/* * Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2016, 2017, SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Compilation.hpp" #include "c1/c1_FrameMap.hpp" #include "c1/c1_Instruction.hpp" #include "c1/c1_LIRAssembler.hpp" #include "c1/c1_LIRGenerator.hpp" #include "c1/c1_Runtime1.hpp" #include "c1/c1_ValueStack.hpp" #include "ci/ciArray.hpp" #include "ci/ciObjArrayKlass.hpp" #include "ci/ciTypeArrayKlass.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" #include "vmreg_s390.inline.hpp" #ifdef ASSERT #define __ gen()->lir(__FILE__, __LINE__)-> #else #define __ gen()->lir()-> #endif void LIRItem::load_byte_item() { // Byte loads use same registers as other loads. load_item(); } void LIRItem::load_nonconstant(int bits) { LIR_Opr r = value()->operand(); if (_gen->can_inline_as_constant(value(), bits)) { if (!r->is_constant()) { r = LIR_OprFact::value_type(value()->type()); } _result = r; } else { load_item(); } } //-------------------------------------------------------------- // LIRGenerator //-------------------------------------------------------------- LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::as_oop_opr(Z_EXC_OOP); } LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::as_opr(Z_EXC_PC); } LIR_Opr LIRGenerator::divInOpr() { return FrameMap::Z_R11_opr; } LIR_Opr LIRGenerator::divOutOpr() { return FrameMap::Z_R11_opr; } LIR_Opr LIRGenerator::remOutOpr() { return FrameMap::Z_R10_opr; } LIR_Opr LIRGenerator::ldivInOpr() { return FrameMap::Z_R11_long_opr; } LIR_Opr LIRGenerator::ldivOutOpr() { return FrameMap::Z_R11_long_opr; } LIR_Opr LIRGenerator::lremOutOpr() { return FrameMap::Z_R10_long_opr; } LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); } LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::Z_R13_opr; } LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; } LIR_Opr LIRGenerator::result_register_for (ValueType* type, bool callee) { LIR_Opr opr; switch (type->tag()) { case intTag: opr = FrameMap::Z_R2_opr; break; case objectTag: opr = FrameMap::Z_R2_oop_opr; break; case longTag: opr = FrameMap::Z_R2_long_opr; break; case floatTag: opr = FrameMap::Z_F0_opr; break; case doubleTag: opr = FrameMap::Z_F0_double_opr; break; case addressTag: default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr; } assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch"); return opr; } LIR_Opr LIRGenerator::rlock_byte(BasicType type) { return new_register(T_INT); } //--------- Loading items into registers. -------------------------------- // z/Architecture cannot inline all constants. bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const { if (v->type()->as_IntConstant() != NULL) { return Immediate::is_simm16(v->type()->as_IntConstant()->value()); } else if (v->type()->as_LongConstant() != NULL) { return Immediate::is_simm16(v->type()->as_LongConstant()->value()); } else if (v->type()->as_ObjectConstant() != NULL) { return v->type()->as_ObjectConstant()->value()->is_null_object(); } else { return false; } } bool LIRGenerator::can_inline_as_constant(Value i, int bits) const { if (i->type()->as_IntConstant() != NULL) { return Assembler::is_simm(i->type()->as_IntConstant()->value(), bits); } else if (i->type()->as_LongConstant() != NULL) { return Assembler::is_simm(i->type()->as_LongConstant()->value(), bits); } else { return can_store_as_constant(i, as_BasicType(i->type())); } } bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { if (c->type() == T_INT) { return Immediate::is_simm20(c->as_jint()); } else if (c->type() == T_LONG) { return Immediate::is_simm20(c->as_jlong()); } return false; } LIR_Opr LIRGenerator::safepoint_poll_register() { return new_register(longType); } LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index, int shift, int disp, BasicType type) { assert(base->is_register(), "must be"); if (index->is_constant()) { intx large_disp = disp; LIR_Const *constant = index->as_constant_ptr(); if (constant->type() == T_LONG) { large_disp += constant->as_jlong() << shift; } else { large_disp += (intx)(constant->as_jint()) << shift; } if (Displacement::is_validDisp(large_disp)) { return new LIR_Address(base, large_disp, type); } // Index is illegal so replace it with the