1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #if INCLUDE_ALL_GCS
  79 #include "gc/g1/g1ThreadLocalData.hpp"
  80 #endif // INCLUDE_ALL_GCS
  81 
  82 
  83 // -------------------- Compile::mach_constant_base_node -----------------------
  84 // Constant table base node singleton.
  85 MachConstantBaseNode* Compile::mach_constant_base_node() {
  86   if (_mach_constant_base_node == NULL) {
  87     _mach_constant_base_node = new MachConstantBaseNode();
  88     _mach_constant_base_node->add_req(C->root());
  89   }
  90   return _mach_constant_base_node;
  91 }
  92 
  93 
  94 /// Support for intrinsics.
  95 
  96 // Return the index at which m must be inserted (or already exists).
  97 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  98 class IntrinsicDescPair {
  99  private:
 100   ciMethod* _m;
 101   bool _is_virtual;
 102  public:
 103   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 104   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 105     ciMethod* m= elt->method();
 106     ciMethod* key_m = key->_m;
 107     if (key_m < m)      return -1;
 108     else if (key_m > m) return 1;
 109     else {
 110       bool is_virtual = elt->is_virtual();
 111       bool key_virtual = key->_is_virtual;
 112       if (key_virtual < is_virtual)      return -1;
 113       else if (key_virtual > is_virtual) return 1;
 114       else                               return 0;
 115     }
 116   }
 117 };
 118 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 119 #ifdef ASSERT
 120   for (int i = 1; i < _intrinsics->length(); i++) {
 121     CallGenerator* cg1 = _intrinsics->at(i-1);
 122     CallGenerator* cg2 = _intrinsics->at(i);
 123     assert(cg1->method() != cg2->method()
 124            ? cg1->method()     < cg2->method()
 125            : cg1->is_virtual() < cg2->is_virtual(),
 126            "compiler intrinsics list must stay sorted");
 127   }
 128 #endif
 129   IntrinsicDescPair pair(m, is_virtual);
 130   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 131 }
 132 
 133 void Compile::register_intrinsic(CallGenerator* cg) {
 134   if (_intrinsics == NULL) {
 135     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 136   }
 137   int len = _intrinsics->length();
 138   bool found = false;
 139   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 140   assert(!found, "registering twice");
 141   _intrinsics->insert_before(index, cg);
 142   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 143 }
 144 
 145 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 146   assert(m->is_loaded(), "don't try this on unloaded methods");
 147   if (_intrinsics != NULL) {
 148     bool found = false;
 149     int index = intrinsic_insertion_index(m, is_virtual, found);
 150      if (found) {
 151       return _intrinsics->at(index);
 152     }
 153   }
 154   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 155   if (m->intrinsic_id() != vmIntrinsics::_none &&
 156       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 157     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 158     if (cg != NULL) {
 159       // Save it for next time:
 160       register_intrinsic(cg);
 161       return cg;
 162     } else {
 163       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 164     }
 165   }
 166   return NULL;
 167 }
 168 
 169 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 170 // in library_call.cpp.
 171 
 172 
 173 #ifndef PRODUCT
 174 // statistics gathering...
 175 
 176 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 177 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 178 
 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 180   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 181   int oflags = _intrinsic_hist_flags[id];
 182   assert(flags != 0, "what happened?");
 183   if (is_virtual) {
 184     flags |= _intrinsic_virtual;
 185   }
 186   bool changed = (flags != oflags);
 187   if ((flags & _intrinsic_worked) != 0) {
 188     juint count = (_intrinsic_hist_count[id] += 1);
 189     if (count == 1) {
 190       changed = true;           // first time
 191     }
 192     // increment the overall count also:
 193     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 194   }
 195   if (changed) {
 196     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 197       // Something changed about the intrinsic's virtuality.
 198       if ((flags & _intrinsic_virtual) != 0) {
 199         // This is the first use of this intrinsic as a virtual call.
 200         if (oflags != 0) {
 201           // We already saw it as a non-virtual, so note both cases.
 202           flags |= _intrinsic_both;
 203         }
 204       } else if ((oflags & _intrinsic_both) == 0) {
 205         // This is the first use of this intrinsic as a non-virtual
 206         flags |= _intrinsic_both;
 207       }
 208     }
 209     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 210   }
 211   // update the overall flags also:
 212   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 213   return changed;
 214 }
 215 
 216 static char* format_flags(int flags, char* buf) {
 217   buf[0] = 0;
 218   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 219   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 220   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 221   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 222   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 223   if (buf[0] == 0)  strcat(buf, ",");
 224   assert(buf[0] == ',', "must be");
 225   return &buf[1];
 226 }
 227 
 228 void Compile::print_intrinsic_statistics() {
 229   char flagsbuf[100];
 230   ttyLocker ttyl;
 231   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 232   tty->print_cr("Compiler intrinsic usage:");
 233   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 234   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 235   #define PRINT_STAT_LINE(name, c, f) \
 236     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 237   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 238     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 239     int   flags = _intrinsic_hist_flags[id];
 240     juint count = _intrinsic_hist_count[id];
 241     if ((flags | count) != 0) {
 242       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 243     }
 244   }
 245   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 246   if (xtty != NULL)  xtty->tail("statistics");
 247 }
 248 
 249 void Compile::print_statistics() {
 250   { ttyLocker ttyl;
 251     if (xtty != NULL)  xtty->head("statistics type='opto'");
 252     Parse::print_statistics();
 253     PhaseCCP::print_statistics();
 254     PhaseRegAlloc::print_statistics();
 255     Scheduling::print_statistics();
 256     PhasePeephole::print_statistics();
 257     PhaseIdealLoop::print_statistics();
 258     if (xtty != NULL)  xtty->tail("statistics");
 259   }
 260   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 261     // put this under its own <statistics> element.
 262     print_intrinsic_statistics();
 263   }
 264 }
 265 #endif //PRODUCT
 266 
 267 // Support for bundling info
 268 Bundle* Compile::node_bundling(const Node *n) {
 269   assert(valid_bundle_info(n), "oob");
 270   return &_node_bundling_base[n->_idx];
 271 }
 272 
 273 bool Compile::valid_bundle_info(const Node *n) {
 274   return (_node_bundling_limit > n->_idx);
 275 }
 276 
 277 
 278 void Compile::gvn_replace_by(Node* n, Node* nn) {
 279   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 280     Node* use = n->last_out(i);
 281     bool is_in_table = initial_gvn()->hash_delete(use);
 282     uint uses_found = 0;
 283     for (uint j = 0; j < use->len(); j++) {
 284       if (use->in(j) == n) {
 285         if (j < use->req())
 286           use->set_req(j, nn);
 287         else
 288           use->set_prec(j, nn);
 289         uses_found++;
 290       }
 291     }
 292     if (is_in_table) {
 293       // reinsert into table
 294       initial_gvn()->hash_find_insert(use);
 295     }
 296     record_for_igvn(use);
 297     i -= uses_found;    // we deleted 1 or more copies of this edge
 298   }
 299 }
 300 
 301 
 302 static inline bool not_a_node(const Node* n) {
 303   if (n == NULL)                   return true;
 304   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 305   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 306   return false;
 307 }
 308 
 309 // Identify all nodes that are reachable from below, useful.
 310 // Use breadth-first pass that records state in a Unique_Node_List,
 311 // recursive traversal is slower.
 312 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 313   int estimated_worklist_size = live_nodes();
 314   useful.map( estimated_worklist_size, NULL );  // preallocate space
 315 
 316   // Initialize worklist
 317   if (root() != NULL)     { useful.push(root()); }
 318   // If 'top' is cached, declare it useful to preserve cached node
 319   if( cached_top_node() ) { useful.push(cached_top_node()); }
 320 
 321   // Push all useful nodes onto the list, breadthfirst
 322   for( uint next = 0; next < useful.size(); ++next ) {
 323     assert( next < unique(), "Unique useful nodes < total nodes");
 324     Node *n  = useful.at(next);
 325     uint max = n->len();
 326     for( uint i = 0; i < max; ++i ) {
 327       Node *m = n->in(i);
 328       if (not_a_node(m))  continue;
 329       useful.push(m);
 330     }
 331   }
 332 }
 333 
 334 // Update dead_node_list with any missing dead nodes using useful
 335 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 336 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 337   uint max_idx = unique();
 338   VectorSet& useful_node_set = useful.member_set();
 339 
 340   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 341     // If node with index node_idx is not in useful set,
 342     // mark it as dead in dead node list.
 343     if (! useful_node_set.test(node_idx) ) {
 344       record_dead_node(node_idx);
 345     }
 346   }
 347 }
 348 
 349 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 350   int shift = 0;
 351   for (int i = 0; i < inlines->length(); i++) {
 352     CallGenerator* cg = inlines->at(i);
 353     CallNode* call = cg->call_node();
 354     if (shift > 0) {
 355       inlines->at_put(i-shift, cg);
 356     }
 357     if (!useful.member(call)) {
 358       shift++;
 359     }
 360   }
 361   inlines->trunc_to(inlines->length()-shift);
 362 }
 363 
 364 // Disconnect all useless nodes by disconnecting those at the boundary.
 365 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 366   uint next = 0;
 367   while (next < useful.size()) {
 368     Node *n = useful.at(next++);
 369     if (n->is_SafePoint()) {
 370       // We're done with a parsing phase. Replaced nodes are not valid
 371       // beyond that point.
 372       n->as_SafePoint()->delete_replaced_nodes();
 373     }
 374     // Use raw traversal of out edges since this code removes out edges
 375     int max = n->outcnt();
 376     for (int j = 0; j < max; ++j) {
 377       Node* child = n->raw_out(j);
 378       if (! useful.member(child)) {
 379         assert(!child->is_top() || child != top(),
 380                "If top is cached in Compile object it is in useful list");
 381         // Only need to remove this out-edge to the useless node
 382         n->raw_del_out(j);
 383         --j;
 384         --max;
 385       }
 386     }
 387     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 388       record_for_igvn(n->unique_out());
 389     }
 390   }
 391   // Remove useless macro and predicate opaq nodes
 392   for (int i = C->macro_count()-1; i >= 0; i--) {
 393     Node* n = C->macro_node(i);
 394     if (!useful.member(n)) {
 395       remove_macro_node(n);
 396     }
 397   }
 398   // Remove useless CastII nodes with range check dependency
 399   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 400     Node* cast = range_check_cast_node(i);
 401     if (!useful.member(cast)) {
 402       remove_range_check_cast(cast);
 403     }
 404   }
 405   // Remove useless expensive nodes
 406   for (int i = C->expensive_count()-1; i >= 0; i--) {
 407     Node* n = C->expensive_node(i);
 408     if (!useful.member(n)) {
 409       remove_expensive_node(n);
 410     }
 411   }
 412   // Remove useless Opaque4 nodes
 413   for (int i = opaque4_count() - 1; i >= 0; i--) {
 414     Node* opaq = opaque4_node(i);
 415     if (!useful.member(opaq)) {
 416       remove_opaque4_node(opaq);
 417     }
 418   }
 419   // clean up the late inline lists
 420   remove_useless_late_inlines(&_string_late_inlines, useful);
 421   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 422   remove_useless_late_inlines(&_late_inlines, useful);
 423   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 424 }
 425 
 426 //------------------------------frame_size_in_words-----------------------------
 427 // frame_slots in units of words
 428 int Compile::frame_size_in_words() const {
 429   // shift is 0 in LP32 and 1 in LP64
 430   const int shift = (LogBytesPerWord - LogBytesPerInt);
 431   int words = _frame_slots >> shift;
 432   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 433   return words;
 434 }
 435 
 436 // To bang the stack of this compiled method we use the stack size
 437 // that the interpreter would need in case of a deoptimization. This
 438 // removes the need to bang the stack in the deoptimization blob which
 439 // in turn simplifies stack overflow handling.
 440 int Compile::bang_size_in_bytes() const {
 441   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 442 }
 443 
 444 // ============================================================================
 445 //------------------------------CompileWrapper---------------------------------
 446 class CompileWrapper : public StackObj {
 447   Compile *const _compile;
 448  public:
 449   CompileWrapper(Compile* compile);
 450 
 451   ~CompileWrapper();
 452 };
 453 
 454 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 455   // the Compile* pointer is stored in the current ciEnv:
 456   ciEnv* env = compile->env();
 457   assert(env == ciEnv::current(), "must already be a ciEnv active");
 458   assert(env->compiler_data() == NULL, "compile already active?");
 459   env->set_compiler_data(compile);
 460   assert(compile == Compile::current(), "sanity");
 461 
 462   compile->set_type_dict(NULL);
 463   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 464   compile->clone_map().set_clone_idx(0);
 465   compile->set_type_hwm(NULL);
 466   compile->set_type_last_size(0);
 467   compile->set_last_tf(NULL, NULL);
 468   compile->set_indexSet_arena(NULL);
 469   compile->set_indexSet_free_block_list(NULL);
 470   compile->init_type_arena();
 471   Type::Initialize(compile);
 472   _compile->set_scratch_buffer_blob(NULL);
 473   _compile->begin_method();
 474   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 475 }
 476 CompileWrapper::~CompileWrapper() {
 477   _compile->end_method();
 478   if (_compile->scratch_buffer_blob() != NULL)
 479     BufferBlob::free(_compile->scratch_buffer_blob());
 480   _compile->env()->set_compiler_data(NULL);
 481 }
 482 
 483 
 484 //----------------------------print_compile_messages---------------------------
 485 void Compile::print_compile_messages() {
 486 #ifndef PRODUCT
 487   // Check if recompiling
 488   if (_subsume_loads == false && PrintOpto) {
 489     // Recompiling without allowing machine instructions to subsume loads
 490     tty->print_cr("*********************************************************");
 491     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 492     tty->print_cr("*********************************************************");
 493   }
 494   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 495     // Recompiling without escape analysis
 496     tty->print_cr("*********************************************************");
 497     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 498     tty->print_cr("*********************************************************");
 499   }
 500   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 501     // Recompiling without boxing elimination
 502     tty->print_cr("*********************************************************");
 503     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 504     tty->print_cr("*********************************************************");
 505   }
 506   if (C->directive()->BreakAtCompileOption) {
 507     // Open the debugger when compiling this method.
 508     tty->print("### Breaking when compiling: ");
 509     method()->print_short_name();
 510     tty->cr();
 511     BREAKPOINT;
 512   }
 513 
 514   if( PrintOpto ) {
 515     if (is_osr_compilation()) {
 516       tty->print("[OSR]%3d", _compile_id);
 517     } else {
 518       tty->print("%3d", _compile_id);
 519     }
 520   }
 521 #endif
 522 }
 523 
 524 
 525 //-----------------------init_scratch_buffer_blob------------------------------
 526 // Construct a temporary BufferBlob and cache it for this compile.
 527 void Compile::init_scratch_buffer_blob(int const_size) {
 528   // If there is already a scratch buffer blob allocated and the
 529   // constant section is big enough, use it.  Otherwise free the
 530   // current and allocate a new one.
 531   BufferBlob* blob = scratch_buffer_blob();
 532   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 533     // Use the current blob.
 534   } else {
 535     if (blob != NULL) {
 536       BufferBlob::free(blob);
 537     }
 538 
 539     ResourceMark rm;
 540     _scratch_const_size = const_size;
 541     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 542     blob = BufferBlob::create("Compile::scratch_buffer", size);
 543     // Record the buffer blob for next time.
 544     set_scratch_buffer_blob(blob);
 545     // Have we run out of code space?
 546     if (scratch_buffer_blob() == NULL) {
 547       // Let CompilerBroker disable further compilations.
 548       record_failure("Not enough space for scratch buffer in CodeCache");
 549       return;
 550     }
 551   }
 552 
 553   // Initialize the relocation buffers
 554   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 555   set_scratch_locs_memory(locs_buf);
 556 }
 557 
 558 
 559 //-----------------------scratch_emit_size-------------------------------------
 560 // Helper function that computes size by emitting code
 561 uint Compile::scratch_emit_size(const Node* n) {
 562   // Start scratch_emit_size section.
 563   set_in_scratch_emit_size(true);
 564 
 565   // Emit into a trash buffer and count bytes emitted.
 566   // This is a pretty expensive way to compute a size,
 567   // but it works well enough if seldom used.
 568   // All common fixed-size instructions are given a size
 569   // method by the AD file.
 570   // Note that the scratch buffer blob and locs memory are
 571   // allocated at the beginning of the compile task, and
 572   // may be shared by several calls to scratch_emit_size.
 573   // The allocation of the scratch buffer blob is particularly
 574   // expensive, since it has to grab the code cache lock.
 575   BufferBlob* blob = this->scratch_buffer_blob();
 576   assert(blob != NULL, "Initialize BufferBlob at start");
 577   assert(blob->size() > MAX_inst_size, "sanity");
 578   relocInfo* locs_buf = scratch_locs_memory();
 579   address blob_begin = blob->content_begin();
 580   address blob_end   = (address)locs_buf;
 581   assert(blob->contains(blob_end), "sanity");
 582   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 583   buf.initialize_consts_size(_scratch_const_size);
 584   buf.initialize_stubs_size(MAX_stubs_size);
 585   assert(locs_buf != NULL, "sanity");
 586   int lsize = MAX_locs_size / 3;
 587   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 588   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 589   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 590   // Mark as scratch buffer.
 591   buf.consts()->set_scratch_emit();
 592   buf.insts()->set_scratch_emit();
 593   buf.stubs()->set_scratch_emit();
 594 
 595   // Do the emission.
 596 
 597   Label fakeL; // Fake label for branch instructions.
 598   Label*   saveL = NULL;
 599   uint save_bnum = 0;
 600   bool is_branch = n->is_MachBranch();
 601   if (is_branch) {
 602     MacroAssembler masm(&buf);
 603     masm.bind(fakeL);
 604     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 605     n->as_MachBranch()->label_set(&fakeL, 0);
 606   }
 607   n->emit(buf, this->regalloc());
 608 
 609   // Emitting into the scratch buffer should not fail
 610   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 611 
 612   if (is_branch) // Restore label.
 613     n->as_MachBranch()->label_set(saveL, save_bnum);
 614 
 615   // End scratch_emit_size section.
 616   set_in_scratch_emit_size(false);
 617 
 618   return buf.insts_size();
 619 }
 620 
 621 
 622 // ============================================================================
 623 //------------------------------Compile standard-------------------------------
 624 debug_only( int Compile::_debug_idx = 100000; )
 625 
 626 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 627 // the continuation bci for on stack replacement.
