1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArray.hpp"
  34 #include "ci/ciObjArrayKlass.hpp"
  35 #include "ci/ciTypeArrayKlass.hpp"
  36 #include "runtime/safepointMechanism.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "vmreg_sparc.inline.hpp"
  40 
  41 #ifdef ASSERT
  42 #define __ gen()->lir(__FILE__, __LINE__)->
  43 #else
  44 #define __ gen()->lir()->
  45 #endif
  46 
  47 void LIRItem::load_byte_item() {
  48   // byte loads use same registers as other loads
  49   load_item();
  50 }
  51 
  52 
  53 void LIRItem::load_nonconstant() {
  54   LIR_Opr r = value()->operand();
  55   if (_gen->can_inline_as_constant(value())) {
  56     if (!r->is_constant()) {
  57       r = LIR_OprFact::value_type(value()->type());
  58     }
  59     _result = r;
  60   } else {
  61     load_item();
  62   }
  63 }
  64 
  65 
  66 //--------------------------------------------------------------
  67 //               LIRGenerator
  68 //--------------------------------------------------------------
  69 
  70 LIR_Opr LIRGenerator::exceptionOopOpr()              { return FrameMap::Oexception_opr;  }
  71 LIR_Opr LIRGenerator::exceptionPcOpr()               { return FrameMap::Oissuing_pc_opr; }
  72 LIR_Opr LIRGenerator::syncLockOpr()                  { return new_register(T_INT); }
  73 LIR_Opr LIRGenerator::syncTempOpr()                  { return new_register(T_OBJECT); }
  74 LIR_Opr LIRGenerator::getThreadTemp()                { return rlock_callee_saved(T_LONG); }
  75 
  76 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  77   LIR_Opr opr;
  78   switch (type->tag()) {
  79   case intTag:     opr = callee ? FrameMap::I0_opr      : FrameMap::O0_opr;       break;
  80   case objectTag:  opr = callee ? FrameMap::I0_oop_opr  : FrameMap::O0_oop_opr;   break;
  81   case longTag:    opr = callee ? FrameMap::in_long_opr : FrameMap::out_long_opr; break;
  82   case floatTag:   opr = FrameMap::F0_opr;                                        break;
  83   case doubleTag:  opr = FrameMap::F0_double_opr;                                 break;
  84 
  85   case addressTag:
  86   default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  87   }
  88 
  89   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  90   return opr;
  91 }
  92 
  93 LIR_Opr LIRGenerator::rlock_callee_saved(BasicType type) {
  94   LIR_Opr reg = new_register(type);
  95   set_vreg_flag(reg, callee_saved);
  96   return reg;
  97 }
  98 
  99 
 100 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
 101   return new_register(T_INT);
 102 }
 103 
 104 
 105 
 106 
 107 
 108 //--------- loading items into registers --------------------------------
 109 
 110 // SPARC cannot inline all constants
 111 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 112   if (v->type()->as_IntConstant() != NULL) {
 113     return v->type()->as_IntConstant()->value() == 0;
 114   } else if (v->type()->as_LongConstant() != NULL) {
 115     return v->type()->as_LongConstant()->value() == 0L;
 116   } else if (v->type()->as_ObjectConstant() != NULL) {
 117     return v->type()->as_ObjectConstant()->value()->is_null_object();
 118   } else {
 119     return false;
 120   }
 121 }
 122 
 123 
 124 // only simm13 constants can be inlined
 125 bool LIRGenerator:: can_inline_as_constant(Value i) const {
 126   if (i->type()->as_IntConstant() != NULL) {
 127     return Assembler::is_simm13(i->type()->as_IntConstant()->value());
 128   } else {
 129     return can_store_as_constant(i, as_BasicType(i->type()));
 130   }
 131 }
 132 
 133 
 134 bool LIRGenerator:: can_inline_as_constant(LIR_Const* c) const {
 135   if (c->type() == T_INT) {
 136     return Assembler::is_simm13(c->as_jint());
 137   }
 138   return false;
 139 }
 140 
 141 
 142 LIR_Opr LIRGenerator::safepoint_poll_register() {
 143   return new_register(T_INT);
 144 }
 145 
 146 
 147 
 148 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 149                                             int shift, int disp, BasicType type) {
 150   assert(base->is_register(), "must be");
 151   intx large_disp = disp;
 152 
 153   // accumulate fixed displacements
 154   if (index->is_constant()) {
 155     large_disp += (intx)(index->as_constant_ptr()->as_jint()) << shift;
 156     index = LIR_OprFact::illegalOpr;
 157   }
 158 
 159   if (index->is_register()) {
 160     // apply the shift and accumulate the displacement
 161     if (shift > 0) {
 162       LIR_Opr tmp = new_pointer_register();
 163       __ shift_left(index, shift, tmp);
 164       index = tmp;
 165     }
 166     if (large_disp != 0) {
 167       LIR_Opr tmp = new_pointer_register();
 168       if (Assembler::is_simm13(large_disp)) {
