1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/vm_version.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/macros.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1ThreadLocalData.hpp"
  48 #include "gc/g1/heapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 #ifdef TRACE_HAVE_INTRINSICS
  51 #include "trace/traceMacros.hpp"
  52 #endif
  53 
  54 #ifdef ASSERT
  55 #define __ gen()->lir(__FILE__, __LINE__)->
  56 #else
  57 #define __ gen()->lir()->
  58 #endif
  59 
  60 #ifndef PATCHED_ADDR
  61 #define PATCHED_ADDR  (max_jint)
  62 #endif
  63 
  64 void PhiResolverState::reset(int max_vregs) {
  65   // Initialize array sizes
  66   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _virtual_operands.trunc_to(0);
  68   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  69   _other_operands.trunc_to(0);
  70   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  71   _vreg_table.trunc_to(0);
  72 }
  73 
  74 
  75 
  76 //--------------------------------------------------------------
  77 // PhiResolver
  78 
  79 // Resolves cycles:
  80 //
  81 //  r1 := r2  becomes  temp := r1
  82 //  r2 := r1           r1 := r2
  83 //                     r2 := temp
  84 // and orders moves:
  85 //
  86 //  r2 := r3  becomes  r1 := r2
  87 //  r1 := r2           r2 := r3
  88 
  89 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  90  : _gen(gen)
  91  , _state(gen->resolver_state())
  92  , _temp(LIR_OprFact::illegalOpr)
  93 {
  94   // reinitialize the shared state arrays
  95   _state.reset(max_vregs);
  96 }
  97 
  98 
  99 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
 100   assert(src->is_valid(), "");
 101   assert(dest->is_valid(), "");
 102   __ move(src, dest);
 103 }
 104 
 105 
 106 void PhiResolver::move_temp_to(LIR_Opr dest) {
 107   assert(_temp->is_valid(), "");
 108   emit_move(_temp, dest);
 109   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 110 }
 111 
 112 
 113 void PhiResolver::move_to_temp(LIR_Opr src) {
 114   assert(_temp->is_illegal(), "");
 115   _temp = _gen->new_register(src->type());
 116   emit_move(src, _temp);
 117 }
 118 
 119 
 120 // Traverse assignment graph in depth first order and generate moves in post order
 121 // ie. two assignments: b := c, a := b start with node c:
 122 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 123 // Generates moves in this order: move b to a and move c to b
 124 // ie. cycle a := b, b := a start with node a
 125 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 126 // Generates moves in this order: move b to temp, move a to b, move temp to a
 127 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 128   if (!dest->visited()) {
 129     dest->set_visited();
 130     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 131       move(dest, dest->destination_at(i));
 132     }
 133   } else if (!dest->start_node()) {
 134     // cylce in graph detected
 135     assert(_loop == NULL, "only one loop valid!");
 136     _loop = dest;
 137     move_to_temp(src->operand());
 138     return;
 139   } // else dest is a start node
 140 
 141   if (!dest->assigned()) {
 142     if (_loop == dest) {
 143       move_temp_to(dest->operand());
 144       dest->set_assigned();
 145     } else if (src != NULL) {
 146       emit_move(src->operand(), dest->operand());
 147       dest->set_assigned();
 148     }
 149   }
 150 }
 151 
 152 
 153 PhiResolver::~PhiResolver() {
 154   int i;
 155   // resolve any cycles in moves from and to virtual registers
 156   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = virtual_operands().at(i);
 158     if (!node->visited()) {
 159       _loop = NULL;
 160       move(NULL, node);
 161       node->set_start_node();
 162       assert(_temp->is_illegal(), "move_temp_to() call missing");
 163     }
 164   }
 165 
 166   // generate move for move from non virtual register to abitrary destination
 167   for (i = other_operands().length() - 1; i >= 0; i --) {
 168     ResolveNode* node = other_operands().at(i);
 169     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 170       emit_move(node->operand(), node->destination_at(j)->operand());
 171     }
 172   }
 173 }
 174 
 175 
 176 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 177   ResolveNode* node;
 178   if (opr->is_virtual()) {
 179     int vreg_num = opr->vreg_number();
 180     node = vreg_table().at_grow(vreg_num, NULL);
 181     assert(node == NULL || node->operand() == opr, "");
 182     if (node == NULL) {
 183       node = new ResolveNode(opr);
 184       vreg_table().at_put(vreg_num, node);
 185     }
 186     // Make sure that all virtual operands show up in the list when
 187     // they are used as the source of a move.
 188     if (source && !virtual_operands().contains(node)) {
 189       virtual_operands().append(node);
 190     }
 191   } else {
 192     assert(source, "");
 193     node = new ResolveNode(opr);
 194     other_operands().append(node);
 195   }
 196   return node;
 197 }
 198 
 199 
 200 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 201   assert(dest->is_virtual(), "");
 202   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 203   assert(src->is_valid(), "");
 204   assert(dest->is_valid(), "");
 205   ResolveNode* source = source_node(src);
 206   source->append(destination_node(dest));
 207 }
 208 
 209 
 210 //--------------------------------------------------------------
 211 // LIRItem
 212 
 213 void LIRItem::set_result(LIR_Opr opr) {
 214   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 215   value()->set_operand(opr);
 216 
 217   if (opr->is_virtual()) {
 218     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 219   }
 220 
 221   _result = opr;
 222 }
 223 
 224 void LIRItem::load_item() {
 225   if (result()->is_illegal()) {
 226     // update the items result
 227     _result = value()->operand();
 228   }
 229   if (!result()->is_register()) {
 230     LIR_Opr reg = _gen->new_register(value()->type());
 231     __ move(result(), reg);
 232     if (result()->is_constant()) {
 233       _result = reg;
 234     } else {
 235       set_result(reg);
 236     }
 237   }
 238 }
 239 
 240 
 241 void LIRItem::load_for_store(BasicType type) {
 242   if (_gen->can_store_as_constant(value(), type)) {
 243     _result = value()->operand();
 244     if (!_result->is_constant()) {
 245       _result = LIR_OprFact::value_type(value()->type());
 246     }
 247   } else if (type == T_BYTE || type == T_BOOLEAN) {
 248     load_byte_item();
 249   } else {
 250     load_item();
 251   }
 252 }
 253 
 254 void LIRItem::load_item_force(LIR_Opr reg) {
 255   LIR_Opr r = result();
 256   if (r != reg) {
 257 #if !defined(ARM) && !defined(E500V2)
 258     if (r->type() != reg->type()) {
 259       // moves between different types need an intervening spill slot
 260       r = _gen->force_to_spill(r, reg->type());
 261     }
 262 #endif
 263     __ move(r, reg);
 264     _result = reg;
 265   }
 266 }
 267 
 268 ciObject* LIRItem::get_jobject_constant() const {
 269   ObjectType* oc = type()->as_ObjectType();
 270   if (oc) {
 271     return oc->constant_value();
 272   }
 273   return NULL;
 274 }
 275 
 276 
 277 jint LIRItem::get_jint_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_IntConstant() != NULL, "type check");
 280   return type()->as_IntConstant()->value();
 281 }
 282 
 283 
 284 jint LIRItem::get_address_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_AddressConstant() != NULL, "type check");
 287   return type()->as_AddressConstant()->value();
 288 }
 289 
 290 
 291 jfloat LIRItem::get_jfloat_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_FloatConstant() != NULL, "type check");
 294   return type()->as_FloatConstant()->value();
 295 }
 296 
 297 
 298 jdouble LIRItem::get_jdouble_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_DoubleConstant() != NULL, "type check");
 301   return type()->as_DoubleConstant()->value();
 302 }
 303 
 304 
 305 jlong LIRItem::get_jlong_constant() const {
 306   assert(is_constant() && value() != NULL, "");
 307   assert(type()->as_LongConstant() != NULL, "type check");
 308   return type()->as_LongConstant()->value();
 309 }
 310 
 311 
 312 
 313 //--------------------------------------------------------------
 314 
 315 
 316 void LIRGenerator::init() {
 317   _bs = BarrierSet::barrier_set();
 318 }
 319 
 320 
 321 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 322 #ifndef PRODUCT
 323   if (PrintIRWithLIR) {
 324     block->print();
 325   }
 326 #endif
 327 
 328   // set up the list of LIR instructions
 329   assert(block->lir() == NULL, "LIR list already computed for this block");
 330   _lir = new LIR_List(compilation(), block);
 331   block->set_lir(_lir);
 332 
 333   __ branch_destination(block->label());
 334 
 335   if (LIRTraceExecution &&
 336       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 337       !block->is_set(BlockBegin::exception_entry_flag)) {
 338     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 339     trace_block_entry(block);
 340   }
 341 }
 342 
 343 
 344 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 345 #ifndef PRODUCT
 346   if (PrintIRWithLIR) {
 347     tty->cr();
 348   }
 349 #endif
 350 
 351   // LIR_Opr for unpinned constants shouldn't be referenced by other
 352   // blocks so clear them out after processing the block.
 353   for (int i = 0; i < _unpinned_constants.length(); i++) {
 354     _unpinned_constants.at(i)->clear_operand();
 355   }
 356   _unpinned_constants.trunc_to(0);
 357 
 358   // clear our any registers for other local constants
 359   _constants.trunc_to(0);
 360   _reg_for_constants.trunc_to(0);
 361 }
 362 
 363 
 364 void LIRGenerator::block_do(BlockBegin* block) {
 365   CHECK_BAILOUT();
 366 
 367   block_do_prolog(block);
 368   set_block(block);
 369 
 370   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 371     if (instr->is_pinned()) do_root(instr);
 372   }
 373 
 374   set_block(NULL);
 375   block_do_epilog(block);
 376 }
 377 
 378 
 379 //-------------------------LIRGenerator-----------------------------
 380 
 381 // This is where the tree-walk starts; instr must be root;
 382 void LIRGenerator::do_root(Value instr) {
 383   CHECK_BAILOUT();
 384 
 385   InstructionMark im(compilation(), instr);
 386 
 387   assert(instr->is_pinned(), "use only with roots");
 388   assert(instr->subst() == instr, "shouldn't have missed substitution");
 389 
 390   instr->visit(this);
 391 
 392   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 393          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 394 }
 395 
 396 
 397 // This is called for each node in tree; the walk stops if a root is reached
 398 void LIRGenerator::walk(Value instr) {
 399   InstructionMark im(compilation(), instr);
 400   //stop walk when encounter a root
 401   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 402     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 403   } else {
 404     assert(instr->subst() == instr, "shouldn't have missed substitution");
 405     instr->visit(this);
 406     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 407   }
 408 }
 409 
 410 
 411 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 412   assert(state != NULL, "state must be defined");
 413 
 414 #ifndef PRODUCT
 415   state->verify();
 416 #endif
 417 
 418   ValueStack* s = state;
 419   for_each_state(s) {
 420     if (s->kind() == ValueStack::EmptyExceptionState) {
 421       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 422       continue;
 423     }
 424 
 425     int index;
 426     Value value;
 427     for_each_stack_value(s, index, value) {
 428       assert(value->subst() == value, "missed substitution");
 429       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 430         walk(value);
 431         assert(value->operand()->is_valid(), "must be evaluated now");
 432       }
 433     }
 434 
 435     int bci = s->bci();
 436     IRScope* scope = s->scope();
 437     ciMethod* method = scope->method();
 438 
 439     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 440     if (bci == SynchronizationEntryBCI) {
 441       if (x->as_ExceptionObject() || x->as_Throw()) {
 442         // all locals are dead on exit from the synthetic unlocker
 443         liveness.clear();
 444       } else {
 445         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 446       }
 447     }
 448     if (!liveness.is_valid()) {
 449       // Degenerate or breakpointed method.
 450       bailout("Degenerate or breakpointed method");
 451     } else {
 452       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 453       for_each_local_value(s, index, value) {
 454         assert(value->subst() == value, "missed substition");
 455         if (liveness.at(index) && !value->type()->is_illegal()) {
 456           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 457             walk(value);
 458             assert(value->operand()->is_valid(), "must be evaluated now");
 459           }
 460         } else {
 461           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 462           s->invalidate_local(index);
 463         }
 464       }
 465     }
 466   }
 467 
 468   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 469 }
 470 
 471 
 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 473   return state_for(x, x->exception_state());
 474 }
 475 
 476 
 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 478   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 479    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 480    * the class. */
 481   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 482     assert(info != NULL, "info must be set if class is not loaded");
 483     __ klass2reg_patch(NULL, r, info);
 484   } else {
 485     // no patching needed
 486     __ metadata2reg(obj->constant_encoding(), r);
 487   }
 488 }
 489 
 490 
 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 492                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 493   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 494   if (index->is_constant()) {
 495     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 496                 index->as_jint(), null_check_info);
 497     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 500                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 501     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 502   }
 503 }
 504 
 505 
 506 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 507   CodeStub* stub = new RangeCheckStub(info, index, true);
 508   if (index->is_constant()) {
 509     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 510     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 511   } else {
 512     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 513                 java_nio_Buffer::limit_offset(), T_INT, info);
 514     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 515   }
 516   __ move(index, result);
 517 }
 518 
 519 
 520 
 521 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 522   LIR_Opr result_op = result;
 523   LIR_Opr left_op   = left;
 524   LIR_Opr right_op  = right;
 525 
 526   if (TwoOperandLIRForm && left_op != result_op) {
 527     assert(right_op != result_op, "malformed");
 528     __ move(left_op, result_op);
 529     left_op = result_op;
 530   }
 531 
 532   switch(code) {
 533     case Bytecodes::_dadd:
 534     case Bytecodes::_fadd:
 535     case Bytecodes::_ladd:
 536     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 537     case Bytecodes::_fmul:
 538     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 539 
 540     case Bytecodes::_dmul:
 541       {
 542         if (is_strictfp) {
 543           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 544         } else {
 545           __ mul(left_op, right_op, result_op); break;
 546         }
 547       }
 548       break;
 549 
 550     case Bytecodes::_imul:
 551       {
 552         bool did_strength_reduce = false;
 553 
 554         if (right->is_constant()) {
 555           jint c = right->as_jint();
 556           if (c > 0 && is_power_of_2(c)) {
 557             // do not need tmp here
 558             __ shift_left(left_op, exact_log2(c), result_op);
 559             did_strength_reduce = true;
 560           } else {
 561             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 562           }
 563         }
 564         // we couldn't strength reduce so just emit the multiply
 565         if (!did_strength_reduce) {
 566           __ mul(left_op, right_op, result_op);
 567         }
 568       }
 569       break;
 570 
 571     case Bytecodes::_dsub:
 572     case Bytecodes::_fsub:
 573     case Bytecodes::_lsub:
 574     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 575 
 576     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 577     // ldiv and lrem are implemented with a direct runtime call
 578 
 579     case Bytecodes::_ddiv:
 580       {
 581         if (is_strictfp) {
 582           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 583         } else {
 584           __ div (left_op, right_op, result_op); break;
 585         }
 586       }
 587       break;
 588 
 589     case Bytecodes::_drem:
 590     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 591 
 592     default: ShouldNotReachHere();
 593   }
 594 }
 595 
 596 
 597 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 598   arithmetic_op(code, result, left, right, false, tmp);
 599 }
 600 
 601 
 602 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 603   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 604 }
 605 
 606 
 607 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 608   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 609 }
 610 
 611 
 612 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 613 
 614   if (TwoOperandLIRForm && value != result_op
 615       // Only 32bit right shifts require two operand form on S390.
