1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/c1/cardTableBarrierSetC1.hpp"
  39 #include "gc/shared/c1/barrierSetC1.hpp"
  40 #include "gc/shared/c1/modRefBarrierSetC1.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 #include "runtime/stubRoutines.hpp"
  44 #include "runtime/vm_version.hpp"
  45 #include "utilities/bitMap.inline.hpp"
  46 #include "utilities/macros.hpp"
  47 #ifdef TRACE_HAVE_INTRINSICS
  48 #include "trace/traceMacros.hpp"
  49 #endif
  50 
  51 #ifdef ASSERT
  52 #define __ gen()->lir(__FILE__, __LINE__)->
  53 #else
  54 #define __ gen()->lir()->
  55 #endif
  56 
  57 #ifndef PATCHED_ADDR
  58 #define PATCHED_ADDR  (max_jint)
  59 #endif
  60 
  61 void PhiResolverState::reset(int max_vregs) {
  62   // Initialize array sizes
  63   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  64   _virtual_operands.trunc_to(0);
  65   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  66   _other_operands.trunc_to(0);
  67   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  68   _vreg_table.trunc_to(0);
  69 }
  70 
  71 
  72 
  73 //--------------------------------------------------------------
  74 // PhiResolver
  75 
  76 // Resolves cycles:
  77 //
  78 //  r1 := r2  becomes  temp := r1
  79 //  r2 := r1           r1 := r2
  80 //                     r2 := temp
  81 // and orders moves:
  82 //
  83 //  r2 := r3  becomes  r1 := r2
  84 //  r1 := r2           r2 := r3
  85 
  86 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  87  : _gen(gen)
  88  , _state(gen->resolver_state())
  89  , _temp(LIR_OprFact::illegalOpr)
  90 {
  91   // reinitialize the shared state arrays
  92   _state.reset(max_vregs);
  93 }
  94 
  95 
  96 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  97   assert(src->is_valid(), "");
  98   assert(dest->is_valid(), "");
  99   __ move(src, dest);
 100 }
 101 
 102 
 103 void PhiResolver::move_temp_to(LIR_Opr dest) {
 104   assert(_temp->is_valid(), "");
 105   emit_move(_temp, dest);
 106   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 107 }
 108 
 109 
 110 void PhiResolver::move_to_temp(LIR_Opr src) {
 111   assert(_temp->is_illegal(), "");
 112   _temp = _gen->new_register(src->type());
 113   emit_move(src, _temp);
 114 }
 115 
 116 
 117 // Traverse assignment graph in depth first order and generate moves in post order
 118 // ie. two assignments: b := c, a := b start with node c:
 119 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 120 // Generates moves in this order: move b to a and move c to b
 121 // ie. cycle a := b, b := a start with node a
 122 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 123 // Generates moves in this order: move b to temp, move a to b, move temp to a
 124 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 125   if (!dest->visited()) {
 126     dest->set_visited();
 127     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 128       move(dest, dest->destination_at(i));
 129     }
 130   } else if (!dest->start_node()) {
 131     // cylce in graph detected
 132     assert(_loop == NULL, "only one loop valid!");
 133     _loop = dest;
 134     move_to_temp(src->operand());
 135     return;
 136   } // else dest is a start node
 137 
 138   if (!dest->assigned()) {
 139     if (_loop == dest) {
 140       move_temp_to(dest->operand());
 141       dest->set_assigned();
 142     } else if (src != NULL) {
 143       emit_move(src->operand(), dest->operand());
 144       dest->set_assigned();
 145     }
 146   }
 147 }
 148 
 149 
 150 PhiResolver::~PhiResolver() {
 151   int i;
 152   // resolve any cycles in moves from and to virtual registers
 153   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 154     ResolveNode* node = virtual_operands().at(i);
 155     if (!node->visited()) {
 156       _loop = NULL;
 157       move(NULL, node);
 158       node->set_start_node();
 159       assert(_temp->is_illegal(), "move_temp_to() call missing");
 160     }
 161   }
 162 
 163   // generate move for move from non virtual register to abitrary destination
 164   for (i = other_operands().length() - 1; i >= 0; i --) {
 165     ResolveNode* node = other_operands().at(i);
 166     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 167       emit_move(node->operand(), node->destination_at(j)->operand());
 168     }
 169   }
 170 }
 171 
 172 
 173 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 174   ResolveNode* node;
 175   if (opr->is_virtual()) {
 176     int vreg_num = opr->vreg_number();
 177     node = vreg_table().at_grow(vreg_num, NULL);
 178     assert(node == NULL || node->operand() == opr, "");
 179     if (node == NULL) {
 180       node = new ResolveNode(opr);
 181       vreg_table().at_put(vreg_num, node);
 182     }
 183     // Make sure that all virtual operands show up in the list when
 184     // they are used as the source of a move.
 185     if (source && !virtual_operands().contains(node)) {
 186       virtual_operands().append(node);
 187     }
 188   } else {
 189     assert(source, "");
 190     node = new ResolveNode(opr);
 191     other_operands().append(node);
 192   }
 193   return node;
 194 }
 195 
 196 
 197 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 198   assert(dest->is_virtual(), "");
 199   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 200   assert(src->is_valid(), "");
 201   assert(dest->is_valid(), "");
 202   ResolveNode* source = source_node(src);
 203   source->append(destination_node(dest));
 204 }
 205 
 206 
 207 //--------------------------------------------------------------
 208 // LIRItem
 209 
 210 void LIRItem::set_result(LIR_Opr opr) {
 211   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 212   value()->set_operand(opr);
 213 
 214   if (opr->is_virtual()) {
 215     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 216   }
 217 
 218   _result = opr;
 219 }
 220 
 221 void LIRItem::load_item() {
 222   if (result()->is_illegal()) {
 223     // update the items result
 224     _result = value()->operand();
 225   }
 226   if (!result()->is_register()) {
 227     LIR_Opr reg = _gen->new_register(value()->type());
 228     __ move(result(), reg);
 229     if (result()->is_constant()) {
 230       _result = reg;
 231     } else {
 232       set_result(reg);
 233     }
 234   }
 235 }
 236 
 237 
 238 void LIRItem::load_for_store(BasicType type) {
 239   if (_gen->can_store_as_constant(value(), type)) {
 240     _result = value()->operand();
 241     if (!_result->is_constant()) {
 242       _result = LIR_OprFact::value_type(value()->type());
 243     }
 244   } else if (type == T_BYTE || type == T_BOOLEAN) {
 245     load_byte_item();
 246   } else {
 247     load_item();
 248   }
 249 }
 250 
 251 void LIRItem::load_item_force(LIR_Opr reg) {
 252   LIR_Opr r = result();
 253   if (r != reg) {
 254 #if !defined(ARM) && !defined(E500V2)
 255     if (r->type() != reg->type()) {
 256       // moves between different types need an intervening spill slot
 257       r = _gen->force_to_spill(r, reg->type());
 258     }
 259 #endif
 260     __ move(r, reg);
 261     _result = reg;
 262   }
 263 }
 264 
 265 ciObject* LIRItem::get_jobject_constant() const {
 266   ObjectType* oc = type()->as_ObjectType();
 267   if (oc) {
 268     return oc->constant_value();
 269   }
 270   return NULL;
 271 }
 272 
 273 
 274 jint LIRItem::get_jint_constant() const {
 275   assert(is_constant() && value() != NULL, "");
 276   assert(type()->as_IntConstant() != NULL, "type check");
 277   return type()->as_IntConstant()->value();
 278 }
 279 
 280 
 281 jint LIRItem::get_address_constant() const {
 282   assert(is_constant() && value() != NULL, "");
 283   assert(type()->as_AddressConstant() != NULL, "type check");
 284   return type()->as_AddressConstant()->value();
 285 }
 286 
 287 
 288 jfloat LIRItem::get_jfloat_constant() const {
 289   assert(is_constant() && value() != NULL, "");
 290   assert(type()->as_FloatConstant() != NULL, "type check");
 291   return type()->as_FloatConstant()->value();
 292 }
 293 
 294 
 295 jdouble LIRItem::get_jdouble_constant() const {
 296   assert(is_constant() && value() != NULL, "");
 297   assert(type()->as_DoubleConstant() != NULL, "type check");
 298   return type()->as_DoubleConstant()->value();
 299 }
 300 
 301 
 302 jlong LIRItem::get_jlong_constant() const {
 303   assert(is_constant() && value() != NULL, "");
 304   assert(type()->as_LongConstant() != NULL, "type check");
 305   return type()->as_LongConstant()->value();
 306 }
 307 
 308 
 309 
 310 //--------------------------------------------------------------
 311 
 312 
 313 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 314 #ifndef PRODUCT
 315   if (PrintIRWithLIR) {
 316     block->print();
 317   }
 318 #endif
 319 
 320   // set up the list of LIR instructions
 321   assert(block->lir() == NULL, "LIR list already computed for this block");
 322   _lir = new LIR_List(compilation(), block);
 323   block->set_lir(_lir);
 324 
 325   __ branch_destination(block->label());
 326 
 327   if (LIRTraceExecution &&
 328       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 329       !block->is_set(BlockBegin::exception_entry_flag)) {
 330     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 331     trace_block_entry(block);
 332   }
 333 }
 334 
 335 
 336 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 337 #ifndef PRODUCT
 338   if (PrintIRWithLIR) {
 339     tty->cr();
 340   }
 341 #endif
 342 
 343   // LIR_Opr for unpinned constants shouldn't be referenced by other
 344   // blocks so clear them out after processing the block.
 345   for (int i = 0; i < _unpinned_constants.length(); i++) {
 346     _unpinned_constants.at(i)->clear_operand();
 347   }
 348   _unpinned_constants.trunc_to(0);
 349 
 350   // clear our any registers for other local constants
 351   _constants.trunc_to(0);
 352   _reg_for_constants.trunc_to(0);
 353 }
 354 
 355 
 356 void LIRGenerator::block_do(BlockBegin* block) {
 357   CHECK_BAILOUT();
 358 
 359   block_do_prolog(block);
 360   set_block(block);
 361 
 362   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 363     if (instr->is_pinned()) do_root(instr);
 364   }
 365 
 366   set_block(NULL);
 367   block_do_epilog(block);
 368 }
 369 
 370 
 371 //-------------------------LIRGenerator-----------------------------
 372 
 373 // This is where the tree-walk starts; instr must be root;
 374 void LIRGenerator::do_root(Value instr) {
 375   CHECK_BAILOUT();
 376 
 377   InstructionMark im(compilation(), instr);
 378 
 379   assert(instr->is_pinned(), "use only with roots");
 380   assert(instr->subst() == instr, "shouldn't have missed substitution");
 381 
 382   instr->visit(this);
 383 
 384   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 385          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 386 }
 387 
 388 
 389 // This is called for each node in tree; the walk stops if a root is reached
 390 void LIRGenerator::walk(Value instr) {
 391   InstructionMark im(compilation(), instr);
 392   //stop walk when encounter a root
 393   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 394     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 395   } else {
 396     assert(instr->subst() == instr, "shouldn't have missed substitution");
 397     instr->visit(this);
 398     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 399   }
 400 }
 401 
 402 
 403 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 404   assert(state != NULL, "state must be defined");
 405 
 406 #ifndef PRODUCT
 407   state->verify();
 408 #endif
 409 
 410   ValueStack* s = state;
 411   for_each_state(s) {
 412     if (s->kind() == ValueStack::EmptyExceptionState) {
 413       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 414       continue;
 415     }
 416 
 417     int index;
 418     Value value;
 419     for_each_stack_value(s, index, value) {
 420       assert(value->subst() == value, "missed substitution");
 421       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 422         walk(value);
 423         assert(value->operand()->is_valid(), "must be evaluated now");
 424       }
 425     }
 426 
 427     int bci = s->bci();
 428     IRScope* scope = s->scope();
 429     ciMethod* method = scope->method();
 430 
 431     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 432     if (bci == SynchronizationEntryBCI) {
 433       if (x->as_ExceptionObject() || x->as_Throw()) {
 434         // all locals are dead on exit from the synthetic unlocker
 435         liveness.clear();
 436       } else {
 437         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 438       }
 439     }
 440     if (!liveness.is_valid()) {
 441       // Degenerate or breakpointed method.