 169         __ add(tmp, LIR_OprFact::intptrConst(large_disp), tmp);
 170         index = tmp;
 171       } else {
 172         __ move(LIR_OprFact::intptrConst(large_disp), tmp);
 173         __ add(tmp, index, tmp);
 174         index = tmp;
 175       }
 176       large_disp = 0;
 177     }
 178   } else if (large_disp != 0 && !Assembler::is_simm13(large_disp)) {
 179     // index is illegal so replace it with the displacement loaded into a register
 180     index = new_pointer_register();
 181     __ move(LIR_OprFact::intptrConst(large_disp), index);
 182     large_disp = 0;
 183   }
 184 
 185   // at this point we either have base + index or base + displacement
 186   if (large_disp == 0) {
 187     return new LIR_Address(base, index, type);
 188   } else {
 189     assert(Assembler::is_simm13(large_disp), "must be");
 190     return new LIR_Address(base, large_disp, type);
 191   }
 192 }
 193 
 194 
 195 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 196                                               BasicType type) {
 197   int elem_size = type2aelembytes(type);
 198   int shift = exact_log2(elem_size);
 199 
 200   LIR_Opr base_opr;
 201   intx offset = arrayOopDesc::base_offset_in_bytes(type);
 202 
 203   if (index_opr->is_constant()) {
 204     intx i = index_opr->as_constant_ptr()->as_jint();
 205     intx array_offset = i * elem_size;
 206     if (Assembler::is_simm13(array_offset + offset)) {
 207       base_opr = array_opr;
 208       offset = array_offset + offset;
 209     } else {
 210       base_opr = new_pointer_register();
 211       if (Assembler::is_simm13(array_offset)) {
 212         __ add(array_opr, LIR_OprFact::intptrConst(array_offset), base_opr);
 213       } else {
 214         __ move(LIR_OprFact::intptrConst(array_offset), base_opr);
 215         __ add(base_opr, array_opr, base_opr);
 216       }
 217     }
 218   } else {
 219     if (index_opr->type() == T_INT) {
 220       LIR_Opr tmp = new_register(T_LONG);
 221       __ convert(Bytecodes::_i2l, index_opr, tmp);
 222       index_opr = tmp;
 223     }
 224 
 225     base_opr = new_pointer_register();
 226     assert (index_opr->is_register(), "Must be register");
 227     if (shift > 0) {
 228       __ shift_left(index_opr, shift, base_opr);
 229       __ add(base_opr, array_opr, base_opr);
 230     } else {
 231       __ add(index_opr, array_opr, base_opr);
 232     }
 233   }
 234 
 235   return new LIR_Address(base_opr, offset, type);
 236 }
 237 
 238 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 239   LIR_Opr r;
 240   if (type == T_LONG) {
 241     r = LIR_OprFact::longConst(x);
 242   } else if (type == T_INT) {
 243     r = LIR_OprFact::intConst(x);
 244   } else {
 245     ShouldNotReachHere();
 246   }
 247   if (!Assembler::is_simm13(x)) {
 248     LIR_Opr tmp = new_register(type);
 249     __ move(r, tmp);
 250     return tmp;
 251   }
 252   return r;
 253 }
 254 
 255 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 256   LIR_Opr pointer = new_pointer_register();
 257   __ move(LIR_OprFact::intptrConst(counter), pointer);
 258   LIR_Address* addr = new LIR_Address(pointer, type);
 259   increment_counter(addr, step);
 260 }
 261 
 262 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 263   LIR_Opr temp = new_register(addr->type());
 264   __ move(addr, temp);
 265   __ add(temp, load_immediate(step, addr->type()), temp);
 266   __ move(temp, addr);
 267 }
 268 
 269 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 270   LIR_Opr o7opr = FrameMap::O7_opr;
 271   __ load(new LIR_Address(base, disp, T_INT), o7opr, info);
 272   __ cmp(condition, o7opr, c);
 273 }
 274 
 275 
 276 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 277   LIR_Opr o7opr = FrameMap::O7_opr;
 278   __ load(new LIR_Address(base, disp, type), o7opr, info);
 279   __ cmp(condition, reg, o7opr);
 280 }
 281 
 282 
 283 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, int c, LIR_Opr result, LIR_Opr tmp) {
 284   assert(left != result, "should be different registers");
 285   if (is_power_of_2(c + 1)) {
 286     __ shift_left(left, log2_intptr(c + 1), result);
 287     __ sub(result, left, result);
 288     return true;
 289   } else if (is_power_of_2(c - 1)) {
 290     __ shift_left(left, log2_intptr(c - 1), result);
 291     __ add(result, left, result);
 292     return true;
 293   }
 294   return false;
 295 }
 296 
 297 
 298 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 299   BasicType t = item->type();
 300   LIR_Opr sp_opr = FrameMap::SP_opr;
 301   if ((t == T_LONG || t == T_DOUBLE) &&
 302       ((in_bytes(offset_from_sp) - STACK_BIAS) % 8 != 0)) {