 628 
 629 
 630 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 631                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 632                 : Phase(Compiler),
 633                   _env(ci_env),
 634                   _directive(directive),
 635                   _log(ci_env->log()),
 636                   _compile_id(ci_env->compile_id()),
 637                   _save_argument_registers(false),
 638                   _stub_name(NULL),
 639                   _stub_function(NULL),
 640                   _stub_entry_point(NULL),
 641                   _method(target),
 642                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state()),
 643                   _entry_bci(osr_bci),
 644                   _initial_gvn(NULL),
 645                   _for_igvn(NULL),
 646                   _warm_calls(NULL),
 647                   _subsume_loads(subsume_loads),
 648                   _do_escape_analysis(do_escape_analysis),
 649                   _eliminate_boxing(eliminate_boxing),
 650                   _failure_reason(NULL),
 651                   _code_buffer("Compile::Fill_buffer"),
 652                   _orig_pc_slot(0),
 653                   _orig_pc_slot_offset_in_bytes(0),
 654                   _has_method_handle_invokes(false),
 655                   _mach_constant_base_node(NULL),
 656                   _node_bundling_limit(0),
 657                   _node_bundling_base(NULL),
 658                   _java_calls(0),
 659                   _inner_loops(0),
 660                   _scratch_const_size(-1),
 661                   _in_scratch_emit_size(false),
 662                   _dead_node_list(comp_arena()),
 663                   _dead_node_count(0),
 664 #ifndef PRODUCT
 665                   _trace_opto_output(directive->TraceOptoOutputOption),
 666                   _in_dump_cnt(0),
 667                   _printer(IdealGraphPrinter::printer()),
 668 #endif
 669                   _congraph(NULL),
 670                   _comp_arena(mtCompiler),
 671                   _node_arena(mtCompiler),
 672                   _old_arena(mtCompiler),
 673                   _Compile_types(mtCompiler),
 674                   _replay_inline_data(NULL),
 675                   _late_inlines(comp_arena(), 2, 0, NULL),
 676                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 677                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 678                   _late_inlines_pos(0),
 679                   _number_of_mh_late_inlines(0),
 680                   _inlining_progress(false),
 681                   _inlining_incrementally(false),
 682                   _print_inlining_list(NULL),
 683                   _print_inlining_stream(NULL),
 684                   _print_inlining_idx(0),
 685                   _print_inlining_output(NULL),
 686                   _interpreter_frame_size(0),
 687                   _max_node_limit(MaxNodeLimit),
 688                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 689   C = this;
 690 #ifndef PRODUCT
 691   if (_printer != NULL) {
 692     _printer->set_compile(this);
 693   }
 694 #endif
 695   CompileWrapper cw(this);
 696 
 697   if (CITimeVerbose) {
 698     tty->print(" ");
 699     target->holder()->name()->print();
 700     tty->print(".");
 701     target->print_short_name();
 702     tty->print("  ");
 703   }
 704   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 705   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 706 
 707 #ifndef PRODUCT
 708   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 709   if (!print_opto_assembly) {
 710     bool print_assembly = directive->PrintAssemblyOption;
 711     if (print_assembly && !Disassembler::can_decode()) {
 712       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 713       print_opto_assembly = true;
 714     }
 715   }
 716   set_print_assembly(print_opto_assembly);
 717   set_parsed_irreducible_loop(false);
 718 
 719   if (directive->ReplayInlineOption) {
 720     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 721   }
 722 #endif
 723   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 724   set_print_intrinsics(directive->PrintIntrinsicsOption);
 725   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 726 
 727   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 728     // Make sure the method being compiled gets its own MDO,
 729     // so we can at least track the decompile_count().
 730     // Need MDO to record RTM code generation state.
 731     method()->ensure_method_data();
 732   }
 733 
 734   Init(::AliasLevel);
 735 
 736 
 737   print_compile_messages();
 738 
 739   _ilt = InlineTree::build_inline_tree_root();
 740 
 741   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 742   assert(num_alias_types() >= AliasIdxRaw, "");
 743 
 744 #define MINIMUM_NODE_HASH  1023
 745   // Node list that Iterative GVN will start with
 746   Unique_Node_List for_igvn(comp_arena());
 747   set_for_igvn(&for_igvn);
 748 
 749   // GVN that will be run immediately on new nodes
 750   uint estimated_size = method()->code_size()*4+64;
 751   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 752   PhaseGVN gvn(node_arena(), estimated_size);
 753   set_initial_gvn(&gvn);
 754 
 755   print_inlining_init();
 756   { // Scope for timing the parser
 757     TracePhase tp("parse", &timers[_t_parser]);
 758 
 759     // Put top into the hash table ASAP.
 760     initial_gvn()->transform_no_reclaim(top());
 761 
 762     // Set up tf(), start(), and find a CallGenerator.
 763     CallGenerator* cg = NULL;
 764     if (is_osr_compilation()) {
 765       const TypeTuple *domain = StartOSRNode::osr_domain();
 766       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 767       init_tf(TypeFunc::make(domain, range));
 768       StartNode* s = new StartOSRNode(root(), domain);
 769       initial_gvn()->set_type_bottom(s);
 770       init_start(s);
 771       cg = CallGenerator::for_osr(method(), entry_bci());
 772     } else {
 773       // Normal case.
 774       init_tf(TypeFunc::make(method()));
 775       StartNode* s = new StartNode(root(), tf()->domain());
 776       initial_gvn()->set_type_bottom(s);
 777       init_start(s);
 778       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 779         // With java.lang.ref.reference.get() we must go through the
 780         // intrinsic - even when get() is the root
 781         // method of the compile - so that, if necessary, the value in
 782         // the referent field of the reference object gets recorded by
 783         // the pre-barrier code.
 784         cg = find_intrinsic(method(), false);
 785       }
 786       if (cg == NULL) {
 787         float past_uses = method()->interpreter_invocation_count();
 788         float expected_uses = past_uses;
 789         cg = CallGenerator::for_inline(method(), expected_uses);
 790       }
 791     }
 792     if (failing())  return;
 793     if (cg == NULL) {
 794       record_method_not_compilable("cannot parse method");
 795       return;
 796     }
 797     JVMState* jvms = build_start_state(start(), tf());
 798     if ((jvms = cg->generate(jvms)) == NULL) {
 799       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 800         record_method_not_compilable("method parse failed");
 801       }
 802       return;
 803     }
 804     GraphKit kit(jvms);
 805 
 806     if (!kit.stopped()) {
 807       // Accept return values, and transfer control we know not where.
 808       // This is done by a special, unique ReturnNode bound to root.
 809       return_values(kit.jvms());
 810     }
 811 
 812     if (kit.has_exceptions()) {
 813       // Any exceptions that escape from this call must be rethrown
 814       // to whatever caller is dynamically above us on the stack.
 815       // This is done by a special, unique RethrowNode bound to root.
 816       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 817     }
 818 
 819     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 820 
 821     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 822       inline_string_calls(true);
 823     }
 824 
 825     if (failing())  return;
 826 
 827     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 828 
 829     // Remove clutter produced by parsing.
 830     if (!failing()) {
 831       ResourceMark rm;
 832       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 833     }
 834   }
 835 
 836   // Note:  Large methods are capped off in do_one_bytecode().
 837   if (failing())  return;
 838 
 839   // After parsing, node notes are no longer automagic.
 840   // They must be propagated by register_new_node_with_optimizer(),
 841   // clone(), or the like.
 842   set_default_node_notes(NULL);
 843 
 844   for (;;) {
 845     int successes = Inline_Warm();
 846     if (failing())  return;
 847     if (successes == 0)  break;
 848   }
 849 
 850   // Drain the list.
 851   Finish_Warm();
 852 #ifndef PRODUCT
 853   if (_printer && _printer->should_print(1)) {
 854     _printer->print_inlining();
 855   }
 856 #endif
 857 
 858   if (failing())  return;
 859   NOT_PRODUCT( verify_graph_edges(); )
 860 
 861   // Now optimize
 862   Optimize();
 863   if (failing())  return;
 864   NOT_PRODUCT( verify_graph_edges(); )
 865 
 866 #ifndef PRODUCT
 867   if (PrintIdeal) {
 868     ttyLocker ttyl;  // keep the following output all in one block
 869     // This output goes directly to the tty, not the compiler log.
 870     // To enable tools to match it up with the compilation activity,
 871     // be sure to tag this tty output with the compile ID.
 872     if (xtty != NULL) {
 873       xtty->head("ideal compile_id='%d'%s", compile_id(),
 874                  is_osr_compilation()    ? " compile_kind='osr'" :
 875                  "");
 876     }
 877     root()->dump(9999);
 878     if (xtty != NULL) {
 879       xtty->tail("ideal");
 880     }
 881   }
 882 #endif
 883 
 884   NOT_PRODUCT( verify_barriers(); )
 885 
 886   // Dump compilation data to replay it.
 887   if (directive->DumpReplayOption) {
 888     env()->dump_replay_data(_compile_id);
 889   }
 890   if (directive->DumpInlineOption && (ilt() != NULL)) {
 891     env()->dump_inline_data(_compile_id);
 892   }
 893 
 894   // Now that we know the size of all the monitors we can add a fixed slot
 895   // for the original deopt pc.
 896 
 897   _orig_pc_slot =  fixed_slots();
 898   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 899   set_fixed_slots(next_slot);
 900 
 901   // Compute when to use implicit null checks. Used by matching trap based
 902   // nodes and NullCheck optimization.
 903   set_allowed_deopt_reasons();
 904 
 905   // Now generate code
 906   Code_Gen();
 907   if (failing())  return;
 908 
 909   // Check if we want to skip execution of all compiled code.
 910   {
 911 #ifndef PRODUCT
 912     if (OptoNoExecute) {
 913       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 914       return;
 915     }
 916 #endif
 917     TracePhase tp("install_code", &timers[_t_registerMethod]);
 918 
 919     if (is_osr_compilation()) {
 920       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 921       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 922     } else {
 923       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 924       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 925     }
 926 
 927     env()->register_method(_method, _entry_bci,
 928                            &_code_offsets,
 929                            _orig_pc_slot_offset_in_bytes,
 930                            code_buffer(),
 931                            frame_size_in_words(), _oop_map_set,
 932                            &_handler_table, &_inc_table,
 933                            compiler,
 934                            has_unsafe_access(),
 935                            SharedRuntime::is_wide_vector(max_vector_size()),
 936                            rtm_state()
 937                            );
 938 
 939     if (log() != NULL) // Print code cache state into compiler log
 940       log()->code_cache_state();
 941   }
 942 }
 943 
 944 //------------------------------Compile----------------------------------------
 945 // Compile a runtime stub
 946 Compile::Compile( ciEnv* ci_env,
 947                   TypeFunc_generator generator,
 948                   address stub_function,
 949                   const char *stub_name,
 950                   int is_fancy_jump,
 951                   bool pass_tls,
 952                   bool save_arg_registers,
 953                   bool return_pc,
 954                   DirectiveSet* directive)
 955   : Phase(Compiler),
 956     _env(ci_env),
 957     _directive(directive),
 958     _log(ci_env->log()),
 959     _compile_id(0),
 960     _save_argument_registers(save_arg_registers),
 961     _method(NULL),
 962     _stub_name(stub_name),
 963     _stub_function(stub_function),
 964     _stub_entry_point(NULL),
 965     _entry_bci(InvocationEntryBci),
 966     _initial_gvn(NULL),
 967     _for_igvn(NULL),
 968     _warm_calls(NULL),
 969     _orig_pc_slot(0),
 970     _orig_pc_slot_offset_in_bytes(0),
 971     _subsume_loads(true),
 972     _do_escape_analysis(false),
 973     _eliminate_boxing(false),
 974     _failure_reason(NULL),
 975     _code_buffer("Compile::Fill_buffer"),
 976     _has_method_handle_invokes(false),
 977     _mach_constant_base_node(NULL),
 978     _node_bundling_limit(0),
 979     _node_bundling_base(NULL),
 980     _java_calls(0),
 981     _inner_loops(0),
 982 #ifndef PRODUCT
 983     _trace_opto_output(directive->TraceOptoOutputOption),
 984     _in_dump_cnt(0),
 985     _printer(NULL),
 986 #endif
 987     _comp_arena(mtCompiler),
 988     _node_arena(mtCompiler),
 989     _old_arena(mtCompiler),
 990     _Compile_types(mtCompiler),
 991     _dead_node_list(comp_arena()),
 992     _dead_node_count(0),
 993     _congraph(NULL),
 994     _replay_inline_data(NULL),
 995     _number_of_mh_late_inlines(0),
 996     _inlining_progress(false),
 997     _inlining_incrementally(false),
 998     _print_inlining_list(NULL),
 999     _print_inlining_stream(NULL),
1000     _print_inlining_idx(0),
1001     _print_inlining_output(NULL),
1002     _allowed_reasons(0),
1003     _interpreter_frame_size(0),
1004     _max_node_limit(MaxNodeLimit),
1005     _has_reserved_stack_access(false) {
1006   C = this;
1007 
1008   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1009   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1010 
1011 #ifndef PRODUCT
1012   set_print_assembly(PrintFrameConverterAssembly);
1013   set_parsed_irreducible_loop(false);
1014 #endif
1015   set_has_irreducible_loop(false); // no loops
1016 
1017   CompileWrapper cw(this);
1018   Init(/*AliasLevel=*/ 0);
1019   init_tf((*generator)());
1020 
1021   {
1022     // The following is a dummy for the sake of GraphKit::gen_stub
1023     Unique_Node_List for_igvn(comp_arena());
1024     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1025     PhaseGVN gvn(Thread::current()->resource_area(),255);
1026     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1027     gvn.transform_no_reclaim(top());
1028 
1029     GraphKit kit;
1030     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1031   }
1032 
1033   NOT_PRODUCT( verify_graph_edges(); )
1034   Code_Gen();
1035   if (failing())  return;
1036 
1037 
1038   // Entry point will be accessed using compile->stub_entry_point();
1039   if (code_buffer() == NULL) {
1040     Matcher::soft_match_failure();
1041   } else {
1042     if (PrintAssembly && (WizardMode || Verbose))
1043       tty->print_cr("### Stub::%s", stub_name);
1044 
1045     if (!failing()) {
1046       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1047 
1048       // Make the NMethod
1049       // For now we mark the frame as never safe for profile stackwalking
1050       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1051                                                       code_buffer(),
1052                                                       CodeOffsets::frame_never_safe,
1053                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1054                                                       frame_size_in_words(),
1055                                                       _oop_map_set,
1056                                                       save_arg_registers);
1057       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1058 
1059       _stub_entry_point = rs->entry_point();
1060     }
1061   }
1062 }
1063 
1064 //------------------------------Init-------------------------------------------
1065 // Prepare for a single compilation
1066 void Compile::Init(int aliaslevel) {
1067   _unique  = 0;
1068   _regalloc = NULL;
1069 
1070   _tf      = NULL;  // filled in later
1071   _top     = NULL;  // cached later
1072   _matcher = NULL;  // filled in later
1073   _cfg     = NULL;  // filled in later
1074 
1075   set_24_bit_selection_and_mode(Use24BitFP, false);
1076 
1077   _node_note_array = NULL;
1078   _default_node_notes = NULL;
1079   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1080 
1081   _immutable_memory = NULL; // filled in at first inquiry
1082 
1083   // Globally visible Nodes
1084   // First set TOP to NULL to give safe behavior during creation of RootNode
1085   set_cached_top_node(NULL);
1086   set_root(new RootNode());
1087   // Now that you have a Root to point to, create the real TOP
1088   set_cached_top_node( new ConNode(Type::TOP) );
1089   set_recent_alloc(NULL, NULL);
1090 
1091   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1092   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1093   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1094   env()->set_dependencies(new Dependencies(env()));
1095 
1096   _fixed_slots = 0;
1097   set_has_split_ifs(false);
1098   set_has_loops(has_method() && method()->has_loops()); // first approximation
1099   set_has_stringbuilder(false);
1100   set_has_boxed_value(false);
1101   _trap_can_recompile = false;  // no traps emitted yet
1102   _major_progress = true; // start out assuming good things will happen
1103   set_has_unsafe_access(false);
1104   set_max_vector_size(0);
1105   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1106   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1107   set_decompile_count(0);
1108 
1109   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1110   set_num_loop_opts(LoopOptsCount);
1111   set_do_inlining(Inline);
1112   set_max_inline_size(MaxInlineSize);
1113   set_freq_inline_size(FreqInlineSize);
1114   set_do_scheduling(OptoScheduling);
1115   set_do_count_invocations(false);
1116   set_do_method_data_update(false);
1117 
1118   set_do_vector_loop(false);
1119 
1120   if (AllowVectorizeOnDemand) {
1121     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1122       set_do_vector_loop(true);
1123       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1124     } else if (has_method() && method()->name() != 0 &&
1125                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1126       set_do_vector_loop(true);
1127     }
1128   }
1129   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1130   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1131 
1132   set_age_code(has_method() && method()->profile_aging());
1133   set_rtm_state(NoRTM); // No RTM lock eliding by default
1134   _max_node_limit = _directive->MaxNodeLimitOption;
1135 
1136 #if INCLUDE_RTM_OPT
1137   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1138     int rtm_state = method()->method_data()->rtm_state();
1139     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1140       // Don't generate RTM lock eliding code.
1141       set_rtm_state(NoRTM);
1142     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1143       // Generate RTM lock eliding code without abort ratio calculation code.
1144       set_rtm_state(UseRTM);
1145     } else if (UseRTMDeopt) {
1146       // Generate RTM lock eliding code and include abort ratio calculation
1147       // code if UseRTMDeopt is on.
1148       set_rtm_state(ProfileRTM);
1149     }
1150   }
1151 #endif
1152   if (debug_info()->recording_non_safepoints()) {
1153     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1154                         (comp_arena(), 8, 0, NULL));
1155     set_default_node_notes(Node_Notes::make(this));
1156   }
1157 
1158   // // -- Initialize types before each compile --
1159   // // Update cached type information
1160   // if( _method && _method->constants() )
1161   //   Type::update_loaded_types(_method, _method->constants());
1162 
1163   // Init alias_type map.
1164   if (!_do_escape_analysis && aliaslevel == 3)
1165     aliaslevel = 2;  // No unique types without escape analysis
1166   _AliasLevel = aliaslevel;
1167   const int grow_ats = 16;
1168   _max_alias_types = grow_ats;
1169   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1170   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1171   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1172   {
1173     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1174   }
1175   // Initialize the first few types.
1176   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1177   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1178   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1179   _num_alias_types = AliasIdxRaw+1;
1180   // Zero out the alias type cache.
1181   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1182   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1183   probe_alias_cache(NULL)->_index = AliasIdxTop;
1184 
1185   _intrinsics = NULL;
1186   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1187   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1188   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1189   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1190   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1191   register_library_intrinsics();
1192 }
1193 
1194 //---------------------------init_start----------------------------------------
1195 // Install the StartNode on this compile object.
1196 void Compile::init_start(StartNode* s) {
1197   if (failing())
1198     return; // already failing
1199   assert(s == start(), "");
1200 }
1201 
1202 /**
1203  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1204  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1205  * the ideal graph.
