1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/arraycopynode.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/compile.hpp"
  37 #include "opto/escape.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/rootnode.hpp"
  41 #if INCLUDE_ALL_GCS
  42 #include "gc/g1/g1ThreadLocalData.hpp"
  43 #endif // INCLUDE_ALL_GCS
  44 
  45 ConnectionGraph::ConnectionGraph(Compile * C, PhaseIterGVN *igvn) :
  46   _nodes(C->comp_arena(), C->unique(), C->unique(), NULL),
  47   _in_worklist(C->comp_arena()),
  48   _next_pidx(0),
  49   _collecting(true),
  50   _verify(false),
  51   _compile(C),
  52   _igvn(igvn),
  53   _node_map(C->comp_arena()) {
  54   // Add unknown java object.
  55   add_java_object(C->top(), PointsToNode::GlobalEscape);
  56   phantom_obj = ptnode_adr(C->top()->_idx)->as_JavaObject();
  57   // Add ConP(#NULL) and ConN(#NULL) nodes.
  58   Node* oop_null = igvn->zerocon(T_OBJECT);
  59   assert(oop_null->_idx < nodes_size(), "should be created already");
  60   add_java_object(oop_null, PointsToNode::NoEscape);
  61   null_obj = ptnode_adr(oop_null->_idx)->as_JavaObject();
  62   if (UseCompressedOops) {
  63     Node* noop_null = igvn->zerocon(T_NARROWOOP);
  64     assert(noop_null->_idx < nodes_size(), "should be created already");
  65     map_ideal_node(noop_null, null_obj);
  66   }
  67   _pcmp_neq = NULL; // Should be initialized
  68   _pcmp_eq  = NULL;
  69 }
  70 
  71 bool ConnectionGraph::has_candidates(Compile *C) {
  72   // EA brings benefits only when the code has allocations and/or locks which
  73   // are represented by ideal Macro nodes.
  74   int cnt = C->macro_count();
  75   for (int i = 0; i < cnt; i++) {
  76     Node *n = C->macro_node(i);
  77     if (n->is_Allocate())
  78       return true;
  79     if (n->is_Lock()) {
  80       Node* obj = n->as_Lock()->obj_node()->uncast();
  81       if (!(obj->is_Parm() || obj->is_Con()))
  82         return true;
  83     }
  84     if (n->is_CallStaticJava() &&
  85         n->as_CallStaticJava()->is_boxing_method()) {
  86       return true;
  87     }
  88   }
  89   return false;
  90 }
  91 
  92 void ConnectionGraph::do_analysis(Compile *C, PhaseIterGVN *igvn) {
  93   Compile::TracePhase tp("escapeAnalysis", &Phase::timers[Phase::_t_escapeAnalysis]);
  94   ResourceMark rm;
  95 
  96   // Add ConP#NULL and ConN#NULL nodes before ConnectionGraph construction
  97   // to create space for them in ConnectionGraph::_nodes[].
  98   Node* oop_null = igvn->zerocon(T_OBJECT);
  99   Node* noop_null = igvn->zerocon(T_NARROWOOP);
 100   ConnectionGraph* congraph = new(C->comp_arena()) ConnectionGraph(C, igvn);
 101   // Perform escape analysis
 102   if (congraph->compute_escape()) {
 103     // There are non escaping objects.
 104     C->set_congraph(congraph);
 105   }
 106   // Cleanup.
 107   if (oop_null->outcnt() == 0)
 108     igvn->hash_delete(oop_null);
 109   if (noop_null->outcnt() == 0)
 110     igvn->hash_delete(noop_null);
 111 }
 112 
 113 bool ConnectionGraph::compute_escape() {
 114   Compile* C = _compile;
 115   PhaseGVN* igvn = _igvn;
 116 
 117   // Worklists used by EA.
 118   Unique_Node_List delayed_worklist;
 119   GrowableArray<Node*> alloc_worklist;
 120   GrowableArray<Node*> ptr_cmp_worklist;
 121   GrowableArray<Node*> storestore_worklist;
 122   GrowableArray<ArrayCopyNode*> arraycopy_worklist;
 123   GrowableArray<PointsToNode*>   ptnodes_worklist;
 124   GrowableArray<JavaObjectNode*> java_objects_worklist;
 125   GrowableArray<JavaObjectNode*> non_escaped_worklist;
 126   GrowableArray<FieldNode*>      oop_fields_worklist;
 127   DEBUG_ONLY( GrowableArray<Node*> addp_worklist; )
 128 
 129   { Compile::TracePhase tp("connectionGraph", &Phase::timers[Phase::_t_connectionGraph]);
 130 
 131   // 1. Populate Connection Graph (CG) with PointsTo nodes.
 132   ideal_nodes.map(C->live_nodes(), NULL);  // preallocate space
 133   // Initialize worklist
 134   if (C->root() != NULL) {
 135     ideal_nodes.push(C->root());
 136   }
 137   // Processed ideal nodes are unique on ideal_nodes list
 138   // but several ideal nodes are mapped to the phantom_obj.
 139   // To avoid duplicated entries on the following worklists
 140   // add the phantom_obj only once to them.
 141   ptnodes_worklist.append(phantom_obj);
 142   java_objects_worklist.append(phantom_obj);
 143   for( uint next = 0; next < ideal_nodes.size(); ++next ) {
 144     Node* n = ideal_nodes.at(next);
 145     // Create PointsTo nodes and add them to Connection Graph. Called
 146     // only once per ideal node since ideal_nodes is Unique_Node list.
 147     add_node_to_connection_graph(n, &delayed_worklist);
 148     PointsToNode* ptn = ptnode_adr(n->_idx);
 149     if (ptn != NULL && ptn != phantom_obj) {
 150       ptnodes_worklist.append(ptn);
 151       if (ptn->is_JavaObject()) {
 152         java_objects_worklist.append(ptn->as_JavaObject());
 153         if ((n->is_Allocate() || n->is_CallStaticJava()) &&
 154             (ptn->escape_state() < PointsToNode::GlobalEscape)) {
 155           // Only allocations and java static calls results are interesting.
 156           non_escaped_worklist.append(ptn->as_JavaObject());
 157         }
 158       } else if (ptn->is_Field() && ptn->as_Field()->is_oop()) {
 159         oop_fields_worklist.append(ptn->as_Field());
 160       }
 161     }
 162     if (n->is_MergeMem()) {
 163       // Collect all MergeMem nodes to add memory slices for
 164       // scalar replaceable objects in split_unique_types().
 165       _mergemem_worklist.append(n->as_MergeMem());
 166     } else if (OptimizePtrCompare && n->is_Cmp() &&
 167                (n->Opcode() == Op_CmpP || n->Opcode() == Op_CmpN)) {
 168       // Collect compare pointers nodes.
 169       ptr_cmp_worklist.append(n);
 170     } else if (n->is_MemBarStoreStore()) {
 171       // Collect all MemBarStoreStore nodes so that depending on the
 172       // escape status of the associated Allocate node some of them
 173       // may be eliminated.
 174       storestore_worklist.append(n);
 175     } else if (n->is_MemBar() && (n->Opcode() == Op_MemBarRelease) &&
 176                (n->req() > MemBarNode::Precedent)) {
 177       record_for_optimizer(n);
 178 #ifdef ASSERT
 179     } else if (n->is_AddP()) {
 180       // Collect address nodes for graph verification.
 181       addp_worklist.append(n);
 182 #endif
 183     } else if (n->is_ArrayCopy()) {
 184       // Keep a list of ArrayCopy nodes so if one of its input is non
 185       // escaping, we can record a unique type
 186       arraycopy_worklist.append(n->as_ArrayCopy());
 187     }
 188     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 189       Node* m = n->fast_out(i);   // Get user
 190       ideal_nodes.push(m);
 191     }
 192   }
 193   if (non_escaped_worklist.length() == 0) {
 194     _collecting = false;
 195     return false; // Nothing to do.
 196   }
 197   // Add final simple edges to graph.
 198   while(delayed_worklist.size() > 0) {
 199     Node* n = delayed_worklist.pop();
 200     add_final_edges(n);
 201   }
 202   int ptnodes_length = ptnodes_worklist.length();
 203 
 204 #ifdef ASSERT
 205   if (VerifyConnectionGraph) {
 206     // Verify that no new simple edges could be created and all
 207     // local vars has edges.
