1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "ci/ciUtilities.hpp"
  31 #include "gc/shared/cardTable.hpp"
  32 #include "gc/shared/cardTableBarrierSet.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "nativeInst_x86.hpp"
  35 #include "oops/compiledICHolder.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "prims/jvmtiExport.hpp"
  38 #include "register_x86.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/signature.hpp"
  41 #include "runtime/vframeArray.hpp"
  42 #include "utilities/macros.hpp"
  43 #include "vmreg_x86.inline.hpp"
  44 
  45 // Implementation of StubAssembler
  46 
  47 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  48   // setup registers
  49   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  50   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  51   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  52   assert(args_size >= 0, "illegal args_size");
  53   bool align_stack = false;
  54 #ifdef _LP64
  55   // At a method handle call, the stack may not be properly aligned
  56   // when returning with an exception.
  57   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  58 #endif
  59 
  60 #ifdef _LP64
  61   mov(c_rarg0, thread);
  62   set_num_rt_args(0); // Nothing on stack
  63 #else
  64   set_num_rt_args(1 + args_size);
  65 
  66   // push java thread (becomes first argument of C function)
  67   get_thread(thread);
  68   push(thread);
  69 #endif // _LP64
  70 
  71   int call_offset;
  72   if (!align_stack) {
  73     set_last_Java_frame(thread, noreg, rbp, NULL);
  74   } else {
  75     address the_pc = pc();
  76     call_offset = offset();
  77     set_last_Java_frame(thread, noreg, rbp, the_pc);
  78     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  79   }
  80 
  81   // do the call
  82   call(RuntimeAddress(entry));
  83   if (!align_stack) {
  84     call_offset = offset();
  85   }
  86   // verify callee-saved register
  87 #ifdef ASSERT
  88   guarantee(thread != rax, "change this code");
  89   push(rax);
  90   { Label L;
  91     get_thread(rax);
  92     cmpptr(thread, rax);
  93     jcc(Assembler::equal, L);
  94     int3();
  95     stop("StubAssembler::call_RT: rdi not callee saved?");
  96     bind(L);
  97   }
  98   pop(rax);
  99 #endif
 100   reset_last_Java_frame(thread, true);
 101 
 102   // discard thread and arguments
 103   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 104 
 105   // check for pending exceptions
 106   { Label L;
 107     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 108     jcc(Assembler::equal, L);
 109     // exception pending => remove activation and forward to exception handler
 110     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 111     // make sure that the vm_results are cleared
 112     if (oop_result1->is_valid()) {
 113       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 114     }
 115     if (metadata_result->is_valid()) {
 116       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 117     }
 118     if (frame_size() == no_frame_size) {
 119       leave();
 120       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 121     } else if (_stub_id == Runtime1::forward_exception_id) {
 122       should_not_reach_here();
 123     } else {
 124       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 125     }
 126     bind(L);
 127   }
 128   // get oop results if there are any and reset the values in the thread
 129   if (oop_result1->is_valid()) {
 130     get_vm_result(oop_result1, thread);
 131   }
 132   if (metadata_result->is_valid()) {
 133     get_vm_result_2(metadata_result, thread);
 134   }
 135   return call_offset;
 136 }
 137 
 138 
 139 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 140 #ifdef _LP64
 141   mov(c_rarg1, arg1);
 142 #else
 143   push(arg1);
 144 #endif // _LP64
 145   return call_RT(oop_result1, metadata_result, entry, 1);
 146 }
 147 
 148 
 149 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 150 #ifdef _LP64
 151   if (c_rarg1 == arg2) {
 152     if (c_rarg2 == arg1) {
 153       xchgq(arg1, arg2);
 154     } else {
 155       mov(c_rarg2, arg2);
 156       mov(c_rarg1, arg1);
 157     }
 158   } else {
 159     mov(c_rarg1, arg1);
 160     mov(c_rarg2, arg2);
 161   }
 162 #else
 163   push(arg2);
 164   push(arg1);
 165 #endif // _LP64
 166   return call_RT(oop_result1, metadata_result, entry, 2);
 167 }
 168 
 169 
 170 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 171 #ifdef _LP64
 172   // if there is any conflict use the stack
 173   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 174       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 175       arg3 == c_rarg1 || arg1 == c_rarg2) {
 176     push(arg3);
 177     push(arg2);
 178     push(arg1);
 179     pop(c_rarg1);
 180     pop(c_rarg2);
 181     pop(c_rarg3);
 182   } else {
 183     mov(c_rarg1, arg1);
 184     mov(c_rarg2, arg2);
 185     mov(c_rarg3, arg3);
 186   }
 187 #else
 188   push(arg3);
 189   push(arg2);
 190   push(arg1);
 191 #endif // _LP64
 192   return call_RT(oop_result1, metadata_result, entry, 3);
 193 }
 194 
 195 
 196 // Implementation of StubFrame
 197 
 198 class StubFrame: public StackObj {
 199  private:
 200   StubAssembler* _sasm;
 201 
 202  public:
 203   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 204   void load_argument(int offset_in_words, Register reg);
 205 
 206   ~StubFrame();
 207 };
 208 
 209 void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
 210   set_info(name, must_gc_arguments);
 211   enter();
 212 }
 213 
 214 void StubAssembler::epilogue() {
 215   leave();
 216   ret(0);
 217 }
 218 
 219 #define __ _sasm->
 220 
 221 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 222   _sasm = sasm;
 223   __ prologue(name, must_gc_arguments);
 224 }
 225 
 226 // load parameters that were stored with LIR_Assembler::store_parameter
 227 // Note: offsets for store_parameter and load_argument must match
 228 void StubFrame::load_argument(int offset_in_words, Register reg) {
 229   __ load_parameter(offset_in_words, reg);
 230 }
 231 
 232 
 233 StubFrame::~StubFrame() {
 234   __ epilogue();
 235 }
 236 
 237 #undef __
 238 
 239 
 240 // Implementation of Runtime1
 241 
 242 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 243 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 244 
 245 // Stack layout for saving/restoring  all the registers needed during a runtime
 246 // call (this includes deoptimization)
 247 // Note: note that users of this frame may well have arguments to some runtime
 248 // while these values are on the stack. These positions neglect those arguments
 249 // but the code in save_live_registers will take the argument count into
 250 // account.