 616       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 617     assert(count != result_op, "malformed");
 618     __ move(value, result_op);
 619     value = result_op;
 620   }
 621 
 622   assert(count->is_constant() || count->is_register(), "must be");
 623   switch(code) {
 624   case Bytecodes::_ishl:
 625   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 626   case Bytecodes::_ishr:
 627   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 628   case Bytecodes::_iushr:
 629   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 630   default: ShouldNotReachHere();
 631   }
 632 }
 633 
 634 
 635 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 636   if (TwoOperandLIRForm && left_op != result_op) {
 637     assert(right_op != result_op, "malformed");
 638     __ move(left_op, result_op);
 639     left_op = result_op;
 640   }
 641 
 642   switch(code) {
 643     case Bytecodes::_iand:
 644     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 645 
 646     case Bytecodes::_ior:
 647     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 648 
 649     case Bytecodes::_ixor:
 650     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 651 
 652     default: ShouldNotReachHere();
 653   }
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 658   if (!GenerateSynchronizationCode) return;
 659   // for slow path, use debug info for state after successful locking
 660   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 661   __ load_stack_address_monitor(monitor_no, lock);
 662   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 663   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 664 }
 665 
 666 
 667 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 668   if (!GenerateSynchronizationCode) return;
 669   // setup registers
 670   LIR_Opr hdr = lock;
 671   lock = new_hdr;
 672   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 673   __ load_stack_address_monitor(monitor_no, lock);
 674   __ unlock_object(hdr, object, lock, scratch, slow_path);
 675 }
 676 
 677 #ifndef PRODUCT
 678 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 679   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 680     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 681   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 682     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 683   }
 684 }
 685 #endif
 686 
 687 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 688   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 689   // If klass is not loaded we do not know if the klass has finalizers:
 690   if (UseFastNewInstance && klass->is_loaded()
 691       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 692 
 693     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 694 
 695     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 696 
 697     assert(klass->is_loaded(), "must be loaded");
 698     // allocate space for instance
 699     assert(klass->size_helper() >= 0, "illegal instance size");
 700     const int instance_size = align_object_size(klass->size_helper());
 701     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 702                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 703   } else {
 704     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 705     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 706     __ branch_destination(slow_path->continuation());
 707   }
 708 }
 709 
 710 
 711 static bool is_constant_zero(Instruction* inst) {
 712   IntConstant* c = inst->type()->as_IntConstant();
 713   if (c) {
 714     return (c->value() == 0);
 715   }
 716   return false;
 717 }
 718 
 719 
 720 static bool positive_constant(Instruction* inst) {
 721   IntConstant* c = inst->type()->as_IntConstant();
 722   if (c) {
 723     return (c->value() >= 0);
 724   }
 725   return false;
 726 }
 727 
 728 
 729 static ciArrayKlass* as_array_klass(ciType* type) {
 730   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 731     return (ciArrayKlass*)type;
 732   } else {
 733     return NULL;
 734   }
 735 }
 736 
 737 static ciType* phi_declared_type(Phi* phi) {
 738   ciType* t = phi->operand_at(0)->declared_type();
 739   if (t == NULL) {
 740     return NULL;
 741   }
 742   for(int i = 1; i < phi->operand_count(); i++) {
 743     if (t != phi->operand_at(i)->declared_type()) {
 744       return NULL;
 745     }
 746   }
 747   return t;
 748 }
 749 
 750 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 751   Instruction* src     = x->argument_at(0);
 752   Instruction* src_pos = x->argument_at(1);
 753   Instruction* dst     = x->argument_at(2);
 754   Instruction* dst_pos = x->argument_at(3);
 755   Instruction* length  = x->argument_at(4);
 756 
 757   // first try to identify the likely type of the arrays involved
 758   ciArrayKlass* expected_type = NULL;
 759   bool is_exact = false, src_objarray = false, dst_objarray = false;
 760   {
 761     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 762     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 763     Phi* phi;
 764     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 765       src_declared_type = as_array_klass(phi_declared_type(phi));
 766     }
 767     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 768     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 769     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 770       dst_declared_type = as_array_klass(phi_declared_type(phi));
 771     }
 772 
 773     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 774       // the types exactly match so the type is fully known
 775       is_exact = true;
 776       expected_type = src_exact_type;
 777     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 778       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 779       ciArrayKlass* src_type = NULL;
 780       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 781         src_type = (ciArrayKlass*) src_exact_type;
 782       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 783         src_type = (ciArrayKlass*) src_declared_type;
 784       }
 785       if (src_type != NULL) {
 786         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 787           is_exact = true;
 788           expected_type = dst_type;
 789         }
 790       }
 791     }
 792     // at least pass along a good guess
 793     if (expected_type == NULL) expected_type = dst_exact_type;
 794     if (expected_type == NULL) expected_type = src_declared_type;
 795     if (expected_type == NULL) expected_type = dst_declared_type;
 796 
 797     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 798     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 799   }
 800 
 801   // if a probable array type has been identified, figure out if any
 802   // of the required checks for a fast case can be elided.
 803   int flags = LIR_OpArrayCopy::all_flags;
 804 
 805   if (!src_objarray)
 806     flags &= ~LIR_OpArrayCopy::src_objarray;
 807   if (!dst_objarray)
 808     flags &= ~LIR_OpArrayCopy::dst_objarray;
 809 
 810   if (!x->arg_needs_null_check(0))
 811     flags &= ~LIR_OpArrayCopy::src_null_check;
 812   if (!x->arg_needs_null_check(2))
 813     flags &= ~LIR_OpArrayCopy::dst_null_check;
 814 
 815 
 816   if (expected_type != NULL) {
 817     Value length_limit = NULL;
 818 
 819     IfOp* ifop = length->as_IfOp();
 820     if (ifop != NULL) {
 821       // look for expressions like min(v, a.length) which ends up as
 822       //   x > y ? y : x  or  x >= y ? y : x
 823       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 824           ifop->x() == ifop->fval() &&
 825           ifop->y() == ifop->tval()) {
 826         length_limit = ifop->y();
 827       }
 828     }
 829 
 830     // try to skip null checks and range checks
 831     NewArray* src_array = src->as_NewArray();
 832     if (src_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::src_null_check;
 834       if (length_limit != NULL &&
 835           src_array->length() == length_limit &&
 836           is_constant_zero(src_pos)) {
 837         flags &= ~LIR_OpArrayCopy::src_range_check;
 838       }
 839     }
 840 
 841     NewArray* dst_array = dst->as_NewArray();
 842     if (dst_array != NULL) {
 843       flags &= ~LIR_OpArrayCopy::dst_null_check;
 844       if (length_limit != NULL &&
 845           dst_array->length() == length_limit &&
 846           is_constant_zero(dst_pos)) {
 847         flags &= ~LIR_OpArrayCopy::dst_range_check;
 848       }
 849     }
 850 
 851     // check from incoming constant values
 852     if (positive_constant(src_pos))
 853       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 854     if (positive_constant(dst_pos))
 855       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 856     if (positive_constant(length))
 857       flags &= ~LIR_OpArrayCopy::length_positive_check;
 858 
 859     // see if the range check can be elided, which might also imply
 860     // that src or dst is non-null.
 861     ArrayLength* al = length->as_ArrayLength();
 862     if (al != NULL) {
 863       if (al->array() == src) {
 864         // it's the length of the source array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::src_null_check;
 867         if (is_constant_zero(src_pos))
 868           flags &= ~LIR_OpArrayCopy::src_range_check;
 869       }
 870       if (al->array() == dst) {
 871         // it's the length of the destination array
 872         flags &= ~LIR_OpArrayCopy::length_positive_check;
 873         flags &= ~LIR_OpArrayCopy::dst_null_check;
 874         if (is_constant_zero(dst_pos))
 875           flags &= ~LIR_OpArrayCopy::dst_range_check;
 876       }
 877     }
 878     if (is_exact) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882 
 883   IntConstant* src_int = src_pos->type()->as_IntConstant();
 884   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 885   if (src_int && dst_int) {
 886     int s_offs = src_int->value();
 887     int d_offs = dst_int->value();
 888     if (src_int->value() >= dst_int->value()) {
 889       flags &= ~LIR_OpArrayCopy::overlapping;
 890     }
 891     if (expected_type != NULL) {
 892       BasicType t = expected_type->element_type()->basic_type();
 893       int element_size = type2aelembytes(t);
 894       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 895           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 896         flags &= ~LIR_OpArrayCopy::unaligned;
 897       }
 898     }
 899   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 900     // src and dest positions are the same, or dst is zero so assume
 901     // nonoverlapping copy.
 902     flags &= ~LIR_OpArrayCopy::overlapping;
 903   }
 904 
 905   if (src == dst) {
 906     // moving within a single array so no type checks are needed
 907     if (flags & LIR_OpArrayCopy::type_check) {
 908       flags &= ~LIR_OpArrayCopy::type_check;
 909     }
 910   }
 911   *flagsp = flags;
 912   *expected_typep = (ciArrayKlass*)expected_type;
 913 }
 914 
 915 
 916 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 917   assert(opr->is_register(), "why spill if item is not register?");
 918 
 919   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 920     LIR_Opr result = new_register(T_FLOAT);
 921     set_vreg_flag(result, must_start_in_memory);
 922     assert(opr->is_register(), "only a register can be spilled");
 923     assert(opr->value_type()->is_float(), "rounding only for floats available");
 924     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 925     return result;
 926   }
 927   return opr;
 928 }
 929 
 930 
 931 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 932   assert(type2size[t] == type2size[value->type()],
 933          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 934   if (!value->is_register()) {
 935     // force into a register
 936     LIR_Opr r = new_register(value->type());
 937     __ move(value, r);
 938     value = r;
 939   }
 940 
 941   // create a spill location
 942   LIR_Opr tmp = new_register(t);
 943   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 944 
 945   // move from register to spill
 946   __ move(value, tmp);
 947   return tmp;
 948 }
 949 
 950 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 951   if (if_instr->should_profile()) {
 952     ciMethod* method = if_instr->profiled_method();
 953     assert(method != NULL, "method should be set if branch is profiled");
 954     ciMethodData* md = method->method_data_or_null();
 955     assert(md != NULL, "Sanity");
 956     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 957     assert(data != NULL, "must have profiling data");
 958     assert(data->is_BranchData(), "need BranchData for two-way branches");
 959     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 960     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 961     if (if_instr->is_swapped()) {
 962       int t = taken_count_offset;
 963       taken_count_offset = not_taken_count_offset;
 964       not_taken_count_offset = t;
 965     }
 966 
 967     LIR_Opr md_reg = new_register(T_METADATA);
 968     __ metadata2reg(md->constant_encoding(), md_reg);
 969 
 970     LIR_Opr data_offset_reg = new_pointer_register();
 971     __ cmove(lir_cond(cond),
 972              LIR_OprFact::intptrConst(taken_count_offset),
 973              LIR_OprFact::intptrConst(not_taken_count_offset),
 974              data_offset_reg, as_BasicType(if_instr->x()->type()));
 975 
 976     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 977     LIR_Opr data_reg = new_pointer_register();
 978     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 979     __ move(data_addr, data_reg);
 980     // Use leal instead of add to avoid destroying condition codes on x86
 981     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 982     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 983     __ move(data_reg, data_addr);
 984   }
 985 }
 986 
 987 // Phi technique:
 988 // This is about passing live values from one basic block to the other.
 989 // In code generated with Java it is rather rare that more than one
 990 // value is on the stack from one basic block to the other.
 991 // We optimize our technique for efficient passing of one value
 992 // (of type long, int, double..) but it can be extended.
 993 // When entering or leaving a basic block, all registers and all spill
 994 // slots are release and empty. We use the released registers
 995 // and spill slots to pass the live values from one block
 996 // to the other. The topmost value, i.e., the value on TOS of expression
 997 // stack is passed in registers. All other values are stored in spilling
 998 // area. Every Phi has an index which designates its spill slot
 999 // At exit of a basic block, we fill the register(s) and spill slots.
1000 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1001 // and locks necessary registers and spilling slots.
1002 
1003 
1004 // move current value to referenced phi function
1005 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1006   Phi* phi = sux_val->as_Phi();
1007   // cur_val can be null without phi being null in conjunction with inlining
1008   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1009     Phi* cur_phi = cur_val->as_Phi();
1010     if (cur_phi != NULL && cur_phi->is_illegal()) {
1011       // Phi and local would need to get invalidated
1012       // (which is unexpected for Linear Scan).
1013       // But this case is very rare so we simply bail out.