1206  */
1207 StartNode* Compile::start() const {
1208   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1209   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1210     Node* start = root()->fast_out(i);
1211     if (start->is_Start()) {
1212       return start->as_Start();
1213     }
1214   }
1215   fatal("Did not find Start node!");
1216   return NULL;
1217 }
1218 
1219 //-------------------------------immutable_memory-------------------------------------
1220 // Access immutable memory
1221 Node* Compile::immutable_memory() {
1222   if (_immutable_memory != NULL) {
1223     return _immutable_memory;
1224   }
1225   StartNode* s = start();
1226   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1227     Node *p = s->fast_out(i);
1228     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1229       _immutable_memory = p;
1230       return _immutable_memory;
1231     }
1232   }
1233   ShouldNotReachHere();
1234   return NULL;
1235 }
1236 
1237 //----------------------set_cached_top_node------------------------------------
1238 // Install the cached top node, and make sure Node::is_top works correctly.
1239 void Compile::set_cached_top_node(Node* tn) {
1240   if (tn != NULL)  verify_top(tn);
1241   Node* old_top = _top;
1242   _top = tn;
1243   // Calling Node::setup_is_top allows the nodes the chance to adjust
1244   // their _out arrays.
1245   if (_top != NULL)     _top->setup_is_top();
1246   if (old_top != NULL)  old_top->setup_is_top();
1247   assert(_top == NULL || top()->is_top(), "");
1248 }
1249 
1250 #ifdef ASSERT
1251 uint Compile::count_live_nodes_by_graph_walk() {
1252   Unique_Node_List useful(comp_arena());
1253   // Get useful node list by walking the graph.
1254   identify_useful_nodes(useful);
1255   return useful.size();
1256 }
1257 
1258 void Compile::print_missing_nodes() {
1259 
1260   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1261   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1262     return;
1263   }
1264 
1265   // This is an expensive function. It is executed only when the user
1266   // specifies VerifyIdealNodeCount option or otherwise knows the
1267   // additional work that needs to be done to identify reachable nodes
1268   // by walking the flow graph and find the missing ones using
1269   // _dead_node_list.
1270 
1271   Unique_Node_List useful(comp_arena());
1272   // Get useful node list by walking the graph.
1273   identify_useful_nodes(useful);
1274 
1275   uint l_nodes = C->live_nodes();
1276   uint l_nodes_by_walk = useful.size();
1277 
1278   if (l_nodes != l_nodes_by_walk) {
1279     if (_log != NULL) {
1280       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1281       _log->stamp();
1282       _log->end_head();
1283     }
1284     VectorSet& useful_member_set = useful.member_set();
1285     int last_idx = l_nodes_by_walk;
1286     for (int i = 0; i < last_idx; i++) {
1287       if (useful_member_set.test(i)) {
1288         if (_dead_node_list.test(i)) {
1289           if (_log != NULL) {
1290             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1291           }
1292           if (PrintIdealNodeCount) {
1293             // Print the log message to tty
1294               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1295               useful.at(i)->dump();
1296           }
1297         }
1298       }
1299       else if (! _dead_node_list.test(i)) {
1300         if (_log != NULL) {
1301           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1302         }
1303         if (PrintIdealNodeCount) {
1304           // Print the log message to tty
1305           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1306         }
1307       }
1308     }
1309     if (_log != NULL) {
1310       _log->tail("mismatched_nodes");
1311     }
1312   }
1313 }
1314 void Compile::record_modified_node(Node* n) {
1315   if (_modified_nodes != NULL && !_inlining_incrementally &&
1316       n->outcnt() != 0 && !n->is_Con()) {
1317     _modified_nodes->push(n);
1318   }
1319 }
1320 
1321 void Compile::remove_modified_node(Node* n) {
1322   if (_modified_nodes != NULL) {
1323     _modified_nodes->remove(n);
1324   }
1325 }
1326 #endif
1327 
1328 #ifndef PRODUCT
1329 void Compile::verify_top(Node* tn) const {
1330   if (tn != NULL) {
1331     assert(tn->is_Con(), "top node must be a constant");
1332     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1333     assert(tn->in(0) != NULL, "must have live top node");
1334   }
1335 }
1336 #endif
1337 
1338 
1339 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1340 
1341 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1342   guarantee(arr != NULL, "");
1343   int num_blocks = arr->length();
1344   if (grow_by < num_blocks)  grow_by = num_blocks;
1345   int num_notes = grow_by * _node_notes_block_size;
1346   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1347   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1348   while (num_notes > 0) {
1349     arr->append(notes);
1350     notes     += _node_notes_block_size;
1351     num_notes -= _node_notes_block_size;
1352   }
1353   assert(num_notes == 0, "exact multiple, please");
1354 }
1355 
1356 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1357   if (source == NULL || dest == NULL)  return false;
1358 
1359   if (dest->is_Con())
1360     return false;               // Do not push debug info onto constants.
1361 
1362 #ifdef ASSERT
1363   // Leave a bread crumb trail pointing to the original node:
1364   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1365     dest->set_debug_orig(source);
1366   }
1367 #endif
1368 
1369   if (node_note_array() == NULL)
1370     return false;               // Not collecting any notes now.
1371 
1372   // This is a copy onto a pre-existing node, which may already have notes.
1373   // If both nodes have notes, do not overwrite any pre-existing notes.
1374   Node_Notes* source_notes = node_notes_at(source->_idx);
1375   if (source_notes == NULL || source_notes->is_clear())  return false;
1376   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1377   if (dest_notes == NULL || dest_notes->is_clear()) {
1378     return set_node_notes_at(dest->_idx, source_notes);
1379   }
1380 
1381   Node_Notes merged_notes = (*source_notes);
1382   // The order of operations here ensures that dest notes will win...
1383   merged_notes.update_from(dest_notes);
1384   return set_node_notes_at(dest->_idx, &merged_notes);
1385 }
1386 
1387 
1388 //--------------------------allow_range_check_smearing-------------------------
1389 // Gating condition for coalescing similar range checks.
1390 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1391 // single covering check that is at least as strong as any of them.
1392 // If the optimization succeeds, the simplified (strengthened) range check
1393 // will always succeed.  If it fails, we will deopt, and then give up
1394 // on the optimization.
1395 bool Compile::allow_range_check_smearing() const {
1396   // If this method has already thrown a range-check,
1397   // assume it was because we already tried range smearing
1398   // and it failed.
1399   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1400   return !already_trapped;
1401 }
1402 
1403 
1404 //------------------------------flatten_alias_type-----------------------------
1405 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1406   int offset = tj->offset();
1407   TypePtr::PTR ptr = tj->ptr();
1408 
1409   // Known instance (scalarizable allocation) alias only with itself.
1410   bool is_known_inst = tj->isa_oopptr() != NULL &&
1411                        tj->is_oopptr()->is_known_instance();
1412 
1413   // Process weird unsafe references.
1414   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1415     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1416     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1417     tj = TypeOopPtr::BOTTOM;
1418     ptr = tj->ptr();
1419     offset = tj->offset();
1420   }
1421 
1422   // Array pointers need some flattening
1423   const TypeAryPtr *ta = tj->isa_aryptr();
1424   if (ta && ta->is_stable()) {
1425     // Erase stability property for alias analysis.
1426     tj = ta = ta->cast_to_stable(false);
1427   }
1428   if( ta && is_known_inst ) {
1429     if ( offset != Type::OffsetBot &&
1430          offset > arrayOopDesc::length_offset_in_bytes() ) {
1431       offset = Type::OffsetBot; // Flatten constant access into array body only
1432       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1433     }
1434   } else if( ta && _AliasLevel >= 2 ) {
1435     // For arrays indexed by constant indices, we flatten the alias
1436     // space to include all of the array body.  Only the header, klass
1437     // and array length can be accessed un-aliased.
1438     if( offset != Type::OffsetBot ) {
1439       if( ta->const_oop() ) { // MethodData* or Method*
1440         offset = Type::OffsetBot;   // Flatten constant access into array body
1441         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1442       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1443         // range is OK as-is.
1444         tj = ta = TypeAryPtr::RANGE;
1445       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1446         tj = TypeInstPtr::KLASS; // all klass loads look alike
1447         ta = TypeAryPtr::RANGE; // generic ignored junk
1448         ptr = TypePtr::BotPTR;
1449       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1450         tj = TypeInstPtr::MARK;
1451         ta = TypeAryPtr::RANGE; // generic ignored junk
1452         ptr = TypePtr::BotPTR;
1453       } else {                  // Random constant offset into array body
1454         offset = Type::OffsetBot;   // Flatten constant access into array body
1455         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1456       }
1457     }
1458     // Arrays of fixed size alias with arrays of unknown size.
1459     if (ta->size() != TypeInt::POS) {
1460       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1461       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1462     }
1463     // Arrays of known objects become arrays of unknown objects.
1464     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1465       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1466       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1467     }
1468     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1469       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1470       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1471     }
1472     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1473     // cannot be distinguished by bytecode alone.
1474     if (ta->elem() == TypeInt::BOOL) {
1475       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1476       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1477       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1478     }
1479     // During the 2nd round of IterGVN, NotNull castings are removed.
1480     // Make sure the Bottom and NotNull variants alias the same.
1481     // Also, make sure exact and non-exact variants alias the same.
1482     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1483       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1484     }
1485   }
1486 
1487   // Oop pointers need some flattening
1488   const TypeInstPtr *to = tj->isa_instptr();
1489   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1490     ciInstanceKlass *k = to->klass()->as_instance_klass();
1491     if( ptr == TypePtr::Constant ) {
1492       if (to->klass() != ciEnv::current()->Class_klass() ||
1493           offset < k->size_helper() * wordSize) {
1494         // No constant oop pointers (such as Strings); they alias with
1495         // unknown strings.
1496         assert(!is_known_inst, "not scalarizable allocation");
1497         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1498       }
1499     } else if( is_known_inst ) {
1500       tj = to; // Keep NotNull and klass_is_exact for instance type
1501     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1502       // During the 2nd round of IterGVN, NotNull castings are removed.
1503       // Make sure the Bottom and NotNull variants alias the same.
1504       // Also, make sure exact and non-exact variants alias the same.
1505       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1506     }
1507     if (to->speculative() != NULL) {
1508       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1509     }
1510     // Canonicalize the holder of this field
1511     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1512       // First handle header references such as a LoadKlassNode, even if the
1513       // object's klass is unloaded at compile time (4965979).
1514       if (!is_known_inst) { // Do it only for non-instance types
1515         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1516       }
1517     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1518       // Static fields are in the space above the normal instance
1519       // fields in the java.lang.Class instance.
1520       if (to->klass() != ciEnv::current()->Class_klass()) {
1521         to = NULL;
1522         tj = TypeOopPtr::BOTTOM;
1523         offset = tj->offset();
1524       }
1525     } else {
1526       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1527       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1528         if( is_known_inst ) {
1529           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1530         } else {
1531           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1532         }
1533       }
1534     }
1535   }
1536 
1537   // Klass pointers to object array klasses need some flattening
1538   const TypeKlassPtr *tk = tj->isa_klassptr();
1539   if( tk ) {
1540     // If we are referencing a field within a Klass, we need
1541     // to assume the worst case of an Object.  Both exact and
1542     // inexact types must flatten to the same alias class so
1543     // use NotNull as the PTR.
1544     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1545 
1546       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1547                                    TypeKlassPtr::OBJECT->klass(),
1548                                    offset);
1549     }
1550 
1551     ciKlass* klass = tk->klass();
1552     if( klass->is_obj_array_klass() ) {
1553       ciKlass* k = TypeAryPtr::OOPS->klass();
1554       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1555         k = TypeInstPtr::BOTTOM->klass();
1556       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1557     }
1558 
1559     // Check for precise loads from the primary supertype array and force them
1560     // to the supertype cache alias index.  Check for generic array loads from
1561     // the primary supertype array and also force them to the supertype cache
1562     // alias index.  Since the same load can reach both, we need to merge
1563     // these 2 disparate memories into the same alias class.  Since the
1564     // primary supertype array is read-only, there's no chance of confusion
1565     // where we bypass an array load and an array store.
1566     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1567     if (offset == Type::OffsetBot ||
1568         (offset >= primary_supers_offset &&
1569          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1570         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1571       offset = in_bytes(Klass::secondary_super_cache_offset());
1572       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1573     }
1574   }
1575 
1576   // Flatten all Raw pointers together.
1577   if (tj->base() == Type::RawPtr)
1578     tj = TypeRawPtr::BOTTOM;
1579 
1580   if (tj->base() == Type::AnyPtr)
1581     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1582 
1583   // Flatten all to bottom for now
1584   switch( _AliasLevel ) {
1585   case 0:
1586     tj = TypePtr::BOTTOM;
1587     break;
1588   case 1:                       // Flatten to: oop, static, field or array
1589     switch (tj->base()) {
1590     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1591     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1592     case Type::AryPtr:   // do not distinguish arrays at all
1593     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1594     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1595     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1596     default: ShouldNotReachHere();
1597     }
1598     break;
1599   case 2:                       // No collapsing at level 2; keep all splits
1600   case 3:                       // No collapsing at level 3; keep all splits
1601     break;
1602   default:
1603     Unimplemented();
1604   }
1605 
1606   offset = tj->offset();
1607   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1608 
1609   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1610           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1611           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1612           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1613           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1614           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1615           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1616           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1617   assert( tj->ptr() != TypePtr::TopPTR &&
1618           tj->ptr() != TypePtr::AnyNull &&
1619           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1620 //    assert( tj->ptr() != TypePtr::Constant ||
1621 //            tj->base() == Type::RawPtr ||
1622 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1623 
1624   return tj;
1625 }
1626 
1627 void Compile::AliasType::Init(int i, const TypePtr* at) {
1628   _index = i;
1629   _adr_type = at;
1630   _field = NULL;
1631   _element = NULL;
1632   _is_rewritable = true; // default
1633   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1634   if (atoop != NULL && atoop->is_known_instance()) {
1635     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1636     _general_index = Compile::current()->get_alias_index(gt);
1637   } else {
1638     _general_index = 0;
1639   }
1640 }
1641 
1642 BasicType Compile::AliasType::basic_type() const {
1643   if (element() != NULL) {
1644     const Type* element = adr_type()->is_aryptr()->elem();
1645     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1646   } if (field() != NULL) {
1647     return field()->layout_type();
1648   } else {
1649     return T_ILLEGAL; // unknown
1650   }
1651 }
1652 
1653 //---------------------------------print_on------------------------------------
1654 #ifndef PRODUCT
1655 void Compile::AliasType::print_on(outputStream* st) {
1656   if (index() < 10)
1657         st->print("@ <%d> ", index());
1658   else  st->print("@ <%d>",  index());
1659   st->print(is_rewritable() ? "   " : " RO");
1660   int offset = adr_type()->offset();
1661   if (offset == Type::OffsetBot)
1662         st->print(" +any");
1663   else  st->print(" +%-3d", offset);
1664   st->print(" in ");
1665   adr_type()->dump_on(st);
1666   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1667   if (field() != NULL && tjp) {
1668     if (tjp->klass()  != field()->holder() ||
1669         tjp->offset() != field()->offset_in_bytes()) {
1670       st->print(" != ");
1671       field()->print();
1672       st->print(" ***");
1673     }
1674   }
1675 }
1676 
1677 void print_alias_types() {
1678   Compile* C = Compile::current();
1679   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1680   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1681     C->alias_type(idx)->print_on(tty);
1682     tty->cr();
1683   }
1684 }
1685 #endif
1686 
1687 
1688 //----------------------------probe_alias_cache--------------------------------
1689 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1690   intptr_t key = (intptr_t) adr_type;
1691   key ^= key >> logAliasCacheSize;
1692   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1693 }
1694 
1695 
1696 //-----------------------------grow_alias_types--------------------------------
1697 void Compile::grow_alias_types() {
1698   const int old_ats  = _max_alias_types; // how many before?
1699   const int new_ats  = old_ats;          // how many more?
1700   const int grow_ats = old_ats+new_ats;  // how many now?
1701   _max_alias_types = grow_ats;
1702   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1703   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1704   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1705   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1706 }
1707 
1708 
1709 //--------------------------------find_alias_type------------------------------
1710 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1711   if (_AliasLevel == 0)
1712     return alias_type(AliasIdxBot);
1713 
1714   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1715   if (ace->_adr_type == adr_type) {
1716     return alias_type(ace->_index);
1717   }
1718 
1719   // Handle special cases.
1720   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1721   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1722 
1723   // Do it the slow way.
1724   const TypePtr* flat = flatten_alias_type(adr_type);
1725 
1726 #ifdef ASSERT
1727   {
1728     ResourceMark rm;
1729     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1730            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1731     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1732            Type::str(adr_type));
1733     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1734       const TypeOopPtr* foop = flat->is_oopptr();
1735       // Scalarizable allocations have exact klass always.
1736       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1737       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1738       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1739              Type::str(foop), Type::str(xoop));
1740     }
1741   }
1742 #endif
1743 
1744   int idx = AliasIdxTop;
1745   for (int i = 0; i < num_alias_types(); i++) {
1746     if (alias_type(i)->adr_type() == flat) {
1747       idx = i;
1748       break;
1749     }
1750   }
1751 
1752   if (idx == AliasIdxTop) {
1753     if (no_create)  return NULL;
1754     // Grow the array if necessary.
1755     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1756     // Add a new alias type.
1757     idx = _num_alias_types++;
1758     _alias_types[idx]->Init(idx, flat);
1759     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1760     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1761     if (flat->isa_instptr()) {
1762       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1763           && flat->is_instptr()->klass() == env()->Class_klass())
1764         alias_type(idx)->set_rewritable(false);
1765     }
1766     if (flat->isa_aryptr()) {
1767 #ifdef ASSERT
1768       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1769       // (T_BYTE has the weakest alignment and size restrictions...)
1770       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1771 #endif
1772       if (flat->offset() == TypePtr::OffsetBot) {
1773         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1774       }
1775     }
1776     if (flat->isa_klassptr()) {
1777       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1778         alias_type(idx)->set_rewritable(false);
1779       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1780         alias_type(idx)->set_rewritable(false);
1781       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1782         alias_type(idx)->set_rewritable(false);
1783       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1784         alias_type(idx)->set_rewritable(false);
1785     }
1786     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1787     // but the base pointer type is not distinctive enough to identify
1788     // references into JavaThread.)
1789 
1790     // Check for final fields.