 251 //
 252 #ifdef _LP64
 253   #define SLOT2(x) x,
 254   #define SLOT_PER_WORD 2
 255 #else
 256   #define SLOT2(x)
 257   #define SLOT_PER_WORD 1
 258 #endif // _LP64
 259 
 260 enum reg_save_layout {
 261   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 262   // happen and will assert if the stack size we create is misaligned
 263 #ifdef _LP64
 264   align_dummy_0, align_dummy_1,
 265 #endif // _LP64
 266 #ifdef _WIN64
 267   // Windows always allocates space for it's argument registers (see
 268   // frame::arg_reg_save_area_bytes).
 269   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 270   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 271   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 272   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 273 #endif // _WIN64
 274   xmm_regs_as_doubles_off,                                                                  // 32
 275   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 276   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 277   // fpu_state_end_off is exclusive
 278   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 279   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 280   extra_space_offset,                                                                       // 360
 281 #ifdef _LP64
 282   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 283   r14_off, r14H_off,                                                                        // 368, 372
 284   r13_off, r13H_off,                                                                        // 376, 380
 285   r12_off, r12H_off,                                                                        // 384, 388
 286   r11_off, r11H_off,                                                                        // 392, 396
 287   r10_off, r10H_off,                                                                        // 400, 404
 288   r9_off, r9H_off,                                                                          // 408, 412
 289   r8_off, r8H_off,                                                                          // 416, 420
 290   rdi_off, rdiH_off,                                                                        // 424, 428
 291 #else
 292   rdi_off = extra_space_offset,
 293 #endif // _LP64
 294   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 295   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 296   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 297   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 298   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 299   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 300   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 301   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 302   return_off, SLOT2(returnH_off)                                                            // 496, 500
 303   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 304 };
 305 
 306 // Save off registers which might be killed by calls into the runtime.
 307 // Tries to smart of about FP registers.  In particular we separate
 308 // saving and describing the FPU registers for deoptimization since we
 309 // have to save the FPU registers twice if we describe them and on P4
 310 // saving FPU registers which don't contain anything appears
 311 // expensive.  The deopt blob is the only thing which needs to
 312 // describe FPU registers.  In all other cases it should be sufficient
 313 // to simply save their current value.
 314 
 315 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 316                                 bool save_fpu_registers = true) {
 317 
 318   // In 64bit all the args are in regs so there are no additional stack slots
 319   LP64_ONLY(num_rt_args = 0);
 320   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 321   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 322   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word);
 323 
 324   // record saved value locations in an OopMap
 325   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 326   OopMap* map = new OopMap(frame_size_in_slots, 0);
 327   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 328   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 329   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 330   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 331   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 332   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 333 #ifdef _LP64
 334   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 335   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 336   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 337   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 338   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 339   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 342 
 343   // This is stupid but needed.
 344   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 345   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 346   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 347   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 348   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 349   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 350 
 351   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 352   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 353   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 354   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 355   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 356   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 359 #endif // _LP64
 360 
 361   int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 362 #ifdef _LP64
 363   if (UseAVX < 3) {
 364     xmm_bypass_limit = xmm_bypass_limit / 2;
 365   }
 366 #endif
 367 
 368   if (save_fpu_registers) {
 369     if (UseSSE < 2) {
 370       int fpu_off = float_regs_as_doubles_off;
 371       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 372         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 373         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 374         // %%% This is really a waste but we'll keep things as they were for now
 375         if (true) {
 376           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 377         }
 378         fpu_off += 2;
 379       }
 380       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 381     }
 382 
 383     if (UseSSE >= 2) {
 384       int xmm_off = xmm_regs_as_doubles_off;
 385       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 386         if (n < xmm_bypass_limit) {
 387           VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 388           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 389           // %%% This is really a waste but we'll keep things as they were for now
 390           if (true) {
 391             map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 392           }
 393         }
 394         xmm_off += 2;
 395       }
 396       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 397 
 398     } else if (UseSSE == 1) {
 399       int xmm_off = xmm_regs_as_doubles_off;
 400       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 401         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 402         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + num_rt_args), xmm_name_0);
 403         xmm_off += 2;
 404       }
 405       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 406     }
 407   }
 408 
 409   return map;
 410 }
 411 
 412 #define __ this->
 413 
 414 void C1_MacroAssembler::save_live_registers_no_oop_map(int num_rt_args, bool save_fpu_registers) {
 415   __ block_comment("save_live_registers");
 416 
 417   __ pusha();         // integer registers
 418 
 419   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 420   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 421 
 422   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 423 
 424 #ifdef ASSERT
 425   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 426 #endif
 427 
 428   if (save_fpu_registers) {
 429     if (UseSSE < 2) {
 430       // save FPU stack
 431       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 432       __ fwait();
 433 
 434 #ifdef ASSERT
 435       Label ok;
 436       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 437       __ jccb(Assembler::equal, ok);
 438       __ stop("corrupted control word detected");
 439       __ bind(ok);
 440 #endif
 441 
 442       // Reset the control word to guard against exceptions being unmasked
 443       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 444       // into the on stack copy and then reload that to make sure that the
 445       // current and future values are correct.
 446       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 447       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 448 
 449       // Save the FPU registers in de-opt-able form
 450       int offset = 0;
 451       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 452         __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 453         offset += 8;
 454       }
 455     }
 456 
 457     if (UseSSE >= 2) {
 458       // save XMM registers
 459       // XMM registers can contain float or double values, but this is not known here,
 460       // so always save them as doubles.
 461       // note that float values are _not_ converted automatically, so for float values
 462       // the second word contains only garbage data.
