1 /*
  2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "gc/parallel/gcTaskManager.hpp"
 27 #include "gc/parallel/objectStartArray.inline.hpp"
 28 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
 29 #include "gc/parallel/psCardTable.hpp"
 30 #include "gc/parallel/psPromotionManager.inline.hpp"
 31 #include "gc/parallel/psScavenge.hpp"
 32 #include "gc/parallel/psTasks.hpp"
 33 #include "gc/parallel/psYoungGen.hpp"
 34 #include "oops/oop.inline.hpp"
 35 #include "runtime/prefetch.inline.hpp"
 36 #include "utilities/align.hpp"
 37 
 38 // Checks an individual oop for missing precise marks. Mark
 39 // may be either dirty or newgen.
 40 class CheckForUnmarkedOops : public OopClosure {
 41  private:
 42   PSYoungGen*  _young_gen;
 43   PSCardTable* _card_table;
 44   HeapWord*    _unmarked_addr;
 45 
 46  protected:
 47   template <class T> void do_oop_work(T* p) {
 48     oop obj = oopDesc::load_decode_heap_oop(p);
 49     if (_young_gen->is_in_reserved(obj) &&
 50         !_card_table->addr_is_marked_imprecise(p)) {
 51       // Don't overwrite the first missing card mark
 52       if (_unmarked_addr == NULL) {
 53         _unmarked_addr = (HeapWord*)p;
 54       }
 55     }
 56   }
 57 
 58  public:
 59   CheckForUnmarkedOops(PSYoungGen* young_gen, PSCardTable* card_table) :
 60     _young_gen(young_gen), _card_table(card_table), _unmarked_addr(NULL) { }
 61 
 62   virtual void do_oop(oop* p)       { CheckForUnmarkedOops::do_oop_work(p); }
 63   virtual void do_oop(narrowOop* p) { CheckForUnmarkedOops::do_oop_work(p); }
 64 
 65   bool has_unmarked_oop() {
 66     return _unmarked_addr != NULL;
 67   }
 68 };
 69 
 70 // Checks all objects for the existence of some type of mark,
 71 // precise or imprecise, dirty or newgen.
 72 class CheckForUnmarkedObjects : public ObjectClosure {
 73  private:
 74   PSYoungGen*  _young_gen;
 75   PSCardTable* _card_table;
 76 
 77  public:
 78   CheckForUnmarkedObjects() {
 79     ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 80     _young_gen = heap->young_gen();
 81     _card_table = heap->card_table();
 82   }
 83 
 84   // Card marks are not precise. The current system can leave us with
 85   // a mismatch of precise marks and beginning of object marks. This means
 86   // we test for missing precise marks first. If any are found, we don't
 87   // fail unless the object head is also unmarked.
 88   virtual void do_object(oop obj) {
 89     CheckForUnmarkedOops object_check(_young_gen, _card_table);
 90     obj->oop_iterate_no_header(&object_check);
 91     if (object_check.has_unmarked_oop()) {
 92       guarantee(_card_table->addr_is_marked_imprecise(obj), "Found unmarked young_gen object");
 93     }
 94   }
 95 };
 96 
 97 // Checks for precise marking of oops as newgen.
 98 class CheckForPreciseMarks : public OopClosure {
 99  private:
100   PSYoungGen*  _young_gen;
101   PSCardTable* _card_table;
102 
103  protected:
104   template <class T> void do_oop_work(T* p) {
105     oop obj = oopDesc::load_decode_heap_oop_not_null(p);
106     if (_young_gen->is_in_reserved(obj)) {
107       assert(_card_table->addr_is_marked_precise(p), "Found unmarked precise oop");
108       _card_table->set_card_newgen(p);
109     }
110   }
111 
112  public:
113   CheckForPreciseMarks(PSYoungGen* young_gen, PSCardTable* card_table) :
114     _young_gen(young_gen), _card_table(card_table) { }
115 
116   virtual void do_oop(oop* p)       { CheckForPreciseMarks::do_oop_work(p); }
117   virtual void do_oop(narrowOop* p) { CheckForPreciseMarks::do_oop_work(p); }
118 };
119 
120 // We get passed the space_top value to prevent us from traversing into
121 // the old_gen promotion labs, which cannot be safely parsed.
122 
123 // Do not call this method if the space is empty.
