress for the remembered set of a single region. Transitions from
 97   // Unclaimed -> Claimed -> Complete.
 98   // At each of the transitions the thread that does the transition needs to perform
 99   // some special action once. This is the reason for the extra "Claimed" state.
100   typedef jint G1RemsetIterState;
101 
102   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
103   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
104   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
105 
106   G1RemsetIterState volatile* _iter_states;
107   // The current location where the next thread should continue scanning in a region's
108   // remembered set.
109   size_t volatile* _iter_claims;
110 
111   // Temporary buffer holding the regions we used to store remembered set scan duplicate
112   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
113   uint* _dirty_region_buffer;
114 
115   typedef jbyte IsDirtyRegionState;
116   static const IsDirtyRegionState Clean = 0;
117   static const IsDirtyRegionState Dirty = 1;
118   // Holds a flag for every region whether it is in the _dirty_region_buffer already
119   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
120   IsDirtyRegionState* _in_dirty_region_buffer;
121   size_t _cur_dirty_region;
122 
123   // Creates a snapshot of the current _top values at the start of collection to
124   // filter out card marks that we do not want to scan.
125   class G1ResetScanTopClosure : public HeapRegionClosure {
126   private:
127     HeapWord** _scan_top;
128   public:
129     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
130 
131     virtual bool do_heap_region(HeapRegion* r) {
132       uint hrm_index = r->hrm_index();
133       if (!r->in_collection_set() && r->is_old_or_humongous()) {
134         _scan_top[hrm_index] = r->top();
135       } else {
136         _scan_top[hrm_index] = r->bottom();
137       }
138       return false;
139     }
140   };
141 
142   // For each region, contains the maximum top() value to be used during this garbage
143   // collection. Subsumes common checks like filtering out everything but old and
144   // humongous regions outside the collection set.
145   // This is valid because we are not interested in scanning stray remembered set
146   // entries from free or archive regions.
147   HeapWord** _scan_top;
148 public:
149   G1RemSetScanState() :
150     _max_regions(0),
151     _iter_states(NULL),
152     _iter_claims(NULL),
153     _dirty_region_buffer(NULL),
154     _in_dirty_region_buffer(NULL),
155     _cur_dirty_region(0),
156     _scan_top(NULL) {
157   }
158 
159   ~G1RemSetScanState() {
160     if (_iter_states != NULL) {
161       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
162     }
163     if (_iter_claims != NULL) {
164       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
165     }
166     if (_dirty_region_buffer != NULL) {
167       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
168     }
169     if (_in_dirty_region_buffer != NULL) {
170       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
171     }
172     if (_scan_top != NULL) {
173       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
174     }
175   }
176 
177   void initialize(uint max_regions) {
178     assert(_iter_states == NULL, "Must not be initialized twice");
179     assert(_iter_claims == NULL, "Must not be initialized twice");
180     _max_regions = max_regions;
181     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
182     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
183     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
184     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
185     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
186   }
187 
188   void reset() {
189     for (uint i = 0; i < _max_regions; i++) {
190       _iter_states[i] = Unclaimed;
191     }
192 
193     G1ResetScanTopClosure cl(_scan_top);
194     G1CollectedHeap::heap()->heap_region_iterate(&cl);
195 
196     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
197     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
198     _cur_dirty_region = 0;
199   }
200 
201   // Attempt to claim the remembered set of the region for iteration. Returns true
202   // if this call caused the transition from Unclaimed to Claimed.
203   inline bool claim_iter(uint region) {
204     assert(region < _max_regions, "Tried to access invalid region %u", region);
205     if (_iter_states[region] != Unclaimed) {
206       return false;
207     }
208     G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed);
209     return (res == Unclaimed);
210   }
211 
212   // Try to atomically sets the iteration state to "complete". Returns true for the
213   // thread that caused the transition.
214   inline bool set_iter_complete(uint region) {
215     if (iter_is_complete(region)) {
216       return false;
217     }
218     G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed);
219     return (res == Claimed);
220   }
221 
222   // Returns true if the region's iteration is complete.
223   inline bool iter_is_complete(uint region) const {
224     assert(region < _max_regions, "Tried to access invalid region %u", region);
225     return _iter_states[region] == Complete;
226   }
227 
228   // The current position within the remembered set of the given region.
229   inline size_t iter_claimed(uint region) const {
230     assert(region < _max_regions, "Tried to access invalid region %u", region);
231     return _iter_claims[region];
232   }
233 
234   // Claim the next block of cards within the remembered set of the region with
235   // step size.