1014       bailout("propagation of illegal phi");
1015       return;
1016     }
1017     LIR_Opr operand = cur_val->operand();
1018     if (operand->is_illegal()) {
1019       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1020              "these can be produced lazily");
1021       operand = operand_for_instruction(cur_val);
1022     }
1023     resolver->move(operand, operand_for_instruction(phi));
1024   }
1025 }
1026 
1027 
1028 // Moves all stack values into their PHI position
1029 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1030   BlockBegin* bb = block();
1031   if (bb->number_of_sux() == 1) {
1032     BlockBegin* sux = bb->sux_at(0);
1033     assert(sux->number_of_preds() > 0, "invalid CFG");
1034 
1035     // a block with only one predecessor never has phi functions
1036     if (sux->number_of_preds() > 1) {
1037       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1038       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1039 
1040       ValueStack* sux_state = sux->state();
1041       Value sux_value;
1042       int index;
1043 
1044       assert(cur_state->scope() == sux_state->scope(), "not matching");
1045       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1046       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1047 
1048       for_each_stack_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1050       }
1051 
1052       for_each_local_value(sux_state, index, sux_value) {
1053         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1054       }
1055 
1056       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1057     }
1058   }
1059 }
1060 
1061 
1062 LIR_Opr LIRGenerator::new_register(BasicType type) {
1063   int vreg = _virtual_register_number;
1064   // add a little fudge factor for the bailout, since the bailout is
1065   // only checked periodically.  This gives a few extra registers to
1066   // hand out before we really run out, which helps us keep from
1067   // tripping over assertions.
1068   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1069     bailout("out of virtual registers");
1070     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1071       // wrap it around
1072       _virtual_register_number = LIR_OprDesc::vreg_base;
1073     }
1074   }
1075   _virtual_register_number += 1;
1076   return LIR_OprFact::virtual_register(vreg, type);
1077 }
1078 
1079 
1080 // Try to lock using register in hint
1081 LIR_Opr LIRGenerator::rlock(Value instr) {
1082   return new_register(instr->type());
1083 }
1084 
1085 
1086 // does an rlock and sets result
1087 LIR_Opr LIRGenerator::rlock_result(Value x) {
1088   LIR_Opr reg = rlock(x);
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1096   LIR_Opr reg;
1097   switch (type) {
1098   case T_BYTE:
1099   case T_BOOLEAN:
1100     reg = rlock_byte(type);
1101     break;
1102   default:
1103     reg = rlock(x);
1104     break;
1105   }
1106 
1107   set_result(x, reg);
1108   return reg;
1109 }
1110 
1111 
1112 //---------------------------------------------------------------------
1113 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1114   ObjectType* oc = value->type()->as_ObjectType();
1115   if (oc) {
1116     return oc->constant_value();
1117   }
1118   return NULL;
1119 }
1120 
1121 
1122 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1123   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1124   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1125 
1126   // no moves are created for phi functions at the begin of exception
1127   // handlers, so assign operands manually here
1128   for_each_phi_fun(block(), phi,
1129                    operand_for_instruction(phi));
1130 
1131   LIR_Opr thread_reg = getThreadPointer();
1132   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1133                exceptionOopOpr());
1134   __ move_wide(LIR_OprFact::oopConst(NULL),
1135                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1136   __ move_wide(LIR_OprFact::oopConst(NULL),
1137                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1138 
1139   LIR_Opr result = new_register(T_OBJECT);
1140   __ move(exceptionOopOpr(), result);
1141   set_result(x, result);
1142 }
1143 
1144 
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //                        visitor functions
1150 //----------------------------------------------------------------------
1151 //----------------------------------------------------------------------
1152 //----------------------------------------------------------------------
1153 //----------------------------------------------------------------------
1154 
1155 void LIRGenerator::do_Phi(Phi* x) {
1156   // phi functions are never visited directly
1157   ShouldNotReachHere();
1158 }
1159 
1160 
1161 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1162 void LIRGenerator::do_Constant(Constant* x) {
1163   if (x->state_before() != NULL) {
1164     // Any constant with a ValueStack requires patching so emit the patch here
1165     LIR_Opr reg = rlock_result(x);
1166     CodeEmitInfo* info = state_for(x, x->state_before());
1167     __ oop2reg_patch(NULL, reg, info);
1168   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1169     if (!x->is_pinned()) {
1170       // unpinned constants are handled specially so that they can be
1171       // put into registers when they are used multiple times within a
1172       // block.  After the block completes their operand will be
1173       // cleared so that other blocks can't refer to that register.
1174       set_result(x, load_constant(x));
1175     } else {
1176       LIR_Opr res = x->operand();
1177       if (!res->is_valid()) {
1178         res = LIR_OprFact::value_type(x->type());
1179       }
1180       if (res->is_constant()) {
1181         LIR_Opr reg = rlock_result(x);
1182         __ move(res, reg);
1183       } else {
1184         set_result(x, res);
1185       }
1186     }
1187   } else {
1188     set_result(x, LIR_OprFact::value_type(x->type()));
1189   }
1190 }
1191 
1192 
1193 void LIRGenerator::do_Local(Local* x) {
1194   // operand_for_instruction has the side effect of setting the result
1195   // so there's no need to do it here.
1196   operand_for_instruction(x);
1197 }
1198 
1199 
1200 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1201   Unimplemented();
1202 }
1203 
1204 
1205 void LIRGenerator::do_Return(Return* x) {
1206   if (compilation()->env()->dtrace_method_probes()) {
1207     BasicTypeList signature;
1208     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1209     signature.append(T_METADATA); // Method*
1210     LIR_OprList* args = new LIR_OprList();
1211     args->append(getThreadPointer());
1212     LIR_Opr meth = new_register(T_METADATA);
1213     __ metadata2reg(method()->constant_encoding(), meth);
1214     args->append(meth);
1215     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1216   }
1217 
1218   if (x->type()->is_void()) {
1219     __ return_op(LIR_OprFact::illegalOpr);
1220   } else {
1221     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1222     LIRItem result(x->result(), this);
1223 
1224     result.load_item_force(reg);
1225     __ return_op(result.result());
1226   }
1227   set_no_result(x);
1228 }
1229 
1230 // Examble: ref.get()
1231 // Combination of LoadField and g1 pre-write barrier
1232 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1233 
1234   const int referent_offset = java_lang_ref_Reference::referent_offset;
1235   guarantee(referent_offset > 0, "referent offset not initialized");
1236 
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem reference(x->argument_at(0), this);
1240   reference.load_item();
1241 
1242   // need to perform the null check on the reference objecy
1243   CodeEmitInfo* info = NULL;
1244   if (x->needs_null_check()) {
1245     info = state_for(x);
1246   }
1247 
1248   LIR_Address* referent_field_adr =
1249     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1250 
1251   LIR_Opr result = rlock_result(x);
1252 
1253   __ load(referent_field_adr, result, info);
1254 
1255   // Register the value in the referent field with the pre-barrier
1256   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1257               result /* pre_val */,
1258               false  /* do_load */,
1259               false  /* patch */,
1260               NULL   /* info */);
1261 }
1262 
1263 // Example: clazz.isInstance(object)
1264 void LIRGenerator::do_isInstance(Intrinsic* x) {
1265   assert(x->number_of_arguments() == 2, "wrong type");
1266 
1267   // TODO could try to substitute this node with an equivalent InstanceOf
1268   // if clazz is known to be a constant Class. This will pick up newly found
1269   // constants after HIR construction. I'll leave this to a future change.
1270 
1271   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1272   // could follow the aastore example in a future change.
1273 
1274   LIRItem clazz(x->argument_at(0), this);
1275   LIRItem object(x->argument_at(1), this);
1276   clazz.load_item();
1277   object.load_item();
1278   LIR_Opr result = rlock_result(x);
1279 
1280   // need to perform null check on clazz
1281   if (x->needs_null_check()) {
1282     CodeEmitInfo* info = state_for(x);
1283     __ null_check(clazz.result(), info);
1284   }
1285 
1286   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1287                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1288                                      x->type(),
1289                                      NULL); // NULL CodeEmitInfo results in a leaf call
1290   __ move(call_result, result);
1291 }
1292 
1293 // Example: object.getClass ()
1294 void LIRGenerator::do_getClass(Intrinsic* x) {
1295   assert(x->number_of_arguments() == 1, "wrong type");
1296 
1297   LIRItem rcvr(x->argument_at(0), this);
1298   rcvr.load_item();
1299   LIR_Opr temp = new_register(T_METADATA);
1300   LIR_Opr result = rlock_result(x);
1301 
1302   // need to perform the null check on the rcvr
1303   CodeEmitInfo* info = NULL;
1304   if (x->needs_null_check()) {
1305     info = state_for(x);
1306   }
1307 
1308   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1309   // meaning of these two is mixed up (see JDK-8026837).
1310   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1311   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1312   // mirror = ((OopHandle)mirror)->resolve();
1313   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1314 }
1315 
1316 // java.lang.Class::isPrimitive()
1317 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1318   assert(x->number_of_arguments() == 1, "wrong type");
1319 
1320   LIRItem rcvr(x->argument_at(0), this);
1321   rcvr.load_item();
1322   LIR_Opr temp = new_register(T_METADATA);
1323   LIR_Opr result = rlock_result(x);
1324 
1325   CodeEmitInfo* info = NULL;
1326   if (x->needs_null_check()) {
1327     info = state_for(x);
1328   }
1329 
1330   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1331   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1332   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1333 }
1334 
1335 
1336 // Example: Thread.currentThread()
1337 void LIRGenerator::do_currentThread(Intrinsic* x) {
1338   assert(x->number_of_arguments() == 0, "wrong type");
1339   LIR_Opr reg = rlock_result(x);
1340   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1341 }
1342 
1343 
1344 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1345   assert(x->number_of_arguments() == 1, "wrong type");
1346   LIRItem receiver(x->argument_at(0), this);
1347 
1348   receiver.load_item();
1349   BasicTypeList signature;
1350   signature.append(T_OBJECT); // receiver
1351   LIR_OprList* args = new LIR_OprList();
1352   args->append(receiver.result());
1353   CodeEmitInfo* info = state_for(x, x->state());
1354   call_runtime(&signature, args,
1355                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1356                voidType, info);
1357 
1358   set_no_result(x);
1359 }
1360 
1361 
1362 //------------------------local access--------------------------------------
1363 
1364 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1365   if (x->operand()->is_illegal()) {
1366     Constant* c = x->as_Constant();
1367     if (c != NULL) {
1368       x->set_operand(LIR_OprFact::value_type(c->type()));
1369     } else {
1370       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1371       // allocate a virtual register for this local or phi
1372       x->set_operand(rlock(x));
1373       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1374     }
1375   }
1376   return x->operand();
1377 }
1378 
1379 
1380 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1381   if (opr->is_virtual()) {
1382     return instruction_for_vreg(opr->vreg_number());
1383   }
1384   return NULL;
1385 }
1386 
1387 
1388 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1389   if (reg_num < _instruction_for_operand.length()) {
1390     return _instruction_for_operand.at(reg_num);
1391   }
1392   return NULL;
1393 }
1394 
1395 
1396 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1397   if (_vreg_flags.size_in_bits() == 0) {
1398     BitMap2D temp(100, num_vreg_flags);
1399     _vreg_flags = temp;
1400   }
1401   _vreg_flags.at_put_grow(vreg_num, f, true);
1402 }
1403 
1404 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1405   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1406     return false;
1407   }
1408   return _vreg_flags.at(vreg_num, f);
1409 }
1410 
1411 
1412 // Block local constant handling.  This code is useful for keeping
1413 // unpinned constants and constants which aren't exposed in the IR in
1414 // registers.  Unpinned Constant instructions have their operands
1415 // cleared when the block is finished so that other blocks can't end
1416 // up referring to their registers.
1417 
1418 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1419   assert(!x->is_pinned(), "only for unpinned constants");
1420   _unpinned_constants.append(x);
1421   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1422 }
1423 
1424 
1425 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1426   BasicType t = c->type();
1427   for (int i = 0; i < _constants.length(); i++) {
1428     LIR_Const* other = _constants.at(i);
1429     if (t == other->type()) {
1430       switch (t) {
1431       case T_INT:
1432       case T_FLOAT:
1433         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1434         break;
1435       case T_LONG:
1436       case T_DOUBLE:
1437         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1438         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1439         break;
1440       case T_OBJECT:
1441         if (c->as_jobject() != other->as_jobject()) continue;
1442         break;
1443       default:
1444         break;
1445       }
1446       return _reg_for_constants.at(i);
1447     }
1448   }
1449 
1450   LIR_Opr result = new_register(t);
1451   __ move((LIR_Opr)c, result);
1452   _constants.append(c);
1453   _reg_for_constants.append(result);
1454   return result;
1455 }
1456 
1457 // Various barriers
1458 
1459 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1460                                bool do_load, bool patch, CodeEmitInfo* info) {
1461   // Do the pre-write barrier, if any.
1462   switch (_bs->kind()) {
1463 #if INCLUDE_ALL_GCS
1464     case BarrierSet::G1BarrierSet:
1465       G1BarrierSet_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1466       break;
1467 #endif // INCLUDE_ALL_GCS
1468     case BarrierSet::CardTableBarrierSet:
1469       // No pre barriers
1470       break;
1471     default      :
1472       ShouldNotReachHere();
1473 
1474   }
1475 }
1476 
1477 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1478   switch (_bs->kind()) {
1479 #if INCLUDE_ALL_GCS
1480     case BarrierSet::G1BarrierSet:
1481       G1BarrierSet_post_barrier(addr,  new_val);
1482       break;
1483 #endif // INCLUDE_ALL_GCS
1484     case BarrierSet::CardTableBarrierSet:
1485       CardTableBarrierSet_post_barrier(addr,  new_val);
1486       break;
1487     default      :
1488       ShouldNotReachHere();
1489     }
1490 }
1491 
1492 ////////////////////////////////////////////////////////////////////////
1493 #if INCLUDE_ALL_GCS
1494 
1495 void LIRGenerator::G1BarrierSet_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1496                                             bool do_load, bool patch, CodeEmitInfo* info) {
1497   // First we test whether marking is in progress.
1498   BasicType flag_type;
1499   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1500     flag_type = T_INT;
1501   } else {
1502     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1503               "Assumption");
1504     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1505     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1506     flag_type = T_BOOLEAN;
1507   }
1508   LIR_Opr thrd = getThreadPointer();
1509   LIR_Address* mark_active_flag_addr =
1510     new LIR_Address(thrd, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), flag_type);
1511   // Read the marking-in-progress flag.