 463       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 464       int offset = 0;
 465 #ifdef _LP64
 466       if (UseAVX < 3) {
 467         xmm_bypass_limit = xmm_bypass_limit / 2;
 468       }
 469 #endif
 470       for (int n = 0; n < xmm_bypass_limit; n++) {
 471         XMMRegister xmm_name = as_XMMRegister(n);
 472         __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
 473         offset += 8;
 474       }
 475     } else if (UseSSE == 1) {
 476       // save XMM registers as float because double not supported without SSE2(num MMX == num fpu)
 477       int offset = 0;
 478       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 479         XMMRegister xmm_name = as_XMMRegister(n);
 480         __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset), xmm_name);
 481         offset += 8;
 482       }
 483     }
 484   }
 485 
 486   // FPU stack must be empty now
 487   __ verify_FPU(0, "save_live_registers");
 488 }
 489 
 490 #undef __
 491 #define __ sasm->
 492 
 493 static void restore_fpu(C1_MacroAssembler* sasm, bool restore_fpu_registers) {
 494   if (restore_fpu_registers) {
 495     if (UseSSE >= 2) {
 496       // restore XMM registers
 497       int xmm_bypass_limit = FrameMap::nof_xmm_regs;
 498 #ifdef _LP64
 499       if (UseAVX < 3) {
 500         xmm_bypass_limit = xmm_bypass_limit / 2;
 501       }
 502 #endif
 503       int offset = 0;
 504       for (int n = 0; n < xmm_bypass_limit; n++) {
 505         XMMRegister xmm_name = as_XMMRegister(n);
 506         __ movdbl(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 507         offset += 8;
 508       }
 509     } else if (UseSSE == 1) {
 510       // restore XMM registers(num MMX == num fpu)
 511       int offset = 0;
 512       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 513         XMMRegister xmm_name = as_XMMRegister(n);
 514         __ movflt(xmm_name, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + offset));
 515         offset += 8;
 516       }
 517     }
 518 
 519     if (UseSSE < 2) {
 520       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 521     } else {
 522       // check that FPU stack is really empty
 523       __ verify_FPU(0, "restore_live_registers");
 524     }
 525 
 526   } else {
 527     // check that FPU stack is really empty
 528     __ verify_FPU(0, "restore_live_registers");
 529   }
 530 
 531 #ifdef ASSERT
 532   {
 533     Label ok;
 534     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 535     __ jcc(Assembler::equal, ok);
 536     __ stop("bad offsets in frame");
 537     __ bind(ok);
 538   }
 539 #endif // ASSERT
 540 
 541   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 542 }
 543 
 544 #undef __
 545 #define __ this->
 546 
 547 void C1_MacroAssembler::restore_live_registers(bool restore_fpu_registers) {
 548   __ block_comment("restore_live_registers");
 549 
 550   restore_fpu(this, restore_fpu_registers);
 551   __ popa();
 552 }
 553 
 554 #undef __
 555 #define __ sasm->
 556 
 557 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 558                                    bool save_fpu_registers = true) {
 559   sasm->save_live_registers_no_oop_map(num_rt_args, save_fpu_registers);
 560   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 561 }
 562 
 563 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 564   sasm->restore_live_registers(restore_fpu_registers);
 565 }
 566 
 567 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 568   __ block_comment("restore_live_registers_except_rax");
 569 
 570   restore_fpu(sasm, restore_fpu_registers);
 571 
 572 #ifdef _LP64
 573   __ movptr(r15, Address(rsp, 0));
 574   __ movptr(r14, Address(rsp, wordSize));
 575   __ movptr(r13, Address(rsp, 2 * wordSize));
 576   __ movptr(r12, Address(rsp, 3 * wordSize));
 577   __ movptr(r11, Address(rsp, 4 * wordSize));
 578   __ movptr(r10, Address(rsp, 5 * wordSize));
 579   __ movptr(r9,  Address(rsp, 6 * wordSize));
 580   __ movptr(r8,  Address(rsp, 7 * wordSize));
 581   __ movptr(rdi, Address(rsp, 8 * wordSize));
 582   __ movptr(rsi, Address(rsp, 9 * wordSize));
 583   __ movptr(rbp, Address(rsp, 10 * wordSize));
 584   // skip rsp
 585   __ movptr(rbx, Address(rsp, 12 * wordSize));
 586   __ movptr(rdx, Address(rsp, 13 * wordSize));
 587   __ movptr(rcx, Address(rsp, 14 * wordSize));
 588 
 589   __ addptr(rsp, 16 * wordSize);
 590 #else
 591 
 592   __ pop(rdi);
 593   __ pop(rsi);
 594   __ pop(rbp);
 595   __ pop(rbx); // skip this value
 596   __ pop(rbx);
 597   __ pop(rdx);
 598   __ pop(rcx);
 599   __ addptr(rsp, BytesPerWord);
 600 #endif // _LP64
 601 }
 602 
 603 
 604 void Runtime1::initialize_pd() {
 605   // nothing to do
 606 }
 607 
 608 
 609 // target: the entry point of the method that creates and posts the exception oop
 610 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
 611 
 612 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 613   // preserve all registers
 614   int num_rt_args = has_argument ? 2 : 1;
 615   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 616 
 617   // now all registers are saved and can be used freely
 618   // verify that no old value is used accidentally
 619   __ invalidate_registers(true, true, true, true, true, true);
 620 
 621   // registers used by this stub
 622   const Register temp_reg = rbx;
 623 
 624   // load argument for exception that is passed as an argument into the stub
 625   if (has_argument) {
 626 #ifdef _LP64
 627     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 628 #else
 629     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 630     __ push(temp_reg);
 631 #endif // _LP64
 632   }
 633   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 634 
 635   OopMapSet* oop_maps = new OopMapSet();
 636   oop_maps->add_gc_map(call_offset, oop_map);
 637 
 638   __ stop("should not reach here");
 639 
 640   return oop_maps;
 641 }
 642 
 643 
 644 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 645   __ block_comment("generate_handle_exception");
 646 
 647   // incoming parameters
 648   const Register exception_oop = rax;
 649   const Register exception_pc  = rdx;
 650   // other registers used in this stub
 651   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 652 
 653   // Save registers, if required.