 442       bailout("Degenerate or breakpointed method");
 443     } else {
 444       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 445       for_each_local_value(s, index, value) {
 446         assert(value->subst() == value, "missed substition");
 447         if (liveness.at(index) && !value->type()->is_illegal()) {
 448           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 449             walk(value);
 450             assert(value->operand()->is_valid(), "must be evaluated now");
 451           }
 452         } else {
 453           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 454           s->invalidate_local(index);
 455         }
 456       }
 457     }
 458   }
 459 
 460   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 461 }
 462 
 463 
 464 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 465   return state_for(x, x->exception_state());
 466 }
 467 
 468 
 469 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 470   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 471    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 472    * the class. */
 473   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 474     assert(info != NULL, "info must be set if class is not loaded");
 475     __ klass2reg_patch(NULL, r, info);
 476   } else {
 477     // no patching needed
 478     __ metadata2reg(obj->constant_encoding(), r);
 479   }
 480 }
 481 
 482 
 483 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 484                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 485   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 486   if (index->is_constant()) {
 487     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 488                 index->as_jint(), null_check_info);
 489     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 490   } else {
 491     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 492                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 493     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 494   }
 495 }
 496 
 497 
 498 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 499   CodeStub* stub = new RangeCheckStub(info, index, true);
 500   if (index->is_constant()) {
 501     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 502     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 503   } else {
 504     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 505                 java_nio_Buffer::limit_offset(), T_INT, info);
 506     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 507   }
 508   __ move(index, result);
 509 }
 510 
 511 
 512 
 513 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 514   LIR_Opr result_op = result;
 515   LIR_Opr left_op   = left;
 516   LIR_Opr right_op  = right;
 517 
 518   if (TwoOperandLIRForm && left_op != result_op) {
 519     assert(right_op != result_op, "malformed");
 520     __ move(left_op, result_op);
 521     left_op = result_op;
 522   }
 523 
 524   switch(code) {
 525     case Bytecodes::_dadd:
 526     case Bytecodes::_fadd:
 527     case Bytecodes::_ladd:
 528     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 529     case Bytecodes::_fmul:
 530     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 531 
 532     case Bytecodes::_dmul:
 533       {
 534         if (is_strictfp) {
 535           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 536         } else {
 537           __ mul(left_op, right_op, result_op); break;
 538         }
 539       }
 540       break;
 541 
 542     case Bytecodes::_imul:
 543       {
 544         bool did_strength_reduce = false;
 545 
 546         if (right->is_constant()) {
 547           jint c = right->as_jint();
 548           if (c > 0 && is_power_of_2(c)) {
 549             // do not need tmp here
 550             __ shift_left(left_op, exact_log2(c), result_op);
 551             did_strength_reduce = true;
 552           } else {
 553             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 554           }
 555         }
 556         // we couldn't strength reduce so just emit the multiply
 557         if (!did_strength_reduce) {
 558           __ mul(left_op, right_op, result_op);
 559         }
 560       }
 561       break;
 562 
 563     case Bytecodes::_dsub:
 564     case Bytecodes::_fsub:
 565     case Bytecodes::_lsub:
 566     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 567 
 568     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 569     // ldiv and lrem are implemented with a direct runtime call
 570 
 571     case Bytecodes::_ddiv:
 572       {
 573         if (is_strictfp) {
 574           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 575         } else {
 576           __ div (left_op, right_op, result_op); break;
 577         }
 578       }
 579       break;
 580 
 581     case Bytecodes::_drem:
 582     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 583 
 584     default: ShouldNotReachHere();
 585   }
 586 }
 587 
 588 
 589 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 590   arithmetic_op(code, result, left, right, false, tmp);
 591 }
 592 
 593 
 594 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 595   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 596 }
 597 
 598 
 599 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 600   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 601 }
 602 
 603 
 604 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 605 
 606   if (TwoOperandLIRForm && value != result_op
 607       // Only 32bit right shifts require two operand form on S390.
 608       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 609     assert(count != result_op, "malformed");
 610     __ move(value, result_op);
 611     value = result_op;
 612   }
 613 
 614   assert(count->is_constant() || count->is_register(), "must be");
 615   switch(code) {
 616   case Bytecodes::_ishl:
 617   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 618   case Bytecodes::_ishr:
 619   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 620   case Bytecodes::_iushr:
 621   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 622   default: ShouldNotReachHere();
 623   }
 624 }
 625 
 626 
 627 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 628   if (TwoOperandLIRForm && left_op != result_op) {
 629     assert(right_op != result_op, "malformed");
 630     __ move(left_op, result_op);
 631     left_op = result_op;
 632   }
 633 
 634   switch(code) {
 635     case Bytecodes::_iand:
 636     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 637 
 638     case Bytecodes::_ior:
 639     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 640 
 641     case Bytecodes::_ixor:
 642     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 643 
 644     default: ShouldNotReachHere();
 645   }
 646 }
 647 
 648 
 649 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 650   if (!GenerateSynchronizationCode) return;
 651   // for slow path, use debug info for state after successful locking
 652   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 653   __ load_stack_address_monitor(monitor_no, lock);
 654   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 655   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 656 }
 657 
 658 
 659 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 660   if (!GenerateSynchronizationCode) return;
 661   // setup registers
 662   LIR_Opr hdr = lock;
 663   lock = new_hdr;
 664   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 665   __ load_stack_address_monitor(monitor_no, lock);
 666   __ unlock_object(hdr, object, lock, scratch, slow_path);
 667 }
 668 
 669 #ifndef PRODUCT
 670 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 671   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 672     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 673   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 674     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 675   }
 676 }
 677 #endif
 678 
 679 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 680   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 681   // If klass is not loaded we do not know if the klass has finalizers:
 682   if (UseFastNewInstance && klass->is_loaded()
 683       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 684 
 685     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 686 
 687     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 688 
 689     assert(klass->is_loaded(), "must be loaded");
 690     // allocate space for instance
 691     assert(klass->size_helper() >= 0, "illegal instance size");
 692     const int instance_size = align_object_size(klass->size_helper());
 693     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 694                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 695   } else {
 696     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 697     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 698     __ branch_destination(slow_path->continuation());
 699   }
 700 }
 701 
 702 
 703 static bool is_constant_zero(Instruction* inst) {
 704   IntConstant* c = inst->type()->as_IntConstant();
 705   if (c) {
 706     return (c->value() == 0);
 707   }
 708   return false;
 709 }
 710 
 711 
 712 static bool positive_constant(Instruction* inst) {
 713   IntConstant* c = inst->type()->as_IntConstant();
 714   if (c) {
 715     return (c->value() >= 0);
 716   }
 717   return false;
 718 }
 719 
 720 
 721 static ciArrayKlass* as_array_klass(ciType* type) {
 722   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 723     return (ciArrayKlass*)type;
 724   } else {
 725     return NULL;
 726   }
 727 }
 728 
 729 static ciType* phi_declared_type(Phi* phi) {
 730   ciType* t = phi->operand_at(0)->declared_type();
 731   if (t == NULL) {
 732     return NULL;
 733   }
 734   for(int i = 1; i < phi->operand_count(); i++) {
 735     if (t != phi->operand_at(i)->declared_type()) {
 736       return NULL;
 737     }
 738   }
 739   return t;
 740 }
 741 
 742 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 743   Instruction* src     = x->argument_at(0);
 744   Instruction* src_pos = x->argument_at(1);
 745   Instruction* dst     = x->argument_at(2);
 746   Instruction* dst_pos = x->argument_at(3);
 747   Instruction* length  = x->argument_at(4);
 748 
 749   // first try to identify the likely type of the arrays involved
 750   ciArrayKlass* expected_type = NULL;
 751   bool is_exact = false, src_objarray = false, dst_objarray = false;
 752   {
 753     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 754     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 755     Phi* phi;
 756     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 757       src_declared_type = as_array_klass(phi_declared_type(phi));
 758     }
 759     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 760     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 761     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 762       dst_declared_type = as_array_klass(phi_declared_type(phi));
 763     }
 764 
 765     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 766       // the types exactly match so the type is fully known
 767       is_exact = true;
 768       expected_type = src_exact_type;
 769     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 770       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 771       ciArrayKlass* src_type = NULL;
 772       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 773         src_type = (ciArrayKlass*) src_exact_type;
 774       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 775         src_type = (ciArrayKlass*) src_declared_type;
 776       }
 777       if (src_type != NULL) {
 778         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 779           is_exact = true;
 780           expected_type = dst_type;
 781         }
 782       }
 783     }
 784     // at least pass along a good guess
 785     if (expected_type == NULL) expected_type = dst_exact_type;
 786     if (expected_type == NULL) expected_type = src_declared_type;
 787     if (expected_type == NULL) expected_type = dst_declared_type;
 788 
 789     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 790     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 791   }
 792 
 793   // if a probable array type has been identified, figure out if any
 794   // of the required checks for a fast case can be elided.
 795   int flags = LIR_OpArrayCopy::all_flags;
 796 
 797   if (!src_objarray)
 798     flags &= ~LIR_OpArrayCopy::src_objarray;
 799   if (!dst_objarray)
 800     flags &= ~LIR_OpArrayCopy::dst_objarray;
 801 
 802   if (!x->arg_needs_null_check(0))
 803     flags &= ~LIR_OpArrayCopy::src_null_check;
 804   if (!x->arg_needs_null_check(2))
 805     flags &= ~LIR_OpArrayCopy::dst_null_check;
 806 
 807 
 808   if (expected_type != NULL) {
 809     Value length_limit = NULL;
 810 
 811     IfOp* ifop = length->as_IfOp();
 812     if (ifop != NULL) {
 813       // look for expressions like min(v, a.length) which ends up as
 814       //   x > y ? y : x  or  x >= y ? y : x
 815       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 816           ifop->x() == ifop->fval() &&
 817           ifop->y() == ifop->tval()) {
 818         length_limit = ifop->y();
 819       }
 820     }
 821 
 822     // try to skip null checks and range checks
 823     NewArray* src_array = src->as_NewArray();
 824     if (src_array != NULL) {
 825       flags &= ~LIR_OpArrayCopy::src_null_check;
 826       if (length_limit != NULL &&
 827           src_array->length() == length_limit &&
 828           is_constant_zero(src_pos)) {
 829         flags &= ~LIR_OpArrayCopy::src_range_check;
 830       }
 831     }
 832 
 833     NewArray* dst_array = dst->as_NewArray();
 834     if (dst_array != NULL) {
 835       flags &= ~LIR_OpArrayCopy::dst_null_check;
 836       if (length_limit != NULL &&
 837           dst_array->length() == length_limit &&
 838           is_constant_zero(dst_pos)) {
 839         flags &= ~LIR_OpArrayCopy::dst_range_check;
 840       }
 841     }
 842 
 843     // check from incoming constant values
 844     if (positive_constant(src_pos))
 845       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 846     if (positive_constant(dst_pos))
 847       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 848     if (positive_constant(length))
 849       flags &= ~LIR_OpArrayCopy::length_positive_check;
 850 
 851     // see if the range check can be elided, which might also imply
 852     // that src or dst is non-null.
 853     ArrayLength* al = length->as_ArrayLength();
 854     if (al != NULL) {
 855       if (al->array() == src) {
 856         // it's the length of the source array
 857         flags &= ~LIR_OpArrayCopy::length_positive_check;
 858         flags &= ~LIR_OpArrayCopy::src_null_check;
 859         if (is_constant_zero(src_pos))
 860           flags &= ~LIR_OpArrayCopy::src_range_check;
 861       }
 862       if (al->array() == dst) {
 863         // it's the length of the destination array
 864         flags &= ~LIR_OpArrayCopy::length_positive_check;
 865         flags &= ~LIR_OpArrayCopy::dst_null_check;
 866         if (is_constant_zero(dst_pos))
 867           flags &= ~LIR_OpArrayCopy::dst_range_check;
 868       }
 869     }
 870     if (is_exact) {
 871       flags &= ~LIR_OpArrayCopy::type_check;
 872     }
 873   }
 874 
 875   IntConstant* src_int = src_pos->type()->as_IntConstant();
 876   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 877   if (src_int && dst_int) {
 878     int s_offs = src_int->value();
 879     int d_offs = dst_int->value();
 880     if (src_int->value() >= dst_int->value()) {
 881       flags &= ~LIR_OpArrayCopy::overlapping;
 882     }
 883     if (expected_type != NULL) {
 884       BasicType t = expected_type->element_type()->basic_type();
 885       int element_size = type2aelembytes(t);
 886       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 887           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 888         flags &= ~LIR_OpArrayCopy::unaligned;
 889       }
 890     }
 891   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 892     // src and dest positions are the same, or dst is zero so assume
 893     // nonoverlapping copy.
 894     flags &= ~LIR_OpArrayCopy::overlapping;
 895   }
 896 
 897   if (src == dst) {
 898     // moving within a single array so no type checks are needed
 899     if (flags & LIR_OpArrayCopy::type_check) {
 900       flags &= ~LIR_OpArrayCopy::type_check;
 901     }
 902   }
 903   *flagsp = flags;
 904   *expected_typep = (ciArrayKlass*)expected_type;
 905 }
 906 
 907 
 908 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 909   assert(opr->is_register(), "why spill if item is not register?");
 910 
 911   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 912     LIR_Opr result = new_register(T_FLOAT);
 913     set_vreg_flag(result, must_start_in_memory);
 914     assert(opr->is_register(), "only a register can be spilled");
 915     assert(opr->value_type()->is_float(), "rounding only for floats available");
 916     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 917     return result;
 918   }
 919   return opr;
 920 }
 921 
 922 
 923 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 924   assert(type2size[t] == type2size[value->type()],
 925          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 926   if (!value->is_register()) {
 927     // force into a register
 928     LIR_Opr r = new_register(value->type());
 929     __ move(value, r);
 930     value = r;
 931   }
 932 
 933   // create a spill location
 934   LIR_Opr tmp = new_register(t);
 935   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 936 
 937   // move from register to spill
 938   __ move(value, tmp);
 939   return tmp;
 940 }
 941 
 942 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 943   if (if_instr->should_profile()) {
 944     ciMethod* method = if_instr->profiled_method();
 945     assert(method != NULL, "method should be set if branch is profiled");
 946     ciMethodData* md = method->method_data_or_null();
 947     assert(md != NULL, "Sanity");
 948     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 949     assert(data != NULL, "must have profiling data");
 950     assert(data->is_BranchData(), "need BranchData for two-way branches");
 951     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 952     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 953     if (if_instr->is_swapped()) {
 954       int t = taken_count_offset;
 955       taken_count_offset = not_taken_count_offset;
 956       not_taken_count_offset = t;
 957     }
 958 
 959     LIR_Opr md_reg = new_register(T_METADATA);
 960     __ metadata2reg(md->constant_encoding(), md_reg);
 961 
 962     LIR_Opr data_offset_reg = new_pointer_register();
 963     __ cmove(lir_cond(cond),
 964              LIR_OprFact::intptrConst(taken_count_offset),
 965              LIR_OprFact::intptrConst(not_taken_count_offset),
 966              data_offset_reg, as_BasicType(if_instr->x()->type()));
 967 
 968     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 969     LIR_Opr data_reg = new_pointer_register();
 970     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 971     __ move(data_addr, data_reg);
 972     // Use leal instead of add to avoid destroying condition codes on x86
 973     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 974     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 975     __ move(data_reg, data_addr);
 976   }
 977 }
 978 
 979 // Phi technique:
 980 // This is about passing live values from one basic block to the other.