1791     const TypeInstPtr* tinst = flat->isa_instptr();
1792     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1793       ciField* field;
1794       if (tinst->const_oop() != NULL &&
1795           tinst->klass() == ciEnv::current()->Class_klass() &&
1796           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1797         // static field
1798         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1799         field = k->get_field_by_offset(tinst->offset(), true);
1800       } else {
1801         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1802         field = k->get_field_by_offset(tinst->offset(), false);
1803       }
1804       assert(field == NULL ||
1805              original_field == NULL ||
1806              (field->holder() == original_field->holder() &&
1807               field->offset() == original_field->offset() &&
1808               field->is_static() == original_field->is_static()), "wrong field?");
1809       // Set field() and is_rewritable() attributes.
1810       if (field != NULL)  alias_type(idx)->set_field(field);
1811     }
1812   }
1813 
1814   // Fill the cache for next time.
1815   ace->_adr_type = adr_type;
1816   ace->_index    = idx;
1817   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1818 
1819   // Might as well try to fill the cache for the flattened version, too.
1820   AliasCacheEntry* face = probe_alias_cache(flat);
1821   if (face->_adr_type == NULL) {
1822     face->_adr_type = flat;
1823     face->_index    = idx;
1824     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1825   }
1826 
1827   return alias_type(idx);
1828 }
1829 
1830 
1831 Compile::AliasType* Compile::alias_type(ciField* field) {
1832   const TypeOopPtr* t;
1833   if (field->is_static())
1834     t = TypeInstPtr::make(field->holder()->java_mirror());
1835   else
1836     t = TypeOopPtr::make_from_klass_raw(field->holder());
1837   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1838   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1839   return atp;
1840 }
1841 
1842 
1843 //------------------------------have_alias_type--------------------------------
1844 bool Compile::have_alias_type(const TypePtr* adr_type) {
1845   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1846   if (ace->_adr_type == adr_type) {
1847     return true;
1848   }
1849 
1850   // Handle special cases.
1851   if (adr_type == NULL)             return true;
1852   if (adr_type == TypePtr::BOTTOM)  return true;
1853 
1854   return find_alias_type(adr_type, true, NULL) != NULL;
1855 }
1856 
1857 //-----------------------------must_alias--------------------------------------
1858 // True if all values of the given address type are in the given alias category.
1859 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1860   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1861   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1862   if (alias_idx == AliasIdxTop)         return false; // the empty category
1863   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1864 
1865   // the only remaining possible overlap is identity
1866   int adr_idx = get_alias_index(adr_type);
1867   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1868   assert(adr_idx == alias_idx ||
1869          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1870           && adr_type                       != TypeOopPtr::BOTTOM),
1871          "should not be testing for overlap with an unsafe pointer");
1872   return adr_idx == alias_idx;
1873 }
1874 
1875 //------------------------------can_alias--------------------------------------
1876 // True if any values of the given address type are in the given alias category.
1877 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1878   if (alias_idx == AliasIdxTop)         return false; // the empty category
1879   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1880   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1881   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1882 
1883   // the only remaining possible overlap is identity
1884   int adr_idx = get_alias_index(adr_type);
1885   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1886   return adr_idx == alias_idx;
1887 }
1888 
1889 
1890 
1891 //---------------------------pop_warm_call-------------------------------------
1892 WarmCallInfo* Compile::pop_warm_call() {
1893   WarmCallInfo* wci = _warm_calls;
1894   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1895   return wci;
1896 }
1897 
1898 //----------------------------Inline_Warm--------------------------------------
1899 int Compile::Inline_Warm() {
1900   // If there is room, try to inline some more warm call sites.
1901   // %%% Do a graph index compaction pass when we think we're out of space?
1902   if (!InlineWarmCalls)  return 0;
1903 
1904   int calls_made_hot = 0;
1905   int room_to_grow   = NodeCountInliningCutoff - unique();
1906   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1907   int amount_grown   = 0;
1908   WarmCallInfo* call;
1909   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1910     int est_size = (int)call->size();
1911     if (est_size > (room_to_grow - amount_grown)) {
1912       // This one won't fit anyway.  Get rid of it.
1913       call->make_cold();
1914       continue;
1915     }
1916     call->make_hot();
1917     calls_made_hot++;
1918     amount_grown   += est_size;
1919     amount_to_grow -= est_size;
1920   }
1921 
1922   if (calls_made_hot > 0)  set_major_progress();
1923   return calls_made_hot;
1924 }
1925 
1926 
1927 //----------------------------Finish_Warm--------------------------------------
1928 void Compile::Finish_Warm() {
1929   if (!InlineWarmCalls)  return;
1930   if (failing())  return;
1931   if (warm_calls() == NULL)  return;
1932 
1933   // Clean up loose ends, if we are out of space for inlining.
1934   WarmCallInfo* call;
1935   while ((call = pop_warm_call()) != NULL) {
1936     call->make_cold();
1937   }
1938 }
1939 
1940 //---------------------cleanup_loop_predicates-----------------------
1941 // Remove the opaque nodes that protect the predicates so that all unused
1942 // checks and uncommon_traps will be eliminated from the ideal graph
1943 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1944   if (predicate_count()==0) return;
1945   for (int i = predicate_count(); i > 0; i--) {
1946     Node * n = predicate_opaque1_node(i-1);
1947     assert(n->Opcode() == Op_Opaque1, "must be");
1948     igvn.replace_node(n, n->in(1));
1949   }
1950   assert(predicate_count()==0, "should be clean!");
1951 }
1952 
1953 void Compile::add_range_check_cast(Node* n) {
1954   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1955   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1956   _range_check_casts->append(n);
1957 }
1958 
1959 // Remove all range check dependent CastIINodes.
1960 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1961   for (int i = range_check_cast_count(); i > 0; i--) {
1962     Node* cast = range_check_cast_node(i-1);
1963     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1964     igvn.replace_node(cast, cast->in(1));
1965   }
1966   assert(range_check_cast_count() == 0, "should be empty");
1967 }
1968 
1969 void Compile::add_opaque4_node(Node* n) {
1970   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1971   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1972   _opaque4_nodes->append(n);
1973 }
1974 
1975 // Remove all Opaque4 nodes.
1976 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1977   for (int i = opaque4_count(); i > 0; i--) {
1978     Node* opaq = opaque4_node(i-1);
1979     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
1980     igvn.replace_node(opaq, opaq->in(2));
1981   }
1982   assert(opaque4_count() == 0, "should be empty");
1983 }
1984 
1985 // StringOpts and late inlining of string methods
1986 void Compile::inline_string_calls(bool parse_time) {
1987   {
1988     // remove useless nodes to make the usage analysis simpler
1989     ResourceMark rm;
1990     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1991   }
1992 
1993   {
1994     ResourceMark rm;
1995     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1996     PhaseStringOpts pso(initial_gvn(), for_igvn());
1997     print_method(PHASE_AFTER_STRINGOPTS, 3);
1998   }
1999 
2000   // now inline anything that we skipped the first time around
2001   if (!parse_time) {
2002     _late_inlines_pos = _late_inlines.length();
2003   }
2004 
2005   while (_string_late_inlines.length() > 0) {
2006     CallGenerator* cg = _string_late_inlines.pop();
2007     cg->do_late_inline();
2008     if (failing())  return;
2009   }
2010   _string_late_inlines.trunc_to(0);
2011 }
2012 
2013 // Late inlining of boxing methods
2014 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2015   if (_boxing_late_inlines.length() > 0) {
2016     assert(has_boxed_value(), "inconsistent");
2017 
2018     PhaseGVN* gvn = initial_gvn();
2019     set_inlining_incrementally(true);
2020 
2021     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2022     for_igvn()->clear();
2023     gvn->replace_with(&igvn);
2024 
2025     _late_inlines_pos = _late_inlines.length();
2026 
2027     while (_boxing_late_inlines.length() > 0) {
2028       CallGenerator* cg = _boxing_late_inlines.pop();
2029       cg->do_late_inline();
2030       if (failing())  return;
2031     }
2032     _boxing_late_inlines.trunc_to(0);
2033 
2034     {
2035       ResourceMark rm;
2036       PhaseRemoveUseless pru(gvn, for_igvn());
2037     }
2038 
2039     igvn = PhaseIterGVN(gvn);
2040     igvn.optimize();
2041 
2042     set_inlining_progress(false);
2043     set_inlining_incrementally(false);
2044   }
2045 }
2046 
2047 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2048   assert(IncrementalInline, "incremental inlining should be on");
2049   PhaseGVN* gvn = initial_gvn();
2050 
2051   set_inlining_progress(false);
2052   for_igvn()->clear();
2053   gvn->replace_with(&igvn);
2054 
2055   {
2056     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2057     int i = 0;
2058     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2059       CallGenerator* cg = _late_inlines.at(i);
2060       _late_inlines_pos = i+1;
2061       cg->do_late_inline();
2062       if (failing())  return;
2063     }
2064     int j = 0;
2065     for (; i < _late_inlines.length(); i++, j++) {
2066       _late_inlines.at_put(j, _late_inlines.at(i));
2067     }
2068     _late_inlines.trunc_to(j);
2069   }
2070 
2071   {
2072     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2073     ResourceMark rm;
2074     PhaseRemoveUseless pru(gvn, for_igvn());
2075   }
2076 
2077   {
2078     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2079     igvn = PhaseIterGVN(gvn);
2080   }
2081 }
2082 
2083 // Perform incremental inlining until bound on number of live nodes is reached
2084 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2085   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2086 
2087   PhaseGVN* gvn = initial_gvn();
2088 
2089   set_inlining_incrementally(true);
2090   set_inlining_progress(true);
2091   uint low_live_nodes = 0;
2092 
2093   while(inlining_progress() && _late_inlines.length() > 0) {
2094 
2095     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2096       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2097         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2098         // PhaseIdealLoop is expensive so we only try it once we are
2099         // out of live nodes and we only try it again if the previous
2100         // helped got the number of nodes down significantly
2101         PhaseIdealLoop ideal_loop( igvn, false, true );
2102         if (failing())  return;
2103         low_live_nodes = live_nodes();
2104         _major_progress = true;
2105       }
2106 
2107       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2108         break;
2109       }
2110     }
2111 
2112     inline_incrementally_one(igvn);
2113 
2114     if (failing())  return;
2115 
2116     {
2117       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2118       igvn.optimize();
2119     }
2120 
2121     if (failing())  return;
2122   }
2123 
2124   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2125 
2126   if (_string_late_inlines.length() > 0) {
2127     assert(has_stringbuilder(), "inconsistent");
2128     for_igvn()->clear();
2129     initial_gvn()->replace_with(&igvn);
2130 
2131     inline_string_calls(false);
2132 
2133     if (failing())  return;
2134 
2135     {
2136       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2137       ResourceMark rm;
2138       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2139     }
2140 
2141     {
2142       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2143       igvn = PhaseIterGVN(gvn);
2144       igvn.optimize();
2145     }
2146   }
2147 
2148   set_inlining_incrementally(false);
2149 }
2150 
2151 
2152 //------------------------------Optimize---------------------------------------
2153 // Given a graph, optimize it.
2154 void Compile::Optimize() {
2155   TracePhase tp("optimizer", &timers[_t_optimizer]);
2156 
2157 #ifndef PRODUCT
2158   if (_directive->BreakAtCompileOption) {
2159     BREAKPOINT;
2160   }
2161 
2162 #endif
2163 
2164   ResourceMark rm;
2165   int          loop_opts_cnt;
2166 
2167   print_inlining_reinit();
2168 
2169   NOT_PRODUCT( verify_graph_edges(); )
2170 
2171   print_method(PHASE_AFTER_PARSING);
2172 
2173  {
2174   // Iterative Global Value Numbering, including ideal transforms
2175   // Initialize IterGVN with types and values from parse-time GVN
2176   PhaseIterGVN igvn(initial_gvn());
2177 #ifdef ASSERT
2178   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2179 #endif
2180   {
2181     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2182     igvn.optimize();
2183   }
2184 
2185   print_method(PHASE_ITER_GVN1, 2);
2186 
2187   if (failing())  return;
2188 
2189   inline_incrementally(igvn);
2190 
2191   print_method(PHASE_INCREMENTAL_INLINE, 2);
2192 
2193   if (failing())  return;
2194 
2195   if (eliminate_boxing()) {
2196     // Inline valueOf() methods now.
2197     inline_boxing_calls(igvn);
2198 
2199     if (AlwaysIncrementalInline) {
2200       inline_incrementally(igvn);
2201     }
2202 
2203     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2204 
2205     if (failing())  return;
2206   }
2207 
2208   // Remove the speculative part of types and clean up the graph from
2209   // the extra CastPP nodes whose only purpose is to carry them. Do
2210   // that early so that optimizations are not disrupted by the extra
2211   // CastPP nodes.
2212   remove_speculative_types(igvn);
2213 
2214   // No more new expensive nodes will be added to the list from here
2215   // so keep only the actual candidates for optimizations.
2216   cleanup_expensive_nodes(igvn);
2217 
2218   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2219     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2220     initial_gvn()->replace_with(&igvn);
2221     for_igvn()->clear();
2222     Unique_Node_List new_worklist(C->comp_arena());
2223     {
2224       ResourceMark rm;
2225       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2226     }
2227     set_for_igvn(&new_worklist);
2228     igvn = PhaseIterGVN(initial_gvn());
2229     igvn.optimize();
2230   }
2231 
2232   // Perform escape analysis
2233   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2234     if (has_loops()) {
2235       // Cleanup graph (remove dead nodes).
2236       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2237       PhaseIdealLoop ideal_loop( igvn, false, true );
2238       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2239       if (failing())  return;
2240     }
2241     ConnectionGraph::do_analysis(this, &igvn);
2242 
2243     if (failing())  return;
2244 
2245     // Optimize out fields loads from scalar replaceable allocations.
2246     igvn.optimize();
2247     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2248 
2249     if (failing())  return;
2250 
2251     if (congraph() != NULL && macro_count() > 0) {
2252       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2253       PhaseMacroExpand mexp(igvn);
2254       mexp.eliminate_macro_nodes();
2255       igvn.set_delay_transform(false);
2256 
2257       igvn.optimize();
2258       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2259 
2260       if (failing())  return;
2261     }
2262   }
2263 
2264   // Loop transforms on the ideal graph.  Range Check Elimination,
2265   // peeling, unrolling, etc.
2266 
2267   // Set loop opts counter
2268   loop_opts_cnt = num_loop_opts();
2269   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2270     {
2271       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2272       PhaseIdealLoop ideal_loop( igvn, true );
2273       loop_opts_cnt--;
2274       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2275       if (failing())  return;
2276     }
2277     // Loop opts pass if partial peeling occurred in previous pass
2278     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2279       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2280       PhaseIdealLoop ideal_loop( igvn, false );
2281       loop_opts_cnt--;
2282       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2283       if (failing())  return;
2284     }
2285     // Loop opts pass for loop-unrolling before CCP
2286     if(major_progress() && (loop_opts_cnt > 0)) {
2287       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2288       PhaseIdealLoop ideal_loop( igvn, false );
2289       loop_opts_cnt--;
2290       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2291     }
2292     if (!failing()) {
2293       // Verify that last round of loop opts produced a valid graph
2294       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2295       PhaseIdealLoop::verify(igvn);
2296     }
2297   }
2298   if (failing())  return;
2299 
2300   // Conditional Constant Propagation;
2301   PhaseCCP ccp( &igvn );
2302   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2303   {
2304     TracePhase tp("ccp", &timers[_t_ccp]);
2305     ccp.do_transform();
2306   }
2307   print_method(PHASE_CPP1, 2);
2308 
2309   assert( true, "Break here to ccp.dump_old2new_map()");
2310 
2311   // Iterative Global Value Numbering, including ideal transforms
2312   {
2313     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2314     igvn = ccp;
2315     igvn.optimize();
2316   }
2317 
2318   print_method(PHASE_ITER_GVN2, 2);
2319 
2320   if (failing())  return;
2321 
2322   // Loop transforms on the ideal graph.  Range Check Elimination,
2323   // peeling, unrolling, etc.
2324   if(loop_opts_cnt > 0) {
2325     debug_only( int cnt = 0; );
2326     while(major_progress() && (loop_opts_cnt > 0)) {
2327       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2328       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2329       PhaseIdealLoop ideal_loop( igvn, true);
2330       loop_opts_cnt--;
2331       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2332       if (failing())  return;
2333     }
2334   }
2335   // Ensure that major progress is now clear
2336   C->clear_major_progress();
2337 
2338   {
2339     // Verify that all previous optimizations produced a valid graph
2340     // at least to this point, even if no loop optimizations were done.
2341     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2342     PhaseIdealLoop::verify(igvn);
2343   }
2344 
2345   if (range_check_cast_count() > 0) {
2346     // No more loop optimizations. Remove all range check dependent CastIINodes.
2347     C->remove_range_check_casts(igvn);
2348     igvn.optimize();
2349   }
2350 
2351   {
2352     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2353     PhaseMacroExpand  mex(igvn);
2354     if (mex.expand_macro_nodes()) {
2355       assert(failing(), "must bail out w/ explicit message");
2356       return;
2357     }
2358   }
2359 
2360   if (opaque4_count() > 0) {
2361     C->remove_opaque4_nodes(igvn);
2362     igvn.optimize();
2363   }
2364 
2365   DEBUG_ONLY( _modified_nodes = NULL; )
2366  } // (End scope of igvn; run destructor if necessary for asserts.)
2367 
2368  process_print_inlining();
2369  // A method with only infinite loops has no edges entering loops from root
2370  {
2371    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2372    if (final_graph_reshaping()) {
2373      assert(failing(), "must bail out w/ explicit message");
2374      return;
2375    }
2376  }
2377 
2378  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2379 }
2380 
2381 
2382 //------------------------------Code_Gen---------------------------------------
2383 // Given a graph, generate code for it
2384 void Compile::Code_Gen() {
2385   if (failing()) {
2386     return;
2387   }
2388 
2389   // Perform instruction selection.  You might think we could reclaim Matcher
2390   // memory PDQ, but actually the Matcher is used in generating spill code.
2391   // Internals of the Matcher (including some VectorSets) must remain live
2392   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2393   // set a bit in reclaimed memory.
2394 
2395   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2396   // nodes.  Mapping is only valid at the root of each matched subtree.
2397   NOT_PRODUCT( verify_graph_edges(); )
2398 
2399   Matcher matcher;
2400   _matcher = &matcher;
2401   {
2402     TracePhase tp("matcher", &timers[_t_matcher]);
2403     matcher.match();
2404   }
2405   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2406   // nodes.  Mapping is only valid at the root of each matched subtree.