1512   LIR_Opr flag_val = new_register(T_INT);
1513   __ load(mark_active_flag_addr, flag_val);
1514   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1515 
1516   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1517 
1518   CodeStub* slow;
1519 
1520   if (do_load) {
1521     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1522     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1523 
1524     if (patch)
1525       pre_val_patch_code = lir_patch_normal;
1526 
1527     pre_val = new_register(T_OBJECT);
1528 
1529     if (!addr_opr->is_address()) {
1530       assert(addr_opr->is_register(), "must be");
1531       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1532     }
1533     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1534   } else {
1535     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1536     assert(pre_val->is_register(), "must be");
1537     assert(pre_val->type() == T_OBJECT, "must be an object");
1538     assert(info == NULL, "sanity");
1539 
1540     slow = new G1PreBarrierStub(pre_val);
1541   }
1542 
1543   __ branch(lir_cond_notEqual, T_INT, slow);
1544   __ branch_destination(slow->continuation());
1545 }
1546 
1547 void LIRGenerator::G1BarrierSet_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1548   // If the "new_val" is a constant NULL, no barrier is necessary.
1549   if (new_val->is_constant() &&
1550       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1551 
1552   if (!new_val->is_register()) {
1553     LIR_Opr new_val_reg = new_register(T_OBJECT);
1554     if (new_val->is_constant()) {
1555       __ move(new_val, new_val_reg);
1556     } else {
1557       __ leal(new_val, new_val_reg);
1558     }
1559     new_val = new_val_reg;
1560   }
1561   assert(new_val->is_register(), "must be a register at this point");
1562 
1563   if (addr->is_address()) {
1564     LIR_Address* address = addr->as_address_ptr();
1565     LIR_Opr ptr = new_pointer_register();
1566     if (!address->index()->is_valid() && address->disp() == 0) {
1567       __ move(address->base(), ptr);
1568     } else {
1569       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1570       __ leal(addr, ptr);
1571     }
1572     addr = ptr;
1573   }
1574   assert(addr->is_register(), "must be a register at this point");
1575 
1576   LIR_Opr xor_res = new_pointer_register();
1577   LIR_Opr xor_shift_res = new_pointer_register();
1578   if (TwoOperandLIRForm ) {
1579     __ move(addr, xor_res);
1580     __ logical_xor(xor_res, new_val, xor_res);
1581     __ move(xor_res, xor_shift_res);
1582     __ unsigned_shift_right(xor_shift_res,
1583                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1584                             xor_shift_res,
1585                             LIR_OprDesc::illegalOpr());
1586   } else {
1587     __ logical_xor(addr, new_val, xor_res);
1588     __ unsigned_shift_right(xor_res,
1589                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1590                             xor_shift_res,
1591                             LIR_OprDesc::illegalOpr());
1592   }
1593 
1594   if (!new_val->is_register()) {
1595     LIR_Opr new_val_reg = new_register(T_OBJECT);
1596     __ leal(new_val, new_val_reg);
1597     new_val = new_val_reg;
1598   }
1599   assert(new_val->is_register(), "must be a register at this point");
1600 
1601   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1602 
1603   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1604   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1605   __ branch_destination(slow->continuation());
1606 }
1607 
1608 #endif // INCLUDE_ALL_GCS
1609 ////////////////////////////////////////////////////////////////////////
1610 
1611 void LIRGenerator::CardTableBarrierSet_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1612   LIR_Const* card_table_base = new LIR_Const(ci_card_table_address());
1613   if (addr->is_address()) {
1614     LIR_Address* address = addr->as_address_ptr();
1615     // ptr cannot be an object because we use this barrier for array card marks
1616     // and addr can point in the middle of an array.
1617     LIR_Opr ptr = new_pointer_register();
1618     if (!address->index()->is_valid() && address->disp() == 0) {
1619       __ move(address->base(), ptr);
1620     } else {
1621       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1622       __ leal(addr, ptr);
1623     }
1624     addr = ptr;
1625   }
1626   assert(addr->is_register(), "must be a register at this point");
1627 
1628 #ifdef CARDTABLEBARRIERSET_POST_BARRIER_HELPER
1629   CardTableBarrierSet_post_barrier_helper(addr, card_table_base);
1630 #else
1631   LIR_Opr tmp = new_pointer_register();
1632   if (TwoOperandLIRForm) {
1633     __ move(addr, tmp);
1634     __ unsigned_shift_right(tmp, CardTable::card_shift, tmp);
1635   } else {
1636     __ unsigned_shift_right(addr, CardTable::card_shift, tmp);
1637   }
1638 
1639   LIR_Address* card_addr;
1640   if (can_inline_as_constant(card_table_base)) {
1641     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1642   } else {
1643     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1644   }
1645 
1646   LIR_Opr dirty = LIR_OprFact::intConst(CardTable::dirty_card_val());
1647   if (UseCondCardMark) {
1648     LIR_Opr cur_value = new_register(T_INT);
1649     if (UseConcMarkSweepGC) {
1650       __ membar_storeload();
1651     }
1652     __ move(card_addr, cur_value);
1653 
1654     LabelObj* L_already_dirty = new LabelObj();
1655     __ cmp(lir_cond_equal, cur_value, dirty);
1656     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1657     __ move(dirty, card_addr);
1658     __ branch_destination(L_already_dirty->label());
1659   } else {
1660 #if INCLUDE_ALL_GCS
1661     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1662       __ membar_storestore();
1663     }
1664 #endif
1665     __ move(dirty, card_addr);
1666   }
1667 #endif
1668 }
1669 
1670 
1671 //------------------------field access--------------------------------------
1672 
1673 // Comment copied form templateTable_i486.cpp
1674 // ----------------------------------------------------------------------------
1675 // Volatile variables demand their effects be made known to all CPU's in
1676 // order.  Store buffers on most chips allow reads & writes to reorder; the
1677 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1678 // memory barrier (i.e., it's not sufficient that the interpreter does not
1679 // reorder volatile references, the hardware also must not reorder them).
1680 //
1681 // According to the new Java Memory Model (JMM):
1682 // (1) All volatiles are serialized wrt to each other.
1683 // ALSO reads & writes act as aquire & release, so:
1684 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1685 // the read float up to before the read.  It's OK for non-volatile memory refs
1686 // that happen before the volatile read to float down below it.
1687 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1688 // that happen BEFORE the write float down to after the write.  It's OK for
1689 // non-volatile memory refs that happen after the volatile write to float up
1690 // before it.
1691 //
1692 // We only put in barriers around volatile refs (they are expensive), not
1693 // _between_ memory refs (that would require us to track the flavor of the
1694 // previous memory refs).  Requirements (2) and (3) require some barriers
1695 // before volatile stores and after volatile loads.  These nearly cover
1696 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1697 // case is placed after volatile-stores although it could just as well go
1698 // before volatile-loads.
1699 
1700 
1701 void LIRGenerator::do_StoreField(StoreField* x) {
1702   bool needs_patching = x->needs_patching();
1703   bool is_volatile = x->field()->is_volatile();
1704   BasicType field_type = x->field_type();
1705   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1706 
1707   CodeEmitInfo* info = NULL;
1708   if (needs_patching) {
1709     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1710     info = state_for(x, x->state_before());
1711   } else if (x->needs_null_check()) {
1712     NullCheck* nc = x->explicit_null_check();
1713     if (nc == NULL) {
1714       info = state_for(x);
1715     } else {
1716       info = state_for(nc);
1717     }
1718   }
1719 
1720 
1721   LIRItem object(x->obj(), this);
1722   LIRItem value(x->value(),  this);
1723 
1724   object.load_item();
1725 
1726   if (is_volatile || needs_patching) {
1727     // load item if field is volatile (fewer special cases for volatiles)
1728     // load item if field not initialized
1729     // load item if field not constant
1730     // because of code patching we cannot inline constants
1731     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1732       value.load_byte_item();
1733     } else  {
1734       value.load_item();
1735     }
1736   } else {
1737     value.load_for_store(field_type);
1738   }
1739 
1740   set_no_result(x);
1741 
1742 #ifndef PRODUCT
1743   if (PrintNotLoaded && needs_patching) {
1744     tty->print_cr("   ###class not loaded at store_%s bci %d",
1745                   x->is_static() ?  "static" : "field", x->printable_bci());
1746   }
1747 #endif
1748 
1749   if (x->needs_null_check() &&
1750       (needs_patching ||
1751        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1752     // Emit an explicit null check because the offset is too large.
1753     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1754     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1755     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1756   }
1757 
1758   LIR_Address* address;
1759   if (needs_patching) {
1760     // we need to patch the offset in the instruction so don't allow
1761     // generate_address to try to be smart about emitting the -1.
1762     // Otherwise the patching code won't know how to find the
1763     // instruction to patch.
1764     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1765   } else {
1766     address = generate_address(object.result(), x->offset(), field_type);
1767   }
1768 
1769   if (is_volatile && os::is_MP()) {
1770     __ membar_release();
1771   }
1772 
1773   if (is_oop) {
1774     // Do the pre-write barrier, if any.
1775     pre_barrier(LIR_OprFact::address(address),
1776                 LIR_OprFact::illegalOpr /* pre_val */,
1777                 true /* do_load*/,
1778                 needs_patching,
1779                 (info ? new CodeEmitInfo(info) : NULL));
1780   }
1781 
1782   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1783   if (needs_atomic_access && !needs_patching) {
1784     volatile_field_store(value.result(), address, info);
1785   } else {
1786     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1787     __ store(value.result(), address, info, patch_code);
1788   }
1789 
1790   if (is_oop) {
1791     // Store to object so mark the card of the header
1792     post_barrier(object.result(), value.result());
1793   }
1794 
1795   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1796     __ membar();
1797   }
1798 }
1799 
1800 
1801 void LIRGenerator::do_LoadField(LoadField* x) {
1802   bool needs_patching = x->needs_patching();
1803   bool is_volatile = x->field()->is_volatile();
1804   BasicType field_type = x->field_type();
1805 
1806   CodeEmitInfo* info = NULL;
1807   if (needs_patching) {
1808     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1809     info = state_for(x, x->state_before());
1810   } else if (x->needs_null_check()) {
1811     NullCheck* nc = x->explicit_null_check();
1812     if (nc == NULL) {
1813       info = state_for(x);
1814     } else {
1815       info = state_for(nc);
1816     }
1817   }
1818 
1819   LIRItem object(x->obj(), this);
1820 
1821   object.load_item();
1822 
1823 #ifndef PRODUCT
1824   if (PrintNotLoaded && needs_patching) {
1825     tty->print_cr("   ###class not loaded at load_%s bci %d",
1826                   x->is_static() ?  "static" : "field", x->printable_bci());
1827   }
1828 #endif
1829 
1830   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1831   if (x->needs_null_check() &&
1832       (needs_patching ||
1833        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1834        stress_deopt)) {
1835     LIR_Opr obj = object.result();
1836     if (stress_deopt) {
1837       obj = new_register(T_OBJECT);
1838       __ move(LIR_OprFact::oopConst(NULL), obj);
1839     }
1840     // Emit an explicit null check because the offset is too large.
1841     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1842     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1843     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1844   }
1845 
1846   LIR_Opr reg = rlock_result(x, field_type);
1847   LIR_Address* address;
1848   if (needs_patching) {
1849     // we need to patch the offset in the instruction so don't allow
1850     // generate_address to try to be smart about emitting the -1.
1851     // Otherwise the patching code won't know how to find the
1852     // instruction to patch.
1853     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1854   } else {
1855     address = generate_address(object.result(), x->offset(), field_type);
1856   }
1857 
1858   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1859     __ membar();
1860   }
1861 
1862   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1863   if (needs_atomic_access && !needs_patching) {
1864     volatile_field_load(address, reg, info);
1865   } else {
1866     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1867     __ load(address, reg, info, patch_code);
1868   }
1869 
1870   if (is_volatile && os::is_MP()) {
1871     __ membar_acquire();
1872   }
1873 }
1874 
1875 
1876 //------------------------java.nio.Buffer.checkIndex------------------------
1877 
1878 // int java.nio.Buffer.checkIndex(int)
1879 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1880   // NOTE: by the time we are in checkIndex() we are guaranteed that
1881   // the buffer is non-null (because checkIndex is package-private and
1882   // only called from within other methods in the buffer).