 208     _verify = true;
 209     for (int next = 0; next < ptnodes_length; ++next) {
 210       PointsToNode* ptn = ptnodes_worklist.at(next);
 211       add_final_edges(ptn->ideal_node());
 212       if (ptn->is_LocalVar() && ptn->edge_count() == 0) {
 213         ptn->dump();
 214         assert(ptn->as_LocalVar()->edge_count() > 0, "sanity");
 215       }
 216     }
 217     _verify = false;
 218   }
 219 #endif
 220   // Bytecode analyzer BCEscapeAnalyzer, used for Call nodes
 221   // processing, calls to CI to resolve symbols (types, fields, methods)
 222   // referenced in bytecode. During symbol resolution VM may throw
 223   // an exception which CI cleans and converts to compilation failure.
 224   if (C->failing())  return false;
 225 
 226   // 2. Finish Graph construction by propagating references to all
 227   //    java objects through graph.
 228   if (!complete_connection_graph(ptnodes_worklist, non_escaped_worklist,
 229                                  java_objects_worklist, oop_fields_worklist)) {
 230     // All objects escaped or hit time or iterations limits.
 231     _collecting = false;
 232     return false;
 233   }
 234 
 235   // 3. Adjust scalar_replaceable state of nonescaping objects and push
 236   //    scalar replaceable allocations on alloc_worklist for processing
 237   //    in split_unique_types().
 238   int non_escaped_length = non_escaped_worklist.length();
 239   for (int next = 0; next < non_escaped_length; next++) {
 240     JavaObjectNode* ptn = non_escaped_worklist.at(next);
 241     bool noescape = (ptn->escape_state() == PointsToNode::NoEscape);
 242     Node* n = ptn->ideal_node();
 243     if (n->is_Allocate()) {
 244       n->as_Allocate()->_is_non_escaping = noescape;
 245     }
 246     if (n->is_CallStaticJava()) {
 247       n->as_CallStaticJava()->_is_non_escaping = noescape;
 248     }
 249     if (noescape && ptn->scalar_replaceable()) {
 250       adjust_scalar_replaceable_state(ptn);
 251       if (ptn->scalar_replaceable()) {
 252         alloc_worklist.append(ptn->ideal_node());
 253       }
 254     }
 255   }
 256 
 257 #ifdef ASSERT
 258   if (VerifyConnectionGraph) {
 259     // Verify that graph is complete - no new edges could be added or needed.
 260     verify_connection_graph(ptnodes_worklist, non_escaped_worklist,
 261                             java_objects_worklist, addp_worklist);
 262   }
 263   assert(C->unique() == nodes_size(), "no new ideal nodes should be added during ConnectionGraph build");
 264   assert(null_obj->escape_state() == PointsToNode::NoEscape &&
 265          null_obj->edge_count() == 0 &&
 266          !null_obj->arraycopy_src() &&
 267          !null_obj->arraycopy_dst(), "sanity");
 268 #endif
 269 
 270   _collecting = false;
 271 
 272   } // TracePhase t3("connectionGraph")
 273 
 274   // 4. Optimize ideal graph based on EA information.
 275   bool has_non_escaping_obj = (non_escaped_worklist.length() > 0);
 276   if (has_non_escaping_obj) {
 277     optimize_ideal_graph(ptr_cmp_worklist, storestore_worklist);
 278   }
 279 
 280 #ifndef PRODUCT
 281   if (PrintEscapeAnalysis) {
 282     dump(ptnodes_worklist); // Dump ConnectionGraph
 283   }
 284 #endif
 285 
 286   bool has_scalar_replaceable_candidates = (alloc_worklist.length() > 0);
 287 #ifdef ASSERT
 288   if (VerifyConnectionGraph) {
 289     int alloc_length = alloc_worklist.length();
 290     for (int next = 0; next < alloc_length; ++next) {
 291       Node* n = alloc_worklist.at(next);
 292       PointsToNode* ptn = ptnode_adr(n->_idx);
 293       assert(ptn->escape_state() == PointsToNode::NoEscape && ptn->scalar_replaceable(), "sanity");
 294     }
 295   }
 296 #endif
 297 
 298   // 5. Separate memory graph for scalar replaceable allcations.
 299   if (has_scalar_replaceable_candidates &&
 300       C->AliasLevel() >= 3 && EliminateAllocations) {
 301     // Now use the escape information to create unique types for
 302     // scalar replaceable objects.
 303     split_unique_types(alloc_worklist, arraycopy_worklist);
 304     if (C->failing())  return false;
 305     C->print_method(PHASE_AFTER_EA, 2);
 306 
 307 #ifdef ASSERT
 308   } else if (Verbose && (PrintEscapeAnalysis || PrintEliminateAllocations)) {
 309     tty->print("=== No allocations eliminated for ");
 310     C->method()->print_short_name();
 311     if(!EliminateAllocations) {
 312       tty->print(" since EliminateAllocations is off ===");
 313     } else if(!has_scalar_replaceable_candidates) {
 314       tty->print(" since there are no scalar replaceable candidates ===");
 315     } else if(C->AliasLevel() < 3) {
 316       tty->print(" since AliasLevel < 3 ===");
 317     }
 318     tty->cr();
 319 #endif
 320   }
 321   return has_non_escaping_obj;
 322 }
 323 
 324 // Utility function for nodes that load an object
 325 void ConnectionGraph::add_objload_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 326   // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 327   // ThreadLocal has RawPtr type.
 328   const Type* t = _igvn->type(n);
 329   if (t->make_ptr() != NULL) {
 330     Node* adr = n->in(MemNode::Address);
 331 #ifdef ASSERT
 332     if (!adr->is_AddP()) {
 333       assert(_igvn->type(adr)->isa_rawptr(), "sanity");
 334     } else {
 335       assert((ptnode_adr(adr->_idx) == NULL ||
 336               ptnode_adr(adr->_idx)->as_Field()->is_oop()), "sanity");
 337     }
 338 #endif
 339     add_local_var_and_edge(n, PointsToNode::NoEscape,
 340                            adr, delayed_worklist);
 341   }
 342 }
 343 
 344 // Populate Connection Graph with PointsTo nodes and create simple
 345 // connection graph edges.
 346 void ConnectionGraph::add_node_to_connection_graph(Node *n, Unique_Node_List *delayed_worklist) {
 347   assert(!_verify, "this method should not be called for verification");
 348   PhaseGVN* igvn = _igvn;
 349   uint n_idx = n->_idx;
 350   PointsToNode* n_ptn = ptnode_adr(n_idx);
 351   if (n_ptn != NULL)
 352     return; // No need to redefine PointsTo node during first iteration.
 353 
 354   if (n->is_Call()) {
 355     // Arguments to allocation and locking don't escape.
 356     if (n->is_AbstractLock()) {
 357       // Put Lock and Unlock nodes on IGVN worklist to process them during
 358       // first IGVN optimization when escape information is still available.
 359       record_for_optimizer(n);
 360     } else if (n->is_Allocate()) {
 361       add_call_node(n->as_Call());
 362       record_for_optimizer(n);
 363     } else {
 364       if (n->is_CallStaticJava()) {
 365         const char* name = n->as_CallStaticJava()->_name;
 366         if (name != NULL && strcmp(name, "uncommon_trap") == 0)
 367           return; // Skip uncommon traps
 368       }
 369       // Don't mark as processed since call's arguments have to be processed.
 370       delayed_worklist->push(n);
 371       // Check if a call returns an object.
 372       if ((n->as_Call()->returns_pointer() &&
 373            n->as_Call()->proj_out_or_null(TypeFunc::Parms) != NULL) ||
 374           (n->is_CallStaticJava() &&
 375            n->as_CallStaticJava()->is_boxing_method())) {
 376         add_call_node(n->as_Call());
 377       }
 378     }
 379     return;
 380   }
 381   // Put this check here to process call arguments since some call nodes
 382   // point to phantom_obj.
 383   if (n_ptn == phantom_obj || n_ptn == null_obj)
 384     return; // Skip predefined nodes.
 385 
 386   int opcode = n->Opcode();
 387   switch (opcode) {
 388     case Op_AddP: {
 389       Node* base = get_addp_base(n);
 390       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 391       // Field nodes are created for all field types. They are used in
 392       // adjust_scalar_replaceable_state() and split_unique_types().
 393       // Note, non-oop fields will have only base edges in Connection
 394       // Graph because such fields are not used for oop loads and stores.
 395       int offset = address_offset(n, igvn);
 396       add_field(n, PointsToNode::NoEscape, offset);
 397       if (ptn_base == NULL) {
 398         delayed_worklist->push(n); // Process it later.