displacement loaded into a register. index = new_pointer_register(); __ move(LIR_OprFact::intptrConst(large_disp), index); return new LIR_Address(base, index, type); } else { if (shift > 0) { LIR_Opr tmp = new_pointer_register(); __ shift_left(index, shift, tmp); index = tmp; } return new LIR_Address(base, index, disp, type); } } LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr, BasicType type) { int elem_size = type2aelembytes(type); int shift = exact_log2(elem_size); int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type); LIR_Address* addr; if (index_opr->is_constant()) { addr = new LIR_Address(array_opr, offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type); } else { if (index_opr->type() == T_INT) { LIR_Opr tmp = new_register(T_LONG); __ convert(Bytecodes::_i2l, index_opr, tmp); index_opr = tmp; } if (shift > 0) { __ shift_left(index_opr, shift, index_opr); } addr = new LIR_Address(array_opr, index_opr, offset_in_bytes, type); } return addr; } LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) { LIR_Opr r = LIR_OprFact::illegalOpr; if (type == T_LONG) { r = LIR_OprFact::longConst(x); } else if (type == T_INT) { r = LIR_OprFact::intConst(x); } else { ShouldNotReachHere(); } return r; } void LIRGenerator::increment_counter(address counter, BasicType type, int step) { LIR_Opr pointer = new_pointer_register(); __ move(LIR_OprFact::intptrConst(counter), pointer); LIR_Address* addr = new LIR_Address(pointer, type); increment_counter(addr, step); } void LIRGenerator::increment_counter(LIR_Address* addr, int step) { __ add((LIR_Opr)addr, LIR_OprFact::intConst(step), (LIR_Opr)addr); } void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) { LIR_Opr scratch = FrameMap::Z_R1_opr; __ load(new LIR_Address(base, disp, T_INT), scratch, info); __ cmp(condition, scratch, c); } void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) { __ cmp_reg_mem(condition, reg, new LIR_Address(base, disp, type), info); } bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) { if (tmp->is_valid()) { if (is_power_of_2(c + 1)) { __ move(left, tmp); __ shift_left(left, log2_intptr(c + 1), left); __ sub(left, tmp, result); return true; } else if (is_power_of_2(c - 1)) { __ move(left, tmp); __ shift_left(left, log2_intptr(c - 1), left); __ add(left, tmp, result); return true; } } return false; } void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) { BasicType type = item->type(); __ store(item, new LIR_Address(FrameMap::Z_SP_opr, in_bytes(offset_from_sp), type)); } //---------------------------------------------------------------------- // visitor functions //---------------------------------------------------------------------- void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) { LIR_Opr tmp1 = new_register(objectType); LIR_Opr tmp2 = new_register(objectType); LIR_Opr tmp3 = LIR_OprFact::illegalOpr; __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci); } void LIRGenerator::do_MonitorEnter(MonitorEnter* x) { assert(x->is_pinned(),""); LIRItem obj(x->obj(), this); obj.load_item(); set_no_result(x); // "lock" stores the address of the monitor stack slot, so this is not an oop. LIR_Opr lock = new_register(T_INT); CodeEmitInfo* info_for_exception = NULL; if (x->needs_null_check()) { info_for_exception = state_for (x); } // This CodeEmitInfo must not have the xhandlers because here the // object is already locked (xhandlers expect object to be unlocked). CodeEmitInfo* info = state_for (x, x->state(), true); monitor_enter(obj.result(), lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no(), info_for_exception, info); } void LIRGenerator::do_MonitorExit(MonitorExit* x) { assert(x->is_pinned(),""); LIRItem obj(x->obj(), this); obj.dont_load_item(); LIR_Opr lock = new_register(T_INT); LIR_Opr obj_temp = new_register(T_INT); set_no_result(x); monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no()); } // _ineg, _lneg, _fneg, _dneg void LIRGenerator::do_NegateOp(NegateOp* x) { LIRItem value(x->x(), this); value.load_item(); LIR_Opr reg = rlock_result(x); __ negate(value.result(), reg); } // for _fadd, _fmul, _fsub, _fdiv, _frem // _dadd, _dmul, _dsub, _ddiv, _drem void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) { LIRItem