 654   OopMapSet* oop_maps = new OopMapSet();
 655   OopMap* oop_map = NULL;
 656   switch (id) {
 657   case forward_exception_id:
 658     // We're handling an exception in the context of a compiled frame.
 659     // The registers have been saved in the standard places.  Perform
 660     // an exception lookup in the caller and dispatch to the handler
 661     // if found.  Otherwise unwind and dispatch to the callers
 662     // exception handler.
 663     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 664 
 665     // load and clear pending exception oop into RAX
 666     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 667     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 668 
 669     // load issuing PC (the return address for this stub) into rdx
 670     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 671 
 672     // make sure that the vm_results are cleared (may be unnecessary)
 673     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 674     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 675     break;
 676   case handle_exception_nofpu_id:
 677   case handle_exception_id:
 678     // At this point all registers MAY be live.
 679     oop_map = save_live_registers(sasm, 1 /*thread*/, id != handle_exception_nofpu_id);
 680     break;
 681   case handle_exception_from_callee_id: {
 682     // At this point all registers except exception oop (RAX) and
 683     // exception pc (RDX) are dead.
 684     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 685     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 686     sasm->set_frame_size(frame_size);
 687     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 688     break;
 689   }
 690   default:  ShouldNotReachHere();
 691   }
 692 
 693 #ifdef TIERED
 694   // C2 can leave the fpu stack dirty
 695   if (UseSSE < 2) {
 696     __ empty_FPU_stack();
 697   }
 698 #endif // TIERED
 699 
 700   // verify that only rax, and rdx is valid at this time
 701   __ invalidate_registers(false, true, true, false, true, true);
 702   // verify that rax, contains a valid exception
 703   __ verify_not_null_oop(exception_oop);
 704 
 705   // load address of JavaThread object for thread-local data
 706   NOT_LP64(__ get_thread(thread);)
 707 
 708 #ifdef ASSERT
 709   // check that fields in JavaThread for exception oop and issuing pc are
 710   // empty before writing to them
 711   Label oop_empty;
 712   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 713   __ jcc(Assembler::equal, oop_empty);
 714   __ stop("exception oop already set");
 715   __ bind(oop_empty);
 716 
 717   Label pc_empty;
 718   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 719   __ jcc(Assembler::equal, pc_empty);
 720   __ stop("exception pc already set");
 721   __ bind(pc_empty);
 722 #endif
 723 
 724   // save exception oop and issuing pc into JavaThread
 725   // (exception handler will load it from here)
 726   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 727   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 728 
 729   // patch throwing pc into return address (has bci & oop map)
 730   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 731 
 732   // compute the exception handler.
 733   // the exception oop and the throwing pc are read from the fields in JavaThread
 734   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 735   oop_maps->add_gc_map(call_offset, oop_map);
 736 
 737   // rax: handler address
 738   //      will be the deopt blob if nmethod was deoptimized while we looked up
 739   //      handler regardless of whether handler existed in the nmethod.
 740 
 741   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 742   __ invalidate_registers(false, true, true, true, true, true);
 743 
 744   // patch the return address, this stub will directly return to the exception handler
 745   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 746 
 747   switch (id) {
 748   case forward_exception_id:
 749   case handle_exception_nofpu_id:
 750   case handle_exception_id:
 751     // Restore the registers that were saved at the beginning.
 752     restore_live_registers(sasm, id != handle_exception_nofpu_id);
 753     break;
 754   case handle_exception_from_callee_id:
 755     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 756     // since we do a leave anyway.
 757 
 758     // Pop the return address.
 759     __ leave();
 760     __ pop(rcx);
 761     __ jmp(rcx);  // jump to exception handler
 762     break;
 763   default:  ShouldNotReachHere();
 764   }
 765 
 766   return oop_maps;
 767 }
 768 
 769 
 770 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 771   // incoming parameters
 772   const Register exception_oop = rax;
 773   // callee-saved copy of exception_oop during runtime call
 774   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 775   // other registers used in this stub
 776   const Register exception_pc = rdx;
 777   const Register handler_addr = rbx;
 778   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 779 
 780   // verify that only rax, is valid at this time
 781   __ invalidate_registers(false, true, true, true, true, true);
 782 
 783 #ifdef ASSERT
 784   // check that fields in JavaThread for exception oop and issuing pc are empty
 785   NOT_LP64(__ get_thread(thread);)
 786   Label oop_empty;
 787   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 788   __ jcc(Assembler::equal, oop_empty);
 789   __ stop("exception oop must be empty");
 790   __ bind(oop_empty);
 791 
 792   Label pc_empty;
 793   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 794   __ jcc(Assembler::equal, pc_empty);
 795   __ stop("exception pc must be empty");
 796   __ bind(pc_empty);
 797 #endif
 798 
 799   // clear the FPU stack in case any FPU results are left behind
 800   __ empty_FPU_stack();
 801 
 802   // save exception_oop in callee-saved register to preserve it during runtime calls
 803   __ verify_not_null_oop(exception_oop);
 804   __ movptr(exception_oop_callee_saved, exception_oop);
 805 
 806   NOT_LP64(__ get_thread(thread);)
 807   // Get return address (is on top of stack after leave).
 808   __ movptr(exception_pc, Address(rsp, 0));
 809 
 810   // search the exception handler address of the caller (using the return address)
 811   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 812   // rax: exception handler address of the caller
 813 
 814   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 815   __ invalidate_registers(false, true, true, true, false, true);
 816 
 817   // move result of call into correct register
 818   __ movptr(handler_addr, rax);
 819 
 820   // Restore exception oop to RAX (required convention of exception handler).
 821   __ movptr(exception_oop, exception_oop_callee_saved);
 822 
 823   // verify that there is really a valid exception in rax
 824   __ verify_not_null_oop(exception_oop);
 825 
 826   // get throwing pc (= return address).