 303     __ unaligned_move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 304   } else {
 305     __ move(item, new LIR_Address(sp_opr, in_bytes(offset_from_sp), t));
 306   }
 307 }
 308 
 309 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 310   LIR_Opr tmp1 = FrameMap::G1_opr;
 311   LIR_Opr tmp2 = FrameMap::G3_opr;
 312   LIR_Opr tmp3 = FrameMap::G5_opr;
 313   __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 314 }
 315 
 316 //----------------------------------------------------------------------
 317 //             visitor functions
 318 //----------------------------------------------------------------------
 319 
 320 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 321   assert(x->is_pinned(),"");
 322   LIRItem obj(x->obj(), this);
 323   obj.load_item();
 324 
 325   set_no_result(x);
 326 
 327   LIR_Opr lock    = FrameMap::G1_opr;
 328   LIR_Opr scratch = FrameMap::G3_opr;
 329   LIR_Opr hdr     = FrameMap::G4_opr;
 330 
 331   CodeEmitInfo* info_for_exception = NULL;
 332   if (x->needs_null_check()) {
 333     info_for_exception = state_for(x);
 334   }
 335 
 336   // this CodeEmitInfo must not have the xhandlers because here the
 337   // object is already locked (xhandlers expects object to be unlocked)
 338   CodeEmitInfo* info = state_for(x, x->state(), true);
 339   monitor_enter(obj.result(), lock, hdr, scratch, x->monitor_no(), info_for_exception, info);
 340 }
 341 
 342 
 343 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 344   assert(x->is_pinned(),"");
 345   LIRItem obj(x->obj(), this);
 346   obj.dont_load_item();
 347 
 348   set_no_result(x);
 349   LIR_Opr lock      = FrameMap::G1_opr;
 350   LIR_Opr hdr       = FrameMap::G3_opr;
 351   LIR_Opr obj_temp  = FrameMap::G4_opr;
 352   monitor_exit(obj_temp, lock, hdr, LIR_OprFact::illegalOpr, x->monitor_no());
 353 }
 354 
 355 
 356 // _ineg, _lneg, _fneg, _dneg
 357 void LIRGenerator::do_NegateOp(NegateOp* x) {
 358   LIRItem value(x->x(), this);
 359   value.load_item();
 360   LIR_Opr reg = rlock_result(x);
 361   __ negate(value.result(), reg);
 362 }
 363 
 364 
 365 
 366 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 367 //      _dadd, _dmul, _dsub, _ddiv, _drem
 368 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 369   switch (x->op()) {
 370   case Bytecodes::_fadd:
 371   case Bytecodes::_fmul:
 372   case Bytecodes::_fsub:
 373   case Bytecodes::_fdiv:
 374   case Bytecodes::_dadd:
 375   case Bytecodes::_dmul:
 376   case Bytecodes::_dsub:
 377   case Bytecodes::_ddiv: {
 378     LIRItem left(x->x(), this);
 379     LIRItem right(x->y(), this);
 380     left.load_item();
 381     right.load_item();
 382     rlock_result(x);
 383     arithmetic_op_fpu(x->op(), x->operand(), left.result(), right.result(), x->is_strictfp());
 384   }
 385   break;
 386 
 387   case Bytecodes::_frem:
 388   case Bytecodes::_drem: {
 389     address entry;
 390     switch (x->op()) {
 391     case Bytecodes::_frem:
 392       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 393       break;
 394     case Bytecodes::_drem:
 395       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 396       break;
 397     default:
 398       ShouldNotReachHere();
 399     }
 400     LIR_Opr result = call_runtime(x->x(), x->y(), entry, x->type(), NULL);
 401     set_result(x, result);
 402   }
 403   break;
 404 
 405   default: ShouldNotReachHere();
 406   }
 407 }
 408 
 409 
 410 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 411 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 412   switch (x->op()) {
 413   case Bytecodes::_lrem:
 414   case Bytecodes::_lmul:
 415   case Bytecodes::_ldiv: {
 416 
 417     if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 418       LIRItem right(x->y(), this);
 419       right.load_item();
 420 
 421       CodeEmitInfo* info = state_for(x);
 422       LIR_Opr item = right.result();
 423       assert(item->is_register(), "must be");
 424       __ cmp(lir_cond_equal, item, LIR_OprFact::longConst(0));
 425       __ branch(lir_cond_equal, T_LONG, new DivByZeroStub(info));
 426     }
 427 
 428     address entry;
 429     switch (x->op()) {
 430     case Bytecodes::_lrem:
 431       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lrem);
 432       break; // check if dividend is 0 is done elsewhere
 433     case Bytecodes::_ldiv:
 434       entry = CAST_FROM_FN_PTR(address, SharedRuntime::ldiv);
 435       break; // check if dividend is 0 is done elsewhere
 436     case Bytecodes::_lmul:
 437       entry = CAST_FROM_FN_PTR(address, SharedRuntime::lmul);
 438       break;
 439     default:
 440       ShouldNotReachHere();
 441     }
 442 
 443     // order of arguments to runtime call is reversed.