124 // It is a waste to start tasks and get here only to
125 // do no work.  If this method needs to be called
126 // when the space is empty, fix the calculation of
127 // end_card to allow sp_top == sp->bottom().
128 
129 void PSCardTable::scavenge_contents_parallel(ObjectStartArray* start_array,
130                                              MutableSpace* sp,
131                                              HeapWord* space_top,
132                                              PSPromotionManager* pm,
133                                              uint stripe_number,
134                                              uint stripe_total) {
135   int ssize = 128; // Naked constant!  Work unit = 64k.
136   int dirty_card_count = 0;
137 
138   // It is a waste to get here if empty.
139   assert(sp->bottom() < sp->top(), "Should not be called if empty");
140   oop* sp_top = (oop*)space_top;
141   jbyte* start_card = byte_for(sp->bottom());
142   jbyte* end_card   = byte_for(sp_top - 1) + 1;
143   oop* last_scanned = NULL; // Prevent scanning objects more than once
144   // The width of the stripe ssize*stripe_total must be
145   // consistent with the number of stripes so that the complete slice
146   // is covered.
147   size_t slice_width = ssize * stripe_total;
148   for (jbyte* slice = start_card; slice < end_card; slice += slice_width) {
149     jbyte* worker_start_card = slice + stripe_number * ssize;
150     if (worker_start_card >= end_card)
151       return; // We're done.
152 
153     jbyte* worker_end_card = worker_start_card + ssize;
154     if (worker_end_card > end_card)
155       worker_end_card = end_card;
156 
157     // We do not want to scan objects more than once. In order to accomplish
158     // this, we assert that any object with an object head inside our 'slice'
159     // belongs to us. We may need to extend the range of scanned cards if the
160     // last object continues into the next 'slice'.
161     //
162     // Note! ending cards are exclusive!
163     HeapWord* slice_start = addr_for(worker_start_card);
164     HeapWord* slice_end = MIN2((HeapWord*) sp_top, addr_for(worker_end_card));
165 
166 #ifdef ASSERT
167     if (GCWorkerDelayMillis > 0) {
168       // Delay 1 worker so that it proceeds after all the work
169       // has been completed.
170       if (stripe_number < 2) {
171         os::sleep(Thread::current(), GCWorkerDelayMillis, false);
172       }
173     }
174 #endif
175 
176     // If there are not objects starting within the chunk, skip it.
177     if (!start_array->object_starts_in_range(slice_start, slice_end)) {
178       continue;
179     }
180     // Update our beginning addr
181     HeapWord* first_object = start_array->object_start(slice_start);
182     debug_only(oop* first_object_within_slice = (oop*) first_object;)
183     if (first_object < slice_start) {
184       last_scanned = (oop*)(first_object + oop(first_object)->size());
185       debug_only(first_object_within_slice = last_scanned;)
186       worker_start_card = byte_for(last_scanned);
187     }
188 
189     // Update the ending addr
190     if (slice_end < (HeapWord*)sp_top) {
191       // The subtraction is important! An object may start precisely at slice_end.
192       HeapWord* last_object = start_array->object_start(slice_end - 1);
193       slice_end = last_object + oop(last_object)->size();
194       // worker_end_card is exclusive, so bump it one past the end of last_object's
195       // covered span.
196       worker_end_card = byte_for(slice_end) + 1;
197 
198       if (worker_end_card > end_card)
199         worker_end_card = end_card;
200     }
201 
202     assert(slice_end <= (HeapWord*)sp_top, "Last object in slice crosses space boundary");
203     assert(is_valid_card_address(worker_start_card), "Invalid worker start card");
204     assert(is_valid_card_address(worker_end_card), "Invalid worker end card");
205     // Note that worker_start_card >= worker_end_card is legal, and happens when
206     // an object spans an entire slice.
207     assert(worker_start_card <= end_card, "worker start card beyond end card");
208     assert(worker_end_card <= end_card, "worker end card beyond end card");
209 
210     jbyte* current_card = worker_start_card;
211     while (current_card < worker_end_card) {
212       // Find an unclean card.
213       while (current_card < worker_end_card && card_is_clean(*current_card)) {
214         current_card++;
215       }
216       jbyte* first_unclean_card = current_card;
217 
218       // Find the end of a run of contiguous unclean cards
219       while (current_card < worker_end_card && !card_is_clean(*current_card)) {
220         while (current_card < worker_end_card && !card_is_clean(*current_card)) {
221           current_card++;
222         }
223 
224         if (current_card < worker_end_card) {
225           // Some objects may be large enough to span several cards. If such
226           // an object has more than one dirty card, separated by a clean card,
227           // we will attempt to scan it twice. The test against "last_scanned"
228           // prevents the redundant object scan, but it does not prevent newly
229           // marked cards from being cleaned.