 399       } else {
 400         n_ptn = ptnode_adr(n_idx);
 401         add_base(n_ptn->as_Field(), ptn_base);
 402       }
 403       break;
 404     }
 405     case Op_CastX2P: {
 406       map_ideal_node(n, phantom_obj);
 407       break;
 408     }
 409     case Op_CastPP:
 410     case Op_CheckCastPP:
 411     case Op_EncodeP:
 412     case Op_DecodeN:
 413     case Op_EncodePKlass:
 414     case Op_DecodeNKlass: {
 415       add_local_var_and_edge(n, PointsToNode::NoEscape,
 416                              n->in(1), delayed_worklist);
 417       break;
 418     }
 419     case Op_CMoveP: {
 420       add_local_var(n, PointsToNode::NoEscape);
 421       // Do not add edges during first iteration because some could be
 422       // not defined yet.
 423       delayed_worklist->push(n);
 424       break;
 425     }
 426     case Op_ConP:
 427     case Op_ConN:
 428     case Op_ConNKlass: {
 429       // assume all oop constants globally escape except for null
 430       PointsToNode::EscapeState es;
 431       const Type* t = igvn->type(n);
 432       if (t == TypePtr::NULL_PTR || t == TypeNarrowOop::NULL_PTR) {
 433         es = PointsToNode::NoEscape;
 434       } else {
 435         es = PointsToNode::GlobalEscape;
 436       }
 437       add_java_object(n, es);
 438       break;
 439     }
 440     case Op_CreateEx: {
 441       // assume that all exception objects globally escape
 442       map_ideal_node(n, phantom_obj);
 443       break;
 444     }
 445     case Op_LoadKlass:
 446     case Op_LoadNKlass: {
 447       // Unknown class is loaded
 448       map_ideal_node(n, phantom_obj);
 449       break;
 450     }
 451     case Op_LoadP:
 452     case Op_LoadN:
 453     case Op_LoadPLocked: {
 454       add_objload_to_connection_graph(n, delayed_worklist);
 455       break;
 456     }
 457     case Op_Parm: {
 458       map_ideal_node(n, phantom_obj);
 459       break;
 460     }
 461     case Op_PartialSubtypeCheck: {
 462       // Produces Null or notNull and is used in only in CmpP so
 463       // phantom_obj could be used.
 464       map_ideal_node(n, phantom_obj); // Result is unknown
 465       break;
 466     }
 467     case Op_Phi: {
 468       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 469       // ThreadLocal has RawPtr type.
 470       const Type* t = n->as_Phi()->type();
 471       if (t->make_ptr() != NULL) {
 472         add_local_var(n, PointsToNode::NoEscape);
 473         // Do not add edges during first iteration because some could be
 474         // not defined yet.
 475         delayed_worklist->push(n);
 476       }
 477       break;
 478     }
 479     case Op_Proj: {
 480       // we are only interested in the oop result projection from a call
 481       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 482           n->in(0)->as_Call()->returns_pointer()) {
 483         add_local_var_and_edge(n, PointsToNode::NoEscape,
 484                                n->in(0), delayed_worklist);
 485       }
 486       break;
 487     }
 488     case Op_Rethrow: // Exception object escapes
 489     case Op_Return: {
 490       if (n->req() > TypeFunc::Parms &&
 491           igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 492         // Treat Return value as LocalVar with GlobalEscape escape state.
 493         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 494                                n->in(TypeFunc::Parms), delayed_worklist);
 495       }
 496       break;
 497     }
 498     case Op_CompareAndExchangeP:
 499     case Op_CompareAndExchangeN:
 500     case Op_GetAndSetP:
 501     case Op_GetAndSetN: {
 502       add_objload_to_connection_graph(n, delayed_worklist);
 503       // fallthrough
 504     }
 505     case Op_StoreP:
 506     case Op_StoreN:
 507     case Op_StoreNKlass:
 508     case Op_StorePConditional:
 509     case Op_WeakCompareAndSwapP:
 510     case Op_WeakCompareAndSwapN:
 511     case Op_CompareAndSwapP:
 512     case Op_CompareAndSwapN: {
 513       Node* adr = n->in(MemNode::Address);
 514       const Type *adr_type = igvn->type(adr);
 515       adr_type = adr_type->make_ptr();
 516       if (adr_type == NULL) {
 517         break; // skip dead nodes
 518       }
 519       if (   adr_type->isa_oopptr()
 520           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 521               && adr_type == TypeRawPtr::NOTNULL
 522               && adr->in(AddPNode::Address)->is_Proj()
 523               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 524         delayed_worklist->push(n); // Process it later.
 525 #ifdef ASSERT
 526         assert(adr->is_AddP(), "expecting an AddP");
 527         if (adr_type == TypeRawPtr::NOTNULL) {
 528           // Verify a raw address for a store captured by Initialize node.
 529           int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 530           assert(offs != Type::OffsetBot, "offset must be a constant");
 531         }
 532 #endif
 533       } else {
 534         // Ignore copy the displaced header to the BoxNode (OSR compilation).
 535         if (adr->is_BoxLock())
 536           break;
 537         // Stored value escapes in unsafe access.
 538         if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 539           // Pointer stores in G1 barriers looks like unsafe access.
 540           // Ignore such stores to be able scalar replace non-escaping
 541           // allocations.
 542           if (UseG1GC && adr->is_AddP()) {
 543             Node* base = get_addp_base(adr);
 544             if (base->Opcode() == Op_LoadP &&
 545                 base->in(MemNode::Address)->is_AddP()) {
 546               adr = base->in(MemNode::Address);
 547               Node* tls = get_addp_base(adr);
 548               if (tls->Opcode() == Op_ThreadLocal) {
 549                 int offs = (int)igvn->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
 550                 if (offs == in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset())) {
 551                   break; // G1 pre barrier previous oop value store.
 552                 }
 553                 if (offs == in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset())) {
 554                   break; // G1 post barrier card address store.
 555                 }
 556               }
 557             }
 558           }
 559           delayed_worklist->push(n); // Process unsafe access later.
 560           break;
 561         }
 562 #ifdef ASSERT
 563         n->dump(1);
 564         assert(false, "not unsafe or G1 barrier raw StoreP");
 565 #endif
 566       }
 567       break;
 568     }
 569     case Op_AryEq:
 570     case Op_HasNegatives:
 571     case Op_StrComp:
 572     case Op_StrEquals:
 573     case Op_StrIndexOf:
 574     case Op_StrIndexOfChar:
 575     case Op_StrInflatedCopy:
 576     case Op_StrCompressedCopy:
 577     case Op_EncodeISOArray: {
 578       add_local_var(n, PointsToNode::ArgEscape);
 579       delayed_worklist->push(n); // Process it later.
 580       break;
 581     }
 582     case Op_ThreadLocal: {
 583       add_java_object(n, PointsToNode::ArgEscape);
 584       break;
 585     }
 586     default:
 587       ; // Do nothing for nodes not related to EA.
 588   }
 589   return;
 590 }
 591 
 592 #ifdef ASSERT
 593 #define ELSE_FAIL(name)                               \
 594       /* Should not be called for not pointer type. */  \
 595       n->dump(1);                                       \
 596       assert(false, name);                              \
 597       break;
 598 #else
 599 #define ELSE_FAIL(name) \
 600       break;
 601 #endif
 602 
 603 // Add final simple edges to graph.
 604 void ConnectionGraph::add_final_edges(Node *n) {
 605   PointsToNode* n_ptn = ptnode_adr(n->_idx);
 606 #ifdef ASSERT
 607   if (_verify && n_ptn->is_JavaObject())
 608     return; // This method does not change graph for JavaObject.