1883   assert(x->number_of_arguments() == 2, "wrong type");
1884   LIRItem buf  (x->argument_at(0), this);
1885   LIRItem index(x->argument_at(1), this);
1886   buf.load_item();
1887   index.load_item();
1888 
1889   LIR_Opr result = rlock_result(x);
1890   if (GenerateRangeChecks) {
1891     CodeEmitInfo* info = state_for(x);
1892     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1893     if (index.result()->is_constant()) {
1894       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1895       __ branch(lir_cond_belowEqual, T_INT, stub);
1896     } else {
1897       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1898                   java_nio_Buffer::limit_offset(), T_INT, info);
1899       __ branch(lir_cond_aboveEqual, T_INT, stub);
1900     }
1901     __ move(index.result(), result);
1902   } else {
1903     // Just load the index into the result register
1904     __ move(index.result(), result);
1905   }
1906 }
1907 
1908 
1909 //------------------------array access--------------------------------------
1910 
1911 
1912 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1913   LIRItem array(x->array(), this);
1914   array.load_item();
1915   LIR_Opr reg = rlock_result(x);
1916 
1917   CodeEmitInfo* info = NULL;
1918   if (x->needs_null_check()) {
1919     NullCheck* nc = x->explicit_null_check();
1920     if (nc == NULL) {
1921       info = state_for(x);
1922     } else {
1923       info = state_for(nc);
1924     }
1925     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1926       LIR_Opr obj = new_register(T_OBJECT);
1927       __ move(LIR_OprFact::oopConst(NULL), obj);
1928       __ null_check(obj, new CodeEmitInfo(info));
1929     }
1930   }
1931   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1932 }
1933 
1934 
1935 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1936   bool use_length = x->length() != NULL;
1937   LIRItem array(x->array(), this);
1938   LIRItem index(x->index(), this);
1939   LIRItem length(this);
1940   bool needs_range_check = x->compute_needs_range_check();
1941 
1942   if (use_length && needs_range_check) {
1943     length.set_instruction(x->length());
1944     length.load_item();
1945   }
1946 
1947   array.load_item();
1948   if (index.is_constant() && can_inline_as_constant(x->index())) {
1949     // let it be a constant
1950     index.dont_load_item();
1951   } else {
1952     index.load_item();
1953   }
1954 
1955   CodeEmitInfo* range_check_info = state_for(x);
1956   CodeEmitInfo* null_check_info = NULL;
1957   if (x->needs_null_check()) {
1958     NullCheck* nc = x->explicit_null_check();
1959     if (nc != NULL) {
1960       null_check_info = state_for(nc);
1961     } else {
1962       null_check_info = range_check_info;
1963     }
1964     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1965       LIR_Opr obj = new_register(T_OBJECT);
1966       __ move(LIR_OprFact::oopConst(NULL), obj);
1967       __ null_check(obj, new CodeEmitInfo(null_check_info));
1968     }
1969   }
1970 
1971   // emit array address setup early so it schedules better
1972   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1973 
1974   if (GenerateRangeChecks && needs_range_check) {
1975     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1976       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1977     } else if (use_length) {
1978       // TODO: use a (modified) version of array_range_check that does not require a
1979       //       constant length to be loaded to a register
1980       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1981       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1982     } else {
1983       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1984       // The range check performs the null check, so clear it out for the load
1985       null_check_info = NULL;
1986     }
1987   }
1988 
1989   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1990 }
1991 
1992 
1993 void LIRGenerator::do_NullCheck(NullCheck* x) {
1994   if (x->can_trap()) {
1995     LIRItem value(x->obj(), this);
1996     value.load_item();
1997     CodeEmitInfo* info = state_for(x);
1998     __ null_check(value.result(), info);
1999   }
2000 }
2001 
2002 
2003 void LIRGenerator::do_TypeCast(TypeCast* x) {
2004   LIRItem value(x->obj(), this);
2005   value.load_item();
2006   // the result is the same as from the node we are casting
2007   set_result(x, value.result());
2008 }
2009 
2010 
2011 void LIRGenerator::do_Throw(Throw* x) {
2012   LIRItem exception(x->exception(), this);
2013   exception.load_item();
2014   set_no_result(x);
2015   LIR_Opr exception_opr = exception.result();
2016   CodeEmitInfo* info = state_for(x, x->state());
2017 
2018 #ifndef PRODUCT
2019   if (PrintC1Statistics) {
2020     increment_counter(Runtime1::throw_count_address(), T_INT);
2021   }
2022 #endif
2023 
2024   // check if the instruction has an xhandler in any of the nested scopes
2025   bool unwind = false;
2026   if (info->exception_handlers()->length() == 0) {
2027     // this throw is not inside an xhandler
2028     unwind = true;
2029   } else {
2030     // get some idea of the throw type
2031     bool type_is_exact = true;
2032     ciType* throw_type = x->exception()->exact_type();
2033     if (throw_type == NULL) {
2034       type_is_exact = false;
2035       throw_type = x->exception()->declared_type();
2036     }
2037     if (throw_type != NULL && throw_type->is_instance_klass()) {
2038       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2039       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2040     }
2041   }
2042 
2043   // do null check before moving exception oop into fixed register
2044   // to avoid a fixed interval with an oop during the null check.
2045   // Use a copy of the CodeEmitInfo because debug information is
2046   // different for null_check and throw.
2047   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2048     // if the exception object wasn't created using new then it might be null.
2049     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2050   }
2051 
2052   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2053     // we need to go through the exception lookup path to get JVMTI
2054     // notification done
2055     unwind = false;
2056   }
2057 
2058   // move exception oop into fixed register
2059   __ move(exception_opr, exceptionOopOpr());
2060 
2061   if (unwind) {
2062     __ unwind_exception(exceptionOopOpr());
2063   } else {
2064     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2065   }
2066 }
2067 
2068 
2069 void LIRGenerator::do_RoundFP(RoundFP* x) {
2070   LIRItem input(x->input(), this);
2071   input.load_item();
2072   LIR_Opr input_opr = input.result();
2073   assert(input_opr->is_register(), "why round if value is not in a register?");
2074   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2075   if (input_opr->is_single_fpu()) {
2076     set_result(x, round_item(input_opr)); // This code path not currently taken
2077   } else {
2078     LIR_Opr result = new_register(T_DOUBLE);
2079     set_vreg_flag(result, must_start_in_memory);
2080     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2081     set_result(x, result);
2082   }
2083 }
2084 
2085 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2086 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2087 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2088   LIRItem base(x->base(), this);
2089   LIRItem idx(this);
2090 
2091   base.load_item();
2092   if (x->has_index()) {
2093     idx.set_instruction(x->index());
2094     idx.load_nonconstant();
2095   }
2096 
2097   LIR_Opr reg = rlock_result(x, x->basic_type());
2098 
2099   int   log2_scale = 0;
2100   if (x->has_index()) {
2101     log2_scale = x->log2_scale();
2102   }
2103 
2104   assert(!x->has_index() || idx.value() == x->index(), "should match");
2105 
2106   LIR_Opr base_op = base.result();
2107   LIR_Opr index_op = idx.result();
2108 #ifndef _LP64
2109   if (base_op->type() == T_LONG) {
2110     base_op = new_register(T_INT);
2111     __ convert(Bytecodes::_l2i, base.result(), base_op);
2112   }
2113   if (x->has_index()) {
2114     if (index_op->type() == T_LONG) {
2115       LIR_Opr long_index_op = index_op;
2116       if (index_op->is_constant()) {
2117         long_index_op = new_register(T_LONG);
2118         __ move(index_op, long_index_op);
2119       }
2120       index_op = new_register(T_INT);
2121       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2122     } else {
2123       assert(x->index()->type()->tag() == intTag, "must be");
2124     }
2125   }
2126   // At this point base and index should be all ints.
2127   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2128   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2129 #else
2130   if (x->has_index()) {
2131     if (index_op->type() == T_INT) {
2132       if (!index_op->is_constant()) {
2133         index_op = new_register(T_LONG);
2134         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2135       }
2136     } else {
2137       assert(index_op->type() == T_LONG, "must be");
2138       if (index_op->is_constant()) {
2139         index_op = new_register(T_LONG);
2140         __ move(idx.result(), index_op);
2141       }
2142     }
2143   }
2144   // At this point base is a long non-constant
2145   // Index is a long register or a int constant.
2146   // We allow the constant to stay an int because that would allow us a more compact encoding by
2147   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2148   // move it into a register first.
2149   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2150   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2151                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2152 #endif
2153 
2154   BasicType dst_type = x->basic_type();
2155 
2156   LIR_Address* addr;
2157   if (index_op->is_constant()) {
2158     assert(log2_scale == 0, "must not have a scale");
2159     assert(index_op->type() == T_INT, "only int constants supported");
2160     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2161   } else {
2162 #ifdef X86
2163     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2164 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2165     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2166 #else
2167     if (index_op->is_illegal() || log2_scale == 0) {
2168       addr = new LIR_Address(base_op, index_op, dst_type);
2169     } else {
2170       LIR_Opr tmp = new_pointer_register();
2171       __ shift_left(index_op, log2_scale, tmp);
2172       addr = new LIR_Address(base_op, tmp, dst_type);
2173     }
2174 #endif
2175   }
2176 
2177   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2178     __ unaligned_move(addr, reg);
2179   } else {
2180     if (dst_type == T_OBJECT && x->is_wide()) {
2181       __ move_wide(addr, reg);
2182     } else {
2183       __ move(addr, reg);
2184     }
2185   }
2186 }
2187 
2188 
2189 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2190   int  log2_scale = 0;
2191   BasicType type = x->basic_type();
2192 
2193   if (x->has_index()) {
2194     log2_scale = x->log2_scale();
2195   }
2196 
2197   LIRItem base(x->base(), this);
2198   LIRItem value(x->value(), this);
2199   LIRItem idx(this);
2200 
2201   base.load_item();
2202   if (x->has_index()) {
2203     idx.set_instruction(x->index());
2204     idx.load_item();
2205   }
2206 
2207   if (type == T_BYTE || type == T_BOOLEAN) {
2208     value.load_byte_item();
2209   } else {
2210     value.load_item();
2211   }
2212 
2213   set_no_result(x);
2214 
2215   LIR_Opr base_op = base.result();
2216   LIR_Opr index_op = idx.result();
2217 
2218 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2219   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2220 #else
2221 #ifndef _LP64
2222   if (base_op->type() == T_LONG) {
2223     base_op = new_register(T_INT);
2224     __ convert(Bytecodes::_l2i, base.result(), base_op);
2225   }
2226   if (x->has_index()) {
2227     if (index_op->type() == T_LONG) {
2228       index_op = new_register(T_INT);
2229       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2230     }
2231   }
2232   // At this point base and index should be all ints and not constants
2233   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2234   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2235 #else
2236   if (x->has_index()) {
2237     if (index_op->type() == T_INT) {
2238       index_op = new_register(T_LONG);
2239       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2240     }
2241   }
2242   // At this point base and index are long and non-constant
2243   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2244   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2245 #endif
2246 
2247   if (log2_scale != 0) {
2248     // temporary fix (platform dependent code without shift on Intel would be better)
2249     // TODO: ARM also allows embedded shift in the address
2250     LIR_Opr tmp = new_pointer_register();
2251     if (TwoOperandLIRForm) {
2252       __ move(index_op, tmp);
2253       index_op = tmp;
2254     }
2255     __ shift_left(index_op, log2_scale, tmp);
2256     if (!TwoOperandLIRForm) {
2257       index_op = tmp;
2258     }
2259   }
2260 
2261   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2262 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2263   __ move(value.result(), addr);
2264 }
2265 
2266 
2267 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2268   BasicType type = x->basic_type();
2269   LIRItem src(x->object(), this);
2270   LIRItem off(x->offset(), this);
2271 
2272   off.load_item();
2273   src.load_item();
2274 
2275   LIR_Opr value = rlock_result(x, x->basic_type());
2276 
2277   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2278     __ membar();
2279   }
2280 
2281   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2282 
2283 #if INCLUDE_ALL_GCS
2284   // We might be reading the value of the referent field of a
2285   // Reference object in order to attach it back to the live
2286   // object graph. If G1 is enabled then we need to record
2287   // the value that is being returned in an SATB log buffer.
2288   //
2289   // We need to generate code similar to the following...
2290   //
2291   // if (offset == java_lang_ref_Reference::referent_offset) {
2292   //   if (src != NULL) {
2293   //     if (klass(src)->reference_type() != REF_NONE) {
2294   //       pre_barrier(..., value, ...);
2295   //     }
2296   //   }
2297   // }
2298 
2299   if (UseG1GC && type == T_OBJECT) {
2300     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2301     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2302     bool gen_source_check = true;    // Assume we need to check the src object for null.
2303     bool gen_type_check = true;      // Assume we need to check the reference_type.
2304 
2305     if (off.is_constant()) {
2306       jlong off_con = (off.type()->is_int() ?
2307                         (jlong) off.get_jint_constant() :
2308                         off.get_jlong_constant());
2309 
2310 
2311       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2312         // The constant offset is something other than referent_offset.
2313         // We can skip generating/checking the remaining guards and
2314         // skip generation of the code stub.
2315         gen_pre_barrier = false;
2316       } else {
2317         // The constant offset is the same as referent_offset -
2318         // we do not need to generate a runtime offset check.
2319         gen_offset_check = false;
2320       }
2321     }
2322 
2323     // We don't need to generate stub if the source object is an array
2324     if (gen_pre_barrier && src.type()->is_array()) {
2325       gen_pre_barrier = false;
2326     }
2327 
2328     if (gen_pre_barrier) {
2329       // We still need to continue with the checks.
2330       if (src.is_constant()) {
2331         ciObject* src_con = src.get_jobject_constant();
2332         guarantee(src_con != NULL, "no source constant");
2333 
2334         if (src_con->is_null_object()) {
2335           // The constant src object is null - We can skip
2336           // generating the code stub.
2337           gen_pre_barrier = false;
2338         } else {
2339           // Non-null constant source object. We still have to generate
2340           // the slow stub - but we don't need to generate the runtime
2341           // null object check.
2342           gen_source_check = false;
2343         }
2344       }
2345     }
2346     if (gen_pre_barrier && !PatchALot) {
2347       // Can the klass of object be statically determined to be
2348       // a sub-class of Reference?
2349       ciType* type = src.value()->declared_type();
2350       if ((type != NULL) && type->is_loaded()) {
2351         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2352           gen_type_check = false;
2353         } else if (type->is_klass() &&
2354                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2355           // Not Reference and not Object klass.
2356           gen_pre_barrier = false;
2357         }
2358       }
2359     }
2360 
2361     if (gen_pre_barrier) {
2362       LabelObj* Lcont = new LabelObj();
2363 
2364       // We can have generate one runtime check here. Let's start with
2365       // the offset check.
2366       if (gen_offset_check) {
2367         // if (offset != referent_offset) -> continue
2368         // If offset is an int then we can do the comparison with the
2369         // referent_offset constant; otherwise we need to move
2370         // referent_offset into a temporary register and generate
2371         // a reg-reg compare.
2372 
2373         LIR_Opr referent_off;
2374 
2375         if (off.type()->is_int()) {
2376           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2377         } else {
2378           assert(off.type()->is_long(), "what else?");
2379           referent_off = new_register(T_LONG);
2380           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2381         }
2382         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2383         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2384       }
2385       if (gen_source_check) {
2386         // offset is a const and equals referent offset
2387         // if (source == null) -> continue
2388         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2389         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2390       }
2391       LIR_Opr src_klass = new_register(T_OBJECT);
2392       if (gen_type_check) {
2393         // We have determined that offset == referent_offset && src != null.
2394         // if (src->_klass->_reference_type == REF_NONE) -> continue
2395         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2396         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2397         LIR_Opr reference_type = new_register(T_INT);
2398         __ move(reference_type_addr, reference_type);
2399         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2400         __ branch(lir_cond_equal, T_INT, Lcont->label());
2401       }
2402       {
2403         // We have determined that src->_klass->_reference_type != REF_NONE
2404         // so register the value in the referent field with the pre-barrier.
