/* * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #ifndef SHARE_OOPS_ACCESSDECORATORS_HPP #define SHARE_OOPS_ACCESSDECORATORS_HPP #include "metaprogramming/integralConstant.hpp" #include "utilities/globalDefinitions.hpp" // A decorator is an attribute or property that affects the way a memory access is performed in some way. // There are different groups of decorators. Some have to do with memory ordering, others to do with, // e.g. strength of references, strength of GC barriers, or whether compression should be applied or not. // Some decorators are set at buildtime, such as whether primitives require GC barriers or not, others // at callsites such as whether an access is in the heap or not, and others are resolved at runtime // such as GC-specific barriers and encoding/decoding compressed oops. typedef uint64_t DecoratorSet; // The HasDecorator trait can help at compile-time determining whether a decorator set // has an intersection with a certain other decorator set template struct HasDecorator: public IntegralConstant {}; // == Internal Decorators - do not use == // * INTERNAL_EMPTY: This is the name for the empty decorator set (in absence of other decorators). // * INTERNAL_CONVERT_COMPRESSED_OOPS: This is an oop access that will require converting an oop // to a narrowOop or vice versa, if UseCompressedOops is known to be set. // * INTERNAL_VALUE_IS_OOP: Remember that the involved access is on oop rather than primitive. const DecoratorSet INTERNAL_EMPTY = UCONST64(0); const DecoratorSet INTERNAL_CONVERT_COMPRESSED_OOP = UCONST64(1) << 1; const DecoratorSet INTERNAL_VALUE_IS_OOP = UCONST64(1) << 2; // == Internal build-time Decorators == // * INTERNAL_BT_BARRIER_ON_PRIMITIVES: This is set in the barrierSetConfig.hpp file. // * INTERNAL_BT_TO_SPACE_INVARIANT: This is set in the barrierSetConfig.hpp file iff // no GC is bundled in the build that is to-space invariant. const DecoratorSet INTERNAL_BT_BARRIER_ON_PRIMITIVES = UCONST64(1) << 3; const DecoratorSet INTERNAL_BT_TO_SPACE_INVARIANT = UCONST64(1) << 4; // == Internal run-time Decorators == // * INTERNAL_RT_USE_COMPRESSED_OOPS: This decorator will be set in runtime resolved // access backends iff UseCompressedOops is true. const DecoratorSet INTERNAL_RT_USE_COMPRESSED_OOPS = UCONST64(1) << 5; const DecoratorSet INTERNAL_DECORATOR_MASK = INTERNAL_CONVERT_COMPRESSED_OOP | INTERNAL_VALUE_IS_OOP | INTERNAL_BT_BARRIER_ON_PRIMITIVES | INTERNAL_RT_USE_COMPRESSED_OOPS; // == Memory Ordering Decorators == // The memory ordering decorators can be described in the following way: // === Decorator Rules === // The different types of memory ordering guarantees have a strict order of strength. // Explicitly specifying the stronger ordering implies that the guarantees of the weaker // property holds too. The names come from the C++11 atomic operations, and typically // have a JMM equivalent property. // The equivalence may be viewed like this: // MO_UNORDERED is equivalent to JMM plain. // MO_VOLATILE has no equivalence in JMM, because it's a C++ thing. // MO_RELAXED is equivalent to JMM opaque. // MO_ACQUIRE is equivalent to JMM acquire. // MO_RELEASE is equivalent to JMM release. // MO_SEQ_CST is equivalent to JMM volatile. // // === Stores === // * MO_UNORDERED (Default): No guarantees. // - The compiler and hardware are free to reorder aggressively. And they will. // * MO_VOLATILE: Volatile stores (in the C++ sense). // - The stores are not reordered by the compiler (but possibly the HW) w.r.t. other // volatile accesses in program order (but possibly non-volatile accesses). // * MO_RELAXED: Relaxed atomic stores. // - The stores are atomic. // - Guarantees from volatile stores hold. // * MO_RELEASE: Releasing stores. // - The releasing store will make its preceding memory accesses observable to memory accesses // subsequent to an acquiring load observing this releasing store. // - Guarantees from relaxed stores hold. // * MO_SEQ_CST: Sequentially