 609 #endif
 610 
 611   if (n->is_Call()) {
 612     process_call_arguments(n->as_Call());
 613     return;
 614   }
 615   assert(n->is_Store() || n->is_LoadStore() ||
 616          (n_ptn != NULL) && (n_ptn->ideal_node() != NULL),
 617          "node should be registered already");
 618   int opcode = n->Opcode();
 619   switch (opcode) {
 620     case Op_AddP: {
 621       Node* base = get_addp_base(n);
 622       PointsToNode* ptn_base = ptnode_adr(base->_idx);
 623       assert(ptn_base != NULL, "field's base should be registered");
 624       add_base(n_ptn->as_Field(), ptn_base);
 625       break;
 626     }
 627     case Op_CastPP:
 628     case Op_CheckCastPP:
 629     case Op_EncodeP:
 630     case Op_DecodeN:
 631     case Op_EncodePKlass:
 632     case Op_DecodeNKlass: {
 633       add_local_var_and_edge(n, PointsToNode::NoEscape,
 634                              n->in(1), NULL);
 635       break;
 636     }
 637     case Op_CMoveP: {
 638       for (uint i = CMoveNode::IfFalse; i < n->req(); i++) {
 639         Node* in = n->in(i);
 640         if (in == NULL)
 641           continue;  // ignore NULL
 642         Node* uncast_in = in->uncast();
 643         if (uncast_in->is_top() || uncast_in == n)
 644           continue;  // ignore top or inputs which go back this node
 645         PointsToNode* ptn = ptnode_adr(in->_idx);
 646         assert(ptn != NULL, "node should be registered");
 647         add_edge(n_ptn, ptn);
 648       }
 649       break;
 650     }
 651     case Op_LoadP:
 652     case Op_LoadN:
 653     case Op_LoadPLocked: {
 654       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 655       // ThreadLocal has RawPtr type.
 656       const Type* t = _igvn->type(n);
 657       if (t->make_ptr() != NULL) {
 658         Node* adr = n->in(MemNode::Address);
 659         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 660         break;
 661       }
 662       ELSE_FAIL("Op_LoadP");
 663     }
 664     case Op_Phi: {
 665       // Using isa_ptr() instead of isa_oopptr() for LoadP and Phi because
 666       // ThreadLocal has RawPtr type.
 667       const Type* t = n->as_Phi()->type();
 668       if (t->make_ptr() != NULL) {
 669         for (uint i = 1; i < n->req(); i++) {
 670           Node* in = n->in(i);
 671           if (in == NULL)
 672             continue;  // ignore NULL
 673           Node* uncast_in = in->uncast();
 674           if (uncast_in->is_top() || uncast_in == n)
 675             continue;  // ignore top or inputs which go back this node
 676           PointsToNode* ptn = ptnode_adr(in->_idx);
 677           assert(ptn != NULL, "node should be registered");
 678           add_edge(n_ptn, ptn);
 679         }
 680         break;
 681       }
 682       ELSE_FAIL("Op_Phi");
 683     }
 684     case Op_Proj: {
 685       // we are only interested in the oop result projection from a call
 686       if (n->as_Proj()->_con == TypeFunc::Parms && n->in(0)->is_Call() &&
 687           n->in(0)->as_Call()->returns_pointer()) {
 688         add_local_var_and_edge(n, PointsToNode::NoEscape, n->in(0), NULL);
 689         break;
 690       }
 691       ELSE_FAIL("Op_Proj");
 692     }
 693     case Op_Rethrow: // Exception object escapes
 694     case Op_Return: {
 695       if (n->req() > TypeFunc::Parms &&
 696           _igvn->type(n->in(TypeFunc::Parms))->isa_oopptr()) {
 697         // Treat Return value as LocalVar with GlobalEscape escape state.
 698         add_local_var_and_edge(n, PointsToNode::GlobalEscape,
 699                                n->in(TypeFunc::Parms), NULL);
 700         break;
 701       }
 702       ELSE_FAIL("Op_Return");
 703     }
 704     case Op_StoreP:
 705     case Op_StoreN:
 706     case Op_StoreNKlass:
 707     case Op_StorePConditional:
 708     case Op_CompareAndExchangeP:
 709     case Op_CompareAndExchangeN:
 710     case Op_CompareAndSwapP:
 711     case Op_CompareAndSwapN:
 712     case Op_WeakCompareAndSwapP:
 713     case Op_WeakCompareAndSwapN:
 714     case Op_GetAndSetP:
 715     case Op_GetAndSetN: {
 716       Node* adr = n->in(MemNode::Address);
 717       const Type *adr_type = _igvn->type(adr);
 718       adr_type = adr_type->make_ptr();
 719 #ifdef ASSERT
 720       if (adr_type == NULL) {
 721         n->dump(1);
 722         assert(adr_type != NULL, "dead node should not be on list");
 723         break;
 724       }
 725 #endif
 726       if (opcode == Op_GetAndSetP || opcode == Op_GetAndSetN ||
 727           opcode == Op_CompareAndExchangeN || opcode == Op_CompareAndExchangeP) {
 728         add_local_var_and_edge(n, PointsToNode::NoEscape, adr, NULL);
 729       }
 730       if (   adr_type->isa_oopptr()
 731           || (   (opcode == Op_StoreP || opcode == Op_StoreN || opcode == Op_StoreNKlass)
 732               && adr_type == TypeRawPtr::NOTNULL
 733               && adr->in(AddPNode::Address)->is_Proj()
 734               && adr->in(AddPNode::Address)->in(0)->is_Allocate())) {
 735         // Point Address to Value
 736         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 737         assert(adr_ptn != NULL &&
 738                adr_ptn->as_Field()->is_oop(), "node should be registered");
 739         Node *val = n->in(MemNode::ValueIn);
 740         PointsToNode* ptn = ptnode_adr(val->_idx);
 741         assert(ptn != NULL, "node should be registered");
 742         add_edge(adr_ptn, ptn);
 743         break;
 744       } else if ((opcode == Op_StoreP) && adr_type->isa_rawptr()) {
 745         // Stored value escapes in unsafe access.
 746         Node *val = n->in(MemNode::ValueIn);
 747         PointsToNode* ptn = ptnode_adr(val->_idx);
 748         assert(ptn != NULL, "node should be registered");
 749         set_escape_state(ptn, PointsToNode::GlobalEscape);
 750         // Add edge to object for unsafe access with offset.
 751         PointsToNode* adr_ptn = ptnode_adr(adr->_idx);
 752         assert(adr_ptn != NULL, "node should be registered");
 753         if (adr_ptn->is_Field()) {
 754           assert(adr_ptn->as_Field()->is_oop(), "should be oop field");
 755           add_edge(adr_ptn, ptn);
 756         }
 757         break;
 758       }
 759       ELSE_FAIL("Op_StoreP");
 760     }
 761     case Op_AryEq:
 762     case Op_HasNegatives:
 763     case Op_StrComp:
 764     case Op_StrEquals:
 765     case Op_StrIndexOf:
 766     case Op_StrIndexOfChar:
 767     case Op_StrInflatedCopy:
 768     case Op_StrCompressedCopy:
 769     case Op_EncodeISOArray: {
 770       // char[]/byte[] arrays passed to string intrinsic do not escape but
 771       // they are not scalar replaceable. Adjust escape state for them.
 772       // Start from in(2) edge since in(1) is memory edge.
 773       for (uint i = 2; i < n->req(); i++) {
 774         Node* adr = n->in(i);
 775         const Type* at = _igvn->type(adr);
 776         if (!adr->is_top() && at->isa_ptr()) {
 777           assert(at == Type::TOP || at == TypePtr::NULL_PTR ||
 778                  at->isa_ptr() != NULL, "expecting a pointer");
 779           if (adr->is_AddP()) {
 780             adr = get_addp_base(adr);
 781           }
 782           PointsToNode* ptn = ptnode_adr(adr->_idx);
 783           assert(ptn != NULL, "node should be registered");
 784           add_edge(n_ptn, ptn);
 785         }
 786       }
 787       break;
 788     }
 789     default: {
 790       // This method should be called only for EA specific nodes which may
 791       // miss some edges when they were created.
 792 #ifdef ASSERT
 793       n->dump(1);
 794 #endif
 795       guarantee(false, "unknown node");
 796     }
 797   }
 798   return;
 799 }
 800 
 801 void ConnectionGraph::add_call_node(CallNode* call) {
 802   assert(call->returns_pointer(), "only for call which returns pointer");
 803   uint call_idx = call->_idx;
 804   if (call->is_Allocate()) {
 805     Node* k = call->in(AllocateNode::KlassNode);
 806     const TypeKlassPtr* kt = k->bottom_type()->isa_klassptr();
 807     assert(kt != NULL, "TypeKlassPtr  required.");
 808     ciKlass* cik = kt->klass();
 809     PointsToNode::EscapeState es = PointsToNode::NoEscape;
 810     bool scalar_replaceable = true;
 811     if (call->is_AllocateArray()) {
 812       if (!cik->is_array_klass()) { // StressReflectiveCode
 813         es = PointsToNode::GlobalEscape;
 814       } else {
 815         int length = call->in(AllocateNode::ALength)->find_int_con(-1);
 816         if (length < 0 || length > EliminateAllocationArraySizeLimit) {
 817           // Not scalar replaceable if the length is not constant or too big.
