1 /*
  2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #ifndef SHARE_VM_GC_SHARED_CARDTABLE_HPP
 26 #define SHARE_VM_GC_SHARED_CARDTABLE_HPP
 27 
 28 #include "memory/allocation.hpp"
 29 #include "memory/memRegion.hpp"
 30 #include "oops/oopsHierarchy.hpp"
 31 #include "utilities/align.hpp"
 32 
 33 class CardTable: public CHeapObj<mtGC> {
 34   friend class VMStructs;
 35 protected:
 36   // The declaration order of these const fields is important; see the
 37   // constructor before changing.
 38   const bool      _scanned_concurrently;
 39   const MemRegion _whole_heap;       // the region covered by the card table
 40   size_t          _guard_index;      // index of very last element in the card
 41                                      // table; it is set to a guard value
 42                                      // (last_card) and should never be modified
 43   size_t          _last_valid_index; // index of the last valid element
 44   const size_t    _page_size;        // page size used when mapping _byte_map
 45   size_t          _byte_map_size;    // in bytes
 46   jbyte*          _byte_map;         // the card marking array
 47   jbyte*          _byte_map_base;
 48 
 49   int _cur_covered_regions;
 50 
 51   // The covered regions should be in address order.
 52   MemRegion* _covered;
 53   // The committed regions correspond one-to-one to the covered regions.
 54   // They represent the card-table memory that has been committed to service
 55   // the corresponding covered region.  It may be that committed region for
 56   // one covered region corresponds to a larger region because of page-size
 57   // roundings.  Thus, a committed region for one covered region may
 58   // actually extend onto the card-table space for the next covered region.
 59   MemRegion* _committed;
 60 
 61   // The last card is a guard card, and we commit the page for it so
 62   // we can use the card for verification purposes. We make sure we never
 63   // uncommit the MemRegion for that page.
 64   MemRegion _guard_region;
 65 
 66   inline size_t compute_byte_map_size();
 67 
 68   // Finds and return the index of the region, if any, to which the given
 69   // region would be contiguous.  If none exists, assign a new region and
 70   // returns its index.  Requires that no more than the maximum number of
 71   // covered regions defined in the constructor are ever in use.
 72   int find_covering_region_by_base(HeapWord* base);
 73 
 74   // Same as above, but finds the region containing the given address
 75   // instead of starting at a given base address.
 76   int find_covering_region_containing(HeapWord* addr);
 77 
 78   // Returns the leftmost end of a committed region corresponding to a
 79   // covered region before covered region "ind", or else "NULL" if "ind" is
 80   // the first covered region.
 81   HeapWord* largest_prev_committed_end(int ind) const;
 82 
 83   // Returns the part of the region mr that doesn't intersect with
 84   // any committed region other than self.  Used to prevent uncommitting
 85   // regions that are also committed by other regions.  Also protects
 86   // against uncommitting the guard region.
 87   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
 88 
 89   // Some barrier sets create tables whose elements correspond to parts of
 90   // the heap; the CardTableBarrierSet is an example.  Such barrier sets will
 91   // normally reserve space for such tables, and commit parts of the table
 92   // "covering" parts of the heap that are committed. At most one covered
 93   // region per generation is needed.
 94   static const int _max_covered_regions = 2;
 95 
 96   enum CardValues {
 97     clean_card                  = -1,
 98     // The mask contains zeros in places for all other values.
 99     clean_card_mask             = clean_card - 31,
100 
101     dirty_card                  =  0,
102     precleaned_card             =  1,
103     claimed_card                =  2,
104     deferred_card               =  4,
105     last_card                   =  8,
106     CT_MR_BS_last_reserved      = 16
107   };
108 
109   // a word's worth (row) of clean card values
110   static const intptr_t clean_card_row = (intptr_t)(-1);
111 
112 public:
113   CardTable(MemRegion whole_heap, bool conc_scan);
114   virtual ~CardTable();
115   virtual void initialize();
116 
117   // The kinds of precision a CardTable may offer.
118   enum PrecisionStyle {
119     Precise,
120     ObjHeadPreciseArray
121   };
122 
123   // Tells what style of precision this card table offers.
124   PrecisionStyle precision() {
125     return ObjHeadPreciseArray; // Only one supported for now.
126   }
127 
128   // *** Barrier set functions.
129 
130   // Initialization utilities; covered_words is the size of the covered region
131   // in, um, words.
132   inline size_t cards_required(size_t covered_words) {
133     // Add one for a guard card, used to detect errors.
134     const size_t words = align_up(covered_words, card_size_in_words);
135     return words / card_size_in_words + 1;
136   }
137 
138   // Dirty the bytes corresponding to "mr" (not all of which must be
139   // covered.)