2407   NOT_PRODUCT( verify_graph_edges(); )
2408 
2409   // If you have too many nodes, or if matching has failed, bail out
2410   check_node_count(0, "out of nodes matching instructions");
2411   if (failing()) {
2412     return;
2413   }
2414 
2415   // Build a proper-looking CFG
2416   PhaseCFG cfg(node_arena(), root(), matcher);
2417   _cfg = &cfg;
2418   {
2419     TracePhase tp("scheduler", &timers[_t_scheduler]);
2420     bool success = cfg.do_global_code_motion();
2421     if (!success) {
2422       return;
2423     }
2424 
2425     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2426     NOT_PRODUCT( verify_graph_edges(); )
2427     debug_only( cfg.verify(); )
2428   }
2429 
2430   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2431   _regalloc = &regalloc;
2432   {
2433     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2434     // Perform register allocation.  After Chaitin, use-def chains are
2435     // no longer accurate (at spill code) and so must be ignored.
2436     // Node->LRG->reg mappings are still accurate.
2437     _regalloc->Register_Allocate();
2438 
2439     // Bail out if the allocator builds too many nodes
2440     if (failing()) {
2441       return;
2442     }
2443   }
2444 
2445   // Prior to register allocation we kept empty basic blocks in case the
2446   // the allocator needed a place to spill.  After register allocation we
2447   // are not adding any new instructions.  If any basic block is empty, we
2448   // can now safely remove it.
2449   {
2450     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2451     cfg.remove_empty_blocks();
2452     if (do_freq_based_layout()) {
2453       PhaseBlockLayout layout(cfg);
2454     } else {
2455       cfg.set_loop_alignment();
2456     }
2457     cfg.fixup_flow();
2458   }
2459 
2460   // Apply peephole optimizations
2461   if( OptoPeephole ) {
2462     TracePhase tp("peephole", &timers[_t_peephole]);
2463     PhasePeephole peep( _regalloc, cfg);
2464     peep.do_transform();
2465   }
2466 
2467   // Do late expand if CPU requires this.
2468   if (Matcher::require_postalloc_expand) {
2469     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2470     cfg.postalloc_expand(_regalloc);
2471   }
2472 
2473   // Convert Nodes to instruction bits in a buffer
2474   {
2475     TraceTime tp("output", &timers[_t_output], CITime);
2476     Output();
2477   }
2478 
2479   print_method(PHASE_FINAL_CODE);
2480 
2481   // He's dead, Jim.
2482   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2483   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2484 }
2485 
2486 
2487 //------------------------------dump_asm---------------------------------------
2488 // Dump formatted assembly
2489 #ifndef PRODUCT
2490 void Compile::dump_asm(int *pcs, uint pc_limit) {
2491   bool cut_short = false;
2492   tty->print_cr("#");
2493   tty->print("#  ");  _tf->dump();  tty->cr();
2494   tty->print_cr("#");
2495 
2496   // For all blocks
2497   int pc = 0x0;                 // Program counter
2498   char starts_bundle = ' ';
2499   _regalloc->dump_frame();
2500 
2501   Node *n = NULL;
2502   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2503     if (VMThread::should_terminate()) {
2504       cut_short = true;
2505       break;
2506     }
2507     Block* block = _cfg->get_block(i);
2508     if (block->is_connector() && !Verbose) {
2509       continue;
2510     }
2511     n = block->head();
2512     if (pcs && n->_idx < pc_limit) {
2513       tty->print("%3.3x   ", pcs[n->_idx]);
2514     } else {
2515       tty->print("      ");
2516     }
2517     block->dump_head(_cfg);
2518     if (block->is_connector()) {
2519       tty->print_cr("        # Empty connector block");
2520     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2521       tty->print_cr("        # Block is sole successor of call");
2522     }
2523 
2524     // For all instructions
2525     Node *delay = NULL;
2526     for (uint j = 0; j < block->number_of_nodes(); j++) {
2527       if (VMThread::should_terminate()) {
2528         cut_short = true;
2529         break;
2530       }
2531       n = block->get_node(j);
2532       if (valid_bundle_info(n)) {
2533         Bundle* bundle = node_bundling(n);
2534         if (bundle->used_in_unconditional_delay()) {
2535           delay = n;
2536           continue;
2537         }
2538         if (bundle->starts_bundle()) {
2539           starts_bundle = '+';
2540         }
2541       }
2542 
2543       if (WizardMode) {
2544         n->dump();
2545       }
2546 
2547       if( !n->is_Region() &&    // Dont print in the Assembly
2548           !n->is_Phi() &&       // a few noisely useless nodes
2549           !n->is_Proj() &&
2550           !n->is_MachTemp() &&
2551           !n->is_SafePointScalarObject() &&
2552           !n->is_Catch() &&     // Would be nice to print exception table targets
2553           !n->is_MergeMem() &&  // Not very interesting
2554           !n->is_top() &&       // Debug info table constants
2555           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2556           ) {
2557         if (pcs && n->_idx < pc_limit)
2558           tty->print("%3.3x", pcs[n->_idx]);
2559         else
2560           tty->print("   ");
2561         tty->print(" %c ", starts_bundle);
2562         starts_bundle = ' ';
2563         tty->print("\t");
2564         n->format(_regalloc, tty);
2565         tty->cr();
2566       }
2567 
2568       // If we have an instruction with a delay slot, and have seen a delay,
2569       // then back up and print it
2570       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2571         assert(delay != NULL, "no unconditional delay instruction");
2572         if (WizardMode) delay->dump();
2573 
2574         if (node_bundling(delay)->starts_bundle())
2575           starts_bundle = '+';
2576         if (pcs && n->_idx < pc_limit)
2577           tty->print("%3.3x", pcs[n->_idx]);
2578         else
2579           tty->print("   ");
2580         tty->print(" %c ", starts_bundle);
2581         starts_bundle = ' ';
2582         tty->print("\t");
2583         delay->format(_regalloc, tty);
2584         tty->cr();
2585         delay = NULL;
2586       }
2587 
2588       // Dump the exception table as well
2589       if( n->is_Catch() && (Verbose || WizardMode) ) {
2590         // Print the exception table for this offset
2591         _handler_table.print_subtable_for(pc);
2592       }
2593     }
2594 
2595     if (pcs && n->_idx < pc_limit)
2596       tty->print_cr("%3.3x", pcs[n->_idx]);
2597     else
2598       tty->cr();
2599 
2600     assert(cut_short || delay == NULL, "no unconditional delay branch");
2601 
2602   } // End of per-block dump
2603   tty->cr();
2604 
2605   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2606 }
2607 #endif
2608 
2609 //------------------------------Final_Reshape_Counts---------------------------
2610 // This class defines counters to help identify when a method
2611 // may/must be executed using hardware with only 24-bit precision.
2612 struct Final_Reshape_Counts : public StackObj {
2613   int  _call_count;             // count non-inlined 'common' calls
2614   int  _float_count;            // count float ops requiring 24-bit precision
2615   int  _double_count;           // count double ops requiring more precision
2616   int  _java_call_count;        // count non-inlined 'java' calls
2617   int  _inner_loop_count;       // count loops which need alignment
2618   VectorSet _visited;           // Visitation flags
2619   Node_List _tests;             // Set of IfNodes & PCTableNodes
2620 
2621   Final_Reshape_Counts() :
2622     _call_count(0), _float_count(0), _double_count(0),
2623     _java_call_count(0), _inner_loop_count(0),
2624     _visited( Thread::current()->resource_area() ) { }
2625 
2626   void inc_call_count  () { _call_count  ++; }
2627   void inc_float_count () { _float_count ++; }
2628   void inc_double_count() { _double_count++; }
2629   void inc_java_call_count() { _java_call_count++; }
2630   void inc_inner_loop_count() { _inner_loop_count++; }
2631 
2632   int  get_call_count  () const { return _call_count  ; }
2633   int  get_float_count () const { return _float_count ; }
2634   int  get_double_count() const { return _double_count; }
2635   int  get_java_call_count() const { return _java_call_count; }
2636   int  get_inner_loop_count() const { return _inner_loop_count; }
2637 };
2638 
2639 #ifdef ASSERT
2640 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2641   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2642   // Make sure the offset goes inside the instance layout.
2643   return k->contains_field_offset(tp->offset());
2644   // Note that OffsetBot and OffsetTop are very negative.
2645 }
2646 #endif
2647 
2648 // Eliminate trivially redundant StoreCMs and accumulate their
2649 // precedence edges.
2650 void Compile::eliminate_redundant_card_marks(Node* n) {
2651   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2652   if (n->in(MemNode::Address)->outcnt() > 1) {
2653     // There are multiple users of the same address so it might be
2654     // possible to eliminate some of the StoreCMs
2655     Node* mem = n->in(MemNode::Memory);
2656     Node* adr = n->in(MemNode::Address);
2657     Node* val = n->in(MemNode::ValueIn);
2658     Node* prev = n;
2659     bool done = false;
2660     // Walk the chain of StoreCMs eliminating ones that match.  As
2661     // long as it's a chain of single users then the optimization is
2662     // safe.  Eliminating partially redundant StoreCMs would require
2663     // cloning copies down the other paths.
2664     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2665       if (adr == mem->in(MemNode::Address) &&
2666           val == mem->in(MemNode::ValueIn)) {
2667         // redundant StoreCM
2668         if (mem->req() > MemNode::OopStore) {
2669           // Hasn't been processed by this code yet.
2670           n->add_prec(mem->in(MemNode::OopStore));
2671         } else {
2672           // Already converted to precedence edge
2673           for (uint i = mem->req(); i < mem->len(); i++) {
2674             // Accumulate any precedence edges
2675             if (mem->in(i) != NULL) {
2676               n->add_prec(mem->in(i));
2677             }
2678           }
2679           // Everything above this point has been processed.
2680           done = true;
2681         }
2682         // Eliminate the previous StoreCM
2683         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2684         assert(mem->outcnt() == 0, "should be dead");
2685         mem->disconnect_inputs(NULL, this);
2686       } else {
2687         prev = mem;
2688       }
2689       mem = prev->in(MemNode::Memory);
2690     }
2691   }
2692 }
2693 
2694 //------------------------------final_graph_reshaping_impl----------------------
2695 // Implement items 1-5 from final_graph_reshaping below.
2696 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2697 
2698   if ( n->outcnt() == 0 ) return; // dead node
2699   uint nop = n->Opcode();
2700 
2701   // Check for 2-input instruction with "last use" on right input.
2702   // Swap to left input.  Implements item (2).
2703   if( n->req() == 3 &&          // two-input instruction
2704       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2705       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2706       n->in(2)->outcnt() == 1 &&// right use IS a last use
2707       !n->in(2)->is_Con() ) {   // right use is not a constant
2708     // Check for commutative opcode
2709     switch( nop ) {
2710     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2711     case Op_MaxI:  case Op_MinI:
2712     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2713     case Op_AndL:  case Op_XorL:  case Op_OrL:
2714     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2715       // Move "last use" input to left by swapping inputs
2716       n->swap_edges(1, 2);
2717       break;
2718     }
2719     default:
2720       break;
2721     }
2722   }
2723 
2724 #ifdef ASSERT
2725   if( n->is_Mem() ) {
2726     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2727     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2728             // oop will be recorded in oop map if load crosses safepoint
2729             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2730                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2731             "raw memory operations should have control edge");
2732   }
2733 #endif
2734   // Count FPU ops and common calls, implements item (3)
2735   switch( nop ) {
2736   // Count all float operations that may use FPU
2737   case Op_AddF:
2738   case Op_SubF:
2739   case Op_MulF:
2740   case Op_DivF:
2741   case Op_NegF:
2742   case Op_ModF:
2743   case Op_ConvI2F:
2744   case Op_ConF:
2745   case Op_CmpF:
2746   case Op_CmpF3:
2747   // case Op_ConvL2F: // longs are split into 32-bit halves
2748     frc.inc_float_count();
2749     break;
2750 
2751   case Op_ConvF2D:
2752   case Op_ConvD2F:
2753     frc.inc_float_count();
2754     frc.inc_double_count();
2755     break;
2756 
2757   // Count all double operations that may use FPU
2758   case Op_AddD:
2759   case Op_SubD:
2760   case Op_MulD:
2761   case Op_DivD:
2762   case Op_NegD:
2763   case Op_ModD:
2764   case Op_ConvI2D:
2765   case Op_ConvD2I:
2766   // case Op_ConvL2D: // handled by leaf call
2767   // case Op_ConvD2L: // handled by leaf call
2768   case Op_ConD:
2769   case Op_CmpD:
2770   case Op_CmpD3:
2771     frc.inc_double_count();
2772     break;
2773   case Op_Opaque1:              // Remove Opaque Nodes before matching
2774   case Op_Opaque2:              // Remove Opaque Nodes before matching
2775   case Op_Opaque3:
2776     n->subsume_by(n->in(1), this);
2777     break;
2778   case Op_CallStaticJava:
2779   case Op_CallJava:
2780   case Op_CallDynamicJava:
2781     frc.inc_java_call_count(); // Count java call site;
2782   case Op_CallRuntime:
2783   case Op_CallLeaf:
2784   case Op_CallLeafNoFP: {
2785     assert (n->is_Call(), "");
2786     CallNode *call = n->as_Call();
2787     // Count call sites where the FP mode bit would have to be flipped.
2788     // Do not count uncommon runtime calls:
2789     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2790     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2791     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2792       frc.inc_call_count();   // Count the call site
2793     } else {                  // See if uncommon argument is shared
2794       Node *n = call->in(TypeFunc::Parms);
2795       int nop = n->Opcode();
2796       // Clone shared simple arguments to uncommon calls, item (1).
2797       if (n->outcnt() > 1 &&
2798           !n->is_Proj() &&
2799           nop != Op_CreateEx &&
2800           nop != Op_CheckCastPP &&
2801           nop != Op_DecodeN &&
2802           nop != Op_DecodeNKlass &&
2803           !n->is_Mem() &&
2804           !n->is_Phi()) {
2805         Node *x = n->clone();
2806         call->set_req(TypeFunc::Parms, x);
2807       }
2808     }
2809     break;
2810   }
2811 
2812   case Op_StoreD:
2813   case Op_LoadD:
2814   case Op_LoadD_unaligned:
2815     frc.inc_double_count();
2816     goto handle_mem;
2817   case Op_StoreF:
2818   case Op_LoadF:
2819     frc.inc_float_count();
2820     goto handle_mem;
2821 
2822   case Op_StoreCM:
2823     {
2824       // Convert OopStore dependence into precedence edge
2825       Node* prec = n->in(MemNode::OopStore);
2826       n->del_req(MemNode::OopStore);
2827       n->add_prec(prec);
2828       eliminate_redundant_card_marks(n);
2829     }
2830 
2831     // fall through
2832 
2833   case Op_StoreB:
2834   case Op_StoreC:
2835   case Op_StorePConditional:
2836   case Op_StoreI:
2837   case Op_StoreL:
2838   case Op_StoreIConditional:
2839   case Op_StoreLConditional:
2840   case Op_CompareAndSwapB:
2841   case Op_CompareAndSwapS:
2842   case Op_CompareAndSwapI:
2843   case Op_CompareAndSwapL:
2844   case Op_CompareAndSwapP:
2845   case Op_CompareAndSwapN:
2846   case Op_WeakCompareAndSwapB:
2847   case Op_WeakCompareAndSwapS:
2848   case Op_WeakCompareAndSwapI:
2849   case Op_WeakCompareAndSwapL:
2850   case Op_WeakCompareAndSwapP:
2851   case Op_WeakCompareAndSwapN:
2852   case Op_CompareAndExchangeB:
2853   case Op_CompareAndExchangeS:
2854   case Op_CompareAndExchangeI:
2855   case Op_CompareAndExchangeL:
2856   case Op_CompareAndExchangeP:
2857   case Op_CompareAndExchangeN:
2858   case Op_GetAndAddS:
2859   case Op_GetAndAddB:
2860   case Op_GetAndAddI:
2861   case Op_GetAndAddL:
2862   case Op_GetAndSetS:
2863   case Op_GetAndSetB:
2864   case Op_GetAndSetI:
2865   case Op_GetAndSetL:
2866   case Op_GetAndSetP:
2867   case Op_GetAndSetN:
2868   case Op_StoreP:
2869   case Op_StoreN:
2870   case Op_StoreNKlass:
2871   case Op_LoadB:
2872   case Op_LoadUB:
2873   case Op_LoadUS:
2874   case Op_LoadI:
2875   case Op_LoadKlass:
2876   case Op_LoadNKlass:
2877   case Op_LoadL:
2878   case Op_LoadL_unaligned:
2879   case Op_LoadPLocked:
2880   case Op_LoadP:
2881   case Op_LoadN:
2882   case Op_LoadRange:
2883   case Op_LoadS: {
2884   handle_mem:
2885 #ifdef ASSERT
2886     if( VerifyOptoOopOffsets ) {
2887       assert( n->is_Mem(), "" );
2888       MemNode *mem  = (MemNode*)n;
2889       // Check to see if address types have grounded out somehow.
2890       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2891       assert( !tp || oop_offset_is_sane(tp), "" );
2892     }
2893 #endif
2894     break;
2895   }
2896 
2897   case Op_AddP: {               // Assert sane base pointers
2898     Node *addp = n->in(AddPNode::Address);
2899     assert( !addp->is_AddP() ||
2900             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2901             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2902             "Base pointers must match (addp %u)", addp->_idx );
2903 #ifdef _LP64
2904     if ((UseCompressedOops || UseCompressedClassPointers) &&
2905         addp->Opcode() == Op_ConP &&
2906         addp == n->in(AddPNode::Base) &&
2907         n->in(AddPNode::Offset)->is_Con()) {
2908       // If the transformation of ConP to ConN+DecodeN is beneficial depends
2909       // on the platform and on the compressed oops mode.
2910       // Use addressing with narrow klass to load with offset on x86.
2911       // Some platforms can use the constant pool to load ConP.
2912       // Do this transformation here since IGVN will convert ConN back to ConP.
2913       const Type* t = addp->bottom_type();
2914       bool is_oop   = t->isa_oopptr() != NULL;
2915       bool is_klass = t->isa_klassptr() != NULL;
2916 
2917       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
2918           (is_klass && Matcher::const_klass_prefer_decode())) {
2919         Node* nn = NULL;
2920 
2921         int op = is_oop ? Op_ConN : Op_ConNKlass;
2922 
2923         // Look for existing ConN node of the same exact type.
2924         Node* r  = root();
2925         uint cnt = r->outcnt();
2926         for (uint i = 0; i < cnt; i++) {
2927           Node* m = r->raw_out(i);
2928           if (m!= NULL && m->Opcode() == op &&
2929               m->bottom_type()->make_ptr() == t) {
2930             nn = m;
2931             break;
2932           }
2933         }
2934         if (nn != NULL) {
2935           // Decode a narrow oop to match address
2936           // [R12 + narrow_oop_reg<<3 + offset]
2937           if (is_oop) {
2938             nn = new DecodeNNode(nn, t);
2939           } else {
2940             nn = new DecodeNKlassNode(nn, t);
2941           }
2942           // Check for succeeding AddP which uses the same Base.
2943           // Otherwise we will run into the assertion above when visiting that guy.