left(x->x(), this); LIRItem right(x->y(), this); LIRItem* left_arg = &left; LIRItem* right_arg = &right; assert(!left.is_stack(), "can't both be memory operands"); left.load_item(); if (right.is_register() || right.is_constant()) { right.load_item(); } else { right.dont_load_item(); } if ((x->op() == Bytecodes::_frem) || (x->op() == Bytecodes::_drem)) { address entry; switch (x->op()) { case Bytecodes::_frem: entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem); break; case Bytecodes::_drem: entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem); break; default: ShouldNotReachHere(); } LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL); set_result(x, result); } else { LIR_Opr reg = rlock(x); LIR_Opr tmp = LIR_OprFact::illegalOpr; arithmetic_op_fpu(x->op(), reg, left.result(), right.result(), x->is_strictfp(), tmp); set_result(x, reg); } } // for _ladd, _lmul, _lsub, _ldiv, _lrem void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) { if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) { // Use shifts if divisior is a power of 2 otherwise use DSGR instruction. // Instruction: DSGR R1, R2 // input : R1+1: dividend (R1, R1+1 designate a register pair, R1 must be even) // R2: divisor // // output: R1+1: quotient // R1: remainder // // Register selection: R1: Z_R10 // R1+1: Z_R11 // R2: to be chosen by register allocator (linear scan) // R1, and R1+1 will be destroyed. LIRItem right(x->y(), this); LIRItem left(x->x() , this); // Visit left second, so that the is_register test is valid. // Call state_for before load_item_force because state_for may // force the evaluation of other instructions that are needed for // correct debug info. Otherwise the live range of the fix // register might be too long. CodeEmitInfo* info = state_for (x); LIR_Opr result = rlock_result(x); LIR_Opr result_reg = result; LIR_Opr tmp = LIR_OprFact::illegalOpr; LIR_Opr divisor_opr = right.result(); if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jlong())) { left.load_item(); right.dont_load_item(); } else { left.load_item_force(ldivInOpr()); right.load_item(); // DSGR instruction needs register pair. if (x->op() == Bytecodes::_ldiv) { result_reg = ldivOutOpr(); tmp = lremOutOpr(); } else { result_reg = lremOutOpr(); tmp = ldivOutOpr(); } } if (!ImplicitDiv0Checks) { __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0)); __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info)); // Idiv/irem cannot trap (passing info would generate an assertion). info = NULL; } if (x->op() == Bytecodes::_lrem) { __ irem(left.result(), right.result(), result_reg, tmp, info); } else if (x->op() == Bytecodes::_ldiv) { __ idiv(left.result(), right.result(), result_reg, tmp, info); } else { ShouldNotReachHere(); } if (result_reg != result) { __ move(result_reg, result); } } else { LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_nonconstant(32); rlock_result(x); arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL); } } // for: _iadd, _imul, _isub, _idiv, _irem void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) { if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) { // Use shifts if divisior is a power of 2 otherwise use DSGFR instruction. // Instruction: DSGFR R1, R2 // input : R1+1: dividend (R1, R1+1 designate a register pair, R1 must be even) // R2: divisor // // output: R1+1: quotient // R1: remainder // // Register selection: R1: Z_R10 // R1+1: Z_R11 // R2: To be chosen by register allocator (linear scan). // R1, and R1+1 will be destroyed. LIRItem right(x->y(), this); LIRItem left(x->x() , this); // Visit left second, so that the is_register test is valid. // Call state_for before load_item_force because state_for may // force the evaluation of other instructions that are needed for // correct debug info. Otherwise the live range of the fix // register might be too long. CodeEmitInfo* info = state_for (x); LIR_Opr result = rlock_result(x); LIR_Opr result_reg = result; LIR_Opr tmp = LIR_OprFact::illegalOpr; LIR_Opr divisor_opr = right.result(); if (divisor_opr->is_constant() && is_power_of_2(divisor_opr->as_jint())) { left.load_item(); right.dont_load_item(); } else { left.load_item_force(divInOpr()); right.load_item(); // DSGFR