2405         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2406                     value  /* pre_val */,
2407                     false  /* do_load */,
2408                     false  /* patch */,
2409                     NULL   /* info */);
2410       }
2411       __ branch_destination(Lcont->label());
2412     }
2413   }
2414 #endif // INCLUDE_ALL_GCS
2415 
2416   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2417 
2418   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2419   if (type == T_BOOLEAN) {
2420     LabelObj* equalZeroLabel = new LabelObj();
2421     __ cmp(lir_cond_equal, value, 0);
2422     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2423     __ move(LIR_OprFact::intConst(1), value);
2424     __ branch_destination(equalZeroLabel->label());
2425   }
2426 }
2427 
2428 
2429 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2430   BasicType type = x->basic_type();
2431   LIRItem src(x->object(), this);
2432   LIRItem off(x->offset(), this);
2433   LIRItem data(x->value(), this);
2434 
2435   src.load_item();
2436   if (type == T_BOOLEAN || type == T_BYTE) {
2437     data.load_byte_item();
2438   } else {
2439     data.load_item();
2440   }
2441   off.load_item();
2442 
2443   set_no_result(x);
2444 
2445   if (x->is_volatile() && os::is_MP()) __ membar_release();
2446   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2447   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2448 }
2449 
2450 
2451 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2452   int lng = x->length();
2453 
2454   for (int i = 0; i < lng; i++) {
2455     SwitchRange* one_range = x->at(i);
2456     int low_key = one_range->low_key();
2457     int high_key = one_range->high_key();
2458     BlockBegin* dest = one_range->sux();
2459     if (low_key == high_key) {
2460       __ cmp(lir_cond_equal, value, low_key);
2461       __ branch(lir_cond_equal, T_INT, dest);
2462     } else if (high_key - low_key == 1) {
2463       __ cmp(lir_cond_equal, value, low_key);
2464       __ branch(lir_cond_equal, T_INT, dest);
2465       __ cmp(lir_cond_equal, value, high_key);
2466       __ branch(lir_cond_equal, T_INT, dest);
2467     } else {
2468       LabelObj* L = new LabelObj();
2469       __ cmp(lir_cond_less, value, low_key);
2470       __ branch(lir_cond_less, T_INT, L->label());
2471       __ cmp(lir_cond_lessEqual, value, high_key);
2472       __ branch(lir_cond_lessEqual, T_INT, dest);
2473       __ branch_destination(L->label());
2474     }
2475   }
2476   __ jump(default_sux);
2477 }
2478 
2479 
2480 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2481   SwitchRangeList* res = new SwitchRangeList();
2482   int len = x->length();
2483   if (len > 0) {
2484     BlockBegin* sux = x->sux_at(0);
2485     int key = x->lo_key();
2486     BlockBegin* default_sux = x->default_sux();
2487     SwitchRange* range = new SwitchRange(key, sux);
2488     for (int i = 0; i < len; i++, key++) {
2489       BlockBegin* new_sux = x->sux_at(i);
2490       if (sux == new_sux) {
2491         // still in same range
2492         range->set_high_key(key);
2493       } else {
2494         // skip tests which explicitly dispatch to the default
2495         if (sux != default_sux) {
2496           res->append(range);
2497         }
2498         range = new SwitchRange(key, new_sux);
2499       }
2500       sux = new_sux;
2501     }
2502     if (res->length() == 0 || res->last() != range)  res->append(range);
2503   }
2504   return res;
2505 }
2506 
2507 
2508 // we expect the keys to be sorted by increasing value
2509 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2510   SwitchRangeList* res = new SwitchRangeList();
2511   int len = x->length();
2512   if (len > 0) {
2513     BlockBegin* default_sux = x->default_sux();
2514     int key = x->key_at(0);
2515     BlockBegin* sux = x->sux_at(0);
2516     SwitchRange* range = new SwitchRange(key, sux);
2517     for (int i = 1; i < len; i++) {
2518       int new_key = x->key_at(i);
2519       BlockBegin* new_sux = x->sux_at(i);
2520       if (key+1 == new_key && sux == new_sux) {
2521         // still in same range
2522         range->set_high_key(new_key);
2523       } else {
2524         // skip tests which explicitly dispatch to the default
2525         if (range->sux() != default_sux) {
2526           res->append(range);
2527         }
2528         range = new SwitchRange(new_key, new_sux);
2529       }
2530       key = new_key;
2531       sux = new_sux;
2532     }
2533     if (res->length() == 0 || res->last() != range)  res->append(range);
2534   }
2535   return res;
2536 }
2537 
2538 
2539 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2540   LIRItem tag(x->tag(), this);
2541   tag.load_item();
2542   set_no_result(x);
2543 
2544   if (x->is_safepoint()) {
2545     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2546   }
2547 
2548   // move values into phi locations
2549   move_to_phi(x->state());
2550 
2551   int lo_key = x->lo_key();
2552   int hi_key = x->hi_key();
2553   int len = x->length();
2554   LIR_Opr value = tag.result();
2555   if (UseTableRanges) {
2556     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2557   } else {
2558     for (int i = 0; i < len; i++) {
2559       __ cmp(lir_cond_equal, value, i + lo_key);
2560       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2561     }
2562     __ jump(x->default_sux());
2563   }
2564 }
2565 
2566 
2567 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2568   LIRItem tag(x->tag(), this);
2569   tag.load_item();
2570   set_no_result(x);
2571 
2572   if (x->is_safepoint()) {
2573     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2574   }
2575 
2576   // move values into phi locations
2577   move_to_phi(x->state());
2578 
2579   LIR_Opr value = tag.result();
2580   if (UseTableRanges) {
2581     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2582   } else {
2583     int len = x->length();
2584     for (int i = 0; i < len; i++) {
2585       __ cmp(lir_cond_equal, value, x->key_at(i));
2586       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2587     }
2588     __ jump(x->default_sux());
2589   }
2590 }
2591 
2592 
2593 void LIRGenerator::do_Goto(Goto* x) {
2594   set_no_result(x);
2595 
2596   if (block()->next()->as_OsrEntry()) {
2597     // need to free up storage used for OSR entry point
2598     LIR_Opr osrBuffer = block()->next()->operand();
2599     BasicTypeList signature;
2600     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2601     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2602     __ move(osrBuffer, cc->args()->at(0));
2603     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2604                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2605   }
2606 
2607   if (x->is_safepoint()) {
2608     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2609 
2610     // increment backedge counter if needed
2611     CodeEmitInfo* info = state_for(x, state);
2612     increment_backedge_counter(info, x->profiled_bci());
2613     CodeEmitInfo* safepoint_info = state_for(x, state);
2614     __ safepoint(safepoint_poll_register(), safepoint_info);
2615   }
2616 
2617   // Gotos can be folded Ifs, handle this case.
2618   if (x->should_profile()) {
2619     ciMethod* method = x->profiled_method();
2620     assert(method != NULL, "method should be set if branch is profiled");
2621     ciMethodData* md = method->method_data_or_null();
2622     assert(md != NULL, "Sanity");
2623     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2624     assert(data != NULL, "must have profiling data");
2625     int offset;
2626     if (x->direction() == Goto::taken) {
2627       assert(data->is_BranchData(), "need BranchData for two-way branches");
2628       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2629     } else if (x->direction() == Goto::not_taken) {
2630       assert(data->is_BranchData(), "need BranchData for two-way branches");
2631       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2632     } else {
2633       assert(data->is_JumpData(), "need JumpData for branches");
2634       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2635     }
2636     LIR_Opr md_reg = new_register(T_METADATA);
2637     __ metadata2reg(md->constant_encoding(), md_reg);
2638 
2639     increment_counter(new LIR_Address(md_reg, offset,
2640                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2641   }
2642 
2643   // emit phi-instruction move after safepoint since this simplifies
2644   // describing the state as the safepoint.
2645   move_to_phi(x->state());
2646 
2647   __ jump(x->default_sux());
2648 }
2649 
2650 /**
2651  * Emit profiling code if needed for arguments, parameters, return value types
2652  *
2653  * @param md                    MDO the code will update at runtime
2654  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2655  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2656  * @param profiled_k            current profile
2657  * @param obj                   IR node for the object to be profiled
2658  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2659  *                              Set once we find an update to make and use for next ones.
2660  * @param not_null              true if we know obj cannot be null
2661  * @param signature_at_call_k   signature at call for obj
2662  * @param callee_signature_k    signature of callee for obj
2663  *                              at call and callee signatures differ at method handle call
2664  * @return                      the only klass we know will ever be seen at this profile point
2665  */
2666 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2667                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2668                                     ciKlass* callee_signature_k) {
2669   ciKlass* result = NULL;
2670   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2671   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2672   // known not to be null or null bit already set and already set to
2673   // unknown: nothing we can do to improve profiling
2674   if (!do_null && !do_update) {
2675     return result;
2676   }
2677 
2678   ciKlass* exact_klass = NULL;
2679   Compilation* comp = Compilation::current();
2680   if (do_update) {
2681     // try to find exact type, using CHA if possible, so that loading
2682     // the klass from the object can be avoided
2683     ciType* type = obj->exact_type();
2684     if (type == NULL) {
2685       type = obj->declared_type();
2686       type = comp->cha_exact_type(type);
2687     }
2688     assert(type == NULL || type->is_klass(), "type should be class");
2689     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2690 
2691     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2692   }
2693 
2694   if (!do_null && !do_update) {
2695     return result;
2696   }
2697 
2698   ciKlass* exact_signature_k = NULL;
2699   if (do_update) {
2700     // Is the type from the signature exact (the only one possible)?
2701     exact_signature_k = signature_at_call_k->exact_klass();
2702     if (exact_signature_k == NULL) {
2703       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2704     } else {
2705       result = exact_signature_k;
2706       // Known statically. No need to emit any code: prevent
2707       // LIR_Assembler::emit_profile_type() from emitting useless code
2708       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2709     }
2710     // exact_klass and exact_signature_k can be both non NULL but
2711     // different if exact_klass is loaded after the ciObject for
2712     // exact_signature_k is created.
2713     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2714       // sometimes the type of the signature is better than the best type
2715       // the compiler has
2716       exact_klass = exact_signature_k;
2717     }
2718     if (callee_signature_k != NULL &&
2719         callee_signature_k != signature_at_call_k) {
2720       ciKlass* improved_klass = callee_signature_k->exact_klass();
2721       if (improved_klass == NULL) {
2722         improved_klass = comp->cha_exact_type(callee_signature_k);
2723       }
2724       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2725         exact_klass = exact_signature_k;
2726       }
2727     }
2728     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2729   }
2730 
2731   if (!do_null && !do_update) {
2732     return result;
2733   }
2734 
2735   if (mdp == LIR_OprFact::illegalOpr) {
2736     mdp = new_register(T_METADATA);
2737     __ metadata2reg(md->constant_encoding(), mdp);
2738     if (md_base_offset != 0) {
2739       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2740       mdp = new_pointer_register();
2741       __ leal(LIR_OprFact::address(base_type_address), mdp);
2742     }
2743   }
2744   LIRItem value(obj, this);
2745   value.load_item();
2746   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2747                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2748   return result;
2749 }
2750 
2751 // profile parameters on entry to the root of the compilation
2752 void LIRGenerator::profile_parameters(Base* x) {
2753   if (compilation()->profile_parameters()) {
2754     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2755     ciMethodData* md = scope()->method()->method_data_or_null();
2756     assert(md != NULL, "Sanity");
2757 
2758     if (md->parameters_type_data() != NULL) {
2759       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2760       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2761       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2762       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2763         LIR_Opr src = args->at(i);
2764         assert(!src->is_illegal(), "check");
2765         BasicType t = src->type();
2766         if (t == T_OBJECT || t == T_ARRAY) {
2767           intptr_t profiled_k = parameters->type(j);
2768           Local* local = x->state()->local_at(java_index)->as_Local();
2769           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2770                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2771                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2772           // If the profile is known statically set it once for all and do not emit any code
2773           if (exact != NULL) {
2774             md->set_parameter_type(j, exact);
2775           }
2776           j++;
2777         }
2778         java_index += type2size[t];
2779       }
2780     }
2781   }
2782 }
2783 
2784 void LIRGenerator::do_Base(Base* x) {
2785   __ std_entry(LIR_OprFact::illegalOpr);
2786   // Emit moves from physical registers / stack slots to virtual registers
2787   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2788   IRScope* irScope = compilation()->hir()->top_scope();
2789   int java_index = 0;
2790   for (int i = 0; i < args->length(); i++) {
2791     LIR_Opr src = args->at(i);
2792     assert(!src->is_illegal(), "check");
2793     BasicType t = src->type();
2794 
2795     // Types which are smaller than int are passed as int, so
2796     // correct the type which passed.
2797     switch (t) {
2798     case T_BYTE:
2799     case T_BOOLEAN:
2800     case T_SHORT:
2801     case T_CHAR:
2802       t = T_INT;
2803       break;
2804     default:
2805       break;
2806     }
2807 
2808     LIR_Opr dest = new_register(t);
2809     __ move(src, dest);
2810 
2811     // Assign new location to Local instruction for this local
2812     Local* local = x->state()->local_at(java_index)->as_Local();
2813     assert(local != NULL, "Locals for incoming arguments must have been created");
2814 #ifndef __SOFTFP__
2815     // The java calling convention passes double as long and float as int.
2816     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2817 #endif // __SOFTFP__
2818     local->set_operand(dest);
2819     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2820     java_index += type2size[t];
2821   }
2822 
2823   if (compilation()->env()->dtrace_method_probes()) {
2824     BasicTypeList signature;
2825     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2826     signature.append(T_METADATA); // Method*
2827     LIR_OprList* args = new LIR_OprList();
2828     args->append(getThreadPointer());
2829     LIR_Opr meth = new_register(T_METADATA);
2830     __ metadata2reg(method()->constant_encoding(), meth);
2831     args->append(meth);
2832     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2833   }
2834 
2835   if (method()->is_synchronized()) {
2836     LIR_Opr obj;
2837     if (method()->is_static()) {
2838       obj = new_register(T_OBJECT);
2839       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2840     } else {
2841       Local* receiver = x->state()->local_at(0)->as_Local();
2842       assert(receiver != NULL, "must already exist");
2843       obj = receiver->operand();
2844     }
2845     assert(obj->is_valid(), "must be valid");
2846 
2847     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2848       LIR_Opr lock = syncLockOpr();
2849       __ load_stack_address_monitor(0, lock);
2850 
2851       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2852       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2853 
2854       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2855       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2856     }
2857   }
2858   if (compilation()->age_code()) {
2859     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2860     decrement_age(info);
2861   }
2862   // increment invocation counters if needed
2863   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2864     profile_parameters(x);
2865     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2866     increment_invocation_counter(info);
2867   }
2868 
2869   // all blocks with a successor must end with an unconditional jump
2870   // to the successor even if they are consecutive
2871   __ jump(x->default_sux());
2872 }
2873 
2874 
2875 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2876   // construct our frame and model the production of incoming pointer
2877   // to the OSR buffer.