 981 // In code generated with Java it is rather rare that more than one
 982 // value is on the stack from one basic block to the other.
 983 // We optimize our technique for efficient passing of one value
 984 // (of type long, int, double..) but it can be extended.
 985 // When entering or leaving a basic block, all registers and all spill
 986 // slots are release and empty. We use the released registers
 987 // and spill slots to pass the live values from one block
 988 // to the other. The topmost value, i.e., the value on TOS of expression
 989 // stack is passed in registers. All other values are stored in spilling
 990 // area. Every Phi has an index which designates its spill slot
 991 // At exit of a basic block, we fill the register(s) and spill slots.
 992 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 993 // and locks necessary registers and spilling slots.
 994 
 995 
 996 // move current value to referenced phi function
 997 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 998   Phi* phi = sux_val->as_Phi();
 999   // cur_val can be null without phi being null in conjunction with inlining
1000   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1001     Phi* cur_phi = cur_val->as_Phi();
1002     if (cur_phi != NULL && cur_phi->is_illegal()) {
1003       // Phi and local would need to get invalidated
1004       // (which is unexpected for Linear Scan).
1005       // But this case is very rare so we simply bail out.
1006       bailout("propagation of illegal phi");
1007       return;
1008     }
1009     LIR_Opr operand = cur_val->operand();
1010     if (operand->is_illegal()) {
1011       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1012              "these can be produced lazily");
1013       operand = operand_for_instruction(cur_val);
1014     }
1015     resolver->move(operand, operand_for_instruction(phi));
1016   }
1017 }
1018 
1019 
1020 // Moves all stack values into their PHI position
1021 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1022   BlockBegin* bb = block();
1023   if (bb->number_of_sux() == 1) {
1024     BlockBegin* sux = bb->sux_at(0);
1025     assert(sux->number_of_preds() > 0, "invalid CFG");
1026 
1027     // a block with only one predecessor never has phi functions
1028     if (sux->number_of_preds() > 1) {
1029       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1030       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1031 
1032       ValueStack* sux_state = sux->state();
1033       Value sux_value;
1034       int index;
1035 
1036       assert(cur_state->scope() == sux_state->scope(), "not matching");
1037       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1038       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1039 
1040       for_each_stack_value(sux_state, index, sux_value) {
1041         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1042       }
1043 
1044       for_each_local_value(sux_state, index, sux_value) {
1045         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1046       }
1047 
1048       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1049     }
1050   }
1051 }
1052 
1053 
1054 LIR_Opr LIRGenerator::new_register(BasicType type) {
1055   int vreg = _virtual_register_number;
1056   // add a little fudge factor for the bailout, since the bailout is
1057   // only checked periodically.  This gives a few extra registers to
1058   // hand out before we really run out, which helps us keep from
1059   // tripping over assertions.
1060   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1061     bailout("out of virtual registers");
1062     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1063       // wrap it around
1064       _virtual_register_number = LIR_OprDesc::vreg_base;
1065     }
1066   }
1067   _virtual_register_number += 1;
1068   return LIR_OprFact::virtual_register(vreg, type);
1069 }
1070 
1071 
1072 // Try to lock using register in hint
1073 LIR_Opr LIRGenerator::rlock(Value instr) {
1074   return new_register(instr->type());
1075 }
1076 
1077 
1078 // does an rlock and sets result
1079 LIR_Opr LIRGenerator::rlock_result(Value x) {
1080   LIR_Opr reg = rlock(x);
1081   set_result(x, reg);
1082   return reg;
1083 }
1084 
1085 
1086 // does an rlock and sets result
1087 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1088   LIR_Opr reg;
1089   switch (type) {
1090   case T_BYTE:
1091   case T_BOOLEAN:
1092     reg = rlock_byte(type);
1093     break;
1094   default:
1095     reg = rlock(x);
1096     break;
1097   }
1098 
1099   set_result(x, reg);
1100   return reg;
1101 }
1102 
1103 
1104 //---------------------------------------------------------------------
1105 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1106   ObjectType* oc = value->type()->as_ObjectType();
1107   if (oc) {
1108     return oc->constant_value();
1109   }
1110   return NULL;
1111 }
1112 
1113 
1114 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1115   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1116   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1117 
1118   // no moves are created for phi functions at the begin of exception
1119   // handlers, so assign operands manually here
1120   for_each_phi_fun(block(), phi,
1121                    operand_for_instruction(phi));
1122 
1123   LIR_Opr thread_reg = getThreadPointer();
1124   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1125                exceptionOopOpr());
1126   __ move_wide(LIR_OprFact::oopConst(NULL),
1127                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1128   __ move_wide(LIR_OprFact::oopConst(NULL),
1129                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1130 
1131   LIR_Opr result = new_register(T_OBJECT);
1132   __ move(exceptionOopOpr(), result);
1133   set_result(x, result);
1134 }
1135 
1136 
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 //                        visitor functions
1142 //----------------------------------------------------------------------
1143 //----------------------------------------------------------------------
1144 //----------------------------------------------------------------------
1145 //----------------------------------------------------------------------
1146 
1147 void LIRGenerator::do_Phi(Phi* x) {
1148   // phi functions are never visited directly
1149   ShouldNotReachHere();
1150 }
1151 
1152 
1153 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1154 void LIRGenerator::do_Constant(Constant* x) {
1155   if (x->state_before() != NULL) {
1156     // Any constant with a ValueStack requires patching so emit the patch here
1157     LIR_Opr reg = rlock_result(x);
1158     CodeEmitInfo* info = state_for(x, x->state_before());
1159     __ oop2reg_patch(NULL, reg, info);
1160   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1161     if (!x->is_pinned()) {
1162       // unpinned constants are handled specially so that they can be
1163       // put into registers when they are used multiple times within a
1164       // block.  After the block completes their operand will be
1165       // cleared so that other blocks can't refer to that register.
1166       set_result(x, load_constant(x));
1167     } else {
1168       LIR_Opr res = x->operand();
1169       if (!res->is_valid()) {
1170         res = LIR_OprFact::value_type(x->type());
1171       }
1172       if (res->is_constant()) {
1173         LIR_Opr reg = rlock_result(x);
1174         __ move(res, reg);
1175       } else {
1176         set_result(x, res);
1177       }
1178     }
1179   } else {
1180     set_result(x, LIR_OprFact::value_type(x->type()));
1181   }
1182 }
1183 
1184 
1185 void LIRGenerator::do_Local(Local* x) {
1186   // operand_for_instruction has the side effect of setting the result
1187   // so there's no need to do it here.
1188   operand_for_instruction(x);
1189 }
1190 
1191 
1192 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1193   Unimplemented();
1194 }
1195 
1196 
1197 void LIRGenerator::do_Return(Return* x) {
1198   if (compilation()->env()->dtrace_method_probes()) {
1199     BasicTypeList signature;
1200     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1201     signature.append(T_METADATA); // Method*
1202     LIR_OprList* args = new LIR_OprList();
1203     args->append(getThreadPointer());
1204     LIR_Opr meth = new_register(T_METADATA);
1205     __ metadata2reg(method()->constant_encoding(), meth);
1206     args->append(meth);
1207     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1208   }
1209 
1210   if (x->type()->is_void()) {
1211     __ return_op(LIR_OprFact::illegalOpr);
1212   } else {
1213     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1214     LIRItem result(x->result(), this);
1215 
1216     result.load_item_force(reg);
1217     __ return_op(result.result());
1218   }
1219   set_no_result(x);
1220 }
1221 
1222 // Examble: ref.get()
1223 // Combination of LoadField and g1 pre-write barrier
1224 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1225 
1226   const int referent_offset = java_lang_ref_Reference::referent_offset;
1227   guarantee(referent_offset > 0, "referent offset not initialized");
1228 
1229   assert(x->number_of_arguments() == 1, "wrong type");
1230 
1231   LIRItem reference(x->argument_at(0), this);
1232   reference.load_item();
1233 
1234   // need to perform the null check on the reference objecy
1235   CodeEmitInfo* info = NULL;
1236   if (x->needs_null_check()) {
1237     info = state_for(x);
1238   }
1239 
1240   LIR_Opr result = rlock_result(x, T_OBJECT);
1241   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1242                  reference, LIR_OprFact::intConst(referent_offset), result,
1243                  NULL, NULL);
1244 }
1245 
1246 // Example: clazz.isInstance(object)
1247 void LIRGenerator::do_isInstance(Intrinsic* x) {
1248   assert(x->number_of_arguments() == 2, "wrong type");
1249 
1250   // TODO could try to substitute this node with an equivalent InstanceOf
1251   // if clazz is known to be a constant Class. This will pick up newly found
1252   // constants after HIR construction. I'll leave this to a future change.
1253 
1254   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1255   // could follow the aastore example in a future change.
1256 
1257   LIRItem clazz(x->argument_at(0), this);
1258   LIRItem object(x->argument_at(1), this);
1259   clazz.load_item();
1260   object.load_item();
1261   LIR_Opr result = rlock_result(x);
1262 
1263   // need to perform null check on clazz
1264   if (x->needs_null_check()) {
1265     CodeEmitInfo* info = state_for(x);
1266     __ null_check(clazz.result(), info);
1267   }
1268 
1269   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1270                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1271                                      x->type(),
1272                                      NULL); // NULL CodeEmitInfo results in a leaf call
1273   __ move(call_result, result);
1274 }
1275 
1276 // Example: object.getClass ()
1277 void LIRGenerator::do_getClass(Intrinsic* x) {
1278   assert(x->number_of_arguments() == 1, "wrong type");
1279 
1280   LIRItem rcvr(x->argument_at(0), this);
1281   rcvr.load_item();
1282   LIR_Opr temp = new_register(T_METADATA);
1283   LIR_Opr result = rlock_result(x);
1284 
1285   // need to perform the null check on the rcvr
1286   CodeEmitInfo* info = NULL;
1287   if (x->needs_null_check()) {
1288     info = state_for(x);
1289   }
1290 
1291   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1292   // meaning of these two is mixed up (see JDK-8026837).
1293   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1294   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1295   // mirror = ((OopHandle)mirror)->resolve();
1296   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1297 }
1298 
1299 // java.lang.Class::isPrimitive()
1300 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1301   assert(x->number_of_arguments() == 1, "wrong type");
1302 
1303   LIRItem rcvr(x->argument_at(0), this);
1304   rcvr.load_item();
1305   LIR_Opr temp = new_register(T_METADATA);
1306   LIR_Opr result = rlock_result(x);
1307 
1308   CodeEmitInfo* info = NULL;
1309   if (x->needs_null_check()) {
1310     info = state_for(x);
1311   }
1312 
1313   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1314   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1315   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1316 }
1317 
1318 
1319 // Example: Thread.currentThread()
1320 void LIRGenerator::do_currentThread(Intrinsic* x) {
1321   assert(x->number_of_arguments() == 0, "wrong type");
1322   LIR_Opr reg = rlock_result(x);
1323   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1324 }
1325 
1326 
1327 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1328   assert(x->number_of_arguments() == 1, "wrong type");
1329   LIRItem receiver(x->argument_at(0), this);
1330 
1331   receiver.load_item();
1332   BasicTypeList signature;
1333   signature.append(T_OBJECT); // receiver
1334   LIR_OprList* args = new LIR_OprList();
1335   args->append(receiver.result());
1336   CodeEmitInfo* info = state_for(x, x->state());
1337   call_runtime(&signature, args,
1338                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1339                voidType, info);
1340 
1341   set_no_result(x);
1342 }
1343 
1344 
1345 //------------------------local access--------------------------------------
1346 
1347 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1348   if (x->operand()->is_illegal()) {
1349     Constant* c = x->as_Constant();
1350     if (c != NULL) {
1351       x->set_operand(LIR_OprFact::value_type(c->type()));
1352     } else {
1353       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1354       // allocate a virtual register for this local or phi
1355       x->set_operand(rlock(x));
1356       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1357     }
1358   }
1359   return x->operand();
1360 }
1361 
1362 
1363 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1364   if (opr->is_virtual()) {
1365     return instruction_for_vreg(opr->vreg_number());
1366   }
1367   return NULL;
1368 }
1369 
1370 
1371 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1372   if (reg_num < _instruction_for_operand.length()) {
1373     return _instruction_for_operand.at(reg_num);
1374   }
1375   return NULL;
1376 }
1377 
1378 
1379 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1380   if (_vreg_flags.size_in_bits() == 0) {
1381     BitMap2D temp(100, num_vreg_flags);
1382     _vreg_flags = temp;
1383   }
1384   _vreg_flags.at_put_grow(vreg_num, f, true);
1385 }
1386 
1387 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1388   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1389     return false;
1390   }
1391   return _vreg_flags.at(vreg_num, f);
1392 }
1393 
1394 
1395 // Block local constant handling.  This code is useful for keeping
1396 // unpinned constants and constants which aren't exposed in the IR in
1397 // registers.  Unpinned Constant instructions have their operands
1398 // cleared when the block is finished so that other blocks can't end
1399 // up referring to their registers.