 444     LIR_Opr result = call_runtime(x->y(), x->x(), entry, x->type(), NULL);
 445     set_result(x, result);
 446     break;
 447   }
 448   case Bytecodes::_ladd:
 449   case Bytecodes::_lsub: {
 450     LIRItem left(x->x(), this);
 451     LIRItem right(x->y(), this);
 452     left.load_item();
 453     right.load_item();
 454     rlock_result(x);
 455 
 456     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 457     break;
 458   }
 459   default: ShouldNotReachHere();
 460   }
 461 }
 462 
 463 
 464 // Returns if item is an int constant that can be represented by a simm13
 465 static bool is_simm13(LIR_Opr item) {
 466   if (item->is_constant() && item->type() == T_INT) {
 467     return Assembler::is_simm13(item->as_constant_ptr()->as_jint());
 468   } else {
 469     return false;
 470   }
 471 }
 472 
 473 
 474 // for: _iadd, _imul, _isub, _idiv, _irem
 475 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 476   bool is_div_rem = x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem;
 477   LIRItem left(x->x(), this);
 478   LIRItem right(x->y(), this);
 479   // missing test if instr is commutative and if we should swap
 480   right.load_nonconstant();
 481   assert(right.is_constant() || right.is_register(), "wrong state of right");
 482   left.load_item();
 483   rlock_result(x);
 484   if (is_div_rem) {
 485     CodeEmitInfo* info = state_for(x);
 486     LIR_Opr tmp = FrameMap::G1_opr;
 487     if (x->op() == Bytecodes::_irem) {
 488       __ irem(left.result(), right.result(), x->operand(), tmp, info);
 489     } else if (x->op() == Bytecodes::_idiv) {
 490       __ idiv(left.result(), right.result(), x->operand(), tmp, info);
 491     }
 492   } else {
 493     arithmetic_op_int(x->op(), x->operand(), left.result(), right.result(), FrameMap::G1_opr);
 494   }
 495 }
 496 
 497 
 498 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 499   ValueTag tag = x->type()->tag();
 500   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 501   switch (tag) {
 502     case floatTag:
 503     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 504     case longTag:    do_ArithmeticOp_Long(x); return;
 505     case intTag:     do_ArithmeticOp_Int(x);  return;
 506   }
 507   ShouldNotReachHere();
 508 }
 509 
 510 
 511 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 512 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 513   LIRItem value(x->x(), this);
 514   LIRItem count(x->y(), this);
 515   // Long shift destroys count register
 516   if (value.type()->is_long()) {
 517     count.set_destroys_register();
 518   }
 519   value.load_item();
 520   // the old backend doesn't support this
 521   if (count.is_constant() && count.type()->as_IntConstant() != NULL && value.type()->is_int()) {
 522     jint c = count.get_jint_constant() & 0x1f;
 523     assert(c >= 0 && c < 32, "should be small");
 524     count.dont_load_item();
 525   } else {
 526     count.load_item();
 527   }
 528   LIR_Opr reg = rlock_result(x);
 529   shift_op(x->op(), reg, value.result(), count.result(), LIR_OprFact::illegalOpr);
 530 }
 531 
 532 
 533 // _iand, _land, _ior, _lor, _ixor, _lxor
 534 void LIRGenerator::do_LogicOp(LogicOp* x) {
 535   LIRItem left(x->x(), this);
 536   LIRItem right(x->y(), this);
 537 
 538   left.load_item();
 539   right.load_nonconstant();
 540   LIR_Opr reg = rlock_result(x);
 541 
 542   logic_op(x->op(), reg, left.result(), right.result());
 543 }
 544 
 545 
 546 
 547 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 548 void LIRGenerator::do_CompareOp(CompareOp* x) {
 549   LIRItem left(x->x(), this);
 550   LIRItem right(x->y(), this);
 551   left.load_item();
 552   right.load_item();
 553   LIR_Opr reg = rlock_result(x);
 554   if (x->x()->type()->is_float_kind()) {
 555     Bytecodes::Code code = x->op();
 556     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 557   } else if (x->x()->type()->tag() == longTag) {
 558     __ lcmp2int(left.result(), right.result(), reg);
 559   } else {
 560     Unimplemented();
 561   }
 562 }
 563 
 564 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 565   LIR_Opr result = new_register(T_INT);
 566   LIR_Opr t1 = FrameMap::G1_opr;
 567   LIR_Opr t2 = FrameMap::G3_opr;
 568   cmp_value.load_item();
 569   new_value.load_item();
 570   if (type == T_OBJECT || type == T_ARRAY) {
 571     __ cas_obj(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
 572   } else if (type == T_INT) {
 573     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
 574   } else if (type == T_LONG) {
 575     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), t1, t2);
 576   } else {
 577     Unimplemented();
 578   }
 579   __ cmove(lir_cond_equal, LIR_OprFact::intConst(1), LIR_OprFact::intConst(0),
 580            result, type);
 581   return result;
 582 }
 583 
 584 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 585   bool is_obj = type == T_OBJECT || type == T_ARRAY;
 586   LIR_Opr result = new_register(type);
 587   LIR_Opr tmp = LIR_OprFact::illegalOpr;
 588 
 589   value.load_item();
 590 
 591   if (is_obj) {
 592     tmp = FrameMap::G3_opr;
 593   }
 594 
 595   // Because we want a 2-arg form of xchg
 596   __ move(value.result(), result);
 597   __ xchg(addr, result, result, tmp);
 598   return result;
 599 }
 600 
 601 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 602   Unimplemented();
 603   return LIR_OprFact::illegalOpr;
 604 }
 605 
 606 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 607   switch (x->id()) {
 608     case vmIntrinsics::_dabs:
 609     case vmIntrinsics::_dsqrt: {
 610       assert(x->number_of_arguments() == 1, "wrong type");
 611       LIRItem value(x->argument_at(0), this);
 612       value.load_item();
 613       LIR_Opr dst = rlock_result(x);
 614 
 615       switch (x->id()) {
 616       case vmIntrinsics::_dsqrt: {
 617         __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 618         break;
 619       }
 620       case vmIntrinsics::_dabs: {
 621         __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 622         break;
 623       }
 624       }
 625       break;
 626     }
 627     case vmIntrinsics::_dlog10: // fall through
 628     case vmIntrinsics::_dlog: // fall through
 629     case vmIntrinsics::_dsin: // fall through