2944           for (uint i = 0; i < n->outcnt(); ++i) {
2945             Node *out_i = n->raw_out(i);
2946             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
2947               out_i->set_req(AddPNode::Base, nn);
2948 #ifdef ASSERT
2949               for (uint j = 0; j < out_i->outcnt(); ++j) {
2950                 Node *out_j = out_i->raw_out(j);
2951                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
2952                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
2953               }
2954 #endif
2955             }
2956           }
2957           n->set_req(AddPNode::Base, nn);
2958           n->set_req(AddPNode::Address, nn);
2959           if (addp->outcnt() == 0) {
2960             addp->disconnect_inputs(NULL, this);
2961           }
2962         }
2963       }
2964     }
2965 #endif
2966     // platform dependent reshaping of the address expression
2967     reshape_address(n->as_AddP());
2968     break;
2969   }
2970 
2971   case Op_CastPP: {
2972     // Remove CastPP nodes to gain more freedom during scheduling but
2973     // keep the dependency they encode as control or precedence edges
2974     // (if control is set already) on memory operations. Some CastPP
2975     // nodes don't have a control (don't carry a dependency): skip
2976     // those.
2977     if (n->in(0) != NULL) {
2978       ResourceMark rm;
2979       Unique_Node_List wq;
2980       wq.push(n);
2981       for (uint next = 0; next < wq.size(); ++next) {
2982         Node *m = wq.at(next);
2983         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
2984           Node* use = m->fast_out(i);
2985           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
2986             use->ensure_control_or_add_prec(n->in(0));
2987           } else {
2988             switch(use->Opcode()) {
2989             case Op_AddP:
2990             case Op_DecodeN:
2991             case Op_DecodeNKlass:
2992             case Op_CheckCastPP:
2993             case Op_CastPP:
2994               wq.push(use);
2995               break;
2996             }
2997           }
2998         }
2999       }
3000     }
3001     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3002     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3003       Node* in1 = n->in(1);
3004       const Type* t = n->bottom_type();
3005       Node* new_in1 = in1->clone();
3006       new_in1->as_DecodeN()->set_type(t);
3007 
3008       if (!Matcher::narrow_oop_use_complex_address()) {
3009         //
3010         // x86, ARM and friends can handle 2 adds in addressing mode
3011         // and Matcher can fold a DecodeN node into address by using
3012         // a narrow oop directly and do implicit NULL check in address:
3013         //
3014         // [R12 + narrow_oop_reg<<3 + offset]
3015         // NullCheck narrow_oop_reg
3016         //
3017         // On other platforms (Sparc) we have to keep new DecodeN node and
3018         // use it to do implicit NULL check in address:
3019         //
3020         // decode_not_null narrow_oop_reg, base_reg
3021         // [base_reg + offset]
3022         // NullCheck base_reg
3023         //
3024         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3025         // to keep the information to which NULL check the new DecodeN node
3026         // corresponds to use it as value in implicit_null_check().
3027         //
3028         new_in1->set_req(0, n->in(0));
3029       }
3030 
3031       n->subsume_by(new_in1, this);
3032       if (in1->outcnt() == 0) {
3033         in1->disconnect_inputs(NULL, this);
3034       }
3035     } else {
3036       n->subsume_by(n->in(1), this);
3037       if (n->outcnt() == 0) {
3038         n->disconnect_inputs(NULL, this);
3039       }
3040     }
3041     break;
3042   }
3043 #ifdef _LP64
3044   case Op_CmpP:
3045     // Do this transformation here to preserve CmpPNode::sub() and
3046     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3047     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3048       Node* in1 = n->in(1);
3049       Node* in2 = n->in(2);
3050       if (!in1->is_DecodeNarrowPtr()) {
3051         in2 = in1;
3052         in1 = n->in(2);
3053       }
3054       assert(in1->is_DecodeNarrowPtr(), "sanity");
3055 
3056       Node* new_in2 = NULL;
3057       if (in2->is_DecodeNarrowPtr()) {
3058         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3059         new_in2 = in2->in(1);
3060       } else if (in2->Opcode() == Op_ConP) {
3061         const Type* t = in2->bottom_type();
3062         if (t == TypePtr::NULL_PTR) {
3063           assert(in1->is_DecodeN(), "compare klass to null?");
3064           // Don't convert CmpP null check into CmpN if compressed
3065           // oops implicit null check is not generated.
3066           // This will allow to generate normal oop implicit null check.
3067           if (Matcher::gen_narrow_oop_implicit_null_checks())
3068             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3069           //
3070           // This transformation together with CastPP transformation above
3071           // will generated code for implicit NULL checks for compressed oops.
3072           //
3073           // The original code after Optimize()
3074           //
3075           //    LoadN memory, narrow_oop_reg
3076           //    decode narrow_oop_reg, base_reg
3077           //    CmpP base_reg, NULL
3078           //    CastPP base_reg // NotNull
3079           //    Load [base_reg + offset], val_reg
3080           //
3081           // after these transformations will be
3082           //
3083           //    LoadN memory, narrow_oop_reg
3084           //    CmpN narrow_oop_reg, NULL
3085           //    decode_not_null narrow_oop_reg, base_reg
3086           //    Load [base_reg + offset], val_reg
3087           //
3088           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3089           // since narrow oops can be used in debug info now (see the code in
3090           // final_graph_reshaping_walk()).
3091           //
3092           // At the end the code will be matched to
3093           // on x86:
3094           //
3095           //    Load_narrow_oop memory, narrow_oop_reg
3096           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3097           //    NullCheck narrow_oop_reg
3098           //
3099           // and on sparc:
3100           //
3101           //    Load_narrow_oop memory, narrow_oop_reg
3102           //    decode_not_null narrow_oop_reg, base_reg
3103           //    Load [base_reg + offset], val_reg
3104           //    NullCheck base_reg
3105           //
3106         } else if (t->isa_oopptr()) {
3107           new_in2 = ConNode::make(t->make_narrowoop());
3108         } else if (t->isa_klassptr()) {
3109           new_in2 = ConNode::make(t->make_narrowklass());
3110         }
3111       }
3112       if (new_in2 != NULL) {
3113         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3114         n->subsume_by(cmpN, this);
3115         if (in1->outcnt() == 0) {
3116           in1->disconnect_inputs(NULL, this);
3117         }
3118         if (in2->outcnt() == 0) {
3119           in2->disconnect_inputs(NULL, this);
3120         }
3121       }
3122     }
3123     break;
3124 
3125   case Op_DecodeN:
3126   case Op_DecodeNKlass:
3127     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3128     // DecodeN could be pinned when it can't be fold into
3129     // an address expression, see the code for Op_CastPP above.
3130     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3131     break;
3132 
3133   case Op_EncodeP:
3134   case Op_EncodePKlass: {
3135     Node* in1 = n->in(1);
3136     if (in1->is_DecodeNarrowPtr()) {
3137       n->subsume_by(in1->in(1), this);
3138     } else if (in1->Opcode() == Op_ConP) {
3139       const Type* t = in1->bottom_type();
3140       if (t == TypePtr::NULL_PTR) {
3141         assert(t->isa_oopptr(), "null klass?");
3142         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3143       } else if (t->isa_oopptr()) {
3144         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3145       } else if (t->isa_klassptr()) {
3146         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3147       }
3148     }
3149     if (in1->outcnt() == 0) {
3150       in1->disconnect_inputs(NULL, this);
3151     }
3152     break;
3153   }
3154 
3155   case Op_Proj: {
3156     if (OptimizeStringConcat) {
3157       ProjNode* p = n->as_Proj();
3158       if (p->_is_io_use) {
3159         // Separate projections were used for the exception path which
3160         // are normally removed by a late inline.  If it wasn't inlined
3161         // then they will hang around and should just be replaced with
3162         // the original one.
3163         Node* proj = NULL;
3164         // Replace with just one
3165         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3166           Node *use = i.get();
3167           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3168             proj = use;
3169             break;
3170           }
3171         }
3172         assert(proj != NULL, "must be found");
3173         p->subsume_by(proj, this);
3174       }
3175     }
3176     break;
3177   }
3178 
3179   case Op_Phi:
3180     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3181       // The EncodeP optimization may create Phi with the same edges
3182       // for all paths. It is not handled well by Register Allocator.
3183       Node* unique_in = n->in(1);
3184       assert(unique_in != NULL, "");
3185       uint cnt = n->req();
3186       for (uint i = 2; i < cnt; i++) {
3187         Node* m = n->in(i);
3188         assert(m != NULL, "");
3189         if (unique_in != m)
3190           unique_in = NULL;
3191       }
3192       if (unique_in != NULL) {
3193         n->subsume_by(unique_in, this);
3194       }
3195     }
3196     break;
3197 
3198 #endif
3199 
3200 #ifdef ASSERT
3201   case Op_CastII:
3202     // Verify that all range check dependent CastII nodes were removed.
3203     if (n->isa_CastII()->has_range_check()) {
3204       n->dump(3);
3205       assert(false, "Range check dependent CastII node was not removed");
3206     }
3207     break;
3208 #endif
3209 
3210   case Op_ModI:
3211     if (UseDivMod) {
3212       // Check if a%b and a/b both exist
3213       Node* d = n->find_similar(Op_DivI);
3214       if (d) {
3215         // Replace them with a fused divmod if supported
3216         if (Matcher::has_match_rule(Op_DivModI)) {
3217           DivModINode* divmod = DivModINode::make(n);
3218           d->subsume_by(divmod->div_proj(), this);
3219           n->subsume_by(divmod->mod_proj(), this);
3220         } else {
3221           // replace a%b with a-((a/b)*b)
3222           Node* mult = new MulINode(d, d->in(2));
3223           Node* sub  = new SubINode(d->in(1), mult);
3224           n->subsume_by(sub, this);
3225         }
3226       }
3227     }
3228     break;
3229 
3230   case Op_ModL:
3231     if (UseDivMod) {
3232       // Check if a%b and a/b both exist
3233       Node* d = n->find_similar(Op_DivL);
3234       if (d) {
3235         // Replace them with a fused divmod if supported
3236         if (Matcher::has_match_rule(Op_DivModL)) {
3237           DivModLNode* divmod = DivModLNode::make(n);
3238           d->subsume_by(divmod->div_proj(), this);
3239           n->subsume_by(divmod->mod_proj(), this);
3240         } else {
3241           // replace a%b with a-((a/b)*b)
3242           Node* mult = new MulLNode(d, d->in(2));
3243           Node* sub  = new SubLNode(d->in(1), mult);
3244           n->subsume_by(sub, this);
3245         }
3246       }
3247     }
3248     break;
3249 
3250   case Op_LoadVector:
3251   case Op_StoreVector:
3252     break;
3253 
3254   case Op_AddReductionVI:
3255   case Op_AddReductionVL:
3256   case Op_AddReductionVF:
3257   case Op_AddReductionVD:
3258   case Op_MulReductionVI:
3259   case Op_MulReductionVL:
3260   case Op_MulReductionVF:
3261   case Op_MulReductionVD:
3262     break;
3263 
3264   case Op_PackB:
3265   case Op_PackS:
3266   case Op_PackI:
3267   case Op_PackF:
3268   case Op_PackL:
3269   case Op_PackD:
3270     if (n->req()-1 > 2) {
3271       // Replace many operand PackNodes with a binary tree for matching
3272       PackNode* p = (PackNode*) n;
3273       Node* btp = p->binary_tree_pack(1, n->req());
3274       n->subsume_by(btp, this);
3275     }
3276     break;
3277   case Op_Loop:
3278   case Op_CountedLoop:
3279   case Op_OuterStripMinedLoop:
3280     if (n->as_Loop()->is_inner_loop()) {
3281       frc.inc_inner_loop_count();
3282     }
3283     n->as_Loop()->verify_strip_mined(0);
3284     break;
3285   case Op_LShiftI:
3286   case Op_RShiftI:
3287   case Op_URShiftI:
3288   case Op_LShiftL:
3289   case Op_RShiftL:
3290   case Op_URShiftL:
3291     if (Matcher::need_masked_shift_count) {
3292       // The cpu's shift instructions don't restrict the count to the
3293       // lower 5/6 bits. We need to do the masking ourselves.
3294       Node* in2 = n->in(2);
3295       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3296       const TypeInt* t = in2->find_int_type();
3297       if (t != NULL && t->is_con()) {
3298         juint shift = t->get_con();
3299         if (shift > mask) { // Unsigned cmp
3300           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3301         }
3302       } else {
3303         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3304           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3305           n->set_req(2, shift);
3306         }
3307       }
3308       if (in2->outcnt() == 0) { // Remove dead node
3309         in2->disconnect_inputs(NULL, this);
3310       }
3311     }
3312     break;
3313   case Op_MemBarStoreStore:
3314   case Op_MemBarRelease:
3315     // Break the link with AllocateNode: it is no longer useful and
3316     // confuses register allocation.
3317     if (n->req() > MemBarNode::Precedent) {
3318       n->set_req(MemBarNode::Precedent, top());
3319     }
3320     break;
3321   case Op_RangeCheck: {
3322     RangeCheckNode* rc = n->as_RangeCheck();
3323     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3324     n->subsume_by(iff, this);
3325     frc._tests.push(iff);
3326     break;
3327   }
3328   case Op_ConvI2L: {
3329     if (!Matcher::convi2l_type_required) {
3330       // Code generation on some platforms doesn't need accurate
3331       // ConvI2L types. Widening the type can help remove redundant
3332       // address computations.
3333       n->as_Type()->set_type(TypeLong::INT);
3334       ResourceMark rm;
3335       Node_List wq;
3336       wq.push(n);
3337       for (uint next = 0; next < wq.size(); next++) {
3338         Node *m = wq.at(next);
3339 
3340         for(;;) {
3341           // Loop over all nodes with identical inputs edges as m
3342           Node* k = m->find_similar(m->Opcode());
3343           if (k == NULL) {
3344             break;
3345           }
3346           // Push their uses so we get a chance to remove node made
3347           // redundant
3348           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3349             Node* u = k->fast_out(i);
3350             assert(!wq.contains(u), "shouldn't process one node several times");
3351             if (u->Opcode() == Op_LShiftL ||
3352                 u->Opcode() == Op_AddL ||
3353                 u->Opcode() == Op_SubL ||
3354                 u->Opcode() == Op_AddP) {
3355               wq.push(u);
3356             }
3357           }
3358           // Replace all nodes with identical edges as m with m
3359           k->subsume_by(m, this);
3360         }
3361       }
3362     }
3363     break;
3364   }
3365   case Op_CmpUL: {
3366     if (!Matcher::has_match_rule(Op_CmpUL)) {
3367       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3368       // to max_julong if < 0 to make the signed comparison fail.
3369       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3370       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3371       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3372       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3373       Node* andl = new AndLNode(orl, remove_sign_mask);
3374       Node* cmp = new CmpLNode(andl, n->in(2));
3375       n->subsume_by(cmp, this);
3376     }
3377     break;
3378   }
3379   default:
3380     assert( !n->is_Call(), "" );
3381     assert( !n->is_Mem(), "" );
3382     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3383     break;
3384   }
3385 
3386   // Collect CFG split points
3387   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3388     frc._tests.push(n);
3389   }
3390 }
3391 
3392 //------------------------------final_graph_reshaping_walk---------------------
3393 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3394 // requires that the walk visits a node's inputs before visiting the node.
3395 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3396   ResourceArea *area = Thread::current()->resource_area();
3397   Unique_Node_List sfpt(area);
3398 
3399   frc._visited.set(root->_idx); // first, mark node as visited
3400   uint cnt = root->req();
3401   Node *n = root;
3402   uint  i = 0;
3403   while (true) {
3404     if (i < cnt) {
3405       // Place all non-visited non-null inputs onto stack
3406       Node* m = n->in(i);
3407       ++i;
3408       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3409         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3410           // compute worst case interpreter size in case of a deoptimization
3411           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3412 
3413           sfpt.push(m);
3414         }
3415         cnt = m->req();
3416         nstack.push(n, i); // put on stack parent and next input's index
3417         n = m;
3418         i = 0;
3419       }
3420     } else {
3421       // Now do post-visit work
3422       final_graph_reshaping_impl( n, frc );
3423       if (nstack.is_empty())
3424         break;             // finished
3425       n = nstack.node();   // Get node from stack
3426       cnt = n->req();
3427       i = nstack.index();
3428       nstack.pop();        // Shift to the next node on stack
3429     }
3430   }
3431 
3432   // Skip next transformation if compressed oops are not used.
3433   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3434       (!UseCompressedOops && !UseCompressedClassPointers))
3435     return;
3436 
3437   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3438   // It could be done for an uncommon traps or any safepoints/calls
3439   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3440   while (sfpt.size() > 0) {
3441     n = sfpt.pop();
3442     JVMState *jvms = n->as_SafePoint()->jvms();
3443     assert(jvms != NULL, "sanity");
3444     int start = jvms->debug_start();
3445     int end   = n->req();
3446     bool is_uncommon = (n->is_CallStaticJava() &&
3447                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3448     for (int j = start; j < end; j++) {
3449       Node* in = n->in(j);
3450       if (in->is_DecodeNarrowPtr()) {
3451         bool safe_to_skip = true;
3452         if (!is_uncommon ) {
3453           // Is it safe to skip?
3454           for (uint i = 0; i < in->outcnt(); i++) {
3455             Node* u = in->raw_out(i);
3456             if (!u->is_SafePoint() ||
3457                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3458               safe_to_skip = false;
3459             }
3460           }
3461         }
3462         if (safe_to_skip) {
3463           n->set_req(j, in->in(1));
3464         }
3465         if (in->outcnt() == 0) {
3466           in->disconnect_inputs(NULL, this);
3467         }
3468       }
3469     }
3470   }
3471 }
3472 
3473 //------------------------------final_graph_reshaping--------------------------
3474 // Final Graph Reshaping.
3475 //
3476 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3477 //     and not commoned up and forced early.  Must come after regular
3478 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3479 //     inputs to Loop Phis; these will be split by the allocator anyways.
3480 //     Remove Opaque nodes.
3481 // (2) Move last-uses by commutative operations to the left input to encourage
3482 //     Intel update-in-place two-address operations and better register usage
3483 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3484 //     calls canonicalizing them back.
3485 // (3) Count the number of double-precision FP ops, single-precision FP ops
3486 //     and call sites.  On Intel, we can get correct rounding either by
3487 //     forcing singles to memory (requires extra stores and loads after each
3488 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3489 //     clearing the mode bit around call sites).  The mode bit is only used
3490 //     if the relative frequency of single FP ops to calls is low enough.
3491 //     This is a key transform for SPEC mpeg_audio.
3492 // (4) Detect infinite loops; blobs of code reachable from above but not
3493 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3494 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3495 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3496 //     Detection is by looking for IfNodes where only 1 projection is
3497 //     reachable from below or CatchNodes missing some targets.