 827   // rdx has been destroyed by the call, so it must be set again
 828   // the pop is also necessary to simulate the effect of a ret(0)
 829   __ pop(exception_pc);
 830 
 831   // continue at exception handler (return address removed)
 832   // note: do *not* remove arguments when unwinding the
 833   //       activation since the caller assumes having
 834   //       all arguments on the stack when entering the
 835   //       runtime to determine the exception handler
 836   //       (GC happens at call site with arguments!)
 837   // rax: exception oop
 838   // rdx: throwing pc
 839   // rbx: exception handler
 840   __ jmp(handler_addr);
 841 }
 842 
 843 
 844 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 845   // use the maximum number of runtime-arguments here because it is difficult to
 846   // distinguish each RT-Call.
 847   // Note: This number affects also the RT-Call in generate_handle_exception because
 848   //       the oop-map is shared for all calls.
 849   const int num_rt_args = 2;  // thread + dummy
 850 
 851   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 852   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 853 
 854   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 855 
 856 #ifdef _LP64
 857   const Register thread = r15_thread;
 858   // No need to worry about dummy
 859   __ mov(c_rarg0, thread);
 860 #else
 861   __ push(rax); // push dummy
 862 
 863   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 864   // push java thread (becomes first argument of C function)
 865   __ get_thread(thread);
 866   __ push(thread);
 867 #endif // _LP64
 868   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 869   // do the call
 870   __ call(RuntimeAddress(target));
 871   OopMapSet* oop_maps = new OopMapSet();
 872   oop_maps->add_gc_map(__ offset(), oop_map);
 873   // verify callee-saved register
 874 #ifdef ASSERT
 875   guarantee(thread != rax, "change this code");
 876   __ push(rax);
 877   { Label L;
 878     __ get_thread(rax);
 879     __ cmpptr(thread, rax);
 880     __ jcc(Assembler::equal, L);
 881     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 882     __ bind(L);
 883   }
 884   __ pop(rax);
 885 #endif
 886   __ reset_last_Java_frame(thread, true);
 887 #ifndef _LP64
 888   __ pop(rcx); // discard thread arg
 889   __ pop(rcx); // discard dummy
 890 #endif // _LP64
 891 
 892   // check for pending exceptions
 893   { Label L;
 894     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 895     __ jcc(Assembler::equal, L);
 896     // exception pending => remove activation and forward to exception handler
 897 
 898     __ testptr(rax, rax);                                   // have we deoptimized?
 899     __ jump_cc(Assembler::equal,
 900                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 901 
 902     // the deopt blob expects exceptions in the special fields of
 903     // JavaThread, so copy and clear pending exception.
 904 
 905     // load and clear pending exception
 906     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 907     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 908 
 909     // check that there is really a valid exception
 910     __ verify_not_null_oop(rax);
 911 
 912     // load throwing pc: this is the return address of the stub
 913     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 914 
 915 #ifdef ASSERT
 916     // check that fields in JavaThread for exception oop and issuing pc are empty
 917     Label oop_empty;
 918     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 919     __ jcc(Assembler::equal, oop_empty);
 920     __ stop("exception oop must be empty");
 921     __ bind(oop_empty);
 922 
 923     Label pc_empty;
 924     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 925     __ jcc(Assembler::equal, pc_empty);
 926     __ stop("exception pc must be empty");
 927     __ bind(pc_empty);
 928 #endif
 929 
 930     // store exception oop and throwing pc to JavaThread
 931     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 932     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 933 
 934     restore_live_registers(sasm);
 935 
 936     __ leave();
 937     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 938 
 939     // Forward the exception directly to deopt blob. We can blow no
 940     // registers and must leave throwing pc on the stack.  A patch may
 941     // have values live in registers so the entry point with the
 942     // exception in tls.
 943     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 944 
 945     __ bind(L);
 946   }
 947 
 948 
 949   // Runtime will return true if the nmethod has been deoptimized during
 950   // the patching process. In that case we must do a deopt reexecute instead.
 951 
 952   Label reexecuteEntry, cont;
 953 
 954   __ testptr(rax, rax);                                 // have we deoptimized?
 955   __ jcc(Assembler::equal, cont);                       // no
 956 
 957   // Will reexecute. Proper return address is already on the stack we just restore
 958   // registers, pop all of our frame but the return address and jump to the deopt blob
 959   restore_live_registers(sasm);
 960   __ leave();
 961   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 962 
 963   __ bind(cont);
 964   restore_live_registers(sasm);
 965   __ leave();
 966   __ ret(0);
 967 
 968   return oop_maps;
 969 }
 970 
 971 
 972 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 973 
 974   // for better readability
 975   const bool must_gc_arguments = true;
 976   const bool dont_gc_arguments = false;
 977 
 978   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 979   bool save_fpu_registers = true;
 980 
 981   // stub code & info for the different stubs
 982   OopMapSet* oop_maps = NULL;
 983   switch (id) {
 984     case forward_exception_id:
 985       {
 986         oop_maps = generate_handle_exception(id, sasm);
 987         __ leave();
 988         __ ret(0);
 989       }
 990       break;
 991 
 992     case new_instance_id:
 993     case fast_new_instance_id:
 994     case fast_new_instance_init_check_id:
 995       {
 996         Register klass = rdx; // Incoming
 997         Register obj   = rax; // Result
 998 
 999         if (id == new_instance_id) {
1000           __ set_info("new_instance", dont_gc_arguments);
1001         } else if (id == fast_new_instance_id) {
1002           __ set_info("fast new_instance", dont_gc_arguments);
1003         } else {
1004           assert(id == fast_new_instance_init_check_id, "bad StubID");
1005           __ set_info("fast new_instance init check", dont_gc_arguments);
1006         }
1007 
1008         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) && UseTLAB
1009             && Universe::heap()->supports_inline_contig_alloc()) {
1010           Label slow_path;
1011           Register obj_size = rcx;
1012           Register t1       = rbx;
1013           Register t2       = rsi;
1014           assert_different_registers(klass, obj, obj_size, t1, t2);
1015 
1016           __ push(rdi);
1017           __ push(rbx);
1018 
1019           if (id == fast_new_instance_init_check_id) {
1020             // make sure the klass is initialized
1021             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1022             __ jcc(Assembler::notEqual, slow_path);
1023           }
1024 
1025 #ifdef ASSERT
1026           // assert object can be fast path allocated
1027           {
1028             Label ok, not_ok;
1029             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1030             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1031             __ jcc(Assembler::lessEqual, not_ok);
1032             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1033             __ jcc(Assembler::zero, ok);
1034             __ bind(not_ok);
1035             __ stop("assert(can be fast path allocated)");
1036             __ should_not_reach_here();
1037             __ bind(ok);
1038           }
1039 #endif // ASSERT
1040 
1041           // if we got here then the TLAB allocation failed, so try
1042           // refilling the TLAB or allocating directly from eden.