 630     case vmIntrinsics::_dtan: // fall through
 631     case vmIntrinsics::_dcos: // fall through
 632     case vmIntrinsics::_dexp: {
 633       assert(x->number_of_arguments() == 1, "wrong type");
 634 
 635       address runtime_entry = NULL;
 636       switch (x->id()) {
 637       case vmIntrinsics::_dsin:
 638         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
 639         break;
 640       case vmIntrinsics::_dcos:
 641         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
 642         break;
 643       case vmIntrinsics::_dtan:
 644         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
 645         break;
 646       case vmIntrinsics::_dlog:
 647         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
 648         break;
 649       case vmIntrinsics::_dlog10:
 650         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
 651         break;
 652       case vmIntrinsics::_dexp:
 653         runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
 654         break;
 655       default:
 656         ShouldNotReachHere();
 657       }
 658 
 659       LIR_Opr result = call_runtime(x->argument_at(0), runtime_entry, x->type(), NULL);
 660       set_result(x, result);
 661       break;
 662     }
 663     case vmIntrinsics::_dpow: {
 664       assert(x->number_of_arguments() == 2, "wrong type");
 665       address runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
 666       LIR_Opr result = call_runtime(x->argument_at(0), x->argument_at(1), runtime_entry, x->type(), NULL);
 667       set_result(x, result);
 668       break;
 669     }
 670   }
 671 }
 672 
 673 
 674 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 675   assert(x->number_of_arguments() == 5, "wrong type");
 676 
 677   // Make all state_for calls early since they can emit code
 678   CodeEmitInfo* info = state_for(x, x->state());
 679 
 680   // Note: spill caller save before setting the item
 681   LIRItem src     (x->argument_at(0), this);
 682   LIRItem src_pos (x->argument_at(1), this);
 683   LIRItem dst     (x->argument_at(2), this);
 684   LIRItem dst_pos (x->argument_at(3), this);
 685   LIRItem length  (x->argument_at(4), this);
 686   // load all values in callee_save_registers, as this makes the
 687   // parameter passing to the fast case simpler
 688   src.load_item_force     (rlock_callee_saved(T_OBJECT));
 689   src_pos.load_item_force (rlock_callee_saved(T_INT));
 690   dst.load_item_force     (rlock_callee_saved(T_OBJECT));
 691   dst_pos.load_item_force (rlock_callee_saved(T_INT));
 692   length.load_item_force  (rlock_callee_saved(T_INT));
 693 
 694   int flags;
 695   ciArrayKlass* expected_type;
 696   arraycopy_helper(x, &flags, &expected_type);
 697 
 698   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(),
 699                length.result(), rlock_callee_saved(T_INT),
 700                expected_type, flags, info);
 701   set_no_result(x);
 702 }
 703 
 704 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 705   // Make all state_for calls early since they can emit code
 706   LIR_Opr result = rlock_result(x);
 707   int flags = 0;
 708   switch (x->id()) {
 709     case vmIntrinsics::_updateCRC32: {
 710       LIRItem crc(x->argument_at(0), this);
 711       LIRItem val(x->argument_at(1), this);
 712       // val is destroyed by update_crc32
 713       val.set_destroys_register();
 714       crc.load_item();
 715       val.load_item();
 716       __ update_crc32(crc.result(), val.result(), result);
 717       break;
 718     }
 719     case vmIntrinsics::_updateBytesCRC32:
 720     case vmIntrinsics::_updateByteBufferCRC32: {
 721 
 722       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 723 
 724       LIRItem crc(x->argument_at(0), this);
 725       LIRItem buf(x->argument_at(1), this);
 726       LIRItem off(x->argument_at(2), this);
 727       LIRItem len(x->argument_at(3), this);
 728 
 729       buf.load_item();
 730       off.load_nonconstant();
 731 
 732       LIR_Opr index = off.result();
 733       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 734       if(off.result()->is_constant()) {
 735         index = LIR_OprFact::illegalOpr;
 736         offset += off.result()->as_jint();
 737       }
 738 
 739       LIR_Opr base_op = buf.result();
 740 
 741       if (index->is_valid()) {
 742         LIR_Opr tmp = new_register(T_LONG);
 743         __ convert(Bytecodes::_i2l, index, tmp);
 744         index = tmp;
 745         if (index->is_constant()) {
 746           offset += index->as_constant_ptr()->as_jint();
 747           index = LIR_OprFact::illegalOpr;
 748         } else if (index->is_register()) {
 749           LIR_Opr tmp2 = new_register(T_LONG);
 750           LIR_Opr tmp3 = new_register(T_LONG);
 751           __ move(base_op, tmp2);
 752           __ move(index, tmp3);
 753           __ add(tmp2, tmp3, tmp2);
 754           base_op = tmp2;
 755         } else {
 756           ShouldNotReachHere();
 757         }
 758       }
 759 
 760       LIR_Address* a = new LIR_Address(base_op, offset, T_BYTE);
 761 
 762       BasicTypeList signature(3);
 763       signature.append(T_INT);
 764       signature.append(T_ADDRESS);
 765       signature.append(T_INT);
 766       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 767       const LIR_Opr result_reg = result_register_for(x->type());
 768 
 769       LIR_Opr addr = new_pointer_register();
 770       __ leal(LIR_OprFact::address(a), addr);
 771 
 772       crc.load_item_force(cc->at(0));
 773       __ move(addr, cc->at(1));
 774       len.load_item_force(cc->at(2));
 775 
 776       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
 777       __ move(result_reg, result);
 778 
 779       break;
 780     }
 781     default: {
 782       ShouldNotReachHere();
 783     }
 784   }
 785 }
 786 
 787 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
 788   // Make all state_for calls early since they can emit code
 789   LIR_Opr result = rlock_result(x);
 790   int flags = 0;
 791   switch (x->id()) {
 792     case vmIntrinsics::_updateBytesCRC32C:
 793     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
 794 
 795       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
 796       int array_offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 797 