230           HeapWord* last_object_in_dirty_region = start_array->object_start(addr_for(current_card)-1);
231           size_t size_of_last_object = oop(last_object_in_dirty_region)->size();
232           HeapWord* end_of_last_object = last_object_in_dirty_region + size_of_last_object;
233           jbyte* ending_card_of_last_object = byte_for(end_of_last_object);
234           assert(ending_card_of_last_object <= worker_end_card, "ending_card_of_last_object is greater than worker_end_card");
235           if (ending_card_of_last_object > current_card) {
236             // This means the object spans the next complete card.
237             // We need to bump the current_card to ending_card_of_last_object
238             current_card = ending_card_of_last_object;
239           }
240         }
241       }
242       jbyte* following_clean_card = current_card;
243 
244       if (first_unclean_card < worker_end_card) {
245         oop* p = (oop*) start_array->object_start(addr_for(first_unclean_card));
246         assert((HeapWord*)p <= addr_for(first_unclean_card), "checking");
247         // "p" should always be >= "last_scanned" because newly GC dirtied
248         // cards are no longer scanned again (see comment at end
249         // of loop on the increment of "current_card").  Test that
250         // hypothesis before removing this code.
251         // If this code is removed, deal with the first time through
252         // the loop when the last_scanned is the object starting in
253         // the previous slice.
254         assert((p >= last_scanned) ||
255                (last_scanned == first_object_within_slice),
256                "Should no longer be possible");
257         if (p < last_scanned) {
258           // Avoid scanning more than once; this can happen because
259           // newgen cards set by GC may a different set than the
260           // originally dirty set
261           p = last_scanned;
262         }
263         oop* to = (oop*)addr_for(following_clean_card);
264 
265         // Test slice_end first!
266         if ((HeapWord*)to > slice_end) {
267           to = (oop*)slice_end;
268         } else if (to > sp_top) {
269           to = sp_top;
270         }
271 
272         // we know which cards to scan, now clear them
273         if (first_unclean_card <= worker_start_card+1)
274           first_unclean_card = worker_start_card+1;
275         if (following_clean_card >= worker_end_card-1)
276           following_clean_card = worker_end_card-1;
277 
278         while (first_unclean_card < following_clean_card) {
279           *first_unclean_card++ = clean_card;
280         }
281 
282         const int interval = PrefetchScanIntervalInBytes;
283         // scan all objects in the range
284         if (interval != 0) {
285           while (p < to) {
286             Prefetch::write(p, interval);
287             oop m = oop(p);
288             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
289             pm->push_contents(m);
290             p += m->size();
291           }
292           pm->drain_stacks_cond_depth();
293         } else {
294           while (p < to) {
295             oop m = oop(p);
296             assert(oopDesc::is_oop_or_null(m), "Expected an oop or NULL for header field at " PTR_FORMAT, p2i(m));
297             pm->push_contents(m);
298             p += m->size();
299           }
300           pm->drain_stacks_cond_depth();
301         }
302         last_scanned = p;
303       }
304       // "current_card" is still the "following_clean_card" or
305       // the current_card is >= the worker_end_card so the
306       // loop will not execute again.
307       assert((current_card == following_clean_card) ||
308              (current_card >= worker_end_card),
309         "current_card should only be incremented if it still equals "
310         "following_clean_card");
311       // Increment current_card so that it is not processed again.
312       // It may now be dirty because a old-to-young pointer was
313       // found on it an updated.  If it is now dirty, it cannot be
314       // be safely cleaned in the next iteration.
315       current_card++;
316     }
317   }
318 }
319 
320 // This should be called before a scavenge.
321 void PSCardTable::verify_all_young_refs_imprecise() {
322   CheckForUnmarkedObjects check;
323 
324   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
325   PSOldGen* old_gen = heap->old_gen();
326 
327   old_gen->object_iterate(&check);
328 }
329 
330 // This should be called immediately after a scavenge, before mutators resume.