3498 // (5) Assert for insane oop offsets in debug mode.
3499 
3500 bool Compile::final_graph_reshaping() {
3501   // an infinite loop may have been eliminated by the optimizer,
3502   // in which case the graph will be empty.
3503   if (root()->req() == 1) {
3504     record_method_not_compilable("trivial infinite loop");
3505     return true;
3506   }
3507 
3508   // Expensive nodes have their control input set to prevent the GVN
3509   // from freely commoning them. There's no GVN beyond this point so
3510   // no need to keep the control input. We want the expensive nodes to
3511   // be freely moved to the least frequent code path by gcm.
3512   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3513   for (int i = 0; i < expensive_count(); i++) {
3514     _expensive_nodes->at(i)->set_req(0, NULL);
3515   }
3516 
3517   Final_Reshape_Counts frc;
3518 
3519   // Visit everybody reachable!
3520   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3521   Node_Stack nstack(live_nodes() >> 1);
3522   final_graph_reshaping_walk(nstack, root(), frc);
3523 
3524   // Check for unreachable (from below) code (i.e., infinite loops).
3525   for( uint i = 0; i < frc._tests.size(); i++ ) {
3526     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3527     // Get number of CFG targets.
3528     // Note that PCTables include exception targets after calls.
3529     uint required_outcnt = n->required_outcnt();
3530     if (n->outcnt() != required_outcnt) {
3531       // Check for a few special cases.  Rethrow Nodes never take the
3532       // 'fall-thru' path, so expected kids is 1 less.
3533       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3534         if (n->in(0)->in(0)->is_Call()) {
3535           CallNode *call = n->in(0)->in(0)->as_Call();
3536           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3537             required_outcnt--;      // Rethrow always has 1 less kid
3538           } else if (call->req() > TypeFunc::Parms &&
3539                      call->is_CallDynamicJava()) {
3540             // Check for null receiver. In such case, the optimizer has
3541             // detected that the virtual call will always result in a null
3542             // pointer exception. The fall-through projection of this CatchNode
3543             // will not be populated.
3544             Node *arg0 = call->in(TypeFunc::Parms);
3545             if (arg0->is_Type() &&
3546                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3547               required_outcnt--;
3548             }
3549           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3550                      call->req() > TypeFunc::Parms+1 &&
3551                      call->is_CallStaticJava()) {
3552             // Check for negative array length. In such case, the optimizer has
3553             // detected that the allocation attempt will always result in an
3554             // exception. There is no fall-through projection of this CatchNode .
3555             Node *arg1 = call->in(TypeFunc::Parms+1);
3556             if (arg1->is_Type() &&
3557                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3558               required_outcnt--;
3559             }
3560           }
3561         }
3562       }
3563       // Recheck with a better notion of 'required_outcnt'
3564       if (n->outcnt() != required_outcnt) {
3565         record_method_not_compilable("malformed control flow");
3566         return true;            // Not all targets reachable!
3567       }
3568     }
3569     // Check that I actually visited all kids.  Unreached kids
3570     // must be infinite loops.
3571     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3572       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3573         record_method_not_compilable("infinite loop");
3574         return true;            // Found unvisited kid; must be unreach
3575       }
3576 
3577     // Here so verification code in final_graph_reshaping_walk()
3578     // always see an OuterStripMinedLoopEnd
3579     if (n->is_OuterStripMinedLoopEnd()) {
3580       IfNode* init_iff = n->as_If();
3581       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3582       n->subsume_by(iff, this);
3583     }
3584   }
3585 
3586   // If original bytecodes contained a mixture of floats and doubles
3587   // check if the optimizer has made it homogenous, item (3).
3588   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3589       frc.get_float_count() > 32 &&
3590       frc.get_double_count() == 0 &&
3591       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3592     set_24_bit_selection_and_mode( false,  true );
3593   }
3594 
3595   set_java_calls(frc.get_java_call_count());
3596   set_inner_loops(frc.get_inner_loop_count());
3597 
3598   // No infinite loops, no reason to bail out.
3599   return false;
3600 }
3601 
3602 //-----------------------------too_many_traps----------------------------------
3603 // Report if there are too many traps at the current method and bci.
3604 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3605 bool Compile::too_many_traps(ciMethod* method,
3606                              int bci,
3607                              Deoptimization::DeoptReason reason) {
3608   ciMethodData* md = method->method_data();
3609   if (md->is_empty()) {
3610     // Assume the trap has not occurred, or that it occurred only
3611     // because of a transient condition during start-up in the interpreter.
3612     return false;
3613   }
3614   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3615   if (md->has_trap_at(bci, m, reason) != 0) {
3616     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3617     // Also, if there are multiple reasons, or if there is no per-BCI record,
3618     // assume the worst.
3619     if (log())
3620       log()->elem("observe trap='%s' count='%d'",
3621                   Deoptimization::trap_reason_name(reason),
3622                   md->trap_count(reason));
3623     return true;
3624   } else {
3625     // Ignore method/bci and see if there have been too many globally.
3626     return too_many_traps(reason, md);
3627   }
3628 }
3629 
3630 // Less-accurate variant which does not require a method and bci.
3631 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3632                              ciMethodData* logmd) {
3633   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3634     // Too many traps globally.
3635     // Note that we use cumulative trap_count, not just md->trap_count.
3636     if (log()) {
3637       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3638       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3639                   Deoptimization::trap_reason_name(reason),
3640                   mcount, trap_count(reason));
3641     }
3642     return true;
3643   } else {
3644     // The coast is clear.
3645     return false;
3646   }
3647 }
3648 
3649 //--------------------------too_many_recompiles--------------------------------
3650 // Report if there are too many recompiles at the current method and bci.
3651 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3652 // Is not eager to return true, since this will cause the compiler to use
3653 // Action_none for a trap point, to avoid too many recompilations.
3654 bool Compile::too_many_recompiles(ciMethod* method,
3655                                   int bci,
3656                                   Deoptimization::DeoptReason reason) {
3657   ciMethodData* md = method->method_data();
3658   if (md->is_empty()) {
3659     // Assume the trap has not occurred, or that it occurred only
3660     // because of a transient condition during start-up in the interpreter.
3661     return false;
3662   }
3663   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3664   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3665   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3666   Deoptimization::DeoptReason per_bc_reason
3667     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3668   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3669   if ((per_bc_reason == Deoptimization::Reason_none
3670        || md->has_trap_at(bci, m, reason) != 0)
3671       // The trap frequency measure we care about is the recompile count:
3672       && md->trap_recompiled_at(bci, m)
3673       && md->overflow_recompile_count() >= bc_cutoff) {
3674     // Do not emit a trap here if it has already caused recompilations.
3675     // Also, if there are multiple reasons, or if there is no per-BCI record,
3676     // assume the worst.
3677     if (log())
3678       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3679                   Deoptimization::trap_reason_name(reason),
3680                   md->trap_count(reason),
3681                   md->overflow_recompile_count());
3682     return true;
3683   } else if (trap_count(reason) != 0
3684              && decompile_count() >= m_cutoff) {
3685     // Too many recompiles globally, and we have seen this sort of trap.
3686     // Use cumulative decompile_count, not just md->decompile_count.
3687     if (log())
3688       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3689                   Deoptimization::trap_reason_name(reason),
3690                   md->trap_count(reason), trap_count(reason),
3691                   md->decompile_count(), decompile_count());
3692     return true;
3693   } else {
3694     // The coast is clear.
3695     return false;
3696   }
3697 }
3698 
3699 // Compute when not to trap. Used by matching trap based nodes and
3700 // NullCheck optimization.
3701 void Compile::set_allowed_deopt_reasons() {
3702   _allowed_reasons = 0;
3703   if (is_method_compilation()) {
3704     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3705       assert(rs < BitsPerInt, "recode bit map");
3706       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3707         _allowed_reasons |= nth_bit(rs);
3708       }
3709     }
3710   }
3711 }
3712 
3713 #ifndef PRODUCT
3714 //------------------------------verify_graph_edges---------------------------
3715 // Walk the Graph and verify that there is a one-to-one correspondence
3716 // between Use-Def edges and Def-Use edges in the graph.
3717 void Compile::verify_graph_edges(bool no_dead_code) {
3718   if (VerifyGraphEdges) {
3719     ResourceArea *area = Thread::current()->resource_area();
3720     Unique_Node_List visited(area);
3721     // Call recursive graph walk to check edges
3722     _root->verify_edges(visited);
3723     if (no_dead_code) {
3724       // Now make sure that no visited node is used by an unvisited node.
3725       bool dead_nodes = false;
3726       Unique_Node_List checked(area);
3727       while (visited.size() > 0) {
3728         Node* n = visited.pop();
3729         checked.push(n);
3730         for (uint i = 0; i < n->outcnt(); i++) {
3731           Node* use = n->raw_out(i);
3732           if (checked.member(use))  continue;  // already checked
3733           if (visited.member(use))  continue;  // already in the graph
3734           if (use->is_Con())        continue;  // a dead ConNode is OK
3735           // At this point, we have found a dead node which is DU-reachable.
3736           if (!dead_nodes) {
3737             tty->print_cr("*** Dead nodes reachable via DU edges:");
3738             dead_nodes = true;
3739           }
3740           use->dump(2);
3741           tty->print_cr("---");
3742           checked.push(use);  // No repeats; pretend it is now checked.
3743         }
3744       }
3745       assert(!dead_nodes, "using nodes must be reachable from root");
3746     }
3747   }
3748 }
3749 
3750 // Verify GC barriers consistency
3751 // Currently supported:
3752 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3753 void Compile::verify_barriers() {
3754   if (UseG1GC) {
3755     // Verify G1 pre-barriers
3756     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3757 
3758     ResourceArea *area = Thread::current()->resource_area();
3759     Unique_Node_List visited(area);
3760     Node_List worklist(area);
3761     // We're going to walk control flow backwards starting from the Root
3762     worklist.push(_root);
3763     while (worklist.size() > 0) {
3764       Node* x = worklist.pop();
3765       if (x == NULL || x == top()) continue;
3766       if (visited.member(x)) {
3767         continue;
3768       } else {
3769         visited.push(x);
3770       }
3771 
3772       if (x->is_Region()) {
3773         for (uint i = 1; i < x->req(); i++) {
3774           worklist.push(x->in(i));
3775         }
3776       } else {
3777         worklist.push(x->in(0));
3778         // We are looking for the pattern:
3779         //                            /->ThreadLocal
3780         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3781         //              \->ConI(0)
3782         // We want to verify that the If and the LoadB have the same control
3783         // See GraphKit::g1_write_barrier_pre()
3784         if (x->is_If()) {
3785           IfNode *iff = x->as_If();
3786           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3787             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3788             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3789                 && cmp->in(1)->is_Load()) {
3790               LoadNode* load = cmp->in(1)->as_Load();
3791               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3792                   && load->in(2)->in(3)->is_Con()
3793                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3794 
3795                 Node* if_ctrl = iff->in(0);
3796                 Node* load_ctrl = load->in(0);
3797 
3798                 if (if_ctrl != load_ctrl) {
3799                   // Skip possible CProj->NeverBranch in infinite loops
3800                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3801                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3802                     if_ctrl = if_ctrl->in(0)->in(0);
3803                   }
3804                 }
3805                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3806               }
3807             }
3808           }
3809         }
3810       }
3811     }
3812   }
3813 }
3814 
3815 #endif
3816 
3817 // The Compile object keeps track of failure reasons separately from the ciEnv.
3818 // This is required because there is not quite a 1-1 relation between the
3819 // ciEnv and its compilation task and the Compile object.  Note that one
3820 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3821 // to backtrack and retry without subsuming loads.  Other than this backtracking
3822 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3823 // by the logic in C2Compiler.
3824 void Compile::record_failure(const char* reason) {
3825   if (log() != NULL) {
3826     log()->elem("failure reason='%s' phase='compile'", reason);
3827   }
3828   if (_failure_reason == NULL) {
3829     // Record the first failure reason.
3830     _failure_reason = reason;
3831   }
3832 
3833   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3834     C->print_method(PHASE_FAILURE);
3835   }
3836   _root = NULL;  // flush the graph, too
3837 }
3838 
3839 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3840   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3841     _phase_name(name), _dolog(CITimeVerbose)
3842 {
3843   if (_dolog) {
3844     C = Compile::current();
3845     _log = C->log();
3846   } else {
3847     C = NULL;
3848     _log = NULL;
3849   }
3850   if (_log != NULL) {
3851     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3852     _log->stamp();
3853     _log->end_head();
3854   }
3855 }
3856 
3857 Compile::TracePhase::~TracePhase() {
3858 
3859   C = Compile::current();
3860   if (_dolog) {
3861     _log = C->log();
3862   } else {
3863     _log = NULL;
3864   }
3865 
3866 #ifdef ASSERT
3867   if (PrintIdealNodeCount) {
3868     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3869                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3870   }
3871 
3872   if (VerifyIdealNodeCount) {
3873     Compile::current()->print_missing_nodes();
3874   }
3875 #endif
3876 
3877   if (_log != NULL) {
3878     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3879   }
3880 }
3881 
3882 //=============================================================================
3883 // Two Constant's are equal when the type and the value are equal.
3884 bool Compile::Constant::operator==(const Constant& other) {
3885   if (type()          != other.type()         )  return false;
3886   if (can_be_reused() != other.can_be_reused())  return false;
3887   // For floating point values we compare the bit pattern.
3888   switch (type()) {
3889   case T_INT:
3890   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3891   case T_LONG:
3892   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3893   case T_OBJECT:
3894   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3895   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3896   case T_METADATA: return (_v._metadata == other._v._metadata);
3897   default: ShouldNotReachHere(); return false;
3898   }
3899 }
3900 
3901 static int type_to_size_in_bytes(BasicType t) {
3902   switch (t) {
3903   case T_INT:     return sizeof(jint   );
3904   case T_LONG:    return sizeof(jlong  );
3905   case T_FLOAT:   return sizeof(jfloat );
3906   case T_DOUBLE:  return sizeof(jdouble);
3907   case T_METADATA: return sizeof(Metadata*);
3908     // We use T_VOID as marker for jump-table entries (labels) which
3909     // need an internal word relocation.
3910   case T_VOID:
3911   case T_ADDRESS:
3912   case T_OBJECT:  return sizeof(jobject);
3913   default:
3914     ShouldNotReachHere();
3915     return -1;
3916   }
3917 }
3918 
3919 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3920   // sort descending
3921   if (a->freq() > b->freq())  return -1;
3922   if (a->freq() < b->freq())  return  1;
3923   return 0;
3924 }
3925 
3926 void Compile::ConstantTable::calculate_offsets_and_size() {
3927   // First, sort the array by frequencies.
3928   _constants.sort(qsort_comparator);
3929 
3930 #ifdef ASSERT
3931   // Make sure all jump-table entries were sorted to the end of the
3932   // array (they have a negative frequency).
3933   bool found_void = false;
3934   for (int i = 0; i < _constants.length(); i++) {
3935     Constant con = _constants.at(i);
3936     if (con.type() == T_VOID)
3937       found_void = true;  // jump-tables
3938     else
3939       assert(!found_void, "wrong sorting");
3940   }
3941 #endif
3942 
3943   int offset = 0;
3944   for (int i = 0; i < _constants.length(); i++) {
3945     Constant* con = _constants.adr_at(i);
3946 
3947     // Align offset for type.
3948     int typesize = type_to_size_in_bytes(con->type());
3949     offset = align_up(offset, typesize);
3950     con->set_offset(offset);   // set constant's offset
3951 
3952     if (con->type() == T_VOID) {
3953       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3954       offset = offset + typesize * n->outcnt();  // expand jump-table
3955     } else {
3956       offset = offset + typesize;
3957     }
3958   }
3959 
3960   // Align size up to the next section start (which is insts; see
3961   // CodeBuffer::align_at_start).
3962   assert(_size == -1, "already set?");
3963   _size = align_up(offset, (int)CodeEntryAlignment);
3964 }
3965 
3966 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3967   MacroAssembler _masm(&cb);
3968   for (int i = 0; i < _constants.length(); i++) {
3969     Constant con = _constants.at(i);
3970     address constant_addr = NULL;
3971     switch (con.type()) {
3972     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
3973     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3974     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3975     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3976     case T_OBJECT: {
3977       jobject obj = con.get_jobject();
3978       int oop_index = _masm.oop_recorder()->find_index(obj);
3979       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3980       break;
3981     }
3982     case T_ADDRESS: {
3983       address addr = (address) con.get_jobject();
3984       constant_addr = _masm.address_constant(addr);
3985       break;
3986     }
3987     // We use T_VOID as marker for jump-table entries (labels) which
3988     // need an internal word relocation.
3989     case T_VOID: {
3990       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3991       // Fill the jump-table with a dummy word.  The real value is
3992       // filled in later in fill_jump_table.
3993       address dummy = (address) n;
3994       constant_addr = _masm.address_constant(dummy);
3995       // Expand jump-table
3996       for (uint i = 1; i < n->outcnt(); i++) {
3997         address temp_addr = _masm.address_constant(dummy + i);
3998         assert(temp_addr, "consts section too small");
3999       }
4000       break;
4001     }
4002     case T_METADATA: {
4003       Metadata* obj = con.get_metadata();
4004       int metadata_index = _masm.oop_recorder()->find_index(obj);
4005       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4006       break;
4007     }
4008     default: ShouldNotReachHere();
4009     }
4010     assert(constant_addr, "consts section too small");
4011     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4012             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4013   }
4014 }
4015 
4016 int Compile::ConstantTable::find_offset(Constant& con) const {
4017   int idx = _constants.find(con);
4018   assert(idx != -1, "constant must be in constant table");
4019   int offset = _constants.at(idx).offset();
4020   assert(offset != -1, "constant table not emitted yet?");
4021   return offset;
4022 }
4023 
4024 void Compile::ConstantTable::add(Constant& con) {
4025   if (con.can_be_reused()) {
4026     int idx = _constants.find(con);
4027     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4028       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4029       return;
4030     }
4031   }
4032   (void) _constants.append(con);
4033 }
4034 
4035 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4036   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4037   Constant con(type, value, b->_freq);
4038   add(con);
4039   return con;
4040 }
4041 
4042 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4043   Constant con(metadata);
4044   add(con);
4045   return con;
4046 }
4047 
4048 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4049   jvalue value;
4050   BasicType type = oper->type()->basic_type();
4051   switch (type) {
4052   case T_LONG:    value.j = oper->constantL(); break;
4053   case T_FLOAT:   value.f = oper->constantF(); break;
4054   case T_DOUBLE:  value.d = oper->constantD(); break;
4055   case T_OBJECT:
4056   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4057   case T_METADATA: return add((Metadata*)oper->constant()); break;
4058   default: guarantee(false, "unhandled type: %s", type2name(type));
4059   }
4060   return add(n, type, value);
4061 }
4062 
4063 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4064   jvalue value;
4065   // We can use the node pointer here to identify the right jump-table
4066   // as this method is called from Compile::Fill_buffer right before
4067   // the MachNodes are emitted and the jump-table is filled (means the
4068   // MachNode pointers do not change anymore).