 798       LIRItem crc(x->argument_at(0), this);
 799       LIRItem buf(x->argument_at(1), this);
 800       LIRItem off(x->argument_at(2), this);
 801       LIRItem end(x->argument_at(3), this);
 802 
 803       buf.load_item();
 804       off.load_nonconstant();
 805       end.load_nonconstant();
 806 
 807       // len = end - off
 808       LIR_Opr len  = end.result();
 809       LIR_Opr tmpA = new_register(T_INT);
 810       LIR_Opr tmpB = new_register(T_INT);
 811       __ move(end.result(), tmpA);
 812       __ move(off.result(), tmpB);
 813       __ sub(tmpA, tmpB, tmpA);
 814       len = tmpA;
 815 
 816       LIR_Opr index = off.result();
 817 
 818       if(off.result()->is_constant()) {
 819         index = LIR_OprFact::illegalOpr;
 820         array_offset += off.result()->as_jint();
 821       }
 822 
 823       LIR_Opr base_op = buf.result();
 824 
 825       if (index->is_valid()) {
 826         LIR_Opr tmp = new_register(T_LONG);
 827         __ convert(Bytecodes::_i2l, index, tmp);
 828         index = tmp;
 829         if (index->is_constant()) {
 830           array_offset += index->as_constant_ptr()->as_jint();
 831           index = LIR_OprFact::illegalOpr;
 832         } else if (index->is_register()) {
 833           LIR_Opr tmp2 = new_register(T_LONG);
 834           LIR_Opr tmp3 = new_register(T_LONG);
 835           __ move(base_op, tmp2);
 836           __ move(index, tmp3);
 837           __ add(tmp2, tmp3, tmp2);
 838           base_op = tmp2;
 839         } else {
 840           ShouldNotReachHere();
 841         }
 842       }
 843 
 844       LIR_Address* a = new LIR_Address(base_op, array_offset, T_BYTE);
 845 
 846       BasicTypeList signature(3);
 847       signature.append(T_INT);
 848       signature.append(T_ADDRESS);
 849       signature.append(T_INT);
 850       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 851       const LIR_Opr result_reg = result_register_for(x->type());
 852 
 853       LIR_Opr addr = new_pointer_register();
 854       __ leal(LIR_OprFact::address(a), addr);
 855 
 856       crc.load_item_force(cc->at(0));
 857       __ move(addr, cc->at(1));
 858       __ move(len, cc->at(2));
 859 
 860       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
 861       __ move(result_reg, result);
 862 
 863       break;
 864     }
 865     default: {
 866       ShouldNotReachHere();
 867     }
 868   }
 869 }
 870 
 871 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
 872   assert(x->number_of_arguments() == 3, "wrong type");
 873   assert(UseFMA, "Needs FMA instructions support.");
 874 
 875   LIRItem a(x->argument_at(0), this);
 876   LIRItem b(x->argument_at(1), this);
 877   LIRItem c(x->argument_at(2), this);
 878 
 879   a.load_item();
 880   b.load_item();
 881   c.load_item();
 882 
 883   LIR_Opr ina = a.result();
 884   LIR_Opr inb = b.result();
 885   LIR_Opr inc = c.result();
 886   LIR_Opr res = rlock_result(x);
 887 
 888   switch (x->id()) {
 889     case vmIntrinsics::_fmaF: __ fmaf(ina, inb, inc, res); break;
 890     case vmIntrinsics::_fmaD: __ fmad(ina, inb, inc, res); break;
 891     default:
 892       ShouldNotReachHere();
 893       break;
 894   }
 895 }
 896 
 897 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
 898   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
 899 }
 900 
 901 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
 902 // _i2b, _i2c, _i2s
 903 void LIRGenerator::do_Convert(Convert* x) {
 904 
 905   switch (x->op()) {
 906     case Bytecodes::_f2l:
 907     case Bytecodes::_d2l:
 908     case Bytecodes::_d2i:
 909     case Bytecodes::_l2f:
 910     case Bytecodes::_l2d: {
 911 
 912       address entry;
 913       switch (x->op()) {
 914       case Bytecodes::_l2f:
 915         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2f);
 916         break;
 917       case Bytecodes::_l2d:
 918         entry = CAST_FROM_FN_PTR(address, SharedRuntime::l2d);
 919         break;
 920       case Bytecodes::_f2l:
 921         entry = CAST_FROM_FN_PTR(address, SharedRuntime::f2l);
 922         break;
 923       case Bytecodes::_d2l:
 924         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2l);
 925         break;
 926       case Bytecodes::_d2i:
 927         entry = CAST_FROM_FN_PTR(address, SharedRuntime::d2i);
 928         break;
 929       default:
 930         ShouldNotReachHere();
 931       }
 932       LIR_Opr result = call_runtime(x->value(), entry, x->type(), NULL);
 933       set_result(x, result);
 934       break;
 935     }
 936 
 937     case Bytecodes::_i2f:
 938     case Bytecodes::_i2d: {
 939       LIRItem value(x->value(), this);
 940 
 941       LIR_Opr reg = rlock_result(x);
 942       // To convert an int to double, we need to load the 32-bit int
 943       // from memory into a single precision floating point register
 944       // (even numbered). Then the sparc fitod instruction takes care
 945       // of the conversion. This is a bit ugly, but is the best way to
 946       // get the int value in a single precision floating point register
 947       value.load_item();
 948       LIR_Opr tmp = force_to_spill(value.result(), T_FLOAT);
 949       __ convert(x->op(), tmp, reg);
 950       break;
 951     }
 952     break;
 953 
 954     case Bytecodes::_i2l:
 955     case Bytecodes::_i2b:
 956     case Bytecodes::_i2c:
 957     case Bytecodes::_i2s:
 958     case Bytecodes::_l2i:
 959     case Bytecodes::_f2d:
 960     case Bytecodes::_d2f: { // inline code
 961       LIRItem value(x->value(), this);
 962 
 963       value.load_item();
 964       LIR_Opr reg = rlock_result(x);
 965       __ convert(x->op(), value.result(), reg, false);
 966     }
 967     break;
 968 
 969     case Bytecodes::_f2i: {
 970       LIRItem value (x->value(), this);
 971       value.set_destroys_register();
 972       value.load_item();
 973       LIR_Opr reg = rlock_result(x);
 974       set_vreg_flag(reg, must_start_in_memory);
 975       __ convert(x->op(), value.result(), reg, false);
 976     }
 977     break;
 978 
 979     default: ShouldNotReachHere();
 980   }
 981 }
 982 
 983 
 984 void LIRGenerator::do_NewInstance(NewInstance* x) {
 985   print_if_not_loaded(x);
 986 
 987   // This instruction can be deoptimized in the slow path : use
 988   // O0 as result register.