236   inline size_t iter_claimed_next(uint region, size_t step) {
237     return Atomic::add(step, &_iter_claims[region]) - step;
238   }
239 
240   void add_dirty_region(uint region) {
241     if (_in_dirty_region_buffer[region] == Dirty) {
242       return;
243     }
244 
245     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
246     if (marked_as_dirty) {
247       size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
248       _dirty_region_buffer[allocated] = region;
249     }
250   }
251 
252   HeapWord* scan_top(uint region_idx) const {
253     return _scan_top[region_idx];
254   }
255 
256   // Clear the card table of "dirty" regions.
257   void clear_card_table(WorkGang* workers) {
258     if (_cur_dirty_region == 0) {
259       return;
260     }
261 
262     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
263     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
264     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
265 
266     // Iterate over the dirty cards region list.
267     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
268 
269     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
270                         "units of work for " SIZE_FORMAT " regions.",
271                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
272     workers->run_task(&cl, num_workers);
273 
274 #ifndef PRODUCT
275     // Need to synchronize with concurrent cleanup since it needs to
276     // finish its card table clearing before we can verify.
277     G1CollectedHeap::heap()->wait_while_free_regions_coming();
278     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
279 #endif
280   }
281 };
282 
283 G1RemSet::G1RemSet(G1CollectedHeap* g1,
284                    G1CardTable* ct,
285                    G1HotCardCache* hot_card_cache) :
286   _g1(g1),
287   _scan_state(new G1RemSetScanState()),
288   _num_conc_refined_cards(0),
289   _ct(ct),
290   _g1p(_g1->g1_policy()),
291   _hot_card_cache(hot_card_cache),
292   _prev_period_summary() {
293 }
294 
295 G1RemSet::~G1RemSet() {
296   if (_scan_state != NULL) {
297     delete _scan_state;
298   }
299 }
300 
301 uint G1RemSet::num_par_rem_sets() {
302   return MAX2(DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads(), ParallelGCThreads);
303 }
304 
305 void G1RemSet::initialize(size_t capacity, uint max_regions) {
306   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
307   _scan_state->initialize(max_regions);
308   {
309     GCTraceTime(Debug, gc, marking)("Initialize Card Live Data");
310     _card_live_data.initialize(capacity, max_regions);
311   }
312   if (G1PretouchAuxiliaryMemory) {
313     GCTraceTime(Debug, gc, marking)("Pre-Touch Card Live Data");
314     _card_live_data.pretouch();
315   }
316 }
317 
318 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
319                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
320                                                    CodeBlobClosure* code_root_cl,
321                                                    uint worker_i) :
322   _scan_state(scan_state),
323   _scan_objs_on_card_cl(scan_obj_on_card),
324   _code_root_cl(code_root_cl),
325   _strong_code_root_scan_time_sec(0.0),
326   _cards_claimed(0),
327   _cards_scanned(0),
328   _cards_skipped(0),
329   _worker_i(worker_i) {
330   _g1h = G1CollectedHeap::heap();
331   _bot = _g1h->bot();
332   _ct = _g1h->card_table();
333 }
334 
335 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
336   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
337   _scan_objs_on_card_cl->set_region(card_region);
338   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
339   _cards_scanned++;
340 }
341 
342 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
343   double scan_start = os::elapsedTime();
344   r->strong_code_roots_do(_code_root_cl);
345   _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
346 }
347 
348 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
349   _ct->set_card_claimed(card_index);
350   _scan_state->add_dirty_region(region_idx_for_card);
351 }
352 
353 bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) {
354   assert(r->in_collection_set(), "should only be called on elements of CS.");
355   uint region_idx = r->hrm_index();
356 
357   if (_scan_state->iter_is_complete(region_idx)) {
358     return false;
359   }
360   if (_scan_state->claim_iter(region_idx)) {
361     // If we ever free the collection set concurrently, we should also
362     // clear the card table concurrently therefore we won't need to
363     // add regions of the collection set to the dirty cards region.
364     _scan_state->add_dirty_region(region_idx);
365   }
366 
367   // We claim cards in blocks so as to reduce the contention.
368   size_t const block_size = G1RSetScanBlockSize;
369 
370   HeapRegionRemSetIterator iter(r->rem_set());
371   size_t card_index;
372 
373   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
374   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
375     if (current_card >= claimed_card_block + block_size) {
376       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
377     }
378     if (current_card < claimed_card_block) {
379       _cards_skipped++;
380       continue;
381     }
382     _cards_claimed++;
383 
384     // If the card is dirty, then G1 will scan it during Update RS.