1043           Label retry_tlab, try_eden;
1044           const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
1045           NOT_LP64(__ get_thread(thread));
1046 
1047           __ bind(try_eden);
1048           // get the instance size (size is postive so movl is fine for 64bit)
1049           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1050 
1051           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1052           __ incr_allocated_bytes(thread, obj_size, 0);
1053 
1054           __ initialize_object(obj, klass, obj_size, 0, t1, t2, /* is_tlab_allocated */ false);
1055           __ verify_oop(obj);
1056           __ pop(rbx);
1057           __ pop(rdi);
1058           __ ret(0);
1059 
1060           __ bind(slow_path);
1061           __ pop(rbx);
1062           __ pop(rdi);
1063         }
1064 
1065         __ enter();
1066         OopMap* map = save_live_registers(sasm, 2);
1067         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1068         oop_maps = new OopMapSet();
1069         oop_maps->add_gc_map(call_offset, map);
1070         restore_live_registers_except_rax(sasm);
1071         __ verify_oop(obj);
1072         __ leave();
1073         __ ret(0);
1074 
1075         // rax,: new instance
1076       }
1077 
1078       break;
1079 
1080     case counter_overflow_id:
1081       {
1082         Register bci = rax, method = rbx;
1083         __ enter();
1084         OopMap* map = save_live_registers(sasm, 3);
1085         // Retrieve bci
1086         __ movl(bci, Address(rbp, 2*BytesPerWord));
1087         // And a pointer to the Method*
1088         __ movptr(method, Address(rbp, 3*BytesPerWord));
1089         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1090         oop_maps = new OopMapSet();
1091         oop_maps->add_gc_map(call_offset, map);
1092         restore_live_registers(sasm);
1093         __ leave();
1094         __ ret(0);
1095       }
1096       break;
1097 
1098     case new_type_array_id:
1099     case new_object_array_id:
1100       {
1101         Register length   = rbx; // Incoming
1102         Register klass    = rdx; // Incoming
1103         Register obj      = rax; // Result
1104 
1105         if (id == new_type_array_id) {
1106           __ set_info("new_type_array", dont_gc_arguments);
1107         } else {
1108           __ set_info("new_object_array", dont_gc_arguments);
1109         }
1110 
1111 #ifdef ASSERT
1112         // assert object type is really an array of the proper kind
1113         {
1114           Label ok;
1115           Register t0 = obj;
1116           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1117           __ sarl(t0, Klass::_lh_array_tag_shift);
1118           int tag = ((id == new_type_array_id)
1119                      ? Klass::_lh_array_tag_type_value
1120                      : Klass::_lh_array_tag_obj_value);
1121           __ cmpl(t0, tag);
1122           __ jcc(Assembler::equal, ok);
1123           __ stop("assert(is an array klass)");
1124           __ should_not_reach_here();
1125           __ bind(ok);
1126         }
1127 #endif // ASSERT
1128 
1129         // If we got here, the TLAB allocation failed, so try allocating from
1130         // eden if inline contiguous allocations are supported.
1131         if (UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
1132           Register arr_size = rsi;
1133           Register t1       = rcx;  // must be rcx for use as shift count
1134           Register t2       = rdi;
1135           Label slow_path;
1136 
1137           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1138           // since size is positive movl does right thing on 64bit
1139           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1140           // since size is postive movl does right thing on 64bit
1141           __ movl(arr_size, length);
1142           assert(t1 == rcx, "fixed register usage");
1143           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1144           __ shrptr(t1, Klass::_lh_header_size_shift);
1145           __ andptr(t1, Klass::_lh_header_size_mask);
1146           __ addptr(arr_size, t1);
1147           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1148           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1149 
1150           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1151 
1152           // Using t2 for non 64-bit.
1153           const Register thread = NOT_LP64(t2) LP64_ONLY(r15_thread);
1154           NOT_LP64(__ get_thread(thread));
1155           __ incr_allocated_bytes(thread, arr_size, 0);
1156 
1157           __ initialize_header(obj, klass, length, t1, t2);
1158           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1159           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1160           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1161           __ andptr(t1, Klass::_lh_header_size_mask);
1162           __ subptr(arr_size, t1);  // body length
1163           __ addptr(t1, obj);       // body start
1164           __ initialize_body(t1, arr_size, 0, t2);
1165           __ verify_oop(obj);
1166           __ ret(0);
1167 
1168           __ bind(slow_path);
1169         }
1170 
1171         __ enter();
1172         OopMap* map = save_live_registers(sasm, 3);
1173         int call_offset;
1174         if (id == new_type_array_id) {
1175           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1176         } else {
1177           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1178         }
1179 
1180         oop_maps = new OopMapSet();
1181         oop_maps->add_gc_map(call_offset, map);
1182         restore_live_registers_except_rax(sasm);
1183 
1184         __ verify_oop(obj);
1185         __ leave();
1186         __ ret(0);
1187 
1188         // rax,: new array
1189       }
1190       break;
1191 
1192     case new_multi_array_id:
1193       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1194         // rax,: klass
1195         // rbx,: rank
1196         // rcx: address of 1st dimension
1197         OopMap* map = save_live_registers(sasm, 4);
1198         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1199 
1200         oop_maps = new OopMapSet();
1201         oop_maps->add_gc_map(call_offset, map);
1202         restore_live_registers_except_rax(sasm);
1203 
1204         // rax,: new multi array
1205         __ verify_oop(rax);
1206       }
1207       break;
1208 
1209     case register_finalizer_id:
1210       {
1211         __ set_info("register_finalizer", dont_gc_arguments);
1212 
1213         // This is called via call_runtime so the arguments
1214         // will be place in C abi locations
1215 
1216 #ifdef _LP64
1217         __ verify_oop(c_rarg0);
1218         __ mov(rax, c_rarg0);
1219 #else
1220         // The object is passed on the stack and we haven't pushed a
1221         // frame yet so it's one work away from top of stack.