instruction needs register pair. if (x->op() == Bytecodes::_idiv) { result_reg = divOutOpr(); tmp = remOutOpr(); } else { result_reg = remOutOpr(); tmp = divOutOpr(); } } if (!ImplicitDiv0Checks) { __ cmp(lir_cond_equal, right.result(), LIR_OprFact::intConst(0)); __ branch(lir_cond_equal, T_INT, new DivByZeroStub(info)); // Idiv/irem cannot trap (passing info would generate an assertion). info = NULL; } if (x->op() == Bytecodes::_irem) { __ irem(left.result(), right.result(), result_reg, tmp, info); } else if (x->op() == Bytecodes::_idiv) { __ idiv(left.result(), right.result(), result_reg, tmp, info); } else { ShouldNotReachHere(); } if (result_reg != result) { __ move(result_reg, result); } } else { LIRItem left(x->x(), this); LIRItem right(x->y(), this); LIRItem* left_arg = &left; LIRItem* right_arg = &right; if (x->is_commutative() && left.is_stack() && right.is_register()) { // swap them if left is real stack (or cached) and right is real register(not cached) left_arg = &right; right_arg = &left; } left_arg->load_item(); // Do not need to load right, as we can handle stack and constants. if (x->op() == Bytecodes::_imul) { bool use_tmp = false; if (right_arg->is_constant()) { int iconst = right_arg->get_jint_constant(); if (is_power_of_2(iconst - 1) || is_power_of_2(iconst + 1)) { use_tmp = true; } } right_arg->dont_load_item(); LIR_Opr tmp = LIR_OprFact::illegalOpr; if (use_tmp) { tmp = new_register(T_INT); } rlock_result(x); arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); } else { right_arg->dont_load_item(); rlock_result(x); LIR_Opr tmp = LIR_OprFact::illegalOpr; arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), tmp); } } } void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) { // If an operand with use count 1 is the left operand, then it is // likely that no move for 2-operand-LIR-form is necessary. if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { x->swap_operands(); } ValueTag tag = x->type()->tag(); assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters"); switch (tag) { case floatTag: case doubleTag: do_ArithmeticOp_FPU(x); return; case longTag: do_ArithmeticOp_Long(x); return; case intTag: do_ArithmeticOp_Int(x); return; } ShouldNotReachHere(); } // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr void LIRGenerator::do_ShiftOp(ShiftOp* x) { // count must always be in rcx LIRItem value(x->x(), this); LIRItem count(x->y(), this); ValueTag elemType = x->type()->tag(); bool must_load_count = !count.is_constant(); if (must_load_count) { count.load_item(); } else { count.dont_load_item(); } value.load_item(); LIR_Opr reg = rlock_result(x); shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr); } // _iand, _land, _ior, _lor, _ixor, _lxor void LIRGenerator::do_LogicOp(LogicOp* x) { // IF an operand with use count 1 is the left operand, then it is // likely that no move for 2-operand-LIR-form is necessary. if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) { x->swap_operands(); } LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_nonconstant(32); LIR_Opr reg = rlock_result(x); logic_op(x->op(), reg, left.result(), right.result()); } // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg void LIRGenerator::do_CompareOp(CompareOp* x) { LIRItem left(x->x(), this); LIRItem right(x->y(), this); left.load_item(); right.load_item(); LIR_Opr reg = rlock_result(x); if (x->x()->type()->is_float_kind()) { Bytecodes::Code code = x->op(); __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl)); } else if (x->x()->type()->tag() == longTag) { __ lcmp2int(left.result(), right.result(), reg); } else { ShouldNotReachHere(); } } LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) { LIR_Opr t1 = LIR_OprFact::illegalOpr; LIR_Opr t2 = LIR_OprFact::illegalOpr; cmp_value.load_item(); new_value.load_item(); if (type == T_OBJECT) { if (UseCompressedOops) { t1 = new_register(T_OBJECT); t2 = new_register(T_OBJECT); } __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2); } else if (type == T_INT) { __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2); } else if (type == T_LONG) { __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2); } else { ShouldNotReachHere(); } // Generate conditional move of boolean result. LIR_Opr result = new_register(T_INT); __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0), result, type); return result; } LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) { Unimplemented(); // Currently not supported on this platform. return LIR_OprFact::illegalOpr; } LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) { LIR_Opr result = new_register(type); value.load_item(); __ xadd(addr, value.result(), result, LIR_OprFact::illegalOpr); return result; } void LIRGenerator::do_MathIntrinsic(Intrinsic* x) { switch (x->id()) { case vmIntrinsics::_dabs: case vmIntrinsics::_dsqrt: { assert(x->number_of_arguments() == 1, "wrong type"); LIRItem value(x->argument_at(0), this); value.load_item(); LIR_Opr dst = rlock_result(x); switch (x->id()) { case vmIntrinsics::_dsqrt: { __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr); break; } case vmIntrinsics::_dabs: { __ abs(value.result(), dst, LIR_OprFact::illegalOpr); break; } } break; } case vmIntrinsics::_dlog10: // fall through case vmIntrinsics::_dlog: // fall through case vmIntrinsics::_dsin: // fall through case vmIntrinsics::_dtan: // fall through case vmIntrinsics::_dcos: // fall through case vmIntrinsics::_dexp: { assert(x->number_of_arguments() == 1, "wrong type"); address runtime_entry = NULL; switch (x->id()) { case vmIntrinsics::_dsin: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); break; case vmIntrinsics::_dcos: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); break; case vmIntrinsics::_dtan: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); break; case vmIntrinsics::_dlog: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); break; case vmIntrinsics::_dlog10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break; case vmIntrinsics::_dexp: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); break; default: ShouldNotReachHere(); } LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL); set_result(x, result); break; } case vmIntrinsics::_dpow: { assert(x->number_of_arguments() == 2, "wrong type"); address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL); set_result(x, result); break; } } } void LIRGenerator::do_ArrayCopy(Intrinsic* x) { assert(x->number_of_arguments() == 5, "wrong type"); // Copy stubs possibly call C code, e.g. G1 barriers, so we need to reserve room // for the C ABI (see frame::z_abi_160). BasicTypeArray sig; // Empty signature is precise enough. frame_map()->c_calling_convention(&sig); // Make all state_for calls early since they can emit code. CodeEmitInfo* info = state_for (x, x->state()); LIRItem src(x->argument_at(0), this); LIRItem src_pos(x->argument_at(1), this); LIRItem dst(x->argument_at(2), this); LIRItem dst_pos(x->argument_at(3), this); LIRItem length(x->argument_at(4), this); // Operands for arraycopy must use fixed registers, otherwise // LinearScan will fail allocation (because arraycopy always needs a // call). src.load_item_force (FrameMap::as_oop_opr(Z_ARG1)); src_pos.load_item_force (FrameMap::as_opr(Z_ARG2)); dst.load_item_force (FrameMap::as_oop_opr(Z_ARG3)); dst_pos.load_item_force (FrameMap::as_opr(Z_ARG4)); length.load_item_force (FrameMap::as_opr(Z_ARG5)); LIR_Opr tmp = FrameMap::as_opr(Z_R7); set_no_result(x); int flags; ciArrayKlass* expected_type; arraycopy_helper(x, &flags, &expected_type); __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint } // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f // _i2b, _i2c, _i2s void LIRGenerator::do_Convert(Convert* x) { LIRItem value(x->value(), this); value.load_item(); LIR_Opr reg = rlock_result(x); __ convert(x->op(), value.result(), reg); } void LIRGenerator::do_NewInstance(NewInstance* x) { print_if_not_loaded(x); // This instruction can be deoptimized in the slow path : use // Z_R2 as result register. const LIR_Opr reg = result_register_for (x->type()); CodeEmitInfo* info = state_for (x, x->state()); LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr; LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr; LIR_Opr tmp3 = reg; LIR_Opr tmp4 = LIR_OprFact::illegalOpr; LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr; new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewTypeArray(NewTypeArray* x) { CodeEmitInfo* info = state_for (x, x->state()); LIRItem length(x->length(), this); length.load_item(); LIR_Opr reg = result_register_for (x->type()); LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr; LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr; LIR_Opr tmp3 = reg; LIR_Opr tmp4 = LIR_OprFact::illegalOpr; LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr; LIR_Opr len = length.result(); BasicType elem_type = x->elt_type(); __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg); CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info); __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewObjectArray(NewObjectArray* x) { // Evaluate state_for early since it may emit code. CodeEmitInfo* info = state_for (x, x->state()); // In case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction // and therefore provide the state before the parameters have been consumed. CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for (x, x->state_before()); } LIRItem length(x->length(), this); length.load_item(); const LIR_Opr reg = result_register_for (x->type()); LIR_Opr tmp1 = FrameMap::Z_R12_oop_opr; LIR_Opr tmp2 = FrameMap::Z_R13_oop_opr; LIR_Opr tmp3 = LIR_OprFact::illegalOpr; LIR_Opr tmp4 = LIR_OprFact::illegalOpr; LIR_Opr klass_reg = FrameMap::Z_R11_metadata_opr; LIR_Opr len = length.result(); CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info); ciKlass* obj = ciObjArrayKlass::make(x->klass()); if (obj == ciEnv::unloaded_ciobjarrayklass()) { BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error"); } klass2reg_with_patching(klass_reg, obj, patching_info); __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_NewMultiArray(NewMultiArray* x) { Values* dims = x->dims(); int i = dims->length(); LIRItemList* items = new LIRItemList(i, i, NULL); while (i-- > 0) { LIRItem* size = new LIRItem(dims->at(i), this); items->at_put(i, size); } // Evaluate state_for early since it may emit code. CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for (x, x->state_before()); // Cannot re-use same xhandlers for multiple CodeEmitInfos, so // clone all handlers (NOTE: Usually this is handled transparently // by the CodeEmitInfo cloning logic in CodeStub constructors but // is done explicitly here because a stub isn't being used). x->set_exception_handlers(new XHandlers(x->exception_handlers())); } CodeEmitInfo* info = state_for (x, x->state()); i = dims->length(); while (--i >= 0) { LIRItem* size = items->at(i); size->load_nonconstant(32); // FrameMap::_reserved_argument_area_size includes the dimensions varargs, because // it's initialized to hir()->max_stack() when the FrameMap is created. store_stack_parameter(size->result(), in_ByteSize(i*sizeof(jint) + FrameMap::first_available_sp_in_frame)); } LIR_Opr klass_reg = FrameMap::Z_R3_metadata_opr; klass2reg_with_patching(klass_reg, x->klass(), patching_info); LIR_Opr rank = FrameMap::Z_R4_opr; __ move(LIR_OprFact::intConst(x->rank()), rank); LIR_Opr varargs = FrameMap::Z_R5_opr; __ leal(LIR_OprFact::address(new LIR_Address(FrameMap::Z_SP_opr, FrameMap::first_available_sp_in_frame, T_INT)), varargs); LIR_OprList* args = new LIR_OprList(3); args->append(klass_reg); args->append(rank); args->append(varargs); LIR_Opr reg = result_register_for (x->type()); __ call_runtime(Runtime1::entry_for (Runtime1::new_multi_array_id), LIR_OprFact::illegalOpr, reg, args, info); LIR_Opr result = rlock_result(x); __ move(reg, result); } void LIRGenerator::do_BlockBegin(BlockBegin* x) { // Nothing to do. } void LIRGenerator::do_CheckCast(CheckCast* x) { LIRItem obj(x->obj(), this); CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) { // Must do this before locking the destination register as an oop register, // and before the obj is loaded (the latter is for deoptimization). patching_info = state_for (x, x->state_before()); } obj.load_item(); // info for exceptions CodeEmitInfo* info_for_exception = (x->needs_exception_state() ? state_for(x) : state_for(x, x->state_before(), true /*ignore_xhandler*/)); CodeStub* stub; if (x->is_incompatible_class_change_check()) { assert(patching_info == NULL, "can't patch