 989   const LIR_Opr reg = result_register_for(x->type());
 990 
 991   CodeEmitInfo* info = state_for(x, x->state());
 992   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
 993   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
 994   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
 995   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
 996   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
 997   new_instance(reg, x->klass(), x->is_unresolved(), tmp1, tmp2, tmp3, tmp4, klass_reg, info);
 998   LIR_Opr result = rlock_result(x);
 999   __ move(reg, result);
1000 }
1001 
1002 
1003 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1004   // Evaluate state_for early since it may emit code
1005   CodeEmitInfo* info = state_for(x, x->state());
1006 
1007   LIRItem length(x->length(), this);
1008   length.load_item();
1009 
1010   LIR_Opr reg = result_register_for(x->type());
1011   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1012   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1013   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1014   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1015   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1016   LIR_Opr len = length.result();
1017   BasicType elem_type = x->elt_type();
1018 
1019   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1020 
1021   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1022   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1023 
1024   LIR_Opr result = rlock_result(x);
1025   __ move(reg, result);
1026 }
1027 
1028 
1029 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1030   // Evaluate state_for early since it may emit code.
1031   CodeEmitInfo* info = state_for(x, x->state());
1032   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1033   // and therefore provide the state before the parameters have been consumed
1034   CodeEmitInfo* patching_info = NULL;
1035   if (!x->klass()->is_loaded() || PatchALot) {
1036     patching_info = state_for(x, x->state_before());
1037   }
1038 
1039   LIRItem length(x->length(), this);
1040   length.load_item();
1041 
1042   const LIR_Opr reg = result_register_for(x->type());
1043   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1044   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1045   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1046   LIR_Opr tmp4 = FrameMap::O1_oop_opr;
1047   LIR_Opr klass_reg = FrameMap::G5_metadata_opr;
1048   LIR_Opr len = length.result();
1049 
1050   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1051   ciMetadata* obj = ciObjArrayKlass::make(x->klass());
1052   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1053     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1054   }
1055   klass2reg_with_patching(klass_reg, obj, patching_info);
1056   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1057 
1058   LIR_Opr result = rlock_result(x);
1059   __ move(reg, result);
1060 }
1061 
1062 
1063 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1064   Values* dims = x->dims();
1065   int i = dims->length();
1066   LIRItemList* items = new LIRItemList(i, i, NULL);
1067   while (i-- > 0) {
1068     LIRItem* size = new LIRItem(dims->at(i), this);
1069     items->at_put(i, size);
1070   }
1071 
1072   // Evaluate state_for early since it may emit code.
1073   CodeEmitInfo* patching_info = NULL;
1074   if (!x->klass()->is_loaded() || PatchALot) {
1075     patching_info = state_for(x, x->state_before());
1076 
1077     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1078     // clone all handlers (NOTE: Usually this is handled transparently
1079     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1080     // is done explicitly here because a stub isn't being used).
1081     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1082   }
1083   CodeEmitInfo* info = state_for(x, x->state());
1084 
1085   i = dims->length();
1086   while (i-- > 0) {
1087     LIRItem* size = items->at(i);
1088     size->load_item();
1089     store_stack_parameter (size->result(),
1090                            in_ByteSize(STACK_BIAS +
1091                                        frame::memory_parameter_word_sp_offset * wordSize +
1092                                        i * sizeof(jint)));
1093   }
1094 
1095   // This instruction can be deoptimized in the slow path : use
1096   // O0 as result register.