1222         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1223         __ verify_oop(rax);
1224 #endif // _LP64
1225 
1226         // load the klass and check the has finalizer flag
1227         Label register_finalizer;
1228         Register t = rsi;
1229         __ load_klass(t, rax);
1230         __ movl(t, Address(t, Klass::access_flags_offset()));
1231         __ testl(t, JVM_ACC_HAS_FINALIZER);
1232         __ jcc(Assembler::notZero, register_finalizer);
1233         __ ret(0);
1234 
1235         __ bind(register_finalizer);
1236         __ enter();
1237         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1238         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1239         oop_maps = new OopMapSet();
1240         oop_maps->add_gc_map(call_offset, oop_map);
1241 
1242         // Now restore all the live registers
1243         restore_live_registers(sasm);
1244 
1245         __ leave();
1246         __ ret(0);
1247       }
1248       break;
1249 
1250     case throw_range_check_failed_id:
1251       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1252         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1253       }
1254       break;
1255 
1256     case throw_index_exception_id:
1257       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1258         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1259       }
1260       break;
1261 
1262     case throw_div0_exception_id:
1263       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1264         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1265       }
1266       break;
1267 
1268     case throw_null_pointer_exception_id:
1269       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1270         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1271       }
1272       break;
1273 
1274     case handle_exception_nofpu_id:
1275     case handle_exception_id:
1276       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1277         oop_maps = generate_handle_exception(id, sasm);
1278       }
1279       break;
1280 
1281     case handle_exception_from_callee_id:
1282       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1283         oop_maps = generate_handle_exception(id, sasm);
1284       }
1285       break;
1286 
1287     case unwind_exception_id:
1288       { __ set_info("unwind_exception", dont_gc_arguments);
1289         // note: no stubframe since we are about to leave the current
1290         //       activation and we are calling a leaf VM function only.
1291         generate_unwind_exception(sasm);
1292       }
1293       break;
1294 
1295     case throw_array_store_exception_id:
1296       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1297         // tos + 0: link
1298         //     + 1: return address
1299         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1300       }
1301       break;
1302 
1303     case throw_class_cast_exception_id:
1304       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1305         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1306       }
1307       break;
1308 
1309     case throw_incompatible_class_change_error_id:
1310       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1311         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1312       }
1313       break;
1314 
1315     case slow_subtype_check_id:
1316       {
1317         // Typical calling sequence:
1318         // __ push(klass_RInfo);  // object klass or other subclass
1319         // __ push(sup_k_RInfo);  // array element klass or other superclass
1320         // __ call(slow_subtype_check);
1321         // Note that the subclass is pushed first, and is therefore deepest.
1322         // Previous versions of this code reversed the names 'sub' and 'super'.
1323         // This was operationally harmless but made the code unreadable.
1324         enum layout {
1325           rax_off, SLOT2(raxH_off)
1326           rcx_off, SLOT2(rcxH_off)
1327           rsi_off, SLOT2(rsiH_off)
1328           rdi_off, SLOT2(rdiH_off)
1329           // saved_rbp_off, SLOT2(saved_rbpH_off)
1330           return_off, SLOT2(returnH_off)
1331           sup_k_off, SLOT2(sup_kH_off)
1332           klass_off, SLOT2(superH_off)
1333           framesize,
1334           result_off = klass_off  // deepest argument is also the return value
1335         };
1336 
1337         __ set_info("slow_subtype_check", dont_gc_arguments);
1338         __ push(rdi);
1339         __ push(rsi);
1340         __ push(rcx);
1341         __ push(rax);
1342 
1343         // This is called by pushing args and not with C abi
1344         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1345         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1346 
1347         Label miss;
1348         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1349 
1350         // fallthrough on success:
1351         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1352         __ pop(rax);
1353         __ pop(rcx);
1354         __ pop(rsi);
1355         __ pop(rdi);
1356         __ ret(0);
1357 
1358         __ bind(miss);
1359         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1360         __ pop(rax);
1361         __ pop(rcx);
1362         __ pop(rsi);
1363         __ pop(rdi);
1364         __ ret(0);
1365       }
1366       break;
1367 
1368     case monitorenter_nofpu_id:
1369       save_fpu_registers = false;
1370       // fall through
1371     case monitorenter_id:
1372       {
1373         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1374         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1375 
1376         // Called with store_parameter and not C abi
1377 
1378         f.load_argument(1, rax); // rax,: object
1379         f.load_argument(0, rbx); // rbx,: lock address
1380 
1381         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1382 
1383         oop_maps = new OopMapSet();
1384         oop_maps->add_gc_map(call_offset, map);
1385         restore_live_registers(sasm, save_fpu_registers);
1386       }
1387       break;
1388 
1389     case monitorexit_nofpu_id:
1390       save_fpu_registers = false;
1391       // fall through
1392     case monitorexit_id:
1393       {
1394         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1395         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1396 
1397         // Called with store_parameter and not C abi
1398 
1399         f.load_argument(0, rax); // rax,: lock address
1400 
1401         // note: really a leaf routine but must setup last java sp
1402         //       => use call_RT for now (speed can be improved by
1403         //       doing last java sp setup manually)
1404         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1405 
1406         oop_maps = new OopMapSet();
1407         oop_maps->add_gc_map(call_offset, map);
1408         restore_live_registers(sasm, save_fpu_registers);
1409       }
1410       break;
1411 
1412     case deoptimize_id:
1413       {
1414         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1415         const int num_rt_args = 2;  // thread, trap_request
1416         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1417         f.load_argument(0, rax);
1418         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), rax);
1419         oop_maps = new OopMapSet();
1420         oop_maps->add_gc_map(call_offset, oop_map);
1421         restore_live_registers(sasm);
1422         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1423         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1424         __ leave();
1425         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1426       }
1427       break;
1428 
1429     case access_field_patching_id:
1430       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1431         // we should set up register map
1432         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1433       }
1434       break;
1435 
1436     case load_klass_patching_id:
1437       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1438         // we should set up register map
1439         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1440       }
1441       break;
1442 
1443     case load_mirror_patching_id:
1444       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1445         // we should set up register map
1446         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1447       }
1448       break;
1449 
1450     case load_appendix_patching_id:
1451       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1452         // we should set up register map
1453         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1454       }
1455       break;
1456 
1457     case dtrace_object_alloc_id:
1458       { // rax,: object
1459         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1460         // we can't gc here so skip the oopmap but make sure that all
1461         // the live registers get saved.