1400 
1401 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1402   assert(!x->is_pinned(), "only for unpinned constants");
1403   _unpinned_constants.append(x);
1404   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1405 }
1406 
1407 
1408 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1409   BasicType t = c->type();
1410   for (int i = 0; i < _constants.length(); i++) {
1411     LIR_Const* other = _constants.at(i);
1412     if (t == other->type()) {
1413       switch (t) {
1414       case T_INT:
1415       case T_FLOAT:
1416         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1417         break;
1418       case T_LONG:
1419       case T_DOUBLE:
1420         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1421         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1422         break;
1423       case T_OBJECT:
1424         if (c->as_jobject() != other->as_jobject()) continue;
1425         break;
1426       default:
1427         break;
1428       }
1429       return _reg_for_constants.at(i);
1430     }
1431   }
1432 
1433   LIR_Opr result = new_register(t);
1434   __ move((LIR_Opr)c, result);
1435   _constants.append(c);
1436   _reg_for_constants.append(result);
1437   return result;
1438 }
1439 
1440 //------------------------field access--------------------------------------
1441 
1442 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1443   assert(x->number_of_arguments() == 4, "wrong type");
1444   LIRItem obj   (x->argument_at(0), this);  // object
1445   LIRItem offset(x->argument_at(1), this);  // offset of field
1446   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1447   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1448   assert(obj.type()->tag() == objectTag, "invalid type");
1449 
1450   // In 64bit the type can be long, sparc doesn't have this assert
1451   // assert(offset.type()->tag() == intTag, "invalid type");
1452 
1453   assert(cmp.type()->tag() == type->tag(), "invalid type");
1454   assert(val.type()->tag() == type->tag(), "invalid type");
1455 
1456   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
1457   LIR_Opr result = access_atomic_cmpxchg_at(decorators, as_BasicType(type),
1458                                             obj, offset, cmp, val);
1459   set_result(x, result);
1460 }
1461 
1462 // Comment copied form templateTable_i486.cpp
1463 // ----------------------------------------------------------------------------
1464 // Volatile variables demand their effects be made known to all CPU's in
1465 // order.  Store buffers on most chips allow reads & writes to reorder; the
1466 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1467 // memory barrier (i.e., it's not sufficient that the interpreter does not
1468 // reorder volatile references, the hardware also must not reorder them).
1469 //
1470 // According to the new Java Memory Model (JMM):
1471 // (1) All volatiles are serialized wrt to each other.
1472 // ALSO reads & writes act as aquire & release, so:
1473 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1474 // the read float up to before the read.  It's OK for non-volatile memory refs
1475 // that happen before the volatile read to float down below it.
1476 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1477 // that happen BEFORE the write float down to after the write.  It's OK for
1478 // non-volatile memory refs that happen after the volatile write to float up
1479 // before it.
1480 //
1481 // We only put in barriers around volatile refs (they are expensive), not
1482 // _between_ memory refs (that would require us to track the flavor of the
1483 // previous memory refs).  Requirements (2) and (3) require some barriers
1484 // before volatile stores and after volatile loads.  These nearly cover
1485 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1486 // case is placed after volatile-stores although it could just as well go
1487 // before volatile-loads.
1488 
1489 
1490 void LIRGenerator::do_StoreField(StoreField* x) {
1491   bool needs_patching = x->needs_patching();
1492   bool is_volatile = x->field()->is_volatile();
1493   BasicType field_type = x->field_type();
1494 
1495   CodeEmitInfo* info = NULL;
1496   if (needs_patching) {
1497     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1498     info = state_for(x, x->state_before());
1499   } else if (x->needs_null_check()) {
1500     NullCheck* nc = x->explicit_null_check();
1501     if (nc == NULL) {
1502       info = state_for(x);
1503     } else {
1504       info = state_for(nc);
1505     }
1506   }
1507 
1508   LIRItem object(x->obj(), this);
1509   LIRItem value(x->value(),  this);
1510 
1511   object.load_item();
1512 
1513   if (is_volatile || needs_patching) {
1514     // load item if field is volatile (fewer special cases for volatiles)
1515     // load item if field not initialized
1516     // load item if field not constant
1517     // because of code patching we cannot inline constants
1518     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1519       value.load_byte_item();
1520     } else  {
1521       value.load_item();
1522     }
1523   } else {
1524     value.load_for_store(field_type);
1525   }
1526 
1527   set_no_result(x);
1528 
1529 #ifndef PRODUCT
1530   if (PrintNotLoaded && needs_patching) {
1531     tty->print_cr("   ###class not loaded at store_%s bci %d",
1532                   x->is_static() ?  "static" : "field", x->printable_bci());
1533   }
1534 #endif
1535 
1536   if (x->needs_null_check() &&
1537       (needs_patching ||
1538        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1539     // Emit an explicit null check because the offset is too large.
1540     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1541     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1542     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1543   }
1544 
1545   DecoratorSet decorators = IN_HEAP;
1546   if (is_volatile) {
1547     decorators |= MO_SEQ_CST;
1548   }
1549   if (needs_patching) {
1550     decorators |= C1_NEEDS_PATCHING;
1551   }
1552 
1553   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()), value.result(), info ? new CodeEmitInfo(info) : NULL, info);
1554 }
1555 
1556 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1557   assert(x->is_pinned(),"");
1558   bool needs_range_check = x->compute_needs_range_check();
1559   bool use_length = x->length() != NULL;
1560   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1561   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1562                                          !get_jobject_constant(x->value())->is_null_object() ||
1563                                          x->should_profile());
1564 
1565   LIRItem array(x->array(), this);
1566   LIRItem index(x->index(), this);
1567   LIRItem value(x->value(), this);
1568   LIRItem length(this);
1569 
1570   array.load_item();
1571   index.load_nonconstant();
1572 
1573   if (use_length && needs_range_check) {
1574     length.set_instruction(x->length());
1575     length.load_item();
1576 
1577   }
1578   if (needs_store_check || x->check_boolean()) {
1579     value.load_item();
1580   } else {
1581     value.load_for_store(x->elt_type());
1582   }
1583 
1584   set_no_result(x);
1585 
1586   // the CodeEmitInfo must be duplicated for each different
1587   // LIR-instruction because spilling can occur anywhere between two
1588   // instructions and so the debug information must be different
1589   CodeEmitInfo* range_check_info = state_for(x);
1590   CodeEmitInfo* null_check_info = NULL;
1591   if (x->needs_null_check()) {
1592     null_check_info = new CodeEmitInfo(range_check_info);
1593   }
1594 
1595   if (GenerateRangeChecks && needs_range_check) {
1596     if (use_length) {
1597       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1598       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1599     } else {
1600       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1601       // range_check also does the null check
1602       null_check_info = NULL;
1603     }
1604   }
1605 
1606   if (GenerateArrayStoreCheck && needs_store_check) {
1607     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1608     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1609   }
1610 
1611   DecoratorSet decorators = IN_HEAP | IN_HEAP_ARRAY;
1612   if (x->check_boolean()) {
1613     decorators |= C1_MASK_BOOLEAN;
1614   }
1615 
1616   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(), NULL, null_check_info);
1617 }
1618 
1619 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1620                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1621                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1622   BarrierSetC1 *bs = BarrierSet::barrier_set()->barrier_set_c1();
1623   bool as_raw = (decorators & AS_RAW) != 0;
1624   if (as_raw) {
1625     bs->BarrierSetC1::load_at(this, decorators, type,
1626                               base, offset, result, patch_info, load_emit_info);
1627   } else {
1628     bs->load_at(this, decorators, type,
1629                 base, offset, result, patch_info, load_emit_info);
1630   }
1631 }
1632 
1633 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1634                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1635                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1636   BarrierSetC1 *bs = BarrierSet::barrier_set()->barrier_set_c1();
1637   bool as_raw = (decorators & AS_RAW) != 0;
1638   if (as_raw) {
1639     bs->BarrierSetC1::store_at(this, decorators, type,
1640                                base, offset, value, patch_info, store_emit_info);
1641   } else {
1642     bs->store_at(this, decorators, type,
1643                  base, offset, value, patch_info, store_emit_info);
1644   }
1645 }
1646 
1647 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1648                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1649   BarrierSetC1 *bs = BarrierSet::barrier_set()->barrier_set_c1();
1650   bool as_raw = (decorators & AS_RAW) != 0;
1651   if (as_raw) {
1652     return bs->BarrierSetC1::atomic_cmpxchg_at(this, decorators, type,
1653                                                base, offset, cmp_value, new_value);
1654   } else {
1655     return bs->atomic_cmpxchg_at(this, decorators, type,
1656                                  base, offset, cmp_value, new_value);
1657   }
1658 }
1659 
1660 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1661                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1662   BarrierSetC1 *bs = BarrierSet::barrier_set()->barrier_set_c1();
1663   bool as_raw = (decorators & AS_RAW) != 0;
1664   if (as_raw) {
1665     return bs->BarrierSetC1::atomic_xchg(this, decorators, type,
1666                                          base, offset, value);
1667   } else {
1668     return bs->atomic_xchg(this, decorators, type,
1669                            base, offset, value);
1670   }
1671 }
1672 
1673 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1674                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1675   BarrierSetC1 *bs = BarrierSet::barrier_set()->barrier_set_c1();
1676   bool as_raw = (decorators & AS_RAW) != 0;
1677   if (as_raw) {
1678     return bs->BarrierSetC1::atomic_add_at(this, decorators, type,
1679                                            base, offset, value);
1680   } else {
1681     return bs->atomic_add_at(this, decorators, type,
1682                              base, offset, value);
1683   }
1684 }
1685 
1686 void LIRGenerator::do_LoadField(LoadField* x) {
1687   bool needs_patching = x->needs_patching();
1688   bool is_volatile = x->field()->is_volatile();
1689   BasicType field_type = x->field_type();
1690 
1691   CodeEmitInfo* info = NULL;
1692   if (needs_patching) {
1693     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1694     info = state_for(x, x->state_before());
1695   } else if (x->needs_null_check()) {
1696     NullCheck* nc = x->explicit_null_check();
1697     if (nc == NULL) {
1698       info = state_for(x);
1699     } else {
1700       info = state_for(nc);
1701     }
1702   }
1703 
1704   LIRItem object(x->obj(), this);
1705 
1706   object.load_item();
1707 
1708 #ifndef PRODUCT
1709   if (PrintNotLoaded && needs_patching) {
1710     tty->print_cr("   ###class not loaded at load_%s bci %d",
1711                   x->is_static() ?  "static" : "field", x->printable_bci());
1712   }
1713 #endif
1714 
1715   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1716   if (x->needs_null_check() &&
1717       (needs_patching ||
1718        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1719        stress_deopt)) {
1720     LIR_Opr obj = object.result();
1721     if (stress_deopt) {
1722       obj = new_register(T_OBJECT);
1723       __ move(LIR_OprFact::oopConst(NULL), obj);
1724     }
1725     // Emit an explicit null check because the offset is too large.
1726     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1727     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1728     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1729   }
1730 
1731   DecoratorSet decorators = IN_HEAP;
1732   if (is_volatile) {
1733     decorators |= MO_SEQ_CST;
1734   }
1735   if (needs_patching) {
1736     decorators |= C1_NEEDS_PATCHING;
1737   }
1738 
1739   LIR_Opr result = rlock_result(x, field_type);
1740   access_load_at(decorators, field_type,
1741                  object, LIR_OprFact::intConst(x->offset()), result,
1742                  info ? new CodeEmitInfo(info) : NULL, info);
1743 }
1744 
1745 
1746 //------------------------java.nio.Buffer.checkIndex------------------------
1747 
1748 // int java.nio.Buffer.checkIndex(int)
1749 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1750   // NOTE: by the time we are in checkIndex() we are guaranteed that
1751   // the buffer is non-null (because checkIndex is package-private and
1752   // only called from within other methods in the buffer).