2878   __ osr_entry(LIR_Assembler::osrBufferPointer());
2879   LIR_Opr result = rlock_result(x);
2880   __ move(LIR_Assembler::osrBufferPointer(), result);
2881 }
2882 
2883 
2884 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2885   assert(args->length() == arg_list->length(),
2886          "args=%d, arg_list=%d", args->length(), arg_list->length());
2887   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2888     LIRItem* param = args->at(i);
2889     LIR_Opr loc = arg_list->at(i);
2890     if (loc->is_register()) {
2891       param->load_item_force(loc);
2892     } else {
2893       LIR_Address* addr = loc->as_address_ptr();
2894       param->load_for_store(addr->type());
2895       if (addr->type() == T_OBJECT) {
2896         __ move_wide(param->result(), addr);
2897       } else
2898         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2899           __ unaligned_move(param->result(), addr);
2900         } else {
2901           __ move(param->result(), addr);
2902         }
2903     }
2904   }
2905 
2906   if (x->has_receiver()) {
2907     LIRItem* receiver = args->at(0);
2908     LIR_Opr loc = arg_list->at(0);
2909     if (loc->is_register()) {
2910       receiver->load_item_force(loc);
2911     } else {
2912       assert(loc->is_address(), "just checking");
2913       receiver->load_for_store(T_OBJECT);
2914       __ move_wide(receiver->result(), loc->as_address_ptr());
2915     }
2916   }
2917 }
2918 
2919 
2920 // Visits all arguments, returns appropriate items without loading them
2921 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2922   LIRItemList* argument_items = new LIRItemList();
2923   if (x->has_receiver()) {
2924     LIRItem* receiver = new LIRItem(x->receiver(), this);
2925     argument_items->append(receiver);
2926   }
2927   for (int i = 0; i < x->number_of_arguments(); i++) {
2928     LIRItem* param = new LIRItem(x->argument_at(i), this);
2929     argument_items->append(param);
2930   }
2931   return argument_items;
2932 }
2933 
2934 
2935 // The invoke with receiver has following phases:
2936 //   a) traverse and load/lock receiver;
2937 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2938 //   c) push receiver on stack
2939 //   d) load each of the items and push on stack
2940 //   e) unlock receiver
2941 //   f) move receiver into receiver-register %o0
2942 //   g) lock result registers and emit call operation
2943 //
2944 // Before issuing a call, we must spill-save all values on stack
2945 // that are in caller-save register. "spill-save" moves those registers
2946 // either in a free callee-save register or spills them if no free
2947 // callee save register is available.
2948 //
2949 // The problem is where to invoke spill-save.
2950 // - if invoked between e) and f), we may lock callee save
2951 //   register in "spill-save" that destroys the receiver register
2952 //   before f) is executed
2953 // - if we rearrange f) to be earlier (by loading %o0) it
2954 //   may destroy a value on the stack that is currently in %o0
2955 //   and is waiting to be spilled
2956 // - if we keep the receiver locked while doing spill-save,
2957 //   we cannot spill it as it is spill-locked
2958 //
2959 void LIRGenerator::do_Invoke(Invoke* x) {
2960   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2961 
2962   LIR_OprList* arg_list = cc->args();
2963   LIRItemList* args = invoke_visit_arguments(x);
2964   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2965 
2966   // setup result register
2967   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2968   if (x->type() != voidType) {
2969     result_register = result_register_for(x->type());
2970   }
2971 
2972   CodeEmitInfo* info = state_for(x, x->state());
2973 
2974   invoke_load_arguments(x, args, arg_list);
2975 
2976   if (x->has_receiver()) {
2977     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2978     receiver = args->at(0)->result();
2979   }
2980 
2981   // emit invoke code
2982   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2983 
2984   // JSR 292
2985   // Preserve the SP over MethodHandle call sites, if needed.
2986   ciMethod* target = x->target();
2987   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2988                                   target->is_method_handle_intrinsic() ||
2989                                   target->is_compiled_lambda_form());
2990   if (is_method_handle_invoke) {
2991     info->set_is_method_handle_invoke(true);
2992     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2993         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2994     }
2995   }
2996 
2997   switch (x->code()) {
2998     case Bytecodes::_invokestatic:
2999       __ call_static(target, result_register,
3000                      SharedRuntime::get_resolve_static_call_stub(),
3001                      arg_list, info);
3002       break;
3003     case Bytecodes::_invokespecial:
3004     case Bytecodes::_invokevirtual:
3005     case Bytecodes::_invokeinterface:
3006       // for loaded and final (method or class) target we still produce an inline cache,
3007       // in order to be able to call mixed mode
3008       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3009         __ call_opt_virtual(target, receiver, result_register,
3010                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3011                             arg_list, info);
3012       } else if (x->vtable_index() < 0) {
3013         __ call_icvirtual(target, receiver, result_register,
3014                           SharedRuntime::get_resolve_virtual_call_stub(),
3015                           arg_list, info);
3016       } else {
3017         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3018         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3019         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3020       }
3021       break;
3022     case Bytecodes::_invokedynamic: {
3023       __ call_dynamic(target, receiver, result_register,
3024                       SharedRuntime::get_resolve_static_call_stub(),
3025                       arg_list, info);
3026       break;
3027     }
3028     default:
3029       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3030       break;
3031   }
3032 
3033   // JSR 292
3034   // Restore the SP after MethodHandle call sites, if needed.
3035   if (is_method_handle_invoke
3036       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3037     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3038   }
3039 
3040   if (x->type()->is_float() || x->type()->is_double()) {
3041     // Force rounding of results from non-strictfp when in strictfp
3042     // scope (or when we don't know the strictness of the callee, to
3043     // be safe.)
3044     if (method()->is_strict()) {
3045       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3046         result_register = round_item(result_register);
3047       }
3048     }
3049   }
3050 
3051   if (result_register->is_valid()) {
3052     LIR_Opr result = rlock_result(x);
3053     __ move(result_register, result);
3054   }
3055 }
3056 
3057 
3058 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3059   assert(x->number_of_arguments() == 1, "wrong type");
3060   LIRItem value       (x->argument_at(0), this);
3061   LIR_Opr reg = rlock_result(x);
3062   value.load_item();
3063   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3064   __ move(tmp, reg);
3065 }
3066 
3067 
3068 
3069 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3070 void LIRGenerator::do_IfOp(IfOp* x) {
3071 #ifdef ASSERT
3072   {
3073     ValueTag xtag = x->x()->type()->tag();
3074     ValueTag ttag = x->tval()->type()->tag();
3075     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3076     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3077     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3078   }
3079 #endif
3080 
3081   LIRItem left(x->x(), this);
3082   LIRItem right(x->y(), this);
3083   left.load_item();
3084   if (can_inline_as_constant(right.value())) {
3085     right.dont_load_item();
3086   } else {
3087     right.load_item();
3088   }
3089 
3090   LIRItem t_val(x->tval(), this);
3091   LIRItem f_val(x->fval(), this);
3092   t_val.dont_load_item();
3093   f_val.dont_load_item();
3094   LIR_Opr reg = rlock_result(x);
3095 
3096   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3097   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3098 }
3099 
3100 #ifdef TRACE_HAVE_INTRINSICS
3101 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3102   CodeEmitInfo* info = state_for(x);
3103   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3104 
3105   assert(info != NULL, "must have info");
3106   LIRItem arg(x->argument_at(0), this);
3107 
3108   arg.load_item();
3109   LIR_Opr klass = new_register(T_METADATA);
3110   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3111   LIR_Opr id = new_register(T_LONG);
3112   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3113   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3114 
3115   __ move(trace_id_addr, id);
3116   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3117   __ store(id, trace_id_addr);
3118 
3119 #ifdef TRACE_ID_META_BITS
3120   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3121 #endif
3122 #ifdef TRACE_ID_CLASS_SHIFT
3123   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3124 #endif
3125 
3126   __ move(id, rlock_result(x));
3127 }
3128 
3129 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3130   LabelObj* L_end = new LabelObj();
3131 
3132   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3133                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3134                                            T_OBJECT);
3135   LIR_Opr result = rlock_result(x);
3136   __ move_wide(jobj_addr, result);
3137   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3138   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3139   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3140 
3141   __ branch_destination(L_end->label());
3142 }
3143 
3144 #endif
3145 
3146 
3147 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3148   assert(x->number_of_arguments() == 0, "wrong type");
3149   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3150   BasicTypeList signature;
3151   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3152   LIR_Opr reg = result_register_for(x->type());
3153   __ call_runtime_leaf(routine, getThreadTemp(),
3154                        reg, new LIR_OprList());
3155   LIR_Opr result = rlock_result(x);
3156   __ move(reg, result);
3157 }
3158 
3159 
3160 
3161 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3162   switch (x->id()) {
3163   case vmIntrinsics::_intBitsToFloat      :
3164   case vmIntrinsics::_doubleToRawLongBits :
3165   case vmIntrinsics::_longBitsToDouble    :
3166   case vmIntrinsics::_floatToRawIntBits   : {
3167     do_FPIntrinsics(x);
3168     break;
3169   }
3170 
3171 #ifdef TRACE_HAVE_INTRINSICS
3172   case vmIntrinsics::_getClassId:
3173     do_ClassIDIntrinsic(x);
3174     break;
3175   case vmIntrinsics::_getBufferWriter:
3176     do_getBufferWriter(x);
3177     break;
3178   case vmIntrinsics::_counterTime:
3179     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3180     break;
3181 #endif
3182 
3183   case vmIntrinsics::_currentTimeMillis:
3184     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3185     break;
3186 
3187   case vmIntrinsics::_nanoTime:
3188     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3189     break;
3190 
3191   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3192   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3193   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3194   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3195   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3196 
3197   case vmIntrinsics::_dlog:           // fall through
3198   case vmIntrinsics::_dlog10:         // fall through
3199   case vmIntrinsics::_dabs:           // fall through
3200   case vmIntrinsics::_dsqrt:          // fall through
3201   case vmIntrinsics::_dtan:           // fall through
3202   case vmIntrinsics::_dsin :          // fall through
3203   case vmIntrinsics::_dcos :          // fall through
3204   case vmIntrinsics::_dexp :          // fall through
3205   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3206   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3207 
3208   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3209   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3210 
3211   // java.nio.Buffer.checkIndex
3212   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3213 
3214   case vmIntrinsics::_compareAndSetObject:
3215     do_CompareAndSwap(x, objectType);
3216     break;
3217   case vmIntrinsics::_compareAndSetInt:
3218     do_CompareAndSwap(x, intType);
3219     break;
3220   case vmIntrinsics::_compareAndSetLong:
3221     do_CompareAndSwap(x, longType);
3222     break;
3223 
3224   case vmIntrinsics::_loadFence :
3225     if (os::is_MP()) __ membar_acquire();
3226     break;
3227   case vmIntrinsics::_storeFence:
3228     if (os::is_MP()) __ membar_release();
3229     break;
3230   case vmIntrinsics::_fullFence :
3231     if (os::is_MP()) __ membar();
3232     break;
3233   case vmIntrinsics::_onSpinWait:
3234     __ on_spin_wait();
3235     break;
3236   case vmIntrinsics::_Reference_get:
3237     do_Reference_get(x);
3238     break;
3239 
3240   case vmIntrinsics::_updateCRC32:
3241   case vmIntrinsics::_updateBytesCRC32:
3242   case vmIntrinsics::_updateByteBufferCRC32:
3243     do_update_CRC32(x);
3244     break;
3245 
3246   case vmIntrinsics::_updateBytesCRC32C:
3247   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3248     do_update_CRC32C(x);
3249     break;
3250 
3251   case vmIntrinsics::_vectorizedMismatch:
3252     do_vectorizedMismatch(x);
3253     break;
3254 
3255   default: ShouldNotReachHere(); break;
3256   }
3257 }
3258 
3259 void LIRGenerator::profile_arguments(ProfileCall* x) {
3260   if (compilation()->profile_arguments()) {
3261     int bci = x->bci_of_invoke();
3262     ciMethodData* md = x->method()->method_data_or_null();
3263     ciProfileData* data = md->bci_to_data(bci);
3264     if (data != NULL) {
3265       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3266           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3267         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3268         int base_offset = md->byte_offset_of_slot(data, extra);
3269         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3270         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3271 
3272         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3273         int start = 0;
3274         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3275         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3276           // first argument is not profiled at call (method handle invoke)
3277           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3278           start = 1;
3279         }
3280         ciSignature* callee_signature = x->callee()->signature();
3281         // method handle call to virtual method
3282         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3283         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3284 
3285         bool ignored_will_link;
3286         ciSignature* signature_at_call = NULL;
3287         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3288         ciSignatureStream signature_at_call_stream(signature_at_call);
3289 
3290         // if called through method handle invoke, some arguments may have been popped
3291         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3292           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3293           ciKlass* exact = profile_type(md, base_offset, off,
3294               args->type(i), x->profiled_arg_at(i+start), mdp,
3295               !x->arg_needs_null_check(i+start),
3296               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3297           if (exact != NULL) {
3298             md->set_argument_type(bci, i, exact);
3299           }
3300         }
3301       } else {
3302 #ifdef ASSERT
3303         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3304         int n = x->nb_profiled_args();
3305         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3306             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3307             "only at JSR292 bytecodes");
3308 #endif
3309       }
3310     }
3311   }
3312 }
3313 
3314 // profile parameters on entry to an inlined method
3315 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3316   if (compilation()->profile_parameters() && x->inlined()) {
3317     ciMethodData* md = x->callee()->method_data_or_null();
3318     if (md != NULL) {
3319       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3320       if (parameters_type_data != NULL) {
3321         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3322         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3323         bool has_receiver = !x->callee()->is_static();
3324         ciSignature* sig = x->callee()->signature();
3325         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3326         int i = 0; // to iterate on the Instructions
3327         Value arg = x->recv();
3328         bool not_null = false;
3329         int bci = x->bci_of_invoke();
3330         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3331         // The first parameter is the receiver so that's what we start
3332         // with if it exists. One exception is method handle call to
3333         // virtual method: the receiver is in the args list
3334         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3335           i = 1;
3336           arg = x->profiled_arg_at(0);
3337           not_null = !x->arg_needs_null_check(0);
3338         }
3339         int k = 0; // to iterate on the profile data
3340         for (;;) {
3341           intptr_t profiled_k = parameters->type(k);
3342           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3343                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3344                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3345           // If the profile is known statically set it once for all and do not emit any code
3346           if (exact != NULL) {
3347             md->set_parameter_type(k, exact);
3348           }
3349           k++;
3350           if (k >= parameters_type_data->number_of_parameters()) {
3351 #ifdef ASSERT
3352             int extra = 0;
3353             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3354                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3355                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3356               extra += 1;
3357             }
3358             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3359 #endif
3360             break;
3361           }
3362           arg = x->profiled_arg_at(i);
3363           not_null = !x->arg_needs_null_check(i);
3364           i++;
3365         }
3366       }
3367     }
3368   }
3369 }
3370 
3371 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3372   // Need recv in a temporary register so it interferes with the other temporaries
3373   LIR_Opr recv = LIR_OprFact::illegalOpr;
3374   LIR_Opr mdo = new_register(T_OBJECT);
3375   // tmp is used to hold the counters on SPARC
3376   LIR_Opr tmp = new_pointer_register();
3377 
3378   if (x->nb_profiled_args() > 0) {
3379     profile_arguments(x);
3380   }
3381 
3382   // profile parameters on inlined method entry including receiver
3383   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3384     profile_parameters_at_call(x);
3385   }
3386 
3387   if (x->recv() != NULL) {
3388     LIRItem value(x->recv(), this);
3389     value.load_item();
3390     recv = new_register(T_OBJECT);
3391     __ move(value.result(), recv);
3392   }
3393   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3394 }
3395 
3396 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3397   int bci = x->bci_of_invoke();
3398   ciMethodData* md = x->method()->method_data_or_null();
3399   ciProfileData* data = md->bci_to_data(bci);
3400   if (data != NULL) {
3401     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3402     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3403     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3404 
3405     bool ignored_will_link;
3406     ciSignature* signature_at_call = NULL;
3407     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3408 
3409     // The offset within the MDO of the entry to update may be too large
3410     // to be used in load/store instructions on some platforms. So have
3411     // profile_type() compute the address of the profile in a register.