1462         save_live_registers(sasm, 1);
1463 
1464         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1465         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1466         NOT_LP64(__ pop(rax));
1467 
1468         restore_live_registers(sasm);
1469       }
1470       break;
1471 
1472     case fpu2long_stub_id:
1473       {
1474         // rax, and rdx are destroyed, but should be free since the result is returned there
1475         // preserve rsi,ecx
1476         __ push(rsi);
1477         __ push(rcx);
1478         LP64_ONLY(__ push(rdx);)
1479 
1480         // check for NaN
1481         Label return0, do_return, return_min_jlong, do_convert;
1482 
1483         Address value_high_word(rsp, wordSize + 4);
1484         Address value_low_word(rsp, wordSize);
1485         Address result_high_word(rsp, 3*wordSize + 4);
1486         Address result_low_word(rsp, 3*wordSize);
1487 
1488         __ subptr(rsp, 32);                    // more than enough on 32bit
1489         __ fst_d(value_low_word);
1490         __ movl(rax, value_high_word);
1491         __ andl(rax, 0x7ff00000);
1492         __ cmpl(rax, 0x7ff00000);
1493         __ jcc(Assembler::notEqual, do_convert);
1494         __ movl(rax, value_high_word);
1495         __ andl(rax, 0xfffff);
1496         __ orl(rax, value_low_word);
1497         __ jcc(Assembler::notZero, return0);
1498 
1499         __ bind(do_convert);
1500         __ fnstcw(Address(rsp, 0));
1501         __ movzwl(rax, Address(rsp, 0));
1502         __ orl(rax, 0xc00);
1503         __ movw(Address(rsp, 2), rax);
1504         __ fldcw(Address(rsp, 2));
1505         __ fwait();
1506         __ fistp_d(result_low_word);
1507         __ fldcw(Address(rsp, 0));
1508         __ fwait();
1509         // This gets the entire long in rax on 64bit
1510         __ movptr(rax, result_low_word);
1511         // testing of high bits
1512         __ movl(rdx, result_high_word);
1513         __ mov(rcx, rax);
1514         // What the heck is the point of the next instruction???
1515         __ xorl(rcx, 0x0);
1516         __ movl(rsi, 0x80000000);
1517         __ xorl(rsi, rdx);
1518         __ orl(rcx, rsi);
1519         __ jcc(Assembler::notEqual, do_return);
1520         __ fldz();
1521         __ fcomp_d(value_low_word);
1522         __ fnstsw_ax();
1523 #ifdef _LP64
1524         __ testl(rax, 0x4100);  // ZF & CF == 0
1525         __ jcc(Assembler::equal, return_min_jlong);
1526 #else
1527         __ sahf();
1528         __ jcc(Assembler::above, return_min_jlong);
1529 #endif // _LP64
1530         // return max_jlong
1531 #ifndef _LP64
1532         __ movl(rdx, 0x7fffffff);
1533         __ movl(rax, 0xffffffff);
1534 #else
1535         __ mov64(rax, CONST64(0x7fffffffffffffff));
1536 #endif // _LP64
1537         __ jmp(do_return);
1538 
1539         __ bind(return_min_jlong);
1540 #ifndef _LP64
1541         __ movl(rdx, 0x80000000);
1542         __ xorl(rax, rax);
1543 #else
1544         __ mov64(rax, UCONST64(0x8000000000000000));
1545 #endif // _LP64
1546         __ jmp(do_return);
1547 
1548         __ bind(return0);
1549         __ fpop();
1550 #ifndef _LP64
1551         __ xorptr(rdx,rdx);
1552         __ xorptr(rax,rax);
1553 #else
1554         __ xorptr(rax, rax);
1555 #endif // _LP64
1556 
1557         __ bind(do_return);
1558         __ addptr(rsp, 32);
1559         LP64_ONLY(__ pop(rdx);)
1560         __ pop(rcx);
1561         __ pop(rsi);
1562         __ ret(0);
1563       }
1564       break;
1565 
1566     case predicate_failed_trap_id:
1567       {
1568         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1569 
1570         OopMap* map = save_live_registers(sasm, 1);
1571 
1572         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1573         oop_maps = new OopMapSet();
1574         oop_maps->add_gc_map(call_offset, map);
1575         restore_live_registers(sasm);
1576         __ leave();
1577         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1578         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1579 
1580         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1581       }
1582       break;
1583 
1584     default:
1585       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1586         __ movptr(rax, (int)id);
1587         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1588         __ should_not_reach_here();
1589       }
1590       break;
1591   }
1592   return oop_maps;
1593 }
1594 
1595 #undef __
1596 
1597 const char *Runtime1::pd_name_for_address(address entry) {
1598   return "<unknown function>";
1599 }