 818           scalar_replaceable = false;
 819         }
 820       }
 821     } else {  // Allocate instance
 822       if (cik->is_subclass_of(_compile->env()->Thread_klass()) ||
 823           cik->is_subclass_of(_compile->env()->Reference_klass()) ||
 824          !cik->is_instance_klass() || // StressReflectiveCode
 825          !cik->as_instance_klass()->can_be_instantiated() ||
 826           cik->as_instance_klass()->has_finalizer()) {
 827         es = PointsToNode::GlobalEscape;
 828       }
 829     }
 830     add_java_object(call, es);
 831     PointsToNode* ptn = ptnode_adr(call_idx);
 832     if (!scalar_replaceable && ptn->scalar_replaceable()) {
 833       ptn->set_scalar_replaceable(false);
 834     }
 835   } else if (call->is_CallStaticJava()) {
 836     // Call nodes could be different types:
 837     //
 838     // 1. CallDynamicJavaNode (what happened during call is unknown):
 839     //
 840     //    - mapped to GlobalEscape JavaObject node if oop is returned;
 841     //
 842     //    - all oop arguments are escaping globally;
 843     //
 844     // 2. CallStaticJavaNode (execute bytecode analysis if possible):
 845     //
 846     //    - the same as CallDynamicJavaNode if can't do bytecode analysis;
 847     //
 848     //    - mapped to GlobalEscape JavaObject node if unknown oop is returned;
 849     //    - mapped to NoEscape JavaObject node if non-escaping object allocated
 850     //      during call is returned;
 851     //    - mapped to ArgEscape LocalVar node pointed to object arguments
 852     //      which are returned and does not escape during call;
 853     //
 854     //    - oop arguments escaping status is defined by bytecode analysis;
 855     //
 856     // For a static call, we know exactly what method is being called.
 857     // Use bytecode estimator to record whether the call's return value escapes.
 858     ciMethod* meth = call->as_CallJava()->method();
 859     if (meth == NULL) {
 860       const char* name = call->as_CallStaticJava()->_name;
 861       assert(strncmp(name, "_multianewarray", 15) == 0, "TODO: add failed case check");
 862       // Returns a newly allocated unescaped object.
 863       add_java_object(call, PointsToNode::NoEscape);
 864       ptnode_adr(call_idx)->set_scalar_replaceable(false);
 865     } else if (meth->is_boxing_method()) {
 866       // Returns boxing object
 867       PointsToNode::EscapeState es;
 868       vmIntrinsics::ID intr = meth->intrinsic_id();
 869       if (intr == vmIntrinsics::_floatValue || intr == vmIntrinsics::_doubleValue) {
 870         // It does not escape if object is always allocated.
 871         es = PointsToNode::NoEscape;
 872       } else {
 873         // It escapes globally if object could be loaded from cache.
 874         es = PointsToNode::GlobalEscape;
 875       }
 876       add_java_object(call, es);
 877     } else {
 878       BCEscapeAnalyzer* call_analyzer = meth->get_bcea();
 879       call_analyzer->copy_dependencies(_compile->dependencies());
 880       if (call_analyzer->is_return_allocated()) {
 881         // Returns a newly allocated unescaped object, simply
 882         // update dependency information.
 883         // Mark it as NoEscape so that objects referenced by
 884         // it's fields will be marked as NoEscape at least.
 885         add_java_object(call, PointsToNode::NoEscape);
 886         ptnode_adr(call_idx)->set_scalar_replaceable(false);
 887       } else {
 888         // Determine whether any arguments are returned.
 889         const TypeTuple* d = call->tf()->domain();
 890         bool ret_arg = false;
 891         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 892           if (d->field_at(i)->isa_ptr() != NULL &&
 893               call_analyzer->is_arg_returned(i - TypeFunc::Parms)) {
 894             ret_arg = true;
 895             break;
 896           }
 897         }
 898         if (ret_arg) {
 899           add_local_var(call, PointsToNode::ArgEscape);
 900         } else {
 901           // Returns unknown object.
 902           map_ideal_node(call, phantom_obj);
 903         }
 904       }
 905     }
 906   } else {
 907     // An other type of call, assume the worst case:
 908     // returned value is unknown and globally escapes.
 909     assert(call->Opcode() == Op_CallDynamicJava, "add failed case check");
 910     map_ideal_node(call, phantom_obj);
 911   }
 912 }
 913 
 914 void ConnectionGraph::process_call_arguments(CallNode *call) {
 915     bool is_arraycopy = false;
 916     switch (call->Opcode()) {
 917 #ifdef ASSERT
 918     case Op_Allocate:
 919     case Op_AllocateArray:
 920     case Op_Lock:
 921     case Op_Unlock:
 922       assert(false, "should be done already");
 923       break;
 924 #endif
 925     case Op_ArrayCopy:
 926     case Op_CallLeafNoFP:
 927       // Most array copies are ArrayCopy nodes at this point but there
 928       // are still a few direct calls to the copy subroutines (See
 929       // PhaseStringOpts::copy_string())
 930       is_arraycopy = (call->Opcode() == Op_ArrayCopy) ||
 931         call->as_CallLeaf()->is_call_to_arraycopystub();
 932       // fall through
 933     case Op_CallLeaf: {
 934       // Stub calls, objects do not escape but they are not scale replaceable.
 935       // Adjust escape state for outgoing arguments.
 936       const TypeTuple * d = call->tf()->domain();
 937       bool src_has_oops = false;
 938       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 939         const Type* at = d->field_at(i);
 940         Node *arg = call->in(i);
 941         if (arg == NULL) {
 942           continue;
 943         }
 944         const Type *aat = _igvn->type(arg);
 945         if (arg->is_top() || !at->isa_ptr() || !aat->isa_ptr())
 946           continue;
 947         if (arg->is_AddP()) {
 948           //
 949           // The inline_native_clone() case when the arraycopy stub is called
 950           // after the allocation before Initialize and CheckCastPP nodes.
 951           // Or normal arraycopy for object arrays case.
 952           //
 953           // Set AddP's base (Allocate) as not scalar replaceable since
 954           // pointer to the base (with offset) is passed as argument.
 955           //
 956           arg = get_addp_base(arg);
 957         }
 958         PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
 959         assert(arg_ptn != NULL, "should be registered");
 960         PointsToNode::EscapeState arg_esc = arg_ptn->escape_state();
 961         if (is_arraycopy || arg_esc < PointsToNode::ArgEscape) {
 962           assert(aat == Type::TOP || aat == TypePtr::NULL_PTR ||
 963                  aat->isa_ptr() != NULL, "expecting an Ptr");
 964           bool arg_has_oops = aat->isa_oopptr() &&
 965                               (aat->isa_oopptr()->klass() == NULL || aat->isa_instptr() ||
 966                                (aat->isa_aryptr() && aat->isa_aryptr()->klass()->is_obj_array_klass()));
 967           if (i == TypeFunc::Parms) {
 968             src_has_oops = arg_has_oops;
 969           }
 970           //
 971           // src or dst could be j.l.Object when other is basic type array:
 972           //
 973           //   arraycopy(char[],0,Object*,0,size);
 974           //   arraycopy(Object*,0,char[],0,size);
 975           //
 976           // Don't add edges in such cases.