3412     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3413         ret->type(), x->ret(), mdp,
3414         !x->needs_null_check(),
3415         signature_at_call->return_type()->as_klass(),
3416         x->callee()->signature()->return_type()->as_klass());
3417     if (exact != NULL) {
3418       md->set_return_type(bci, exact);
3419     }
3420   }
3421 }
3422 
3423 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3424   // We can safely ignore accessors here, since c2 will inline them anyway,
3425   // accessors are also always mature.
3426   if (!x->inlinee()->is_accessor()) {
3427     CodeEmitInfo* info = state_for(x, x->state(), true);
3428     // Notify the runtime very infrequently only to take care of counter overflows
3429     int freq_log = Tier23InlineeNotifyFreqLog;
3430     double scale;
3431     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3432       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3433     }
3434     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3435   }
3436 }
3437 
3438 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3439   int freq_log = 0;
3440   int level = compilation()->env()->comp_level();
3441   if (level == CompLevel_limited_profile) {
3442     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3443   } else if (level == CompLevel_full_profile) {
3444     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3445   } else {
3446     ShouldNotReachHere();
3447   }
3448   // Increment the appropriate invocation/backedge counter and notify the runtime.
3449   double scale;
3450   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3451     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3452   }
3453   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3454 }
3455 
3456 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3457   ciMethod* method = info->scope()->method();
3458   MethodCounters* mc_adr = method->ensure_method_counters();
3459   if (mc_adr != NULL) {
3460     LIR_Opr mc = new_pointer_register();
3461     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3462     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3463     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3464     LIR_Opr result = new_register(T_INT);
3465     __ load(counter, result);
3466     __ sub(result, LIR_OprFact::intConst(1), result);
3467     __ store(result, counter);
3468     // DeoptimizeStub will reexecute from the current state in code info.
3469     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3470                                          Deoptimization::Action_make_not_entrant);
3471     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3472     __ branch(lir_cond_lessEqual, T_INT, deopt);
3473   }
3474 }
3475 
3476 
3477 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3478                                                 ciMethod *method, int frequency,
3479                                                 int bci, bool backedge, bool notify) {
3480   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3481   int level = _compilation->env()->comp_level();
3482   assert(level > CompLevel_simple, "Shouldn't be here");
3483 
3484   int offset = -1;
3485   LIR_Opr counter_holder = NULL;
3486   if (level == CompLevel_limited_profile) {
3487     MethodCounters* counters_adr = method->ensure_method_counters();
3488     if (counters_adr == NULL) {
3489       bailout("method counters allocation failed");
3490       return;
3491     }
3492     counter_holder = new_pointer_register();
3493     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3494     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3495                                  MethodCounters::invocation_counter_offset());
3496   } else if (level == CompLevel_full_profile) {
3497     counter_holder = new_register(T_METADATA);
3498     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3499                                  MethodData::invocation_counter_offset());
3500     ciMethodData* md = method->method_data_or_null();
3501     assert(md != NULL, "Sanity");
3502     __ metadata2reg(md->constant_encoding(), counter_holder);
3503   } else {
3504     ShouldNotReachHere();
3505   }
3506   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3507   LIR_Opr result = new_register(T_INT);
3508   __ load(counter, result);
3509   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3510   __ store(result, counter);
3511   if (notify && (!backedge || UseOnStackReplacement)) {
3512     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3513     // The bci for info can point to cmp for if's we want the if bci
3514     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3515     int freq = frequency << InvocationCounter::count_shift;
3516     if (freq == 0) {
3517       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3518     } else {
3519       LIR_Opr mask = load_immediate(freq, T_INT);
3520       __ logical_and(result, mask, result);
3521       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3522       __ branch(lir_cond_equal, T_INT, overflow);
3523     }
3524     __ branch_destination(overflow->continuation());
3525   }
3526 }
3527 
3528 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3529   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3530   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3531 
3532   if (x->pass_thread()) {
3533     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3534     args->append(getThreadPointer());
3535   }
3536 
3537   for (int i = 0; i < x->number_of_arguments(); i++) {
3538     Value a = x->argument_at(i);
3539     LIRItem* item = new LIRItem(a, this);
3540     item->load_item();
3541     args->append(item->result());
3542     signature->append(as_BasicType(a->type()));
3543   }
3544 
3545   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3546   if (x->type() == voidType) {
3547     set_no_result(x);
3548   } else {
3549     __ move(result, rlock_result(x));
3550   }
3551 }
3552 
3553 #ifdef ASSERT
3554 void LIRGenerator::do_Assert(Assert *x) {
3555   ValueTag tag = x->x()->type()->tag();
3556   If::Condition cond = x->cond();
3557 
3558   LIRItem xitem(x->x(), this);
3559   LIRItem yitem(x->y(), this);
3560   LIRItem* xin = &xitem;
3561   LIRItem* yin = &yitem;
3562 
3563   assert(tag == intTag, "Only integer assertions are valid!");
3564 
3565   xin->load_item();
3566   yin->dont_load_item();
3567 
3568   set_no_result(x);
3569 
3570   LIR_Opr left = xin->result();
3571   LIR_Opr right = yin->result();
3572 
3573   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3574 }
3575 #endif
3576 
3577 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3578 
3579 
3580   Instruction *a = x->x();
3581   Instruction *b = x->y();
3582   if (!a || StressRangeCheckElimination) {
3583     assert(!b || StressRangeCheckElimination, "B must also be null");
3584 
3585     CodeEmitInfo *info = state_for(x, x->state());
3586     CodeStub* stub = new PredicateFailedStub(info);
3587 
3588     __ jump(stub);
3589   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3590     int a_int = a->type()->as_IntConstant()->value();
3591     int b_int = b->type()->as_IntConstant()->value();
3592 
3593     bool ok = false;
3594 
3595     switch(x->cond()) {
3596       case Instruction::eql: ok = (a_int == b_int); break;
3597       case Instruction::neq: ok = (a_int != b_int); break;
3598       case Instruction::lss: ok = (a_int < b_int); break;
3599       case Instruction::leq: ok = (a_int <= b_int); break;
3600       case Instruction::gtr: ok = (a_int > b_int); break;
3601       case Instruction::geq: ok = (a_int >= b_int); break;
3602       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3603       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3604       default: ShouldNotReachHere();
3605     }
3606 
3607     if (ok) {
3608 
3609       CodeEmitInfo *info = state_for(x, x->state());
3610       CodeStub* stub = new PredicateFailedStub(info);
3611 
3612       __ jump(stub);
3613     }
3614   } else {
3615 
3616     ValueTag tag = x->x()->type()->tag();
3617     If::Condition cond = x->cond();
3618     LIRItem xitem(x->x(), this);
3619     LIRItem yitem(x->y(), this);
3620     LIRItem* xin = &xitem;
3621     LIRItem* yin = &yitem;
3622 
3623     assert(tag == intTag, "Only integer deoptimizations are valid!");
3624 
3625     xin->load_item();
3626     yin->dont_load_item();
3627     set_no_result(x);
3628 
3629     LIR_Opr left = xin->result();
3630     LIR_Opr right = yin->result();
3631 
3632     CodeEmitInfo *info = state_for(x, x->state());
3633     CodeStub* stub = new PredicateFailedStub(info);
3634 
3635     __ cmp(lir_cond(cond), left, right);
3636     __ branch(lir_cond(cond), right->type(), stub);
3637   }
3638 }
3639 
3640 
3641 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3642   LIRItemList args(1);
3643   LIRItem value(arg1, this);
3644   args.append(&value);
3645   BasicTypeList signature;
3646   signature.append(as_BasicType(arg1->type()));
3647 
3648   return call_runtime(&signature, &args, entry, result_type, info);
3649 }
3650 
3651 
3652 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3653   LIRItemList args(2);
3654   LIRItem value1(arg1, this);
3655   LIRItem value2(arg2, this);
3656   args.append(&value1);
3657   args.append(&value2);
3658   BasicTypeList signature;
3659   signature.append(as_BasicType(arg1->type()));
3660   signature.append(as_BasicType(arg2->type()));
3661 
3662   return call_runtime(&signature, &args, entry, result_type, info);
3663 }
3664 
3665 
3666 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3667                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3668   // get a result register
3669   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3670   LIR_Opr result = LIR_OprFact::illegalOpr;
3671   if (result_type->tag() != voidTag) {
3672     result = new_register(result_type);
3673     phys_reg = result_register_for(result_type);
3674   }
3675 
3676   // move the arguments into the correct location
3677   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3678   assert(cc->length() == args->length(), "argument mismatch");
3679   for (int i = 0; i < args->length(); i++) {
3680     LIR_Opr arg = args->at(i);
3681     LIR_Opr loc = cc->at(i);
3682     if (loc->is_register()) {
3683       __ move(arg, loc);
3684     } else {
3685       LIR_Address* addr = loc->as_address_ptr();
3686 //           if (!can_store_as_constant(arg)) {
3687 //             LIR_Opr tmp = new_register(arg->type());
3688 //             __ move(arg, tmp);
3689 //             arg = tmp;
3690 //           }
3691       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3692         __ unaligned_move(arg, addr);
3693       } else {
3694         __ move(arg, addr);
3695       }
3696     }
3697   }
3698 
3699   if (info) {
3700     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3701   } else {
3702     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3703   }
3704   if (result->is_valid()) {
3705     __ move(phys_reg, result);
3706   }
3707   return result;
3708 }
3709 
3710 
3711 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3712                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3713   // get a result register
3714   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3715   LIR_Opr result = LIR_OprFact::illegalOpr;
3716   if (result_type->tag() != voidTag) {
3717     result = new_register(result_type);
3718     phys_reg = result_register_for(result_type);
3719   }
3720 
3721   // move the arguments into the correct location
3722   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3723 
3724   assert(cc->length() == args->length(), "argument mismatch");
3725   for (int i = 0; i < args->length(); i++) {
3726     LIRItem* arg = args->at(i);
3727     LIR_Opr loc = cc->at(i);
3728     if (loc->is_register()) {
3729       arg->load_item_force(loc);
3730     } else {
3731       LIR_Address* addr = loc->as_address_ptr();
3732       arg->load_for_store(addr->type());
3733       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3734         __ unaligned_move(arg->result(), addr);
3735       } else {
3736         __ move(arg->result(), addr);
3737       }
3738     }
3739   }
3740 
3741   if (info) {
3742     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3743   } else {
3744     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3745   }
3746   if (result->is_valid()) {
3747     __ move(phys_reg, result);
3748   }
3749   return result;
3750 }
3751 
3752 void LIRGenerator::do_MemBar(MemBar* x) {
3753   if (os::is_MP()) {
3754     LIR_Code code = x->code();
3755     switch(code) {
3756       case lir_membar_acquire   : __ membar_acquire(); break;
3757       case lir_membar_release   : __ membar_release(); break;
3758       case lir_membar           : __ membar(); break;
3759       case lir_membar_loadload  : __ membar_loadload(); break;
3760       case lir_membar_storestore: __ membar_storestore(); break;
3761       case lir_membar_loadstore : __ membar_loadstore(); break;
3762       case lir_membar_storeload : __ membar_storeload(); break;
3763       default                   : ShouldNotReachHere(); break;
3764     }
3765   }
3766 }
3767 
3768 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3769   if (x->check_boolean()) {
3770     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3771     if (TwoOperandLIRForm) {
3772       __ move(value, value_fixed);
3773       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3774     } else {
3775       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3776     }
3777     LIR_Opr klass = new_register(T_METADATA);
3778     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3779     null_check_info = NULL;
3780     LIR_Opr layout = new_register(T_INT);
3781     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3782     int diffbit = Klass::layout_helper_boolean_diffbit();
3783     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3784     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3785     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3786     value = value_fixed;
3787   }
3788   return value;
3789 }