this"); stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception); } else if (x->is_invokespecial_receiver_check()) { assert(patching_info == NULL, "can't patch this"); stub = new DeoptimizeStub(info_for_exception, Deoptimization::Reason_class_check, Deoptimization::Action_none); } else { stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception); } LIR_Opr reg = rlock_result(x); LIR_Opr tmp1 = new_register(objectType); LIR_Opr tmp2 = new_register(objectType); LIR_Opr tmp3 = LIR_OprFact::illegalOpr; __ checkcast(reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), info_for_exception, patching_info, stub, x->profiled_method(), x->profiled_bci()); } void LIRGenerator::do_InstanceOf(InstanceOf* x) { LIRItem obj(x->obj(), this); CodeEmitInfo* patching_info = NULL; if (!x->klass()->is_loaded() || PatchALot) { patching_info = state_for (x, x->state_before()); } // Ensure the result register is not the input register because the // result is initialized before the patching safepoint. obj.load_item(); LIR_Opr out_reg = rlock_result(x); LIR_Opr tmp1 = new_register(objectType); LIR_Opr tmp2 = new_register(objectType); LIR_Opr tmp3 = LIR_OprFact::illegalOpr; __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3, x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci()); } void LIRGenerator::do_If (If* x) { assert(x->number_of_sux() == 2, "inconsistency"); ValueTag tag = x->x()->type()->tag(); bool is_safepoint = x->is_safepoint(); If::Condition cond = x->cond(); LIRItem xitem(x->x(), this); LIRItem yitem(x->y(), this); LIRItem* xin = &xitem; LIRItem* yin = &yitem; if (tag == longTag) { // For longs, only conditions "eql", "neq", "lss", "geq" are valid; // mirror for other conditions. if (cond == If::gtr || cond == If::leq) { cond = Instruction::mirror(cond); xin = &yitem; yin = &xitem; } xin->set_destroys_register(); } xin->load_item(); // TODO: don't load long constants != 0L if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 && (cond == If::eql || cond == If::neq)) { // inline long zero yin->dont_load_item(); } else if (tag == longTag || tag == floatTag || tag == doubleTag) { // Longs cannot handle constants at right side. yin->load_item(); } else { yin->dont_load_item(); } // Add safepoint before generating condition code so it can be recomputed. if (x->is_safepoint()) { // Increment backedge counter if needed. increment_backedge_counter(state_for (x, x->state_before()), x->profiled_bci()); // Use safepoint_poll_register() instead of LIR_OprFact::illegalOpr. __ safepoint(safepoint_poll_register(), state_for (x, x->state_before())); } set_no_result(x); LIR_Opr left = xin->result(); LIR_Opr right = yin->result(); __ cmp(lir_cond(cond), left, right); // Generate branch profiling. Profiling code doesn't kill flags. profile_branch(x, cond); move_to_phi(x->state()); if (x->x()->type()->is_float_kind()) { __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux()); } else { __ branch(lir_cond(cond), right->type(), x->tsux()); } assert(x->default_sux() == x->fsux(), "wrong destination above"); __ jump(x->default_sux()); } LIR_Opr LIRGenerator::getThreadPointer() { return FrameMap::as_pointer_opr(Z_thread); } void LIRGenerator::trace_block_entry(BlockBegin* block) { __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::Z_R2_opr); LIR_OprList* args = new LIR_OprList(1); args->append(FrameMap::Z_R2_opr); address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry); __ call_runtime_leaf(func, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, args); } void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address, CodeEmitInfo* info) { __ store(value, address, info); } void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result, CodeEmitInfo* info) { __ load(address, result, info); } void LIRGenerator::do_update_CRC32(Intrinsic* x) { assert(UseCRC32Intrinsics, "or should not be here"); LIR_Opr result = rlock_result(x); switch (x->id()) { case vmIntrinsics::_updateCRC32: { LIRItem crc(x->argument_at(0), this); LIRItem val(x->argument_at(1), this); // Registers destroyed by update_crc32. crc.set_destroys_register(); val.set_destroys_register(); crc.load_item(); val.load_item(); __ update_crc32(crc.result(), val.result(), result); break; } case