1753   assert(x->number_of_arguments() == 2, "wrong type");
1754   LIRItem buf  (x->argument_at(0), this);
1755   LIRItem index(x->argument_at(1), this);
1756   buf.load_item();
1757   index.load_item();
1758 
1759   LIR_Opr result = rlock_result(x);
1760   if (GenerateRangeChecks) {
1761     CodeEmitInfo* info = state_for(x);
1762     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1763     if (index.result()->is_constant()) {
1764       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1765       __ branch(lir_cond_belowEqual, T_INT, stub);
1766     } else {
1767       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1768                   java_nio_Buffer::limit_offset(), T_INT, info);
1769       __ branch(lir_cond_aboveEqual, T_INT, stub);
1770     }
1771     __ move(index.result(), result);
1772   } else {
1773     // Just load the index into the result register
1774     __ move(index.result(), result);
1775   }
1776 }
1777 
1778 
1779 //------------------------array access--------------------------------------
1780 
1781 
1782 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1783   LIRItem array(x->array(), this);
1784   array.load_item();
1785   LIR_Opr reg = rlock_result(x);
1786 
1787   CodeEmitInfo* info = NULL;
1788   if (x->needs_null_check()) {
1789     NullCheck* nc = x->explicit_null_check();
1790     if (nc == NULL) {
1791       info = state_for(x);
1792     } else {
1793       info = state_for(nc);
1794     }
1795     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1796       LIR_Opr obj = new_register(T_OBJECT);
1797       __ move(LIR_OprFact::oopConst(NULL), obj);
1798       __ null_check(obj, new CodeEmitInfo(info));
1799     }
1800   }
1801   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1802 }
1803 
1804 
1805 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1806   bool use_length = x->length() != NULL;
1807   LIRItem array(x->array(), this);
1808   LIRItem index(x->index(), this);
1809   LIRItem length(this);
1810   bool needs_range_check = x->compute_needs_range_check();
1811 
1812   if (use_length && needs_range_check) {
1813     length.set_instruction(x->length());
1814     length.load_item();
1815   }
1816 
1817   array.load_item();
1818   if (index.is_constant() && can_inline_as_constant(x->index())) {
1819     // let it be a constant
1820     index.dont_load_item();
1821   } else {
1822     index.load_item();
1823   }
1824 
1825   CodeEmitInfo* range_check_info = state_for(x);
1826   CodeEmitInfo* null_check_info = NULL;
1827   if (x->needs_null_check()) {
1828     NullCheck* nc = x->explicit_null_check();
1829     if (nc != NULL) {
1830       null_check_info = state_for(nc);
1831     } else {
1832       null_check_info = range_check_info;
1833     }
1834     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1835       LIR_Opr obj = new_register(T_OBJECT);
1836       __ move(LIR_OprFact::oopConst(NULL), obj);
1837       __ null_check(obj, new CodeEmitInfo(null_check_info));
1838     }
1839   }
1840 
1841   if (GenerateRangeChecks && needs_range_check) {
1842     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1843       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1844     } else if (use_length) {
1845       // TODO: use a (modified) version of array_range_check that does not require a
1846       //       constant length to be loaded to a register
1847       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1848       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1849     } else {
1850       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1851       // The range check performs the null check, so clear it out for the load
1852       null_check_info = NULL;
1853     }
1854   }
1855 
1856   DecoratorSet decorators = IN_HEAP | IN_HEAP_ARRAY;
1857 
1858   LIR_Opr result = rlock_result(x, x->elt_type());
1859   access_load_at(decorators, x->elt_type(),
1860                  array, index.result(), result,
1861                  NULL, null_check_info);
1862 }
1863 
1864 
1865 void LIRGenerator::do_NullCheck(NullCheck* x) {
1866   if (x->can_trap()) {
1867     LIRItem value(x->obj(), this);
1868     value.load_item();
1869     CodeEmitInfo* info = state_for(x);
1870     __ null_check(value.result(), info);
1871   }
1872 }
1873 
1874 
1875 void LIRGenerator::do_TypeCast(TypeCast* x) {
1876   LIRItem value(x->obj(), this);
1877   value.load_item();
1878   // the result is the same as from the node we are casting
1879   set_result(x, value.result());
1880 }
1881 
1882 
1883 void LIRGenerator::do_Throw(Throw* x) {
1884   LIRItem exception(x->exception(), this);
1885   exception.load_item();
1886   set_no_result(x);
1887   LIR_Opr exception_opr = exception.result();
1888   CodeEmitInfo* info = state_for(x, x->state());
1889 
1890 #ifndef PRODUCT
1891   if (PrintC1Statistics) {
1892     increment_counter(Runtime1::throw_count_address(), T_INT);
1893   }
1894 #endif
1895 
1896   // check if the instruction has an xhandler in any of the nested scopes
1897   bool unwind = false;
1898   if (info->exception_handlers()->length() == 0) {
1899     // this throw is not inside an xhandler
1900     unwind = true;
1901   } else {
1902     // get some idea of the throw type
1903     bool type_is_exact = true;
1904     ciType* throw_type = x->exception()->exact_type();
1905     if (throw_type == NULL) {
1906       type_is_exact = false;
1907       throw_type = x->exception()->declared_type();
1908     }
1909     if (throw_type != NULL && throw_type->is_instance_klass()) {
1910       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1911       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1912     }
1913   }
1914 
1915   // do null check before moving exception oop into fixed register
1916   // to avoid a fixed interval with an oop during the null check.
1917   // Use a copy of the CodeEmitInfo because debug information is
1918   // different for null_check and throw.
1919   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
1920     // if the exception object wasn't created using new then it might be null.
1921     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1922   }
1923 
1924   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1925     // we need to go through the exception lookup path to get JVMTI
1926     // notification done
1927     unwind = false;
1928   }
1929 
1930   // move exception oop into fixed register
1931   __ move(exception_opr, exceptionOopOpr());
1932 
1933   if (unwind) {
1934     __ unwind_exception(exceptionOopOpr());
1935   } else {
1936     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1937   }
1938 }
1939 
1940 
1941 void LIRGenerator::do_RoundFP(RoundFP* x) {
1942   LIRItem input(x->input(), this);
1943   input.load_item();
1944   LIR_Opr input_opr = input.result();
1945   assert(input_opr->is_register(), "why round if value is not in a register?");
1946   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1947   if (input_opr->is_single_fpu()) {
1948     set_result(x, round_item(input_opr)); // This code path not currently taken
1949   } else {
1950     LIR_Opr result = new_register(T_DOUBLE);
1951     set_vreg_flag(result, must_start_in_memory);
1952     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1953     set_result(x, result);
1954   }
1955 }
1956 
1957 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
1958 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
1959 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1960   LIRItem base(x->base(), this);
1961   LIRItem idx(this);
1962 
1963   base.load_item();
1964   if (x->has_index()) {
1965     idx.set_instruction(x->index());
1966     idx.load_nonconstant();
1967   }
1968 
1969   LIR_Opr reg = rlock_result(x, x->basic_type());
1970 
1971   int   log2_scale = 0;
1972   if (x->has_index()) {
1973     log2_scale = x->log2_scale();
1974   }
1975 
1976   assert(!x->has_index() || idx.value() == x->index(), "should match");
1977 
1978   LIR_Opr base_op = base.result();
1979   LIR_Opr index_op = idx.result();
1980 #ifndef _LP64
1981   if (base_op->type() == T_LONG) {
1982     base_op = new_register(T_INT);
1983     __ convert(Bytecodes::_l2i, base.result(), base_op);
1984   }
1985   if (x->has_index()) {
1986     if (index_op->type() == T_LONG) {
1987       LIR_Opr long_index_op = index_op;
1988       if (index_op->is_constant()) {
1989         long_index_op = new_register(T_LONG);
1990         __ move(index_op, long_index_op);
1991       }
1992       index_op = new_register(T_INT);
1993       __ convert(Bytecodes::_l2i, long_index_op, index_op);
1994     } else {
1995       assert(x->index()->type()->tag() == intTag, "must be");
1996     }
1997   }
1998   // At this point base and index should be all ints.
1999   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2000   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2001 #else
2002   if (x->has_index()) {
2003     if (index_op->type() == T_INT) {
2004       if (!index_op->is_constant()) {
2005         index_op = new_register(T_LONG);
2006         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2007       }
2008     } else {
2009       assert(index_op->type() == T_LONG, "must be");
2010       if (index_op->is_constant()) {
2011         index_op = new_register(T_LONG);
2012         __ move(idx.result(), index_op);
2013       }
2014     }
2015   }
2016   // At this point base is a long non-constant
2017   // Index is a long register or a int constant.
2018   // We allow the constant to stay an int because that would allow us a more compact encoding by
2019   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2020   // move it into a register first.
2021   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2022   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2023                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2024 #endif
2025 
2026   BasicType dst_type = x->basic_type();
2027 
2028   LIR_Address* addr;
2029   if (index_op->is_constant()) {
2030     assert(log2_scale == 0, "must not have a scale");
2031     assert(index_op->type() == T_INT, "only int constants supported");
2032     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2033   } else {
2034 #ifdef X86
2035     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2036 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2037     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2038 #else
2039     if (index_op->is_illegal() || log2_scale == 0) {
2040       addr = new LIR_Address(base_op, index_op, dst_type);
2041     } else {
2042       LIR_Opr tmp = new_pointer_register();
2043       __ shift_left(index_op, log2_scale, tmp);
2044       addr = new LIR_Address(base_op, tmp, dst_type);
2045     }
2046 #endif
2047   }
2048 
2049   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2050     __ unaligned_move(addr, reg);
2051   } else {
2052     if (dst_type == T_OBJECT && x->is_wide()) {
2053       __ move_wide(addr, reg);
2054     } else {
2055       __ move(addr, reg);
2056     }
2057   }
2058 }
2059 
2060 
2061 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2062   int  log2_scale = 0;
2063   BasicType type = x->basic_type();
2064 
2065   if (x->has_index()) {
2066     log2_scale = x->log2_scale();
2067   }
2068 
2069   LIRItem base(x->base(), this);
2070   LIRItem value(x->value(), this);
2071   LIRItem idx(this);
2072 
2073   base.load_item();
2074   if (x->has_index()) {
2075     idx.set_instruction(x->index());
2076     idx.load_item();
2077   }
2078 
2079   if (type == T_BYTE || type == T_BOOLEAN) {
2080     value.load_byte_item();
2081   } else {
2082     value.load_item();
2083   }
2084 
2085   set_no_result(x);
2086 
2087   LIR_Opr base_op = base.result();
2088   LIR_Opr index_op = idx.result();
2089 
2090 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2091   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2092 #else
2093 #ifndef _LP64
2094   if (base_op->type() == T_LONG) {
2095     base_op = new_register(T_INT);
2096     __ convert(Bytecodes::_l2i, base.result(), base_op);
2097   }
2098   if (x->has_index()) {
2099     if (index_op->type() == T_LONG) {
2100       index_op = new_register(T_INT);
2101       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2102     }
2103   }
2104   // At this point base and index should be all ints and not constants
2105   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2106   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2107 #else
2108   if (x->has_index()) {
2109     if (index_op->type() == T_INT) {
2110       index_op = new_register(T_LONG);
2111       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2112     }
2113   }
2114   // At this point base and index are long and non-constant
2115   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2116   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2117 #endif
2118 
2119   if (log2_scale != 0) {
2120     // temporary fix (platform dependent code without shift on Intel would be better)
2121     // TODO: ARM also allows embedded shift in the address
2122     LIR_Opr tmp = new_pointer_register();
2123     if (TwoOperandLIRForm) {
2124       __ move(index_op, tmp);
2125       index_op = tmp;
2126     }
2127     __ shift_left(index_op, log2_scale, tmp);
2128     if (!TwoOperandLIRForm) {
2129       index_op = tmp;
2130     }
2131   }
2132 
2133   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2134 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2135   __ move(value.result(), addr);
2136 }
2137 
2138 
2139 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2140   BasicType type = x->basic_type();
2141   LIRItem src(x->object(), this);
2142   LIRItem off(x->offset(), this);
2143 
2144   off.load_item();
2145   src.load_item();
2146 
2147   DecoratorSet decorators = IN_HEAP;
2148 
2149   if (x->is_volatile()) {
2150     decorators |= MO_SEQ_CST;
2151   }
2152   if (type == T_BOOLEAN) {
2153     decorators |= C1_MASK_BOOLEAN;
2154   }
2155   if (type == T_ARRAY || type == T_OBJECT) {
2156     decorators |= ON_UNKNOWN_OOP_REF;
2157   }
2158 
2159   LIR_Opr result = rlock_result(x, type);
2160   access_load_at(decorators, type,
2161                  src, off.result(), result,
2162                  NULL, NULL);
2163 }
2164 
2165 
2166 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2167   BasicType type = x->basic_type();
2168   LIRItem src(x->object(), this);
2169   LIRItem off(x->offset(), this);
2170   LIRItem data(x->value(), this);
2171 
2172   src.load_item();
2173   if (type == T_BOOLEAN || type == T_BYTE) {
2174     data.load_byte_item();
2175   } else {
2176     data.load_item();
2177   }
2178   off.load_item();
2179 
2180   set_no_result(x);
2181 
2182   DecoratorSet decorators = IN_HEAP;
2183   if (type == T_ARRAY || type == T_OBJECT) {
2184     decorators |= ON_UNKNOWN_OOP_REF;
2185   }
2186   if (x->is_volatile()) {
2187     decorators |= MO_SEQ_CST;
2188   }
2189   access_store_at(decorators, type, src, off.result(), data.result(), NULL, NULL);
2190 }
2191 
2192 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2193   BasicType type = x->basic_type();
2194   LIRItem src(x->object(), this);
2195   LIRItem off(x->offset(), this);
2196   LIRItem value(x->value(), this);
2197 
2198   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2199 
2200   if (type == T_ARRAY || type == T_OBJECT) {
2201     decorators |= ON_UNKNOWN_OOP_REF;
2202   }
2203 
2204   LIR_Opr result;
2205   if (x->is_add()) {
2206     result = access_atomic_add_at(decorators, type, src, off, value);
2207   } else {
2208     result = access_atomic_xchg_at(decorators, type, src, off, value);
2209   }
2210   set_result(x, result);
2211 }
2212 
2213 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2214   int lng = x->length();
2215 
2216   for (int i = 0; i < lng; i++) {
2217     SwitchRange* one_range = x->at(i);
2218     int low_key = one_range->low_key();
2219     int high_key = one_range->high_key();
2220     BlockBegin* dest = one_range->sux();
2221     if (low_key == high_key) {
2222       __ cmp(lir_cond_equal, value, low_key);
2223       __ branch(lir_cond_equal, T_INT, dest);
2224     } else if (high_key - low_key == 1) {