331 void PSCardTable::verify_all_young_refs_precise() {
332   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
333   PSOldGen* old_gen = heap->old_gen();
334 
335   CheckForPreciseMarks check(heap->young_gen(), this);
336 
337   old_gen->oop_iterate_no_header(&check);
338 
339   verify_all_young_refs_precise_helper(old_gen->object_space()->used_region());
340 }
341 
342 void PSCardTable::verify_all_young_refs_precise_helper(MemRegion mr) {
343   jbyte* bot = byte_for(mr.start());
344   jbyte* top = byte_for(mr.end());
345   while (bot <= top) {
346     assert(*bot == clean_card || *bot == verify_card, "Found unwanted or unknown card mark");
347     if (*bot == verify_card)
348       *bot = youngergen_card;
349     bot++;
350   }
351 }
352 
353 bool PSCardTable::addr_is_marked_imprecise(void *addr) {
354   jbyte* p = byte_for(addr);
355   jbyte val = *p;
356 
357   if (card_is_dirty(val))
358     return true;
359 
360   if (card_is_newgen(val))
361     return true;
362 
363   if (card_is_clean(val))
364     return false;
365 
366   assert(false, "Found unhandled card mark type");
367 
368   return false;
369 }
370 
371 // Also includes verify_card
372 bool PSCardTable::addr_is_marked_precise(void *addr) {
373   jbyte* p = byte_for(addr);
374   jbyte val = *p;
375 
376   if (card_is_newgen(val))
377     return true;
378 
379   if (card_is_verify(val))
380     return true;
381 
382   if (card_is_clean(val))
383     return false;
384 
385   if (card_is_dirty(val))
386     return false;
387 
388   assert(false, "Found unhandled card mark type");
389 
390   return false;
391 }
392 
393 // Assumes that only the base or the end changes.  This allows indentification
394 // of the region that is being resized.  The
395 // CardTable::resize_covered_region() is used for the normal case
396 // where the covered regions are growing or shrinking at the high end.
397 // The method resize_covered_region_by_end() is analogous to
398 // CardTable::resize_covered_region() but
399 // for regions that grow or shrink at the low end.
400 void PSCardTable::resize_covered_region(MemRegion new_region) {
401   for (int i = 0; i < _cur_covered_regions; i++) {
402     if (_covered[i].start() == new_region.start()) {
403       // Found a covered region with the same start as the
404       // new region.  The region is growing or shrinking
405       // from the start of the region.
406       resize_covered_region_by_start(new_region);
407       return;
408     }
409     if (_covered[i].start() > new_region.start()) {
410       break;
411     }
412   }
413 
414   int changed_region = -1;
415   for (int j = 0; j < _cur_covered_regions; j++) {
416     if (_covered[j].end() == new_region.end()) {
417       changed_region = j;
418       // This is a case where the covered region is growing or shrinking
419       // at the start of the region.
420       assert(changed_region != -1, "Don't expect to add a covered region");
421       assert(_covered[changed_region].byte_size() != new_region.byte_size(),
422         "The sizes should be different here");
423       resize_covered_region_by_end(changed_region, new_region);
424       return;
425     }
426   }
427   // This should only be a new covered region (where no existing
428   // covered region matches at the start or the end).
429   assert(_cur_covered_regions < _max_covered_regions,
430     "An existing region should have been found");
431   resize_covered_region_by_start(new_region);
432 }
433 
434 void PSCardTable::resize_covered_region_by_start(MemRegion new_region) {
435   CardTable::resize_covered_region(new_region);
436   debug_only(verify_guard();)
437 }
438 
439 void PSCardTable::resize_covered_region_by_end(int changed_region,
440                                                MemRegion new_region) {
441   assert(SafepointSynchronize::is_at_safepoint(),
442     "Only expect an expansion at the low end at a GC");
443   debug_only(verify_guard();)
444 #ifdef ASSERT
445   for (int k = 0; k < _cur_covered_regions; k++) {
446     if (_covered[k].end() == new_region.end()) {
447       assert(changed_region == k, "Changed region is incorrect");
448       break;
449     }
450   }
451 #endif
452 
453   // Commit new or uncommit old pages, if necessary.