vmIntrinsics::_updateBytesCRC32: case vmIntrinsics::_updateByteBufferCRC32: { bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32); LIRItem crc(x->argument_at(0), this); LIRItem buf(x->argument_at(1), this); LIRItem off(x->argument_at(2), this); LIRItem len(x->argument_at(3), this); buf.load_item(); off.load_nonconstant(); LIR_Opr index = off.result(); int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; if (off.result()->is_constant()) { index = LIR_OprFact::illegalOpr; offset += off.result()->as_jint(); } LIR_Opr base_op = buf.result(); if (index->is_valid()) { LIR_Opr tmp = new_register(T_LONG); __ convert(Bytecodes::_i2l, index, tmp); index = tmp; } LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE); BasicTypeList signature(3); signature.append(T_INT); signature.append(T_ADDRESS); signature.append(T_INT); CallingConvention* cc = frame_map()->c_calling_convention(&signature); const LIR_Opr result_reg = result_register_for (x->type()); LIR_Opr arg1 = cc->at(0); LIR_Opr arg2 = cc->at(1); LIR_Opr arg3 = cc->at(2); crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32 stub doesn't care about high bits. __ leal(LIR_OprFact::address(a), arg2); len.load_item_force(arg3); // We skip int->long conversion here, because CRC32 stub expects int. __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), LIR_OprFact::illegalOpr, result_reg, cc->args()); __ move(result_reg, result); break; } default: { ShouldNotReachHere(); } } } void LIRGenerator::do_update_CRC32C(Intrinsic* x) { assert(UseCRC32CIntrinsics, "or should not be here"); LIR_Opr result = rlock_result(x); switch (x->id()) { case vmIntrinsics::_updateBytesCRC32C: case vmIntrinsics::_updateDirectByteBufferCRC32C: { bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C); LIRItem crc(x->argument_at(0), this); LIRItem buf(x->argument_at(1), this); LIRItem off(x->argument_at(2), this); LIRItem end(x->argument_at(3), this); buf.load_item(); off.load_nonconstant(); end.load_nonconstant(); // len = end - off LIR_Opr len = end.result(); LIR_Opr tmpA = new_register(T_INT); LIR_Opr tmpB = new_register(T_INT); __ move(end.result(), tmpA); __ move(off.result(), tmpB); __ sub(tmpA, tmpB, tmpA); len = tmpA; LIR_Opr index = off.result(); int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0; if (off.result()->is_constant()) { index = LIR_OprFact::illegalOpr; offset += off.result()->as_jint(); } LIR_Opr base_op = buf.result(); if (index->is_valid()) { LIR_Opr tmp = new_register(T_LONG); __ convert(Bytecodes::_i2l, index, tmp); index = tmp; } LIR_Address* a = new LIR_Address(base_op, index, offset, T_BYTE); BasicTypeList signature(3); signature.append(T_INT); signature.append(T_ADDRESS); signature.append(T_INT); CallingConvention* cc = frame_map()->c_calling_convention(&signature); const LIR_Opr result_reg = result_register_for (x->type()); LIR_Opr arg1 = cc->at(0); LIR_Opr arg2 = cc->at(1); LIR_Opr arg3 = cc->at(2); crc.load_item_force(arg1); // We skip int->long conversion here, because CRC32C stub doesn't care about high bits. __ leal(LIR_OprFact::address(a), arg2); __ move(len, cc->at(2)); // We skip int->long conversion here, because CRC32C stub expects int. __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), LIR_OprFact::illegalOpr, result_reg, cc->args()); __ move(result_reg, result); break; } default: { ShouldNotReachHere(); } } } void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) { assert(x->number_of_arguments() == 3, "wrong type"); assert(UseFMA, "Needs FMA instructions support."); LIRItem value(x->argument_at(0), this); LIRItem value1(x->argument_at(1), this); LIRItem value2(x->argument_at(2), this); value2.set_destroys_register(); value.load_item(); value1.load_item(); value2.load_item(); LIR_Opr calc_input = value.result(); LIR_Opr calc_input1 = value1.result(); LIR_Opr calc_input2 = value2.result(); LIR_Opr calc_result = rlock_result(x); switch (x->id()) { case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break; case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break; default: ShouldNotReachHere(); } } void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) { fatal("vectorizedMismatch intrinsic is not implemented on this platform"); }