140   void dirty_MemRegion(MemRegion mr);
141 
142   // Clear (to clean_card) the bytes entirely contained within "mr" (not
143   // all of which must be covered.)
144   void clear_MemRegion(MemRegion mr);
145 
146   // Return true if "p" is at the start of a card.
147   bool is_card_aligned(HeapWord* p) {
148     jbyte* pcard = byte_for(p);
149     return (addr_for(pcard) == p);
150   }
151 
152   // Mapping from address to card marking array entry
153   jbyte* byte_for(const void* p) const {
154     assert(_whole_heap.contains(p),
155            "Attempt to access p = " PTR_FORMAT " out of bounds of "
156            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
157            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
158     jbyte* result = &_byte_map_base[uintptr_t(p) >> card_shift];
159     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
160            "out of bounds accessor for card marking array");
161     return result;
162   }
163 
164   // The card table byte one after the card marking array
165   // entry for argument address. Typically used for higher bounds
166   // for loops iterating through the card table.
167   jbyte* byte_after(const void* p) const {
168     return byte_for(p) + 1;
169   }
170 
171   virtual void invalidate(MemRegion mr);
172   void clear(MemRegion mr);
173   void dirty(MemRegion mr);
174 
175   // Provide read-only access to the card table array.
176   const jbyte* byte_for_const(const void* p) const {
177     return byte_for(p);
178   }
179   const jbyte* byte_after_const(const void* p) const {
180     return byte_after(p);
181   }
182 
183   // Mapping from card marking array entry to address of first word
184   HeapWord* addr_for(const jbyte* p) const {
185     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
186            "out of bounds access to card marking array. p: " PTR_FORMAT
187            " _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,
188            p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));
189     size_t delta = pointer_delta(p, _byte_map_base, sizeof(jbyte));
190     HeapWord* result = (HeapWord*) (delta << card_shift);
191     assert(_whole_heap.contains(result),
192            "Returning result = " PTR_FORMAT " out of bounds of "
193            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
194            p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
195     return result;
196   }
197 
198   // Mapping from address to card marking array index.
199   size_t index_for(void* p) {
200     assert(_whole_heap.contains(p),
201            "Attempt to access p = " PTR_FORMAT " out of bounds of "
202            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
203            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
204     return byte_for(p) - _byte_map;
205   }
206 
207   const jbyte* byte_for_index(const size_t card_index) const {
208     return _byte_map + card_index;
209   }
210 
211   // Resize one of the regions covered by the remembered set.
212   virtual void resize_covered_region(MemRegion new_region);
213 
214   // *** Card-table-RemSet-specific things.
215 
216   static uintx ct_max_alignment_constraint();
217 
218   // Apply closure "cl" to the dirty cards containing some part of
219   // MemRegion "mr".
220   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
221 
222   // Return the MemRegion corresponding to the first maximal run
223   // of dirty cards lying completely within MemRegion mr.
224   // If reset is "true", then sets those card table entries to the given
225   // value.
226   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
227                                          int reset_val);
228 
229   // Constants
230   enum SomePublicConstants {
231     card_shift                  = 9,
232     card_size                   = 1 << card_shift,
233     card_size_in_words          = card_size / sizeof(HeapWord)
234   };
235 
236   static jbyte clean_card_val()          { return clean_card; }
237   static jbyte clean_card_mask_val()     { return clean_card_mask; }
238   static jbyte dirty_card_val()          { return dirty_card; }
239   static jbyte claimed_card_val()        { return claimed_card; }
240   static jbyte precleaned_card_val()     { return precleaned_card; }
241   static jbyte deferred_card_val()       { return deferred_card; }
242   static intptr_t clean_card_row_val()   { return clean_card_row; }
243 
244   // Card marking array base (adjusted for heap low boundary)
245   // This would be the 0th element of _byte_map, if the heap started at 0x0.
246   // But since the heap starts at some higher address, this points to somewhere
247   // before the beginning of the actual _byte_map.
248   jbyte* byte_map_base() const { return _byte_map_base; }
249   bool scanned_concurrently() const { return _scanned_concurrently; }
250 
251   virtual bool is_in_young(oop obj) const = 0;
252 
253   // Print a description of the memory for the card table
254   virtual void print_on(outputStream* st) const;
255 
256   void verify();
257   void verify_guard();
258 
259   // val_equals -> it will check that all cards covered by mr equal val
260   // !val_equals -> it will check that all cards covered by mr do not equal val
261   void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN;
262   void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
263   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
264 };
265 
266 #endif // SHARE_VM_GC_SHARED_CARDTABLE_HPP