 977           //
 978           bool arg_is_arraycopy_dest = src_has_oops && is_arraycopy &&
 979                                        arg_has_oops && (i > TypeFunc::Parms);
 980 #ifdef ASSERT
 981           if (!(is_arraycopy ||
 982                 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(call) ||
 983                 (call->as_CallLeaf()->_name != NULL &&
 984                  (strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32") == 0 ||
 985                   strcmp(call->as_CallLeaf()->_name, "updateBytesCRC32C") == 0 ||
 986                   strcmp(call->as_CallLeaf()->_name, "updateBytesAdler32") == 0 ||
 987                   strcmp(call->as_CallLeaf()->_name, "aescrypt_encryptBlock") == 0 ||
 988                   strcmp(call->as_CallLeaf()->_name, "aescrypt_decryptBlock") == 0 ||
 989                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_encryptAESCrypt") == 0 ||
 990                   strcmp(call->as_CallLeaf()->_name, "cipherBlockChaining_decryptAESCrypt") == 0 ||
 991                   strcmp(call->as_CallLeaf()->_name, "counterMode_AESCrypt") == 0 ||
 992                   strcmp(call->as_CallLeaf()->_name, "ghash_processBlocks") == 0 ||
 993                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompress") == 0 ||
 994                   strcmp(call->as_CallLeaf()->_name, "sha1_implCompressMB") == 0 ||
 995                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompress") == 0 ||
 996                   strcmp(call->as_CallLeaf()->_name, "sha256_implCompressMB") == 0 ||
 997                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompress") == 0 ||
 998                   strcmp(call->as_CallLeaf()->_name, "sha512_implCompressMB") == 0 ||
 999                   strcmp(call->as_CallLeaf()->_name, "multiplyToLen") == 0 ||
1000                   strcmp(call->as_CallLeaf()->_name, "squareToLen") == 0 ||
1001                   strcmp(call->as_CallLeaf()->_name, "mulAdd") == 0 ||
1002                   strcmp(call->as_CallLeaf()->_name, "montgomery_multiply") == 0 ||
1003                   strcmp(call->as_CallLeaf()->_name, "montgomery_square") == 0 ||
1004                   strcmp(call->as_CallLeaf()->_name, "vectorizedMismatch") == 0)
1005                  ))) {
1006             call->dump();
1007             fatal("EA unexpected CallLeaf %s", call->as_CallLeaf()->_name);
1008           }
1009 #endif
1010           // Always process arraycopy's destination object since
1011           // we need to add all possible edges to references in
1012           // source object.
1013           if (arg_esc >= PointsToNode::ArgEscape &&
1014               !arg_is_arraycopy_dest) {
1015             continue;
1016           }
1017           PointsToNode::EscapeState es = PointsToNode::ArgEscape;
1018           if (call->is_ArrayCopy()) {
1019             ArrayCopyNode* ac = call->as_ArrayCopy();
1020             if (ac->is_clonebasic() ||
1021                 ac->is_arraycopy_validated() ||
1022                 ac->is_copyof_validated() ||
1023                 ac->is_copyofrange_validated()) {
1024               es = PointsToNode::NoEscape;
1025             }
1026           }
1027           set_escape_state(arg_ptn, es);
1028           if (arg_is_arraycopy_dest) {
1029             Node* src = call->in(TypeFunc::Parms);
1030             if (src->is_AddP()) {
1031               src = get_addp_base(src);
1032             }
1033             PointsToNode* src_ptn = ptnode_adr(src->_idx);
1034             assert(src_ptn != NULL, "should be registered");
1035             if (arg_ptn != src_ptn) {
1036               // Special arraycopy edge:
1037               // A destination object's field can't have the source object
1038               // as base since objects escape states are not related.
1039               // Only escape state of destination object's fields affects
1040               // escape state of fields in source object.
1041               add_arraycopy(call, es, src_ptn, arg_ptn);
1042             }
1043           }
1044         }
1045       }
1046       break;
1047     }
1048     case Op_CallStaticJava: {
1049       // For a static call, we know exactly what method is being called.
1050       // Use bytecode estimator to record the call's escape affects
1051 #ifdef ASSERT
1052       const char* name = call->as_CallStaticJava()->_name;
1053       assert((name == NULL || strcmp(name, "uncommon_trap") != 0), "normal calls only");
1054 #endif
1055       ciMethod* meth = call->as_CallJava()->method();
1056       if ((meth != NULL) && meth->is_boxing_method()) {
1057         break; // Boxing methods do not modify any oops.
1058       }
1059       BCEscapeAnalyzer* call_analyzer = (meth !=NULL) ? meth->get_bcea() : NULL;
1060       // fall-through if not a Java method or no analyzer information
1061       if (call_analyzer != NULL) {
1062         PointsToNode* call_ptn = ptnode_adr(call->_idx);
1063         const TypeTuple* d = call->tf()->domain();
1064         for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1065           const Type* at = d->field_at(i);
1066           int k = i - TypeFunc::Parms;
1067           Node* arg = call->in(i);
1068           PointsToNode* arg_ptn = ptnode_adr(arg->_idx);
1069           if (at->isa_ptr() != NULL &&
1070               call_analyzer->is_arg_returned(k)) {
1071             // The call returns arguments.
1072             if (call_ptn != NULL) { // Is call's result used?
1073               assert(call_ptn->is_LocalVar(), "node should be registered");
1074               assert(arg_ptn != NULL, "node should be registered");
1075               add_edge(call_ptn, arg_ptn);
1076             }
1077           }
1078           if (at->isa_oopptr() != NULL &&
1079               arg_ptn->escape_state() < PointsToNode::GlobalEscape) {
1080             if (!call_analyzer->is_arg_stack(k)) {
1081               // The argument global escapes
1082               set_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1083             } else {
1084               set_escape_state(arg_ptn, PointsToNode::ArgEscape);
1085               if (!call_analyzer->is_arg_local(k)) {
1086                 // The argument itself doesn't escape, but any fields might
1087                 set_fields_escape_state(arg_ptn, PointsToNode::GlobalEscape);
1088               }
1089             }
1090           }
1091         }
1092         if (call_ptn != NULL && call_ptn->is_LocalVar()) {
1093           // The call returns arguments.
1094           assert(call_ptn->edge_count() > 0, "sanity");
1095           if (!call_analyzer->is_return_local()) {
1096             // Returns also unknown object.
1097             add_edge(call_ptn, phantom_obj);
1098           }
1099         }
1100         break;
1101       }
1102     }
1103     default: {
1104       // Fall-through here if not a Java method or no analyzer information
1105       // or some other type of call, assume the worst case: all arguments
1106       // globally escape.
1107       const TypeTuple* d = call->tf()->domain();
1108       for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
1109         const Type* at = d->field_at(i);
1110         if (at->isa_oopptr() != NULL) {
1111           Node* arg = call->in(i);
1112           if (arg->is_AddP()) {
1113             arg = get_addp_base(arg);
1114           }
1115           assert(ptnode_adr(arg->_idx) != NULL, "should be defined already");
1116           set_escape_state(ptnode_adr(arg->_idx), PointsToNode::GlobalEscape);
1117         }
1118       }
1119     }
1120   }
1121 }
1122 
1123 
1124 // Finish Graph construction.
1125 bool ConnectionGraph::complete_connection_graph(
1126                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1127                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1128                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1129                          GrowableArray<FieldNode*>&      oop_fields_worklist) {
1130   // Normally only 1-3 passes needed to build Connection Graph depending
1131   // on graph complexity. Observed 8 passes in jvm2008 compiler.compiler.
1132   // Set limit to 20 to catch situation when something did go wrong and
1133   // bailout Escape Analysis.
1134   // Also limit build time to 20 sec (60 in debug VM), EscapeAnalysisTimeout flag.
1135 #define CG_BUILD_ITER_LIMIT 20
1136 
1137   // Propagate GlobalEscape and ArgEscape escape states and check that
1138   // we still have non-escaping objects. The method pushs on _worklist
1139   // Field nodes which reference phantom_object.
1140   if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1141     return false; // Nothing to do.
1142   }
1143   // Now propagate references to all JavaObject nodes.
1144   int java_objects_length = java_objects_worklist.length();
1145   elapsedTimer time;
1146   bool timeout = false;
1147   int new_edges = 1;
1148   int iterations = 0;
1149   do {
1150     while ((new_edges > 0) &&
1151            (iterations++ < CG_BUILD_ITER_LIMIT)) {
1152       double start_time = time.seconds();
1153       time.start();
1154       new_edges = 0;
1155       // Propagate references to phantom_object for nodes pushed on _worklist
1156       // by find_non_escaped_objects() and find_field_value().
1157       new_edges += add_java_object_edges(phantom_obj, false);
1158       for (int next = 0; next < java_objects_length; ++next) {
1159         JavaObjectNode* ptn = java_objects_worklist.at(next);
1160         new_edges += add_java_object_edges(ptn, true);
1161 
1162 #define SAMPLE_SIZE 4
1163         if ((next % SAMPLE_SIZE) == 0) {
1164           // Each 4 iterations calculate how much time it will take
1165           // to complete graph construction.
1166           time.stop();
1167           // Poll for requests from shutdown mechanism to quiesce compiler
1168           // because Connection graph construction may take long time.