454   if (resize_commit_uncommit(changed_region, new_region)) {
455     // Set the new start of the committed region
456     resize_update_committed_table(changed_region, new_region);
457   }
458 
459   // Update card table entries
460   resize_update_card_table_entries(changed_region, new_region);
461 
462   // Update the covered region
463   resize_update_covered_table(changed_region, new_region);
464 
465   int ind = changed_region;
466   log_trace(gc, barrier)("CardTable::resize_covered_region: ");
467   log_trace(gc, barrier)("    _covered[%d].start(): " INTPTR_FORMAT "  _covered[%d].last(): " INTPTR_FORMAT,
468                 ind, p2i(_covered[ind].start()), ind, p2i(_covered[ind].last()));
469   log_trace(gc, barrier)("    _committed[%d].start(): " INTPTR_FORMAT "  _committed[%d].last(): " INTPTR_FORMAT,
470                 ind, p2i(_committed[ind].start()), ind, p2i(_committed[ind].last()));
471   log_trace(gc, barrier)("    byte_for(start): " INTPTR_FORMAT "  byte_for(last): " INTPTR_FORMAT,
472                 p2i(byte_for(_covered[ind].start())),  p2i(byte_for(_covered[ind].last())));
473   log_trace(gc, barrier)("    addr_for(start): " INTPTR_FORMAT "  addr_for(last): " INTPTR_FORMAT,
474                 p2i(addr_for((jbyte*) _committed[ind].start())), p2i(addr_for((jbyte*) _committed[ind].last())));
475 
476   debug_only(verify_guard();)
477 }
478 
479 bool PSCardTable::resize_commit_uncommit(int changed_region,
480                                          MemRegion new_region) {
481   bool result = false;
482   // Commit new or uncommit old pages, if necessary.
483   MemRegion cur_committed = _committed[changed_region];
484   assert(_covered[changed_region].end() == new_region.end(),
485     "The ends of the regions are expected to match");
486   // Extend the start of this _committed region to
487   // to cover the start of any previous _committed region.
488   // This forms overlapping regions, but never interior regions.
489   HeapWord* min_prev_start = lowest_prev_committed_start(changed_region);
490   if (min_prev_start < cur_committed.start()) {
491     // Only really need to set start of "cur_committed" to
492     // the new start (min_prev_start) but assertion checking code
493     // below use cur_committed.end() so make it correct.
494     MemRegion new_committed =
495         MemRegion(min_prev_start, cur_committed.end());
496     cur_committed = new_committed;
497   }
498 #ifdef ASSERT
499   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
500   assert(cur_committed.start() == align_up(cur_committed.start(), os::vm_page_size()),
501          "Starts should have proper alignment");
502 #endif
503 
504   jbyte* new_start = byte_for(new_region.start());
505   // Round down because this is for the start address
506   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
507   // The guard page is always committed and should not be committed over.
508   // This method is used in cases where the generation is growing toward
509   // lower addresses but the guard region is still at the end of the
510   // card table.  That still makes sense when looking for writes
511   // off the end of the card table.
512   if (new_start_aligned < cur_committed.start()) {
513     // Expand the committed region
514     //
515     // Case A
516     //                                          |+ guard +|
517     //                          |+ cur committed +++++++++|
518     //                  |+ new committed +++++++++++++++++|
519     //
520     // Case B
521     //                                          |+ guard +|
522     //                        |+ cur committed +|
523     //                  |+ new committed +++++++|
524     //
525     // These are not expected because the calculation of the
526     // cur committed region and the new committed region
527     // share the same end for the covered region.
528     // Case C
529     //                                          |+ guard +|
530     //                        |+ cur committed +|
531     //                  |+ new committed +++++++++++++++++|
532     // Case D
533     //                                          |+ guard +|
534     //                        |+ cur committed +++++++++++|
535     //                  |+ new committed +++++++|
536 
537     HeapWord* new_end_for_commit =
538       MIN2(cur_committed.end(), _guard_region.start());
539     if(new_start_aligned < new_end_for_commit) {
540       MemRegion new_committed =
541         MemRegion(new_start_aligned, new_end_for_commit);
542       os::commit_memory_or_exit((char*)new_committed.start(),
543                                 new_committed.byte_size(), !ExecMem,
544                                 "card table expansion");
545     }
546     result = true;
547   } else if (new_start_aligned > cur_committed.start()) {
548     // Shrink the committed region
549 #if 0 // uncommitting space is currently unsafe because of the interactions
550       // of growing and shrinking regions.  One region A can uncommit space
551       // that it owns but which is being used by another region B (maybe).
552       // Region B has not committed the space because it was already
553       // committed by region A.