385     if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) {
386       continue;
387     }
388 
389     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
390     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
391 
392     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
393            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
394     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
395     if (card_start >= top) {
396       continue;
397     }
398 
399     // We claim lazily (so races are possible but they're benign), which reduces the
400     // number of duplicate scans (the rsets of the regions in the cset can intersect).
401     // Claim the card after checking bounds above: the remembered set may contain
402     // random cards into current survivor, and we would then have an incorrectly
403     // claimed card in survivor space. Card table clear does not reset the card table
404     // of survivor space regions.
405     claim_card(card_index, region_idx_for_card);
406 
407     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
408 
409     scan_card(mr, region_idx_for_card);
410   }
411   if (_scan_state->set_iter_complete(region_idx)) {
412     // Scan the strong code root list attached to the current region
413     scan_strong_code_roots(r);
414   }
415   return false;
416 }
417 
418 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss,
419                             CodeBlobClosure* heap_region_codeblobs,
420                             uint worker_i) {
421   double rs_time_start = os::elapsedTime();
422 
423   G1ScanObjsDuringScanRSClosure scan_cl(_g1, pss);
424   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, heap_region_codeblobs, worker_i);
425   _g1->collection_set_iterate_from(&cl, worker_i);
426 
427   double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
428                              cl.strong_code_root_scan_time_sec();
429 
430   G1GCPhaseTimes* p = _g1p->phase_times();
431 
432   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
433   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
434   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
435   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
436 
437   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
438 }
439 
440 // Closure used for updating rem sets. Only called during an evacuation pause.
441 class G1RefineCardClosure: public CardTableEntryClosure {
442   G1RemSet* _g1rs;
443   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
444 
445   size_t _cards_scanned;
446   size_t _cards_skipped;
447 public:
448   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
449     _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
450   {}
451 
452   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
453     // The only time we care about recording cards that
454     // contain references that point into the collection set
455     // is during RSet updating within an evacuation pause.
456     // In this case worker_i should be the id of a GC worker thread.
457     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
458 
459     bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
460 
461     if (card_scanned) {
462       _cards_scanned++;
463     } else {
464       _cards_skipped++;
465     }
466     return true;
467   }
468 
469   size_t cards_scanned() const { return _cards_scanned; }
470   size_t cards_skipped() const { return _cards_skipped; }
471 };
472 
473 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
474   G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1, pss, worker_i);
475   G1RefineCardClosure refine_card_cl(_g1, &update_rs_cl);
476 
477   G1GCParPhaseTimesTracker x(_g1p->phase_times(), G1GCPhaseTimes::UpdateRS, worker_i);
478   if (G1HotCardCache::default_use_cache()) {
479     // Apply the closure to the entries of the hot card cache.
480     G1GCParPhaseTimesTracker y(_g1p->phase_times(), G1GCPhaseTimes::ScanHCC, worker_i);
481     _g1->iterate_hcc_closure(&refine_card_cl, worker_i);
482   }
483   // Apply the closure to all remaining log entries.
484   _g1->iterate_dirty_card_closure(&refine_card_cl, worker_i);
485 
486   G1GCPhaseTimes* p = _g1p->phase_times();
487   p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
488   p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
489 }
490 
491 void G1RemSet::cleanupHRRS() {
492   HeapRegionRemSet::cleanup();
493 }
494 
495 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss,
496                                            CodeBlobClosure* heap_region_codeblobs,
497                                            uint worker_i) {
498   update_rem_set(pss, worker_i);
499   scan_rem_set(pss, heap_region_codeblobs, worker_i);;
500 }
501 
502 void G1RemSet::prepare_for_oops_into_collection_set_do() {
503   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
504   dcqs.concatenate_logs();
505 
506   _scan_state->reset();
507 }
508 
509 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
510   G1GCPhaseTimes* phase_times = _g1->g1_policy()->phase_times();
511 
512   // Set all cards back to clean.