1169           CompileBroker::maybe_block();
1170           double stop_time = time.seconds();
1171           double time_per_iter = (stop_time - start_time) / (double)SAMPLE_SIZE;
1172           double time_until_end = time_per_iter * (double)(java_objects_length - next);
1173           if ((start_time + time_until_end) >= EscapeAnalysisTimeout) {
1174             timeout = true;
1175             break; // Timeout
1176           }
1177           start_time = stop_time;
1178           time.start();
1179         }
1180 #undef SAMPLE_SIZE
1181 
1182       }
1183       if (timeout) break;
1184       if (new_edges > 0) {
1185         // Update escape states on each iteration if graph was updated.
1186         if (!find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist)) {
1187           return false; // Nothing to do.
1188         }
1189       }
1190       time.stop();
1191       if (time.seconds() >= EscapeAnalysisTimeout) {
1192         timeout = true;
1193         break;
1194       }
1195     }
1196     if ((iterations < CG_BUILD_ITER_LIMIT) && !timeout) {
1197       time.start();
1198       // Find fields which have unknown value.
1199       int fields_length = oop_fields_worklist.length();
1200       for (int next = 0; next < fields_length; next++) {
1201         FieldNode* field = oop_fields_worklist.at(next);
1202         if (field->edge_count() == 0) {
1203           new_edges += find_field_value(field);
1204           // This code may added new edges to phantom_object.
1205           // Need an other cycle to propagate references to phantom_object.
1206         }
1207       }
1208       time.stop();
1209       if (time.seconds() >= EscapeAnalysisTimeout) {
1210         timeout = true;
1211         break;
1212       }
1213     } else {
1214       new_edges = 0; // Bailout
1215     }
1216   } while (new_edges > 0);
1217 
1218   // Bailout if passed limits.
1219   if ((iterations >= CG_BUILD_ITER_LIMIT) || timeout) {
1220     Compile* C = _compile;
1221     if (C->log() != NULL) {
1222       C->log()->begin_elem("connectionGraph_bailout reason='reached ");
1223       C->log()->text("%s", timeout ? "time" : "iterations");
1224       C->log()->end_elem(" limit'");
1225     }
1226     assert(ExitEscapeAnalysisOnTimeout, "infinite EA connection graph build (%f sec, %d iterations) with %d nodes and worklist size %d",
1227            time.seconds(), iterations, nodes_size(), ptnodes_worklist.length());
1228     // Possible infinite build_connection_graph loop,
1229     // bailout (no changes to ideal graph were made).
1230     return false;
1231   }
1232 #ifdef ASSERT
1233   if (Verbose && PrintEscapeAnalysis) {
1234     tty->print_cr("EA: %d iterations to build connection graph with %d nodes and worklist size %d",
1235                   iterations, nodes_size(), ptnodes_worklist.length());
1236   }
1237 #endif
1238 
1239 #undef CG_BUILD_ITER_LIMIT
1240 
1241   // Find fields initialized by NULL for non-escaping Allocations.
1242   int non_escaped_length = non_escaped_worklist.length();
1243   for (int next = 0; next < non_escaped_length; next++) {
1244     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1245     PointsToNode::EscapeState es = ptn->escape_state();
1246     assert(es <= PointsToNode::ArgEscape, "sanity");
1247     if (es == PointsToNode::NoEscape) {
1248       if (find_init_values(ptn, null_obj, _igvn) > 0) {
1249         // Adding references to NULL object does not change escape states
1250         // since it does not escape. Also no fields are added to NULL object.
1251         add_java_object_edges(null_obj, false);
1252       }
1253     }
1254     Node* n = ptn->ideal_node();
1255     if (n->is_Allocate()) {
1256       // The object allocated by this Allocate node will never be
1257       // seen by an other thread. Mark it so that when it is
1258       // expanded no MemBarStoreStore is added.
1259       InitializeNode* ini = n->as_Allocate()->initialization();
1260       if (ini != NULL)
1261         ini->set_does_not_escape();
1262     }
1263   }
1264   return true; // Finished graph construction.
1265 }
1266 
1267 // Propagate GlobalEscape and ArgEscape escape states to all nodes
1268 // and check that we still have non-escaping java objects.
1269 bool ConnectionGraph::find_non_escaped_objects(GrowableArray<PointsToNode*>& ptnodes_worklist,
1270                                                GrowableArray<JavaObjectNode*>& non_escaped_worklist) {
1271   GrowableArray<PointsToNode*> escape_worklist;
1272   // First, put all nodes with GlobalEscape and ArgEscape states on worklist.
1273   int ptnodes_length = ptnodes_worklist.length();
1274   for (int next = 0; next < ptnodes_length; ++next) {
1275     PointsToNode* ptn = ptnodes_worklist.at(next);
1276     if (ptn->escape_state() >= PointsToNode::ArgEscape ||
1277         ptn->fields_escape_state() >= PointsToNode::ArgEscape) {
1278       escape_worklist.push(ptn);
1279     }
1280   }
1281   // Set escape states to referenced nodes (edges list).
1282   while (escape_worklist.length() > 0) {
1283     PointsToNode* ptn = escape_worklist.pop();
1284     PointsToNode::EscapeState es  = ptn->escape_state();
1285     PointsToNode::EscapeState field_es = ptn->fields_escape_state();
1286     if (ptn->is_Field() && ptn->as_Field()->is_oop() &&
1287         es >= PointsToNode::ArgEscape) {
1288       // GlobalEscape or ArgEscape state of field means it has unknown value.
1289       if (add_edge(ptn, phantom_obj)) {
1290         // New edge was added
1291         add_field_uses_to_worklist(ptn->as_Field());
1292       }
1293     }
1294     for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1295       PointsToNode* e = i.get();
1296       if (e->is_Arraycopy()) {
1297         assert(ptn->arraycopy_dst(), "sanity");
1298         // Propagate only fields escape state through arraycopy edge.
1299         if (e->fields_escape_state() < field_es) {
1300           set_fields_escape_state(e, field_es);
1301           escape_worklist.push(e);
1302         }
1303       } else if (es >= field_es) {
1304         // fields_escape_state is also set to 'es' if it is less than 'es'.
1305         if (e->escape_state() < es) {
1306           set_escape_state(e, es);
1307           escape_worklist.push(e);
1308         }
1309       } else {
1310         // Propagate field escape state.
1311         bool es_changed = false;
1312         if (e->fields_escape_state() < field_es) {
1313           set_fields_escape_state(e, field_es);
1314           es_changed = true;
1315         }
1316         if ((e->escape_state() < field_es) &&
1317             e->is_Field() && ptn->is_JavaObject() &&
1318             e->as_Field()->is_oop()) {
1319           // Change escape state of referenced fields.
1320           set_escape_state(e, field_es);
1321           es_changed = true;
1322         } else if (e->escape_state() < es) {
1323           set_escape_state(e, es);
1324           es_changed = true;
1325         }
1326         if (es_changed) {
1327           escape_worklist.push(e);
1328         }
1329       }
1330     }
1331   }
1332   // Remove escaped objects from non_escaped list.
1333   for (int next = non_escaped_worklist.length()-1; next >= 0 ; --next) {
1334     JavaObjectNode* ptn = non_escaped_worklist.at(next);
1335     if (ptn->escape_state() >= PointsToNode::GlobalEscape) {
1336       non_escaped_worklist.delete_at(next);
1337     }
1338     if (ptn->escape_state() == PointsToNode::NoEscape) {
1339       // Find fields in non-escaped allocations which have unknown value.
1340       find_init_values(ptn, phantom_obj, NULL);
1341     }
1342   }
1343   return (non_escaped_worklist.length() > 0);
1344 }
1345 
1346 // Add all references to JavaObject node by walking over all uses.
1347 int ConnectionGraph::add_java_object_edges(JavaObjectNode* jobj, bool populate_worklist) {
1348   int new_edges = 0;
1349   if (populate_worklist) {
1350     // Populate _worklist by uses of jobj's uses.
1351     for (UseIterator i(jobj); i.has_next(); i.next()) {
1352       PointsToNode* use = i.get();
1353       if (use->is_Arraycopy())
1354         continue;
1355       add_uses_to_worklist(use);
1356       if (use->is_Field() && use->as_Field()->is_oop()) {
1357         // Put on worklist all field's uses (loads) and
1358         // related field nodes (same base and offset).
1359         add_field_uses_to_worklist(use->as_Field());
1360       }
1361     }
1362   }
1363   for (int l = 0; l < _worklist.length(); l++) {
1364     PointsToNode* use = _worklist.at(l);
1365     if (PointsToNode::is_base_use(use)) {
1366       // Add reference from jobj to field and from field to jobj (field's base).