4069   value.l = (jobject) n;
4070   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4071   add(con);
4072   return con;
4073 }
4074 
4075 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4076   // If called from Compile::scratch_emit_size do nothing.
4077   if (Compile::current()->in_scratch_emit_size())  return;
4078 
4079   assert(labels.is_nonempty(), "must be");
4080   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4081 
4082   // Since MachConstantNode::constant_offset() also contains
4083   // table_base_offset() we need to subtract the table_base_offset()
4084   // to get the plain offset into the constant table.
4085   int offset = n->constant_offset() - table_base_offset();
4086 
4087   MacroAssembler _masm(&cb);
4088   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4089 
4090   for (uint i = 0; i < n->outcnt(); i++) {
4091     address* constant_addr = &jump_table_base[i];
4092     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4093     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4094     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4095   }
4096 }
4097 
4098 //----------------------------static_subtype_check-----------------------------
4099 // Shortcut important common cases when superklass is exact:
4100 // (0) superklass is java.lang.Object (can occur in reflective code)
4101 // (1) subklass is already limited to a subtype of superklass => always ok
4102 // (2) subklass does not overlap with superklass => always fail
4103 // (3) superklass has NO subtypes and we can check with a simple compare.
4104 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4105   if (StressReflectiveCode) {
4106     return SSC_full_test;       // Let caller generate the general case.
4107   }
4108 
4109   if (superk == env()->Object_klass()) {
4110     return SSC_always_true;     // (0) this test cannot fail
4111   }
4112 
4113   ciType* superelem = superk;
4114   if (superelem->is_array_klass())
4115     superelem = superelem->as_array_klass()->base_element_type();
4116 
4117   if (!subk->is_interface()) {  // cannot trust static interface types yet
4118     if (subk->is_subtype_of(superk)) {
4119       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4120     }
4121     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4122         !superk->is_subtype_of(subk)) {
4123       return SSC_always_false;
4124     }
4125   }
4126 
4127   // If casting to an instance klass, it must have no subtypes
4128   if (superk->is_interface()) {
4129     // Cannot trust interfaces yet.
4130     // %%% S.B. superk->nof_implementors() == 1
4131   } else if (superelem->is_instance_klass()) {
4132     ciInstanceKlass* ik = superelem->as_instance_klass();
4133     if (!ik->has_subklass() && !ik->is_interface()) {
4134       if (!ik->is_final()) {
4135         // Add a dependency if there is a chance of a later subclass.
4136         dependencies()->assert_leaf_type(ik);
4137       }
4138       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4139     }
4140   } else {
4141     // A primitive array type has no subtypes.
4142     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4143   }
4144 
4145   return SSC_full_test;
4146 }
4147 
4148 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4149 #ifdef _LP64
4150   // The scaled index operand to AddP must be a clean 64-bit value.
4151   // Java allows a 32-bit int to be incremented to a negative
4152   // value, which appears in a 64-bit register as a large
4153   // positive number.  Using that large positive number as an
4154   // operand in pointer arithmetic has bad consequences.
4155   // On the other hand, 32-bit overflow is rare, and the possibility
4156   // can often be excluded, if we annotate the ConvI2L node with
4157   // a type assertion that its value is known to be a small positive
4158   // number.  (The prior range check has ensured this.)
4159   // This assertion is used by ConvI2LNode::Ideal.
4160   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4161   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4162   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4163   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4164 #endif
4165   return idx;
4166 }
4167 
4168 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4169 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4170   if (ctrl != NULL) {
4171     // Express control dependency by a CastII node with a narrow type.
4172     value = new CastIINode(value, itype, false, true /* range check dependency */);
4173     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4174     // node from floating above the range check during loop optimizations. Otherwise, the
4175     // ConvI2L node may be eliminated independently of the range check, causing the data path
4176     // to become TOP while the control path is still there (although it's unreachable).
4177     value->set_req(0, ctrl);
4178     // Save CastII node to remove it after loop optimizations.
4179     phase->C->add_range_check_cast(value);
4180     value = phase->transform(value);
4181   }
4182   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4183   return phase->transform(new ConvI2LNode(value, ltype));
4184 }
4185 
4186 // The message about the current inlining is accumulated in
4187 // _print_inlining_stream and transfered into the _print_inlining_list
4188 // once we know whether inlining succeeds or not. For regular
4189 // inlining, messages are appended to the buffer pointed by
4190 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4191 // a new buffer is added after _print_inlining_idx in the list. This
4192 // way we can update the inlining message for late inlining call site
4193 // when the inlining is attempted again.
4194 void Compile::print_inlining_init() {
4195   if (print_inlining() || print_intrinsics()) {
4196     _print_inlining_stream = new stringStream();
4197     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4198   }
4199 }
4200 
4201 void Compile::print_inlining_reinit() {
4202   if (print_inlining() || print_intrinsics()) {
4203     // Re allocate buffer when we change ResourceMark
4204     _print_inlining_stream = new stringStream();
4205   }
4206 }
4207 
4208 void Compile::print_inlining_reset() {
4209   _print_inlining_stream->reset();
4210 }
4211 
4212 void Compile::print_inlining_commit() {
4213   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4214   // Transfer the message from _print_inlining_stream to the current
4215   // _print_inlining_list buffer and clear _print_inlining_stream.
4216   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4217   print_inlining_reset();
4218 }
4219 
4220 void Compile::print_inlining_push() {
4221   // Add new buffer to the _print_inlining_list at current position
4222   _print_inlining_idx++;
4223   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4224 }
4225 
4226 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4227   return _print_inlining_list->at(_print_inlining_idx);
4228 }
4229 
4230 void Compile::print_inlining_update(CallGenerator* cg) {
4231   if (print_inlining() || print_intrinsics()) {
4232     if (!cg->is_late_inline()) {
4233       if (print_inlining_current().cg() != NULL) {
4234         print_inlining_push();
4235       }
4236       print_inlining_commit();
4237     } else {
4238       if (print_inlining_current().cg() != cg &&
4239           (print_inlining_current().cg() != NULL ||
4240            print_inlining_current().ss()->size() != 0)) {
4241         print_inlining_push();
4242       }
4243       print_inlining_commit();
4244       print_inlining_current().set_cg(cg);
4245     }
4246   }
4247 }
4248 
4249 void Compile::print_inlining_move_to(CallGenerator* cg) {
4250   // We resume inlining at a late inlining call site. Locate the
4251   // corresponding inlining buffer so that we can update it.
4252   if (print_inlining()) {
4253     for (int i = 0; i < _print_inlining_list->length(); i++) {
4254       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4255         _print_inlining_idx = i;
4256         return;
4257       }
4258     }
4259     ShouldNotReachHere();
4260   }
4261 }
4262 
4263 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4264   if (print_inlining()) {
4265     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4266     assert(print_inlining_current().cg() == cg, "wrong entry");
4267     // replace message with new message
4268     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4269     print_inlining_commit();
4270     print_inlining_current().set_cg(cg);
4271   }
4272 }
4273 
4274 void Compile::print_inlining_assert_ready() {
4275   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4276 }
4277 
4278 void Compile::process_print_inlining() {
4279   bool do_print_inlining = print_inlining() || print_intrinsics();
4280   if (do_print_inlining || log() != NULL) {
4281     // Print inlining message for candidates that we couldn't inline
4282     // for lack of space
4283     for (int i = 0; i < _late_inlines.length(); i++) {
4284       CallGenerator* cg = _late_inlines.at(i);
4285       if (!cg->is_mh_late_inline()) {
4286         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4287         if (do_print_inlining) {
4288           cg->print_inlining_late(msg);
4289         }
4290         log_late_inline_failure(cg, msg);
4291       }
4292     }
4293   }
4294   if (do_print_inlining) {
4295     ResourceMark rm;
4296     stringStream ss;
4297     for (int i = 0; i < _print_inlining_list->length(); i++) {
4298       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4299     }
4300     size_t end = ss.size();
4301     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4302     strncpy(_print_inlining_output, ss.base(), end+1);
4303     _print_inlining_output[end] = 0;
4304   }
4305 }
4306 
4307 void Compile::dump_print_inlining() {
4308   if (_print_inlining_output != NULL) {
4309     tty->print_raw(_print_inlining_output);
4310   }
4311 }
4312 
4313 void Compile::log_late_inline(CallGenerator* cg) {
4314   if (log() != NULL) {
4315     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4316                 cg->unique_id());
4317     JVMState* p = cg->call_node()->jvms();
4318     while (p != NULL) {
4319       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4320       p = p->caller();
4321     }
4322     log()->tail("late_inline");
4323   }
4324 }
4325 
4326 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4327   log_late_inline(cg);
4328   if (log() != NULL) {
4329     log()->inline_fail(msg);
4330   }
4331 }
4332 
4333 void Compile::log_inline_id(CallGenerator* cg) {
4334   if (log() != NULL) {
4335     // The LogCompilation tool needs a unique way to identify late
4336     // inline call sites. This id must be unique for this call site in
4337     // this compilation. Try to have it unique across compilations as
4338     // well because it can be convenient when grepping through the log
4339     // file.
4340     // Distinguish OSR compilations from others in case CICountOSR is
4341     // on.
4342     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4343     cg->set_unique_id(id);
4344     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4345   }
4346 }
4347 
4348 void Compile::log_inline_failure(const char* msg) {
4349   if (C->log() != NULL) {
4350     C->log()->inline_fail(msg);
4351   }
4352 }
4353 
4354 
4355 // Dump inlining replay data to the stream.
4356 // Don't change thread state and acquire any locks.
4357 void Compile::dump_inline_data(outputStream* out) {
4358   InlineTree* inl_tree = ilt();
4359   if (inl_tree != NULL) {
4360     out->print(" inline %d", inl_tree->count());
4361     inl_tree->dump_replay_data(out);
4362   }
4363 }
4364 
4365 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4366   if (n1->Opcode() < n2->Opcode())      return -1;
4367   else if (n1->Opcode() > n2->Opcode()) return 1;
4368 
4369   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4370   for (uint i = 1; i < n1->req(); i++) {
4371     if (n1->in(i) < n2->in(i))      return -1;
4372     else if (n1->in(i) > n2->in(i)) return 1;
4373   }
4374 
4375   return 0;
4376 }
4377 
4378 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4379   Node* n1 = *n1p;
4380   Node* n2 = *n2p;
4381 
4382   return cmp_expensive_nodes(n1, n2);
4383 }
4384 
4385 void Compile::sort_expensive_nodes() {
4386   if (!expensive_nodes_sorted()) {
4387     _expensive_nodes->sort(cmp_expensive_nodes);
4388   }
4389 }
4390 
4391 bool Compile::expensive_nodes_sorted() const {
4392   for (int i = 1; i < _expensive_nodes->length(); i++) {
4393     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4394       return false;
4395     }
4396   }
4397   return true;
4398 }
4399 
4400 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4401   if (_expensive_nodes->length() == 0) {
4402     return false;
4403   }
4404 
4405   assert(OptimizeExpensiveOps, "optimization off?");
4406 
4407   // Take this opportunity to remove dead nodes from the list
4408   int j = 0;
4409   for (int i = 0; i < _expensive_nodes->length(); i++) {
4410     Node* n = _expensive_nodes->at(i);
4411     if (!n->is_unreachable(igvn)) {
4412       assert(n->is_expensive(), "should be expensive");
4413       _expensive_nodes->at_put(j, n);
4414       j++;
4415     }
4416   }
4417   _expensive_nodes->trunc_to(j);
4418 
4419   // Then sort the list so that similar nodes are next to each other
4420   // and check for at least two nodes of identical kind with same data
4421   // inputs.
4422   sort_expensive_nodes();
4423 
4424   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4425     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4426       return true;
4427     }
4428   }
4429 
4430   return false;
4431 }
4432 
4433 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4434   if (_expensive_nodes->length() == 0) {
4435     return;
4436   }
4437 
4438   assert(OptimizeExpensiveOps, "optimization off?");
4439 
4440   // Sort to bring similar nodes next to each other and clear the
4441   // control input of nodes for which there's only a single copy.
4442   sort_expensive_nodes();
4443 
4444   int j = 0;
4445   int identical = 0;
4446   int i = 0;
4447   bool modified = false;
4448   for (; i < _expensive_nodes->length()-1; i++) {
4449     assert(j <= i, "can't write beyond current index");
4450     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4451       identical++;
4452       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4453       continue;
4454     }
4455     if (identical > 0) {
4456       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4457       identical = 0;
4458     } else {
4459       Node* n = _expensive_nodes->at(i);
4460       igvn.replace_input_of(n, 0, NULL);
4461       igvn.hash_insert(n);
4462       modified = true;
4463     }
4464   }
4465   if (identical > 0) {
4466     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4467   } else if (_expensive_nodes->length() >= 1) {
4468     Node* n = _expensive_nodes->at(i);
4469     igvn.replace_input_of(n, 0, NULL);
4470     igvn.hash_insert(n);
4471     modified = true;
4472   }
4473   _expensive_nodes->trunc_to(j);
4474   if (modified) {
4475     igvn.optimize();
4476   }
4477 }
4478 
4479 void Compile::add_expensive_node(Node * n) {
4480   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4481   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4482   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4483   if (OptimizeExpensiveOps) {
4484     _expensive_nodes->append(n);
4485   } else {
4486     // Clear control input and let IGVN optimize expensive nodes if
4487     // OptimizeExpensiveOps is off.
4488     n->set_req(0, NULL);
4489   }
4490 }
4491 
4492 /**
4493  * Remove the speculative part of types and clean up the graph
4494  */
4495 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4496   if (UseTypeSpeculation) {
4497     Unique_Node_List worklist;
4498     worklist.push(root());
4499     int modified = 0;
4500     // Go over all type nodes that carry a speculative type, drop the
4501     // speculative part of the type and enqueue the node for an igvn
4502     // which may optimize it out.
4503     for (uint next = 0; next < worklist.size(); ++next) {
4504       Node *n  = worklist.at(next);
4505       if (n->is_Type()) {
4506         TypeNode* tn = n->as_Type();
4507         const Type* t = tn->type();
4508         const Type* t_no_spec = t->remove_speculative();
4509         if (t_no_spec != t) {
4510           bool in_hash = igvn.hash_delete(n);
4511           assert(in_hash, "node should be in igvn hash table");
4512           tn->set_type(t_no_spec);
4513           igvn.hash_insert(n);
4514           igvn._worklist.push(n); // give it a chance to go away
4515           modified++;
4516         }
4517       }
4518       uint max = n->len();
4519       for( uint i = 0; i < max; ++i ) {
4520         Node *m = n->in(i);
4521         if (not_a_node(m))  continue;
4522         worklist.push(m);
4523       }
4524     }
4525     // Drop the speculative part of all types in the igvn's type table
4526     igvn.remove_speculative_types();
4527     if (modified > 0) {
4528       igvn.optimize();
4529     }
4530 #ifdef ASSERT
4531     // Verify that after the IGVN is over no speculative type has resurfaced
4532     worklist.clear();
4533     worklist.push(root());
4534     for (uint next = 0; next < worklist.size(); ++next) {
4535       Node *n  = worklist.at(next);
4536       const Type* t = igvn.type_or_null(n);
4537       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4538       if (n->is_Type()) {
4539         t = n->as_Type()->type();
4540         assert(t == t->remove_speculative(), "no more speculative types");
4541       }
4542       uint max = n->len();
4543       for( uint i = 0; i < max; ++i ) {
4544         Node *m = n->in(i);
4545         if (not_a_node(m))  continue;
4546         worklist.push(m);
4547       }
4548     }
4549     igvn.check_no_speculative_types();
4550 #endif
4551   }
4552 }
4553 
4554 // Auxiliary method to support randomized stressing/fuzzing.
4555 //
4556 // This method can be called the arbitrary number of times, with current count
4557 // as the argument. The logic allows selecting a single candidate from the
4558 // running list of candidates as follows:
4559 //    int count = 0;
4560 //    Cand* selected = null;
4561 //    while(cand = cand->next()) {
4562 //      if (randomized_select(++count)) {
4563 //        selected = cand;
4564 //      }
4565 //    }
4566 //
4567 // Including count equalizes the chances any candidate is "selected".
4568 // This is useful when we don't have the complete list of candidates to choose
4569 // from uniformly. In this case, we need to adjust the randomicity of the
4570 // selection, or else we will end up biasing the selection towards the latter
4571 // candidates.
4572 //
4573 // Quick back-envelope calculation shows that for the list of n candidates
4574 // the equal probability for the candidate to persist as "best" can be
4575 // achieved by replacing it with "next" k-th candidate with the probability
4576 // of 1/k. It can be easily shown that by the end of the run, the
4577 // probability for any candidate is converged to 1/n, thus giving the
4578 // uniform distribution among all the candidates.
4579 //
4580 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4581 #define RANDOMIZED_DOMAIN_POW 29
4582 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4583 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4584 bool Compile::randomized_select(int count) {
4585   assert(count > 0, "only positive");
4586   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4587 }
4588 
4589 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4590 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4591 
4592 void NodeCloneInfo::dump() const {
4593   tty->print(" {%d:%d} ", idx(), gen());
4594 }
4595 
4596 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4597   uint64_t val = value(old->_idx);
4598   NodeCloneInfo cio(val);
4599   assert(val != 0, "old node should be in the map");
4600   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4601   insert(nnn->_idx, cin.get());
4602 #ifndef PRODUCT
4603   if (is_debug()) {
4604     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4605   }
4606 #endif
4607 }
4608 
4609 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4610   NodeCloneInfo cio(value(old->_idx));
4611   if (cio.get() == 0) {
4612     cio.set(old->_idx, 0);
4613     insert(old->_idx, cio.get());
4614 #ifndef PRODUCT
4615     if (is_debug()) {
4616       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4617     }
4618 #endif
4619   }
4620   clone(old, nnn, gen);
4621 }
4622 
4623 int CloneMap::max_gen() const {
4624   int g = 0;
4625   DictI di(_dict);
4626   for(; di.test(); ++di) {
4627     int t = gen(di._key);
4628     if (g < t) {
4629       g = t;
4630 #ifndef PRODUCT
4631       if (is_debug()) {
4632         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4633       }
4634 #endif
4635     }
4636   }
4637   return g;
4638 }
4639 
4640 void CloneMap::dump(node_idx_t key) const {
4641   uint64_t val = value(key);
4642   if (val != 0) {
4643     NodeCloneInfo ni(val);
4644     ni.dump();
4645   }
4646 }