2225       __ cmp(lir_cond_equal, value, low_key);
2226       __ branch(lir_cond_equal, T_INT, dest);
2227       __ cmp(lir_cond_equal, value, high_key);
2228       __ branch(lir_cond_equal, T_INT, dest);
2229     } else {
2230       LabelObj* L = new LabelObj();
2231       __ cmp(lir_cond_less, value, low_key);
2232       __ branch(lir_cond_less, T_INT, L->label());
2233       __ cmp(lir_cond_lessEqual, value, high_key);
2234       __ branch(lir_cond_lessEqual, T_INT, dest);
2235       __ branch_destination(L->label());
2236     }
2237   }
2238   __ jump(default_sux);
2239 }
2240 
2241 
2242 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2243   SwitchRangeList* res = new SwitchRangeList();
2244   int len = x->length();
2245   if (len > 0) {
2246     BlockBegin* sux = x->sux_at(0);
2247     int key = x->lo_key();
2248     BlockBegin* default_sux = x->default_sux();
2249     SwitchRange* range = new SwitchRange(key, sux);
2250     for (int i = 0; i < len; i++, key++) {
2251       BlockBegin* new_sux = x->sux_at(i);
2252       if (sux == new_sux) {
2253         // still in same range
2254         range->set_high_key(key);
2255       } else {
2256         // skip tests which explicitly dispatch to the default
2257         if (sux != default_sux) {
2258           res->append(range);
2259         }
2260         range = new SwitchRange(key, new_sux);
2261       }
2262       sux = new_sux;
2263     }
2264     if (res->length() == 0 || res->last() != range)  res->append(range);
2265   }
2266   return res;
2267 }
2268 
2269 
2270 // we expect the keys to be sorted by increasing value
2271 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2272   SwitchRangeList* res = new SwitchRangeList();
2273   int len = x->length();
2274   if (len > 0) {
2275     BlockBegin* default_sux = x->default_sux();
2276     int key = x->key_at(0);
2277     BlockBegin* sux = x->sux_at(0);
2278     SwitchRange* range = new SwitchRange(key, sux);
2279     for (int i = 1; i < len; i++) {
2280       int new_key = x->key_at(i);
2281       BlockBegin* new_sux = x->sux_at(i);
2282       if (key+1 == new_key && sux == new_sux) {
2283         // still in same range
2284         range->set_high_key(new_key);
2285       } else {
2286         // skip tests which explicitly dispatch to the default
2287         if (range->sux() != default_sux) {
2288           res->append(range);
2289         }
2290         range = new SwitchRange(new_key, new_sux);
2291       }
2292       key = new_key;
2293       sux = new_sux;
2294     }
2295     if (res->length() == 0 || res->last() != range)  res->append(range);
2296   }
2297   return res;
2298 }
2299 
2300 
2301 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2302   LIRItem tag(x->tag(), this);
2303   tag.load_item();
2304   set_no_result(x);
2305 
2306   if (x->is_safepoint()) {
2307     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2308   }
2309 
2310   // move values into phi locations
2311   move_to_phi(x->state());
2312 
2313   int lo_key = x->lo_key();
2314   int hi_key = x->hi_key();
2315   int len = x->length();
2316   LIR_Opr value = tag.result();
2317   if (UseTableRanges) {
2318     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2319   } else {
2320     for (int i = 0; i < len; i++) {
2321       __ cmp(lir_cond_equal, value, i + lo_key);
2322       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2323     }
2324     __ jump(x->default_sux());
2325   }
2326 }
2327 
2328 
2329 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2330   LIRItem tag(x->tag(), this);
2331   tag.load_item();
2332   set_no_result(x);
2333 
2334   if (x->is_safepoint()) {
2335     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2336   }
2337 
2338   // move values into phi locations
2339   move_to_phi(x->state());
2340 
2341   LIR_Opr value = tag.result();
2342   if (UseTableRanges) {
2343     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2344   } else {
2345     int len = x->length();
2346     for (int i = 0; i < len; i++) {
2347       __ cmp(lir_cond_equal, value, x->key_at(i));
2348       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2349     }
2350     __ jump(x->default_sux());
2351   }
2352 }
2353 
2354 
2355 void LIRGenerator::do_Goto(Goto* x) {
2356   set_no_result(x);
2357 
2358   if (block()->next()->as_OsrEntry()) {
2359     // need to free up storage used for OSR entry point
2360     LIR_Opr osrBuffer = block()->next()->operand();
2361     BasicTypeList signature;
2362     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2363     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2364     __ move(osrBuffer, cc->args()->at(0));
2365     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2366                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2367   }
2368 
2369   if (x->is_safepoint()) {
2370     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2371 
2372     // increment backedge counter if needed
2373     CodeEmitInfo* info = state_for(x, state);
2374     increment_backedge_counter(info, x->profiled_bci());
2375     CodeEmitInfo* safepoint_info = state_for(x, state);
2376     __ safepoint(safepoint_poll_register(), safepoint_info);
2377   }
2378 
2379   // Gotos can be folded Ifs, handle this case.
2380   if (x->should_profile()) {
2381     ciMethod* method = x->profiled_method();
2382     assert(method != NULL, "method should be set if branch is profiled");
2383     ciMethodData* md = method->method_data_or_null();
2384     assert(md != NULL, "Sanity");
2385     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2386     assert(data != NULL, "must have profiling data");
2387     int offset;
2388     if (x->direction() == Goto::taken) {
2389       assert(data->is_BranchData(), "need BranchData for two-way branches");
2390       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2391     } else if (x->direction() == Goto::not_taken) {
2392       assert(data->is_BranchData(), "need BranchData for two-way branches");
2393       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2394     } else {
2395       assert(data->is_JumpData(), "need JumpData for branches");
2396       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2397     }
2398     LIR_Opr md_reg = new_register(T_METADATA);
2399     __ metadata2reg(md->constant_encoding(), md_reg);
2400 
2401     increment_counter(new LIR_Address(md_reg, offset,
2402                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2403   }
2404 
2405   // emit phi-instruction move after safepoint since this simplifies
2406   // describing the state as the safepoint.
2407   move_to_phi(x->state());
2408 
2409   __ jump(x->default_sux());
2410 }
2411 
2412 /**
2413  * Emit profiling code if needed for arguments, parameters, return value types
2414  *
2415  * @param md                    MDO the code will update at runtime
2416  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2417  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2418  * @param profiled_k            current profile
2419  * @param obj                   IR node for the object to be profiled
2420  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2421  *                              Set once we find an update to make and use for next ones.
2422  * @param not_null              true if we know obj cannot be null
2423  * @param signature_at_call_k   signature at call for obj
2424  * @param callee_signature_k    signature of callee for obj
2425  *                              at call and callee signatures differ at method handle call
2426  * @return                      the only klass we know will ever be seen at this profile point
2427  */
2428 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2429                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2430                                     ciKlass* callee_signature_k) {
2431   ciKlass* result = NULL;
2432   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2433   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2434   // known not to be null or null bit already set and already set to
2435   // unknown: nothing we can do to improve profiling
2436   if (!do_null && !do_update) {
2437     return result;
2438   }
2439 
2440   ciKlass* exact_klass = NULL;
2441   Compilation* comp = Compilation::current();
2442   if (do_update) {
2443     // try to find exact type, using CHA if possible, so that loading
2444     // the klass from the object can be avoided
2445     ciType* type = obj->exact_type();
2446     if (type == NULL) {
2447       type = obj->declared_type();
2448       type = comp->cha_exact_type(type);
2449     }
2450     assert(type == NULL || type->is_klass(), "type should be class");
2451     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2452 
2453     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2454   }
2455 
2456   if (!do_null && !do_update) {
2457     return result;
2458   }
2459 
2460   ciKlass* exact_signature_k = NULL;
2461   if (do_update) {
2462     // Is the type from the signature exact (the only one possible)?
2463     exact_signature_k = signature_at_call_k->exact_klass();
2464     if (exact_signature_k == NULL) {
2465       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2466     } else {
2467       result = exact_signature_k;
2468       // Known statically. No need to emit any code: prevent
2469       // LIR_Assembler::emit_profile_type() from emitting useless code
2470       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2471     }
2472     // exact_klass and exact_signature_k can be both non NULL but
2473     // different if exact_klass is loaded after the ciObject for
2474     // exact_signature_k is created.
2475     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2476       // sometimes the type of the signature is better than the best type
2477       // the compiler has
2478       exact_klass = exact_signature_k;
2479     }
2480     if (callee_signature_k != NULL &&
2481         callee_signature_k != signature_at_call_k) {
2482       ciKlass* improved_klass = callee_signature_k->exact_klass();
2483       if (improved_klass == NULL) {
2484         improved_klass = comp->cha_exact_type(callee_signature_k);
2485       }
2486       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2487         exact_klass = exact_signature_k;
2488       }
2489     }
2490     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2491   }
2492 
2493   if (!do_null && !do_update) {
2494     return result;
2495   }
2496 
2497   if (mdp == LIR_OprFact::illegalOpr) {
2498     mdp = new_register(T_METADATA);
2499     __ metadata2reg(md->constant_encoding(), mdp);
2500     if (md_base_offset != 0) {
2501       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2502       mdp = new_pointer_register();
2503       __ leal(LIR_OprFact::address(base_type_address), mdp);
2504     }
2505   }
2506   LIRItem value(obj, this);
2507   value.load_item();
2508   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2509                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2510   return result;
2511 }
2512 
2513 // profile parameters on entry to the root of the compilation
2514 void LIRGenerator::profile_parameters(Base* x) {
2515   if (compilation()->profile_parameters()) {
2516     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2517     ciMethodData* md = scope()->method()->method_data_or_null();
2518     assert(md != NULL, "Sanity");
2519 
2520     if (md->parameters_type_data() != NULL) {
2521       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2522       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2523       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2524       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2525         LIR_Opr src = args->at(i);
2526         assert(!src->is_illegal(), "check");
2527         BasicType t = src->type();
2528         if (t == T_OBJECT || t == T_ARRAY) {
2529           intptr_t profiled_k = parameters->type(j);
2530           Local* local = x->state()->local_at(java_index)->as_Local();
2531           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2532                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2533                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2534           // If the profile is known statically set it once for all and do not emit any code
2535           if (exact != NULL) {
2536             md->set_parameter_type(j, exact);
2537           }
2538           j++;
2539         }
2540         java_index += type2size[t];
2541       }
2542     }
2543   }
2544 }
2545 
2546 void LIRGenerator::do_Base(Base* x) {
2547   __ std_entry(LIR_OprFact::illegalOpr);
2548   // Emit moves from physical registers / stack slots to virtual registers
2549   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2550   IRScope* irScope = compilation()->hir()->top_scope();
2551   int java_index = 0;
2552   for (int i = 0; i < args->length(); i++) {
2553     LIR_Opr src = args->at(i);
2554     assert(!src->is_illegal(), "check");
2555     BasicType t = src->type();
2556 
2557     // Types which are smaller than int are passed as int, so
2558     // correct the type which passed.
2559     switch (t) {
2560     case T_BYTE:
2561     case T_BOOLEAN:
2562     case T_SHORT:
2563     case T_CHAR:
2564       t = T_INT;
2565       break;
2566     default:
2567       break;
2568     }
2569 
2570     LIR_Opr dest = new_register(t);
2571     __ move(src, dest);
2572 
2573     // Assign new location to Local instruction for this local
2574     Local* local = x->state()->local_at(java_index)->as_Local();
2575     assert(local != NULL, "Locals for incoming arguments must have been created");
2576 #ifndef __SOFTFP__
2577     // The java calling convention passes double as long and float as int.
2578     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2579 #endif // __SOFTFP__
2580     local->set_operand(dest);
2581     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2582     java_index += type2size[t];
2583   }
2584 
2585   if (compilation()->env()->dtrace_method_probes()) {
2586     BasicTypeList signature;
2587     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2588     signature.append(T_METADATA); // Method*
2589     LIR_OprList* args = new LIR_OprList();
2590     args->append(getThreadPointer());
2591     LIR_Opr meth = new_register(T_METADATA);
2592     __ metadata2reg(method()->constant_encoding(), meth);
2593     args->append(meth);
2594     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2595   }
2596 
2597   if (method()->is_synchronized()) {
2598     LIR_Opr obj;
2599     if (method()->is_static()) {
2600       obj = new_register(T_OBJECT);
2601       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2602     } else {
2603       Local* receiver = x->state()->local_at(0)->as_Local();
2604       assert(receiver != NULL, "must already exist");
2605       obj = receiver->operand();
2606     }
2607     assert(obj->is_valid(), "must be valid");
2608 
2609     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2610       LIR_Opr lock = syncLockOpr();
2611       __ load_stack_address_monitor(0, lock);
2612 
2613       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2614       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2615 
2616       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2617       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2618     }
2619   }
2620   if (compilation()->age_code()) {
2621     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2622     decrement_age(info);
2623   }
2624   // increment invocation counters if needed
2625   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2626     profile_parameters(x);
2627     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2628     increment_invocation_counter(info);
2629   }
2630 
2631   // all blocks with a successor must end with an unconditional jump
2632   // to the successor even if they are consecutive
2633   __ jump(x->default_sux());
2634 }
2635 
2636 
2637 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2638   // construct our frame and model the production of incoming pointer
2639   // to the OSR buffer.