513   double start = os::elapsedTime();
514   _scan_state->clear_card_table(_g1->workers());
515   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
516 }
517 
518 class G1ScrubRSClosure: public HeapRegionClosure {
519   G1CollectedHeap* _g1h;
520   G1CardLiveData* _live_data;
521 public:
522   G1ScrubRSClosure(G1CardLiveData* live_data) :
523     _g1h(G1CollectedHeap::heap()),
524     _live_data(live_data) { }
525 
526   bool do_heap_region(HeapRegion* r) {
527     if (!r->is_continues_humongous()) {
528       r->rem_set()->scrub(_live_data);
529     }
530     return false;
531   }
532 };
533 
534 void G1RemSet::scrub(uint worker_num, HeapRegionClaimer *hrclaimer) {
535   G1ScrubRSClosure scrub_cl(&_card_live_data);
536   _g1->heap_region_par_iterate_from_worker_offset(&scrub_cl, hrclaimer, worker_num);
537 }
538 
539 inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) {
540 #ifdef ASSERT
541   G1CollectedHeap* g1 = G1CollectedHeap::heap();
542   assert(g1->is_in_exact(ct->addr_for(card_ptr)),
543          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
544          p2i(card_ptr),
545          ct->index_for(ct->addr_for(card_ptr)),
546          p2i(ct->addr_for(card_ptr)),
547          g1->addr_to_region(ct->addr_for(card_ptr)));
548 #endif
549 }
550 
551 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
552                                         uint worker_i) {
553   assert(!_g1->is_gc_active(), "Only call concurrently");
554 
555   check_card_ptr(card_ptr, _ct);
556 
557   // If the card is no longer dirty, nothing to do.
558   if (*card_ptr != G1CardTable::dirty_card_val()) {
559     return;
560   }
561 
562   // Construct the region representing the card.
563   HeapWord* start = _ct->addr_for(card_ptr);
564   // And find the region containing it.
565   HeapRegion* r = _g1->heap_region_containing(start);
566 
567   // This check is needed for some uncommon cases where we should
568   // ignore the card.
569   //
570   // The region could be young.  Cards for young regions are
571   // distinctly marked (set to g1_young_gen), so the post-barrier will
572   // filter them out.  However, that marking is performed
573   // concurrently.  A write to a young object could occur before the
574   // card has been marked young, slipping past the filter.
575   //
576   // The card could be stale, because the region has been freed since
577   // the card was recorded. In this case the region type could be
578   // anything.  If (still) free or (reallocated) young, just ignore
579   // it.  If (reallocated) old or humongous, the later card trimming
580   // and additional checks in iteration may detect staleness.  At
581   // worst, we end up processing a stale card unnecessarily.
582   //
583   // In the normal (non-stale) case, the synchronization between the
584   // enqueueing of the card and processing it here will have ensured
585   // we see the up-to-date region type here.
586   if (!r->is_old_or_humongous()) {
587     return;
588   }
589 
590   // The result from the hot card cache insert call is either:
591   //   * pointer to the current card
592   //     (implying that the current card is not 'hot'),
593   //   * null
594   //     (meaning we had inserted the card ptr into the "hot" card cache,
595   //     which had some headroom),
596   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
597   //
598 
599   if (_hot_card_cache->use_cache()) {
600     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
601 
602     const jbyte* orig_card_ptr = card_ptr;
603     card_ptr = _hot_card_cache->insert(card_ptr);
604     if (card_ptr == NULL) {
605       // There was no eviction. Nothing to do.
606       return;
607     } else if (card_ptr != orig_card_ptr) {
608       // Original card was inserted and an old card was evicted.
609       start = _ct->addr_for(card_ptr);
610       r = _g1->heap_region_containing(start);
611 
612       // Check whether the region formerly in the cache should be
613       // ignored, as discussed earlier for the original card.  The
614       // region could have been freed while in the cache.
615       if (!r->is_old_or_humongous()) {
616         return;
617       }
618     } // Else we still have the original card.
619   }
620 
621   // Trim the region designated by the card to what's been allocated
622   // in the region.  The card could be stale, or the card could cover
623   // (part of) an object at the end of the allocated space and extend
624   // beyond the end of allocation.
625 
626   // Non-humongous objects are only allocated in the old-gen during
627   // GC, so if region is old then top is stable.  Humongous object
628   // allocation sets top last; if top has not yet been set, this is
629   // a stale card and we'll end up with an empty intersection.  If
630   // this is not a stale card, the synchronization between the
631   // enqueuing of the card and processing it here will have ensured
632   // we see the up-to-date top here.
633   HeapWord* scan_limit = r->top();
634 
635   if (scan_limit <= start) {
636     // If the trimmed region is empty, the card must be stale.
637     return;
638   }
639 
640   // Okay to clean and process the card now.  There are still some
641   // stale card cases that may be detected by iteration and dealt with
642   // as iteration failure.
643   *const_cast<volatile jbyte*>(card_ptr) = G1CardTable::clean_card_val();
644 
645   // This fence serves two purposes.  First, the card must be cleaned
646   // before processing the contents.  Second, we can't proceed with
647   // processing until after the read of top, for synchronization with
648   // possibly concurrent humongous object allocation.  It's okay that
649   // reading top and reading type were racy wrto each other.  We need
650   // both set, in any order, to proceed.