554     MemRegion uncommit_region = committed_unique_to_self(changed_region,
555       MemRegion(cur_committed.start(), new_start_aligned));
556     if (!uncommit_region.is_empty()) {
557       if (!os::uncommit_memory((char*)uncommit_region.start(),
558                                uncommit_region.byte_size())) {
559         // If the uncommit fails, ignore it.  Let the
560         // committed table resizing go even though the committed
561         // table will over state the committed space.
562       }
563     }
564 #else
565     assert(!result, "Should be false with current workaround");
566 #endif
567   }
568   assert(_committed[changed_region].end() == cur_committed.end(),
569     "end should not change");
570   return result;
571 }
572 
573 void PSCardTable::resize_update_committed_table(int changed_region,
574                                                 MemRegion new_region) {
575 
576   jbyte* new_start = byte_for(new_region.start());
577   // Set the new start of the committed region
578   HeapWord* new_start_aligned = align_down((HeapWord*)new_start, os::vm_page_size());
579   MemRegion new_committed = MemRegion(new_start_aligned,
580                                       _committed[changed_region].end());
581   _committed[changed_region] = new_committed;
582   _committed[changed_region].set_start(new_start_aligned);
583 }
584 
585 void PSCardTable::resize_update_card_table_entries(int changed_region,
586                                                    MemRegion new_region) {
587   debug_only(verify_guard();)
588   MemRegion original_covered = _covered[changed_region];
589   // Initialize the card entries.  Only consider the
590   // region covered by the card table (_whole_heap)
591   jbyte* entry;
592   if (new_region.start() < _whole_heap.start()) {
593     entry = byte_for(_whole_heap.start());
594   } else {
595     entry = byte_for(new_region.start());
596   }
597   jbyte* end = byte_for(original_covered.start());
598   // If _whole_heap starts at the original covered regions start,
599   // this loop will not execute.
600   while (entry < end) { *entry++ = clean_card; }
601 }
602 
603 void PSCardTable::resize_update_covered_table(int changed_region,
604                                               MemRegion new_region) {
605   // Update the covered region
606   _covered[changed_region].set_start(new_region.start());
607   _covered[changed_region].set_word_size(new_region.word_size());
608 
609   // reorder regions.  There should only be at most 1 out
610   // of order.
611   for (int i = _cur_covered_regions-1 ; i > 0; i--) {
612     if (_covered[i].start() < _covered[i-1].start()) {
613         MemRegion covered_mr = _covered[i-1];
614         _covered[i-1] = _covered[i];
615         _covered[i] = covered_mr;
616         MemRegion committed_mr = _committed[i-1];
617       _committed[i-1] = _committed[i];
618       _committed[i] = committed_mr;
619       break;
620     }
621   }
622 #ifdef ASSERT
623   for (int m = 0; m < _cur_covered_regions-1; m++) {
624     assert(_covered[m].start() <= _covered[m+1].start(),
625       "Covered regions out of order");
626     assert(_committed[m].start() <= _committed[m+1].start(),
627       "Committed regions out of order");
628   }
629 #endif
630 }
631 
632 // Returns the start of any committed region that is lower than
633 // the target committed region (index ind) and that intersects the
634 // target region.  If none, return start of target region.
635 //
636 //      -------------
637 //      |           |
638 //      -------------
639 //              ------------
640 //              | target   |
641 //              ------------
642 //                               -------------
643 //                               |           |
644 //                               -------------
645 //      ^ returns this
646 //
647 //      -------------
648 //      |           |
649 //      -------------
650 //                      ------------
651 //                      | target   |
652 //                      ------------
653 //                               -------------
654 //                               |           |
655 //                               -------------
656 //                      ^ returns this
657 
658 HeapWord* PSCardTable::lowest_prev_committed_start(int ind) const {
659   assert(_cur_covered_regions >= 0, "Expecting at least on region");
660   HeapWord* min_start = _committed[ind].start();
661   for (int j = 0; j < ind; j++) {
662     HeapWord* this_start = _committed[j].start();
663     if ((this_start < min_start) &&
664         !(_committed[j].intersection(_committed[ind])).is_empty()) {
665        min_start = this_start;
666     }
667   }
668   return min_start;
669 }
670 
671 bool PSCardTable::is_in_young(oop obj) const {
672   return ParallelScavengeHeap::heap()->is_in_young(obj);
673 }