consistent stores. // - The stores are observed in the same order by MO_SEQ_CST loads on other processors // - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order. // - Guarantees from releasing stores hold. // === Loads === // * MO_UNORDERED (Default): No guarantees // - The compiler and hardware are free to reorder aggressively. And they will. // * MO_VOLATILE: Volatile loads (in the C++ sense). // - The loads are not reordered by the compiler (but possibly the HW) w.r.t. other // volatile accesses in program order (but possibly non-volatile accesses). // * MO_RELAXED: Relaxed atomic loads. // - The loads are atomic. // - Guarantees from volatile loads hold. // * MO_ACQUIRE: Acquiring loads. // - An acquiring load will make subsequent memory accesses observe the memory accesses // preceding the releasing store that the acquiring load observed. // - Guarantees from relaxed loads hold. // * MO_SEQ_CST: Sequentially consistent loads. // - These loads observe MO_SEQ_CST stores in the same order on other processors // - Preceding loads and stores in program order are not reordered with subsequent loads and stores in program order. // - Guarantees from acquiring loads hold. // === Atomic Cmpxchg === // * MO_RELAXED: Atomic but relaxed cmpxchg. // - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold unconditionally. // * MO_SEQ_CST: Sequentially consistent cmpxchg. // - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold unconditionally. // === Atomic Xchg === // * MO_RELAXED: Atomic but relaxed atomic xchg. // - Guarantees from MO_RELAXED loads and MO_RELAXED stores hold. // * MO_SEQ_CST: Sequentially consistent xchg. // - Guarantees from MO_SEQ_CST loads and MO_SEQ_CST stores hold. const DecoratorSet MO_UNORDERED = UCONST64(1) << 6; const DecoratorSet MO_VOLATILE = UCONST64(1) << 7; const DecoratorSet MO_RELAXED = UCONST64(1) << 8; const DecoratorSet MO_ACQUIRE = UCONST64(1) << 9; const DecoratorSet MO_RELEASE = UCONST64(1) << 10; const DecoratorSet MO_SEQ_CST = UCONST64(1) << 11; const DecoratorSet MO_DECORATOR_MASK = MO_UNORDERED | MO_VOLATILE | MO_RELAXED | MO_ACQUIRE | MO_RELEASE | MO_SEQ_CST; // === Barrier Strength Decorators === // * AS_RAW: The access will translate into a raw memory access, hence ignoring all semantic concerns // except memory ordering and compressed oops. This will bypass runtime function pointer dispatching // in the pipeline and hardwire to raw accesses without going trough the GC access barriers. // - Accesses on oop* translate to raw memory accesses without runtime checks // - Accesses on narrowOop* translate to encoded/decoded memory accesses without runtime checks // - Accesses on HeapWord* translate to a runtime check choosing one of the above // - Accesses on other types translate to raw memory accesses without runtime checks // * AS_DEST_NOT_INITIALIZED: This property can be important to e.g. SATB barriers by // marking that the previous value is uninitialized nonsense rather than a real value. // * AS_NO_KEEPALIVE: The barrier is used only on oop references and will not keep any involved objects // alive, regardless of the type of reference being accessed. It will however perform the memory access // in a consistent way w.r.t. e.g. concurrent compaction, so that the right field is being accessed, // or maintain, e.g. intergenerational or interregional pointers if applicable. This should be used with // extreme caution in isolated scopes. // * AS_NORMAL: The accesses will be resolved to an accessor on the BarrierSet class, giving the // responsibility of performing the access and what barriers to be performed to the GC. This is the default. // Note that primitive accesses will only be resolved on the barrier set if the appropriate build-time // decorator for enabling primitive barriers is enabled for the build. const DecoratorSet AS_RAW = UCONST64(1) << 12; const DecoratorSet AS_DEST_NOT_INITIALIZED = UCONST64(1) << 13; const DecoratorSet AS_NO_KEEPALIVE = UCONST64(1) << 14; const DecoratorSet AS_NORMAL = UCONST64(1) << 15; const DecoratorSet AS_DECORATOR_MASK = AS_RAW | AS_DEST_NOT_INITIALIZED | AS_NO_KEEPALIVE | AS_NORMAL; // === Reference Strength Decorators === // These decorators only apply to accesses on oop-like types (oop/narrowOop). // * ON_STRONG_OOP_REF: Memory access is performed on a strongly reachable reference. // * ON_WEAK_OOP_REF: The memory access is performed on a weakly reachable reference. // * ON_PHANTOM_OOP_REF: The memory access is performed on a phantomly reachable reference. // This is the same ring of strength as jweak and weak oops in the VM. // * ON_UNKNOWN_OOP_REF: The memory access is performed on a reference of unknown strength. // This could for example come from the unsafe API. // * Default (no explicit reference strength specified): ON_STRONG_OOP_REF const DecoratorSet ON_STRONG_OOP_REF = UCONST64(1) << 16; const DecoratorSet ON_WEAK_OOP_REF = UCONST64(1) << 17; const DecoratorSet ON_PHANTOM_OOP_REF = UCONST64(1) << 18; const DecoratorSet ON_UNKNOWN_OOP_REF = UCONST64(1) << 19; const DecoratorSet ON_DECORATOR_MASK = ON_STRONG_OOP_REF | ON_WEAK_OOP_REF | ON_PHANTOM_OOP_REF | ON_UNKNOWN_OOP_REF; // === Access Location === // Accesses can take place in, e.g. the heap, old or young generation and different native roots. // The location is important to the GC as it may imply different actions. The following decorators are used: // * IN_HEAP: The access is performed in the heap. Many barriers such as card marking will // be omitted if this decorator is not set. // * IN_HEAP_ARRAY: The access is performed on a heap allocated array. This is sometimes a special case // for some GCs, and implies that it is an IN_HEAP. // * IN_ROOT: The access is performed in an off-heap data structure pointing into the Java heap. // * IN_CONCURRENT_ROOT: The access is performed in an off-heap data structure pointing into the Java heap, // but is notably not scanned during safepoints. This is sometimes a special case for some GCs and // implies that it is also an IN_ROOT. const DecoratorSet IN_HEAP = UCONST64(1) << 20; const DecoratorSet IN_HEAP_ARRAY = UCONST64(1) << 21; const DecoratorSet IN_ROOT = UCONST64(1) << 22; const DecoratorSet IN_CONCURRENT_ROOT = UCONST64(1) << 23; const DecoratorSet IN_ARCHIVE_ROOT = UCONST64(1) << 24; const DecoratorSet IN_DECORATOR_MASK = IN_HEAP | IN_HEAP_ARRAY | IN_ROOT | IN_CONCURRENT_ROOT | IN_ARCHIVE_ROOT; // == Value Decorators == // * OOP_NOT_NULL: This property can make certain barriers faster such as compressing oops. const DecoratorSet OOP_NOT_NULL = UCONST64(1) << 25; const DecoratorSet OOP_DECORATOR_MASK = OOP_NOT_NULL; // == Arraycopy Decorators == // * ARRAYCOPY_CHECKCAST: This property means that the class of the objects in source // are not guaranteed to be subclasses of the class of the destination array. This requires // a check-cast barrier during the copying operation. If this is not set, it is assumed // that the array is covariant: (the source array type is-a destination array type) // * ARRAYCOPY_DISJOINT: This property means that it is known that the two array ranges // are disjoint. // * ARRAYCOPY_ARRAYOF: The copy is in the arrayof form. // * ARRAYCOPY_ATOMIC: The accesses have to be atomic over the size of its elements. // * ARRAYCOPY_ALIGNED: The accesses have to be aligned on a HeapWord. const DecoratorSet ARRAYCOPY_CHECKCAST = UCONST64(1) << 26; const DecoratorSet ARRAYCOPY_DISJOINT = UCONST64(1) << 27; const DecoratorSet ARRAYCOPY_ARRAYOF = UCONST64(1) << 28; const DecoratorSet ARRAYCOPY_ATOMIC = UCONST64(1) << 29; const DecoratorSet ARRAYCOPY_ALIGNED = UCONST64(1) << 30; const DecoratorSet ARRAYCOPY_DECORATOR_MASK = ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT | ARRAYCOPY_DISJOINT | ARRAYCOPY_ARRAYOF | ARRAYCOPY_ATOMIC | ARRAYCOPY_ALIGNED; // Keep track of the last decorator. const DecoratorSet DECORATOR_LAST = UCONST64(1) << 30; #endif // SHARE_OOPS_ACCESSDECORATORS_HPP