1097   const LIR_Opr klass_reg = FrameMap::O0_metadata_opr;
1098   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1099   LIR_Opr rank = FrameMap::O1_opr;
1100   __ move(LIR_OprFact::intConst(x->rank()), rank);
1101   LIR_Opr varargs = FrameMap::as_pointer_opr(O2);
1102   int offset_from_sp = (frame::memory_parameter_word_sp_offset * wordSize) + STACK_BIAS;
1103   __ add(FrameMap::SP_opr,
1104          LIR_OprFact::intptrConst(offset_from_sp),
1105          varargs);
1106   LIR_OprList* args = new LIR_OprList(3);
1107   args->append(klass_reg);
1108   args->append(rank);
1109   args->append(varargs);
1110   const LIR_Opr reg = result_register_for(x->type());
1111   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1112                   LIR_OprFact::illegalOpr,
1113                   reg, args, info);
1114 
1115   LIR_Opr result = rlock_result(x);
1116   __ move(reg, result);
1117 }
1118 
1119 
1120 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1121 }
1122 
1123 
1124 void LIRGenerator::do_CheckCast(CheckCast* x) {
1125   LIRItem obj(x->obj(), this);
1126   CodeEmitInfo* patching_info = NULL;
1127   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check())) {
1128     // must do this before locking the destination register as an oop register,
1129     // and before the obj is loaded (so x->obj()->item() is valid for creating a debug info location)
1130     patching_info = state_for(x, x->state_before());
1131   }
1132   obj.load_item();
1133   LIR_Opr out_reg = rlock_result(x);
1134   CodeStub* stub;
1135   CodeEmitInfo* info_for_exception =
1136       (x->needs_exception_state() ? state_for(x) :
1137                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1138 
1139   if (x->is_incompatible_class_change_check()) {
1140     assert(patching_info == NULL, "can't patch this");
1141     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1142   } else if (x->is_invokespecial_receiver_check()) {
1143     assert(patching_info == NULL, "can't patch this");
1144     stub = new DeoptimizeStub(info_for_exception,
1145                               Deoptimization::Reason_class_check,
1146                               Deoptimization::Action_none);
1147   } else {
1148     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1149   }
1150   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1151   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1152   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1153   __ checkcast(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1154                x->direct_compare(), info_for_exception, patching_info, stub,
1155                x->profiled_method(), x->profiled_bci());
1156 }
1157 
1158 
1159 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1160   LIRItem obj(x->obj(), this);
1161   CodeEmitInfo* patching_info = NULL;
1162   if (!x->klass()->is_loaded() || PatchALot) {
1163     patching_info = state_for(x, x->state_before());
1164   }
1165   // ensure the result register is not the input register because the result is initialized before the patching safepoint
1166   obj.load_item();
1167   LIR_Opr out_reg = rlock_result(x);
1168   LIR_Opr tmp1 = FrameMap::G1_oop_opr;
1169   LIR_Opr tmp2 = FrameMap::G3_oop_opr;
1170   LIR_Opr tmp3 = FrameMap::G4_oop_opr;
1171   __ instanceof(out_reg, obj.result(), x->klass(), tmp1, tmp2, tmp3,
1172                 x->direct_compare(), patching_info,
1173                 x->profiled_method(), x->profiled_bci());
1174 }
1175 
1176 
1177 void LIRGenerator::do_If(If* x) {
1178   assert(x->number_of_sux() == 2, "inconsistency");
1179   ValueTag tag = x->x()->type()->tag();
1180   LIRItem xitem(x->x(), this);
1181   LIRItem yitem(x->y(), this);
1182   LIRItem* xin = &xitem;
1183   LIRItem* yin = &yitem;
1184   If::Condition cond = x->cond();
1185 
1186   if (tag == longTag) {
1187     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1188     // mirror for other conditions
1189     if (cond == If::gtr || cond == If::leq) {
1190       // swap inputs
1191       cond = Instruction::mirror(cond);
1192       xin = &yitem;
1193       yin = &xitem;
1194     }
1195     xin->set_destroys_register();
1196   }
1197 
1198   LIR_Opr left = LIR_OprFact::illegalOpr;
1199   LIR_Opr right = LIR_OprFact::illegalOpr;
1200 
1201   xin->load_item();
1202   left = xin->result();
1203 
1204   if (is_simm13(yin->result())) {
1205     // inline int constants which are small enough to be immediate operands
1206     right = LIR_OprFact::value_type(yin->value()->type());
1207   } else if (tag == longTag && yin->is_constant() && yin->get_jlong_constant() == 0 &&
1208              (cond == If::eql || cond == If::neq)) {
1209     // inline long zero
1210     right = LIR_OprFact::value_type(yin->value()->type());
1211   } else if (tag == objectTag && yin->is_constant() && (yin->get_jobject_constant()->is_null_object())) {
1212     right = LIR_OprFact::value_type(yin->value()->type());
1213   } else {
1214     yin->load_item();
1215     right = yin->result();
1216   }
1217   set_no_result(x);
1218 
1219   // add safepoint before generating condition code so it can be recomputed
1220   if (x->is_safepoint()) {
1221     // increment backedge counter if needed
1222     increment_backedge_counter(state_for(x, x->state_before()), x->profiled_bci());
1223     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
1224   }
1225 
1226   __ cmp(lir_cond(cond), left, right);
1227   // Generate branch profiling. Profiling code doesn't kill flags.
1228   profile_branch(x, cond);
1229   move_to_phi(x->state());
1230   if (x->x()->type()->is_float_kind()) {
1231     __ branch(lir_cond(cond), right->type(), x->tsux(), x->usux());
1232   } else {
1233     __ branch(lir_cond(cond), right->type(), x->tsux());
1234   }
1235   assert(x->default_sux() == x->fsux(), "wrong destination above");
1236   __ jump(x->default_sux());
1237 }
1238 
1239 
1240 LIR_Opr LIRGenerator::getThreadPointer() {
1241   return FrameMap::as_pointer_opr(G2);
1242 }
1243 
1244 
1245 void LIRGenerator::trace_block_entry(BlockBegin* block) {
1246   __ move(LIR_OprFact::intConst(block->block_id()), FrameMap::O0_opr);
1247   LIR_OprList* args = new LIR_OprList(1);
1248   args->append(FrameMap::O0_opr);
1249   address func = CAST_FROM_FN_PTR(address, Runtime1::trace_block_entry);
1250   __ call_runtime_leaf(func, rlock_callee_saved(T_INT), LIR_OprFact::illegalOpr, args);
1251 }
1252 
1253 
1254 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1255                                         CodeEmitInfo* info) {
1256   __ store(value, address, info);
1257 }
1258 
1259 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1260                                        CodeEmitInfo* info) {
1261   __ load(address, result, info);
1262 }