2640   __ osr_entry(LIR_Assembler::osrBufferPointer());
2641   LIR_Opr result = rlock_result(x);
2642   __ move(LIR_Assembler::osrBufferPointer(), result);
2643 }
2644 
2645 
2646 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2647   assert(args->length() == arg_list->length(),
2648          "args=%d, arg_list=%d", args->length(), arg_list->length());
2649   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2650     LIRItem* param = args->at(i);
2651     LIR_Opr loc = arg_list->at(i);
2652     if (loc->is_register()) {
2653       param->load_item_force(loc);
2654     } else {
2655       LIR_Address* addr = loc->as_address_ptr();
2656       param->load_for_store(addr->type());
2657       if (addr->type() == T_OBJECT) {
2658         __ move_wide(param->result(), addr);
2659       } else
2660         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2661           __ unaligned_move(param->result(), addr);
2662         } else {
2663           __ move(param->result(), addr);
2664         }
2665     }
2666   }
2667 
2668   if (x->has_receiver()) {
2669     LIRItem* receiver = args->at(0);
2670     LIR_Opr loc = arg_list->at(0);
2671     if (loc->is_register()) {
2672       receiver->load_item_force(loc);
2673     } else {
2674       assert(loc->is_address(), "just checking");
2675       receiver->load_for_store(T_OBJECT);
2676       __ move_wide(receiver->result(), loc->as_address_ptr());
2677     }
2678   }
2679 }
2680 
2681 
2682 // Visits all arguments, returns appropriate items without loading them
2683 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2684   LIRItemList* argument_items = new LIRItemList();
2685   if (x->has_receiver()) {
2686     LIRItem* receiver = new LIRItem(x->receiver(), this);
2687     argument_items->append(receiver);
2688   }
2689   for (int i = 0; i < x->number_of_arguments(); i++) {
2690     LIRItem* param = new LIRItem(x->argument_at(i), this);
2691     argument_items->append(param);
2692   }
2693   return argument_items;
2694 }
2695 
2696 
2697 // The invoke with receiver has following phases:
2698 //   a) traverse and load/lock receiver;
2699 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2700 //   c) push receiver on stack
2701 //   d) load each of the items and push on stack
2702 //   e) unlock receiver
2703 //   f) move receiver into receiver-register %o0
2704 //   g) lock result registers and emit call operation
2705 //
2706 // Before issuing a call, we must spill-save all values on stack
2707 // that are in caller-save register. "spill-save" moves those registers
2708 // either in a free callee-save register or spills them if no free
2709 // callee save register is available.
2710 //
2711 // The problem is where to invoke spill-save.
2712 // - if invoked between e) and f), we may lock callee save
2713 //   register in "spill-save" that destroys the receiver register
2714 //   before f) is executed
2715 // - if we rearrange f) to be earlier (by loading %o0) it
2716 //   may destroy a value on the stack that is currently in %o0
2717 //   and is waiting to be spilled
2718 // - if we keep the receiver locked while doing spill-save,
2719 //   we cannot spill it as it is spill-locked
2720 //
2721 void LIRGenerator::do_Invoke(Invoke* x) {
2722   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2723 
2724   LIR_OprList* arg_list = cc->args();
2725   LIRItemList* args = invoke_visit_arguments(x);
2726   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2727 
2728   // setup result register
2729   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2730   if (x->type() != voidType) {
2731     result_register = result_register_for(x->type());
2732   }
2733 
2734   CodeEmitInfo* info = state_for(x, x->state());
2735 
2736   invoke_load_arguments(x, args, arg_list);
2737 
2738   if (x->has_receiver()) {
2739     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2740     receiver = args->at(0)->result();
2741   }
2742 
2743   // emit invoke code
2744   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2745 
2746   // JSR 292
2747   // Preserve the SP over MethodHandle call sites, if needed.
2748   ciMethod* target = x->target();
2749   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2750                                   target->is_method_handle_intrinsic() ||
2751                                   target->is_compiled_lambda_form());
2752   if (is_method_handle_invoke) {
2753     info->set_is_method_handle_invoke(true);
2754     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2755         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2756     }
2757   }
2758 
2759   switch (x->code()) {
2760     case Bytecodes::_invokestatic:
2761       __ call_static(target, result_register,
2762                      SharedRuntime::get_resolve_static_call_stub(),
2763                      arg_list, info);
2764       break;
2765     case Bytecodes::_invokespecial:
2766     case Bytecodes::_invokevirtual:
2767     case Bytecodes::_invokeinterface:
2768       // for loaded and final (method or class) target we still produce an inline cache,
2769       // in order to be able to call mixed mode
2770       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2771         __ call_opt_virtual(target, receiver, result_register,
2772                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2773                             arg_list, info);
2774       } else if (x->vtable_index() < 0) {
2775         __ call_icvirtual(target, receiver, result_register,
2776                           SharedRuntime::get_resolve_virtual_call_stub(),
2777                           arg_list, info);
2778       } else {
2779         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2780         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2781         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2782       }
2783       break;
2784     case Bytecodes::_invokedynamic: {
2785       __ call_dynamic(target, receiver, result_register,
2786                       SharedRuntime::get_resolve_static_call_stub(),
2787                       arg_list, info);
2788       break;
2789     }
2790     default:
2791       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2792       break;
2793   }
2794 
2795   // JSR 292
2796   // Restore the SP after MethodHandle call sites, if needed.
2797   if (is_method_handle_invoke
2798       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2799     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2800   }
2801 
2802   if (x->type()->is_float() || x->type()->is_double()) {
2803     // Force rounding of results from non-strictfp when in strictfp
2804     // scope (or when we don't know the strictness of the callee, to
2805     // be safe.)
2806     if (method()->is_strict()) {
2807       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2808         result_register = round_item(result_register);
2809       }
2810     }
2811   }
2812 
2813   if (result_register->is_valid()) {
2814     LIR_Opr result = rlock_result(x);
2815     __ move(result_register, result);
2816   }
2817 }
2818 
2819 
2820 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2821   assert(x->number_of_arguments() == 1, "wrong type");
2822   LIRItem value       (x->argument_at(0), this);
2823   LIR_Opr reg = rlock_result(x);
2824   value.load_item();
2825   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2826   __ move(tmp, reg);
2827 }
2828 
2829 
2830 
2831 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2832 void LIRGenerator::do_IfOp(IfOp* x) {
2833 #ifdef ASSERT
2834   {
2835     ValueTag xtag = x->x()->type()->tag();
2836     ValueTag ttag = x->tval()->type()->tag();
2837     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2838     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2839     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2840   }
2841 #endif
2842 
2843   LIRItem left(x->x(), this);
2844   LIRItem right(x->y(), this);
2845   left.load_item();
2846   if (can_inline_as_constant(right.value())) {
2847     right.dont_load_item();
2848   } else {
2849     right.load_item();
2850   }
2851 
2852   LIRItem t_val(x->tval(), this);
2853   LIRItem f_val(x->fval(), this);
2854   t_val.dont_load_item();
2855   f_val.dont_load_item();
2856   LIR_Opr reg = rlock_result(x);
2857 
2858   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2859   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2860 }
2861 
2862 #ifdef TRACE_HAVE_INTRINSICS
2863 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2864   CodeEmitInfo* info = state_for(x);
2865   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2866 
2867   assert(info != NULL, "must have info");
2868   LIRItem arg(x->argument_at(0), this);
2869 
2870   arg.load_item();
2871   LIR_Opr klass = new_register(T_METADATA);
2872   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
2873   LIR_Opr id = new_register(T_LONG);
2874   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
2875   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2876 
2877   __ move(trace_id_addr, id);
2878   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2879   __ store(id, trace_id_addr);
2880 
2881 #ifdef TRACE_ID_META_BITS
2882   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
2883 #endif
2884 #ifdef TRACE_ID_CLASS_SHIFT
2885   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
2886 #endif
2887 
2888   __ move(id, rlock_result(x));
2889 }
2890 
2891 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
2892   LabelObj* L_end = new LabelObj();
2893 
2894   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2895                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
2896                                            T_OBJECT);
2897   LIR_Opr result = rlock_result(x);
2898   __ move_wide(jobj_addr, result);
2899   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
2900   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
2901   __ move_wide(new LIR_Address(result, T_OBJECT), result);
2902 
2903   __ branch_destination(L_end->label());
2904 }
2905 
2906 #endif
2907 
2908 
2909 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2910   assert(x->number_of_arguments() == 0, "wrong type");
2911   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2912   BasicTypeList signature;
2913   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2914   LIR_Opr reg = result_register_for(x->type());
2915   __ call_runtime_leaf(routine, getThreadTemp(),
2916                        reg, new LIR_OprList());
2917   LIR_Opr result = rlock_result(x);
2918   __ move(reg, result);
2919 }
2920 
2921 
2922 
2923 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2924   switch (x->id()) {
2925   case vmIntrinsics::_intBitsToFloat      :
2926   case vmIntrinsics::_doubleToRawLongBits :
2927   case vmIntrinsics::_longBitsToDouble    :
2928   case vmIntrinsics::_floatToRawIntBits   : {
2929     do_FPIntrinsics(x);
2930     break;
2931   }
2932 
2933 #ifdef TRACE_HAVE_INTRINSICS
2934   case vmIntrinsics::_getClassId:
2935     do_ClassIDIntrinsic(x);
2936     break;
2937   case vmIntrinsics::_getBufferWriter:
2938     do_getBufferWriter(x);
2939     break;
2940   case vmIntrinsics::_counterTime:
2941     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
2942     break;
2943 #endif
2944 
2945   case vmIntrinsics::_currentTimeMillis:
2946     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
2947     break;
2948 
2949   case vmIntrinsics::_nanoTime:
2950     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
2951     break;
2952 
2953   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2954   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2955   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
2956   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2957   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2958 
2959   case vmIntrinsics::_dlog:           // fall through
2960   case vmIntrinsics::_dlog10:         // fall through
2961   case vmIntrinsics::_dabs:           // fall through
2962   case vmIntrinsics::_dsqrt:          // fall through
2963   case vmIntrinsics::_dtan:           // fall through
2964   case vmIntrinsics::_dsin :          // fall through
2965   case vmIntrinsics::_dcos :          // fall through
2966   case vmIntrinsics::_dexp :          // fall through
2967   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2968   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2969 
2970   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
2971   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
2972 
2973   // java.nio.Buffer.checkIndex
2974   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2975 
2976   case vmIntrinsics::_compareAndSetObject:
2977     do_CompareAndSwap(x, objectType);
2978     break;
2979   case vmIntrinsics::_compareAndSetInt:
2980     do_CompareAndSwap(x, intType);
2981     break;
2982   case vmIntrinsics::_compareAndSetLong:
2983     do_CompareAndSwap(x, longType);
2984     break;
2985 
2986   case vmIntrinsics::_loadFence :
2987     if (os::is_MP()) __ membar_acquire();
2988     break;
2989   case vmIntrinsics::_storeFence:
2990     if (os::is_MP()) __ membar_release();
2991     break;
2992   case vmIntrinsics::_fullFence :
2993     if (os::is_MP()) __ membar();
2994     break;
2995   case vmIntrinsics::_onSpinWait:
2996     __ on_spin_wait();
2997     break;
2998   case vmIntrinsics::_Reference_get:
2999     do_Reference_get(x);
3000     break;
3001 
3002   case vmIntrinsics::_updateCRC32:
3003   case vmIntrinsics::_updateBytesCRC32:
3004   case vmIntrinsics::_updateByteBufferCRC32:
3005     do_update_CRC32(x);
3006     break;
3007 
3008   case vmIntrinsics::_updateBytesCRC32C:
3009   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3010     do_update_CRC32C(x);
3011     break;
3012 
3013   case vmIntrinsics::_vectorizedMismatch:
3014     do_vectorizedMismatch(x);
3015     break;
3016 
3017   default: ShouldNotReachHere(); break;
3018   }
3019 }
3020 
3021 void LIRGenerator::profile_arguments(ProfileCall* x) {
3022   if (compilation()->profile_arguments()) {
3023     int bci = x->bci_of_invoke();
3024     ciMethodData* md = x->method()->method_data_or_null();
3025     ciProfileData* data = md->bci_to_data(bci);
3026     if (data != NULL) {
3027       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3028           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3029         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3030         int base_offset = md->byte_offset_of_slot(data, extra);
3031         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3032         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3033 
3034         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3035         int start = 0;
3036         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3037         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3038           // first argument is not profiled at call (method handle invoke)
3039           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3040           start = 1;
3041         }
3042         ciSignature* callee_signature = x->callee()->signature();
3043         // method handle call to virtual method
3044         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3045         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3046 
3047         bool ignored_will_link;
3048         ciSignature* signature_at_call = NULL;
3049         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3050         ciSignatureStream signature_at_call_stream(signature_at_call);
3051 
3052         // if called through method handle invoke, some arguments may have been popped
3053         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3054           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3055           ciKlass* exact = profile_type(md, base_offset, off,
3056               args->type(i), x->profiled_arg_at(i+start), mdp,
3057               !x->arg_needs_null_check(i+start),
3058               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3059           if (exact != NULL) {
3060             md->set_argument_type(bci, i, exact);
3061           }
3062         }
3063       } else {
3064 #ifdef ASSERT
3065         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3066         int n = x->nb_profiled_args();
3067         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3068             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3069             "only at JSR292 bytecodes");
3070 #endif
3071       }
3072     }
3073   }
3074 }
3075 
3076 // profile parameters on entry to an inlined method
3077 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3078   if (compilation()->profile_parameters() && x->inlined()) {
3079     ciMethodData* md = x->callee()->method_data_or_null();
3080     if (md != NULL) {
3081       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3082       if (parameters_type_data != NULL) {
3083         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3084         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3085         bool has_receiver = !x->callee()->is_static();
3086         ciSignature* sig = x->callee()->signature();
3087         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3088         int i = 0; // to iterate on the Instructions
3089         Value arg = x->recv();
3090         bool not_null = false;
3091         int bci = x->bci_of_invoke();
3092         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3093         // The first parameter is the receiver so that's what we start
3094         // with if it exists. One exception is method handle call to
3095         // virtual method: the receiver is in the args list
3096         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3097           i = 1;
3098           arg = x->profiled_arg_at(0);
3099           not_null = !x->arg_needs_null_check(0);
3100         }
3101         int k = 0; // to iterate on the profile data
3102         for (;;) {
3103           intptr_t profiled_k = parameters->type(k);
3104           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3105                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3106                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3107           // If the profile is known statically set it once for all and do not emit any code
3108           if (exact != NULL) {
3109             md->set_parameter_type(k, exact);
3110           }
3111           k++;
3112           if (k >= parameters_type_data->number_of_parameters()) {
3113 #ifdef ASSERT
3114             int extra = 0;
3115             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3116                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3117                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3118               extra += 1;
3119             }
3120             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3121 #endif
3122             break;
3123           }
3124           arg = x->profiled_arg_at(i);
3125           not_null = !x->arg_needs_null_check(i);
3126           i++;
3127         }
3128       }
3129     }
3130   }
3131 }
3132 
3133 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3134   // Need recv in a temporary register so it interferes with the other temporaries
3135   LIR_Opr recv = LIR_OprFact::illegalOpr;
3136   LIR_Opr mdo = new_register(T_OBJECT);
3137   // tmp is used to hold the counters on SPARC
3138   LIR_Opr tmp = new_pointer_register();
3139 
3140   if (x->nb_profiled_args() > 0) {
3141     profile_arguments(x);
3142   }
3143 
3144   // profile parameters on inlined method entry including receiver
3145   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3146     profile_parameters_at_call(x);
3147   }
3148 
3149   if (x->recv() != NULL) {
3150     LIRItem value(x->recv(), this);
3151     value.load_item();
3152     recv = new_register(T_OBJECT);
3153     __ move(value.result(), recv);
3154   }
3155   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3156 }
3157 
3158 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3159   int bci = x->bci_of_invoke();
3160   ciMethodData* md = x->method()->method_data_or_null();
3161   ciProfileData* data = md->bci_to_data(bci);
3162   if (data != NULL) {
3163     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3164     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3165     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3166 
3167     bool ignored_will_link;
3168     ciSignature* signature_at_call = NULL;
3169     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3170 
3171     // The offset within the MDO of the entry to update may be too large
3172     // to be used in load/store instructions on some platforms. So have
3173     // profile_type() compute the address of the profile in a register.