651   OrderAccess::fence();
652 
653   // Don't use addr_for(card_ptr + 1) which can ask for
654   // a card beyond the heap.
655   HeapWord* end = start + G1CardTable::card_size_in_words;
656   MemRegion dirty_region(start, MIN2(scan_limit, end));
657   assert(!dirty_region.is_empty(), "sanity");
658 
659   G1ConcurrentRefineOopClosure conc_refine_cl(_g1, worker_i);
660 
661   bool card_processed =
662     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
663 
664   // If unable to process the card then we encountered an unparsable
665   // part of the heap (e.g. a partially allocated object) while
666   // processing a stale card.  Despite the card being stale, redirty
667   // and re-enqueue, because we've already cleaned the card.  Without
668   // this we could incorrectly discard a non-stale card.
669   if (!card_processed) {
670     // The card might have gotten re-dirtied and re-enqueued while we
671     // worked.  (In fact, it's pretty likely.)
672     if (*card_ptr != G1CardTable::dirty_card_val()) {
673       *card_ptr = G1CardTable::dirty_card_val();
674       MutexLockerEx x(Shared_DirtyCardQ_lock,
675                       Mutex::_no_safepoint_check_flag);
676       DirtyCardQueue* sdcq =
677         JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
678       sdcq->enqueue(card_ptr);
679     }
680   } else {
681     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
682   }
683 }
684 
685 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
686                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
687   assert(_g1->is_gc_active(), "Only call during GC");
688 
689   check_card_ptr(card_ptr, _ct);
690 
691   // If the card is no longer dirty, nothing to do. This covers cards that were already
692   // scanned as parts of the remembered sets.
693   if (*card_ptr != G1CardTable::dirty_card_val()) {
694     return false;
695   }
696 
697   // We claim lazily (so races are possible but they're benign), which reduces the
698   // number of potential duplicate scans (multiple threads may enqueue the same card twice).
699   *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val();
700 
701   // Construct the region representing the card.
702   HeapWord* card_start = _ct->addr_for(card_ptr);
703   // And find the region containing it.
704   uint const card_region_idx = _g1->addr_to_region(card_start);
705 
706   _scan_state->add_dirty_region(card_region_idx);
707   HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
708   if (scan_limit <= card_start) {
709     // If the card starts above the area in the region containing objects to scan, skip it.
710     return false;
711   }
712 
713   // Don't use addr_for(card_ptr + 1) which can ask for
714   // a card beyond the heap.
715   HeapWord* card_end = card_start + G1CardTable::card_size_in_words;
716   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
717   assert(!dirty_region.is_empty(), "sanity");
718 
719   HeapRegion* const card_region = _g1->region_at(card_region_idx);
720   update_rs_cl->set_region(card_region);
721   bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
722   assert(card_processed, "must be");
723   return true;
724 }
725 
726 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
727   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
728       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
729 
730     G1RemSetSummary current(this);
731     _prev_period_summary.subtract_from(&current);
732 
733     Log(gc, remset) log;
734     log.trace("%s", header);
735     ResourceMark rm;
736     LogStream ls(log.trace());
737     _prev_period_summary.print_on(&ls);
738 
739     _prev_period_summary.set(&current);
740   }
741 }
742 
743 void G1RemSet::print_summary_info() {
744   Log(gc, remset, exit) log;
745   if (log.is_trace()) {
746     log.trace(" Cumulative RS summary");
747     G1RemSetSummary current(this);
748     ResourceMark rm;
749     LogStream ls(log.trace());
750     current.print_on(&ls);
751   }
752 }
753 
754 void G1RemSet::create_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
755   _card_live_data.create(workers, mark_bitmap);
756 }
757 
758 void G1RemSet::finalize_card_live_data(WorkGang* workers, G1CMBitMap* mark_bitmap) {
759   _card_live_data.finalize(workers, mark_bitmap);
760 }
761 
762 void G1RemSet::verify_card_live_data(WorkGang* workers, G1CMBitMap* bitmap) {
763   _card_live_data.verify(workers, bitmap);
764 }
765 
766 void G1RemSet::clear_card_live_data(WorkGang* workers) {
767   _card_live_data.clear(workers);
768 }
769 
770 #ifdef ASSERT
771 void G1RemSet::verify_card_live_data_is_clear() {
772   _card_live_data.verify_is_clear();
773 }
774 #endif