3174     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3175         ret->type(), x->ret(), mdp,
3176         !x->needs_null_check(),
3177         signature_at_call->return_type()->as_klass(),
3178         x->callee()->signature()->return_type()->as_klass());
3179     if (exact != NULL) {
3180       md->set_return_type(bci, exact);
3181     }
3182   }
3183 }
3184 
3185 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3186   // We can safely ignore accessors here, since c2 will inline them anyway,
3187   // accessors are also always mature.
3188   if (!x->inlinee()->is_accessor()) {
3189     CodeEmitInfo* info = state_for(x, x->state(), true);
3190     // Notify the runtime very infrequently only to take care of counter overflows
3191     int freq_log = Tier23InlineeNotifyFreqLog;
3192     double scale;
3193     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3194       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3195     }
3196     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3197   }
3198 }
3199 
3200 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3201   int freq_log = 0;
3202   int level = compilation()->env()->comp_level();
3203   if (level == CompLevel_limited_profile) {
3204     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3205   } else if (level == CompLevel_full_profile) {
3206     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3207   } else {
3208     ShouldNotReachHere();
3209   }
3210   // Increment the appropriate invocation/backedge counter and notify the runtime.
3211   double scale;
3212   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3213     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3214   }
3215   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3216 }
3217 
3218 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3219   ciMethod* method = info->scope()->method();
3220   MethodCounters* mc_adr = method->ensure_method_counters();
3221   if (mc_adr != NULL) {
3222     LIR_Opr mc = new_pointer_register();
3223     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3224     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3225     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3226     LIR_Opr result = new_register(T_INT);
3227     __ load(counter, result);
3228     __ sub(result, LIR_OprFact::intConst(1), result);
3229     __ store(result, counter);
3230     // DeoptimizeStub will reexecute from the current state in code info.
3231     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3232                                          Deoptimization::Action_make_not_entrant);
3233     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3234     __ branch(lir_cond_lessEqual, T_INT, deopt);
3235   }
3236 }
3237 
3238 
3239 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3240                                                 ciMethod *method, int frequency,
3241                                                 int bci, bool backedge, bool notify) {
3242   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3243   int level = _compilation->env()->comp_level();
3244   assert(level > CompLevel_simple, "Shouldn't be here");
3245 
3246   int offset = -1;
3247   LIR_Opr counter_holder = NULL;
3248   if (level == CompLevel_limited_profile) {
3249     MethodCounters* counters_adr = method->ensure_method_counters();
3250     if (counters_adr == NULL) {
3251       bailout("method counters allocation failed");
3252       return;
3253     }
3254     counter_holder = new_pointer_register();
3255     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3256     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3257                                  MethodCounters::invocation_counter_offset());
3258   } else if (level == CompLevel_full_profile) {
3259     counter_holder = new_register(T_METADATA);
3260     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3261                                  MethodData::invocation_counter_offset());
3262     ciMethodData* md = method->method_data_or_null();
3263     assert(md != NULL, "Sanity");
3264     __ metadata2reg(md->constant_encoding(), counter_holder);
3265   } else {
3266     ShouldNotReachHere();
3267   }
3268   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3269   LIR_Opr result = new_register(T_INT);
3270   __ load(counter, result);
3271   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3272   __ store(result, counter);
3273   if (notify && (!backedge || UseOnStackReplacement)) {
3274     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3275     // The bci for info can point to cmp for if's we want the if bci
3276     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3277     int freq = frequency << InvocationCounter::count_shift;
3278     if (freq == 0) {
3279       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3280     } else {
3281       LIR_Opr mask = load_immediate(freq, T_INT);
3282       __ logical_and(result, mask, result);
3283       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3284       __ branch(lir_cond_equal, T_INT, overflow);
3285     }
3286     __ branch_destination(overflow->continuation());
3287   }
3288 }
3289 
3290 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3291   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3292   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3293 
3294   if (x->pass_thread()) {
3295     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3296     args->append(getThreadPointer());
3297   }
3298 
3299   for (int i = 0; i < x->number_of_arguments(); i++) {
3300     Value a = x->argument_at(i);
3301     LIRItem* item = new LIRItem(a, this);
3302     item->load_item();
3303     args->append(item->result());
3304     signature->append(as_BasicType(a->type()));
3305   }
3306 
3307   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3308   if (x->type() == voidType) {
3309     set_no_result(x);
3310   } else {
3311     __ move(result, rlock_result(x));
3312   }
3313 }
3314 
3315 #ifdef ASSERT
3316 void LIRGenerator::do_Assert(Assert *x) {
3317   ValueTag tag = x->x()->type()->tag();
3318   If::Condition cond = x->cond();
3319 
3320   LIRItem xitem(x->x(), this);
3321   LIRItem yitem(x->y(), this);
3322   LIRItem* xin = &xitem;
3323   LIRItem* yin = &yitem;
3324 
3325   assert(tag == intTag, "Only integer assertions are valid!");
3326 
3327   xin->load_item();
3328   yin->dont_load_item();
3329 
3330   set_no_result(x);
3331 
3332   LIR_Opr left = xin->result();
3333   LIR_Opr right = yin->result();
3334 
3335   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3336 }
3337 #endif
3338 
3339 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3340 
3341 
3342   Instruction *a = x->x();
3343   Instruction *b = x->y();
3344   if (!a || StressRangeCheckElimination) {
3345     assert(!b || StressRangeCheckElimination, "B must also be null");
3346 
3347     CodeEmitInfo *info = state_for(x, x->state());
3348     CodeStub* stub = new PredicateFailedStub(info);
3349 
3350     __ jump(stub);
3351   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3352     int a_int = a->type()->as_IntConstant()->value();
3353     int b_int = b->type()->as_IntConstant()->value();
3354 
3355     bool ok = false;
3356 
3357     switch(x->cond()) {
3358       case Instruction::eql: ok = (a_int == b_int); break;
3359       case Instruction::neq: ok = (a_int != b_int); break;
3360       case Instruction::lss: ok = (a_int < b_int); break;
3361       case Instruction::leq: ok = (a_int <= b_int); break;
3362       case Instruction::gtr: ok = (a_int > b_int); break;
3363       case Instruction::geq: ok = (a_int >= b_int); break;
3364       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3365       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3366       default: ShouldNotReachHere();
3367     }
3368 
3369     if (ok) {
3370 
3371       CodeEmitInfo *info = state_for(x, x->state());
3372       CodeStub* stub = new PredicateFailedStub(info);
3373 
3374       __ jump(stub);
3375     }
3376   } else {
3377 
3378     ValueTag tag = x->x()->type()->tag();
3379     If::Condition cond = x->cond();
3380     LIRItem xitem(x->x(), this);
3381     LIRItem yitem(x->y(), this);
3382     LIRItem* xin = &xitem;
3383     LIRItem* yin = &yitem;
3384 
3385     assert(tag == intTag, "Only integer deoptimizations are valid!");
3386 
3387     xin->load_item();
3388     yin->dont_load_item();
3389     set_no_result(x);
3390 
3391     LIR_Opr left = xin->result();
3392     LIR_Opr right = yin->result();
3393 
3394     CodeEmitInfo *info = state_for(x, x->state());
3395     CodeStub* stub = new PredicateFailedStub(info);
3396 
3397     __ cmp(lir_cond(cond), left, right);
3398     __ branch(lir_cond(cond), right->type(), stub);
3399   }
3400 }
3401 
3402 
3403 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3404   LIRItemList args(1);
3405   LIRItem value(arg1, this);
3406   args.append(&value);
3407   BasicTypeList signature;
3408   signature.append(as_BasicType(arg1->type()));
3409 
3410   return call_runtime(&signature, &args, entry, result_type, info);
3411 }
3412 
3413 
3414 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3415   LIRItemList args(2);
3416   LIRItem value1(arg1, this);
3417   LIRItem value2(arg2, this);
3418   args.append(&value1);
3419   args.append(&value2);
3420   BasicTypeList signature;
3421   signature.append(as_BasicType(arg1->type()));
3422   signature.append(as_BasicType(arg2->type()));
3423 
3424   return call_runtime(&signature, &args, entry, result_type, info);
3425 }
3426 
3427 
3428 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3429                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3430   // get a result register
3431   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3432   LIR_Opr result = LIR_OprFact::illegalOpr;
3433   if (result_type->tag() != voidTag) {
3434     result = new_register(result_type);
3435     phys_reg = result_register_for(result_type);
3436   }
3437 
3438   // move the arguments into the correct location
3439   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3440   assert(cc->length() == args->length(), "argument mismatch");
3441   for (int i = 0; i < args->length(); i++) {
3442     LIR_Opr arg = args->at(i);
3443     LIR_Opr loc = cc->at(i);
3444     if (loc->is_register()) {
3445       __ move(arg, loc);
3446     } else {
3447       LIR_Address* addr = loc->as_address_ptr();
3448 //           if (!can_store_as_constant(arg)) {
3449 //             LIR_Opr tmp = new_register(arg->type());
3450 //             __ move(arg, tmp);
3451 //             arg = tmp;
3452 //           }
3453       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3454         __ unaligned_move(arg, addr);
3455       } else {
3456         __ move(arg, addr);
3457       }
3458     }
3459   }
3460 
3461   if (info) {
3462     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3463   } else {
3464     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3465   }
3466   if (result->is_valid()) {
3467     __ move(phys_reg, result);
3468   }
3469   return result;
3470 }
3471 
3472 
3473 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3474                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3475   // get a result register
3476   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3477   LIR_Opr result = LIR_OprFact::illegalOpr;
3478   if (result_type->tag() != voidTag) {
3479     result = new_register(result_type);
3480     phys_reg = result_register_for(result_type);
3481   }
3482 
3483   // move the arguments into the correct location
3484   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3485 
3486   assert(cc->length() == args->length(), "argument mismatch");
3487   for (int i = 0; i < args->length(); i++) {
3488     LIRItem* arg = args->at(i);
3489     LIR_Opr loc = cc->at(i);
3490     if (loc->is_register()) {
3491       arg->load_item_force(loc);
3492     } else {
3493       LIR_Address* addr = loc->as_address_ptr();
3494       arg->load_for_store(addr->type());
3495       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3496         __ unaligned_move(arg->result(), addr);
3497       } else {
3498         __ move(arg->result(), addr);
3499       }
3500     }
3501   }
3502 
3503   if (info) {
3504     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3505   } else {
3506     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3507   }
3508   if (result->is_valid()) {
3509     __ move(phys_reg, result);
3510   }
3511   return result;
3512 }
3513 
3514 void LIRGenerator::do_MemBar(MemBar* x) {
3515   if (os::is_MP()) {
3516     LIR_Code code = x->code();
3517     switch(code) {
3518       case lir_membar_acquire   : __ membar_acquire(); break;
3519       case lir_membar_release   : __ membar_release(); break;
3520       case lir_membar           : __ membar(); break;
3521       case lir_membar_loadload  : __ membar_loadload(); break;
3522       case lir_membar_storestore: __ membar_storestore(); break;
3523       case lir_membar_loadstore : __ membar_loadstore(); break;
3524       case lir_membar_storeload : __ membar_storeload(); break;
3525       default                   : ShouldNotReachHere(); break;
3526     }
3527   }
3528 }
3529 
3530 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3531   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3532   if (TwoOperandLIRForm) {
3533     __ move(value, value_fixed);
3534     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3535   } else {
3536     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3537   }
3538   LIR_Opr klass = new_register(T_METADATA);
3539   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3540   null_check_info = NULL;
3541   LIR_Opr layout = new_register(T_INT);
3542   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3543   int diffbit = Klass::layout_helper_boolean_diffbit();
3544   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3545   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3546   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3547   value = value_fixed;
3548   return value;
3549 }
3550 
3551 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3552   if (x->check_boolean()) {
3553     value = mask_boolean(array, value, null_check_info);
3554   }
3555   return value;
3556 }