1367       use = PointsToNode::get_use_node(use)->as_Field();
1368       if (add_base(use->as_Field(), jobj)) {
1369         new_edges++;
1370       }
1371       continue;
1372     }
1373     assert(!use->is_JavaObject(), "sanity");
1374     if (use->is_Arraycopy()) {
1375       if (jobj == null_obj) // NULL object does not have field edges
1376         continue;
1377       // Added edge from Arraycopy node to arraycopy's source java object
1378       if (add_edge(use, jobj)) {
1379         jobj->set_arraycopy_src();
1380         new_edges++;
1381       }
1382       // and stop here.
1383       continue;
1384     }
1385     if (!add_edge(use, jobj))
1386       continue; // No new edge added, there was such edge already.
1387     new_edges++;
1388     if (use->is_LocalVar()) {
1389       add_uses_to_worklist(use);
1390       if (use->arraycopy_dst()) {
1391         for (EdgeIterator i(use); i.has_next(); i.next()) {
1392           PointsToNode* e = i.get();
1393           if (e->is_Arraycopy()) {
1394             if (jobj == null_obj) // NULL object does not have field edges
1395               continue;
1396             // Add edge from arraycopy's destination java object to Arraycopy node.
1397             if (add_edge(jobj, e)) {
1398               new_edges++;
1399               jobj->set_arraycopy_dst();
1400             }
1401           }
1402         }
1403       }
1404     } else {
1405       // Added new edge to stored in field values.
1406       // Put on worklist all field's uses (loads) and
1407       // related field nodes (same base and offset).
1408       add_field_uses_to_worklist(use->as_Field());
1409     }
1410   }
1411   _worklist.clear();
1412   _in_worklist.Reset();
1413   return new_edges;
1414 }
1415 
1416 // Put on worklist all related field nodes.
1417 void ConnectionGraph::add_field_uses_to_worklist(FieldNode* field) {
1418   assert(field->is_oop(), "sanity");
1419   int offset = field->offset();
1420   add_uses_to_worklist(field);
1421   // Loop over all bases of this field and push on worklist Field nodes
1422   // with the same offset and base (since they may reference the same field).
1423   for (BaseIterator i(field); i.has_next(); i.next()) {
1424     PointsToNode* base = i.get();
1425     add_fields_to_worklist(field, base);
1426     // Check if the base was source object of arraycopy and go over arraycopy's
1427     // destination objects since values stored to a field of source object are
1428     // accessable by uses (loads) of fields of destination objects.
1429     if (base->arraycopy_src()) {
1430       for (UseIterator j(base); j.has_next(); j.next()) {
1431         PointsToNode* arycp = j.get();
1432         if (arycp->is_Arraycopy()) {
1433           for (UseIterator k(arycp); k.has_next(); k.next()) {
1434             PointsToNode* abase = k.get();
1435             if (abase->arraycopy_dst() && abase != base) {
1436               // Look for the same arraycopy reference.
1437               add_fields_to_worklist(field, abase);
1438             }
1439           }
1440         }
1441       }
1442     }
1443   }
1444 }
1445 
1446 // Put on worklist all related field nodes.
1447 void ConnectionGraph::add_fields_to_worklist(FieldNode* field, PointsToNode* base) {
1448   int offset = field->offset();
1449   if (base->is_LocalVar()) {
1450     for (UseIterator j(base); j.has_next(); j.next()) {
1451       PointsToNode* f = j.get();
1452       if (PointsToNode::is_base_use(f)) { // Field
1453         f = PointsToNode::get_use_node(f);
1454         if (f == field || !f->as_Field()->is_oop())
1455           continue;
1456         int offs = f->as_Field()->offset();
1457         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1458           add_to_worklist(f);
1459         }
1460       }
1461     }
1462   } else {
1463     assert(base->is_JavaObject(), "sanity");
1464     if (// Skip phantom_object since it is only used to indicate that
1465         // this field's content globally escapes.
1466         (base != phantom_obj) &&
1467         // NULL object node does not have fields.
1468         (base != null_obj)) {
1469       for (EdgeIterator i(base); i.has_next(); i.next()) {
1470         PointsToNode* f = i.get();
1471         // Skip arraycopy edge since store to destination object field
1472         // does not update value in source object field.
1473         if (f->is_Arraycopy()) {
1474           assert(base->arraycopy_dst(), "sanity");
1475           continue;
1476         }
1477         if (f == field || !f->as_Field()->is_oop())
1478           continue;
1479         int offs = f->as_Field()->offset();
1480         if (offs == offset || offset == Type::OffsetBot || offs == Type::OffsetBot) {
1481           add_to_worklist(f);
1482         }
1483       }
1484     }
1485   }
1486 }
1487 
1488 // Find fields which have unknown value.
1489 int ConnectionGraph::find_field_value(FieldNode* field) {
1490   // Escaped fields should have init value already.
1491   assert(field->escape_state() == PointsToNode::NoEscape, "sanity");
1492   int new_edges = 0;
1493   for (BaseIterator i(field); i.has_next(); i.next()) {
1494     PointsToNode* base = i.get();
1495     if (base->is_JavaObject()) {
1496       // Skip Allocate's fields which will be processed later.
1497       if (base->ideal_node()->is_Allocate())
1498         return 0;
1499       assert(base == null_obj, "only NULL ptr base expected here");
1500     }
1501   }
1502   if (add_edge(field, phantom_obj)) {
1503     // New edge was added
1504     new_edges++;
1505     add_field_uses_to_worklist(field);
1506   }
1507   return new_edges;
1508 }
1509 
1510 // Find fields initializing values for allocations.
1511 int ConnectionGraph::find_init_values(JavaObjectNode* pta, PointsToNode* init_val, PhaseTransform* phase) {
1512   assert(pta->escape_state() == PointsToNode::NoEscape, "Not escaped Allocate nodes only");
1513   int new_edges = 0;
1514   Node* alloc = pta->ideal_node();
1515   if (init_val == phantom_obj) {
1516     // Do nothing for Allocate nodes since its fields values are
1517     // "known" unless they are initialized by arraycopy/clone.
1518     if (alloc->is_Allocate() && !pta->arraycopy_dst())
1519       return 0;
1520     assert(pta->arraycopy_dst() || alloc->as_CallStaticJava(), "sanity");
1521 #ifdef ASSERT
1522     if (!pta->arraycopy_dst() && alloc->as_CallStaticJava()->method() == NULL) {
1523       const char* name = alloc->as_CallStaticJava()->_name;
1524       assert(strncmp(name, "_multianewarray", 15) == 0, "sanity");
1525     }
1526 #endif
1527     // Non-escaped allocation returned from Java or runtime call have
1528     // unknown values in fields.
1529     for (EdgeIterator i(pta); i.has_next(); i.next()) {
1530       PointsToNode* field = i.get();
1531       if (field->is_Field() && field->as_Field()->is_oop()) {
1532         if (add_edge(field, phantom_obj)) {
1533           // New edge was added
1534           new_edges++;
1535           add_field_uses_to_worklist(field->as_Field());
1536         }
1537       }
1538     }
1539     return new_edges;
1540   }
1541   assert(init_val == null_obj, "sanity");
1542   // Do nothing for Call nodes since its fields values are unknown.
1543   if (!alloc->is_Allocate())
1544     return 0;
1545 
1546   InitializeNode* ini = alloc->as_Allocate()->initialization();
1547   bool visited_bottom_offset = false;
1548   GrowableArray<int> offsets_worklist;
1549 
1550   // Check if an oop field's initializing value is recorded and add
1551   // a corresponding NULL if field's value if it is not recorded.
1552   // Connection Graph does not record a default initialization by NULL
1553   // captured by Initialize node.
1554   //
1555   for (EdgeIterator i(pta); i.has_next(); i.next()) {
1556     PointsToNode* field = i.get(); // Field (AddP)
1557     if (!field->is_Field() || !field->as_Field()->is_oop())
1558       continue; // Not oop field
1559     int offset = field->as_Field()->offset();
1560     if (offset == Type::OffsetBot) {
1561       if (!visited_bottom_offset) {
1562         // OffsetBot is used to reference array's element,
1563         // always add reference to NULL to all Field nodes since we don't
1564         // known which element is referenced.
1565         if (add_edge(field, null_obj)) {
1566           // New edge was added
1567           new_edges++;
1568           add_field_uses_to_worklist(field->as_Field());
1569           visited_bottom_offset = true;
1570         }
1571       }
1572     } else {
1573       // Check only oop fields.
1574       const Type* adr_type = field->ideal_node()->as_AddP()->bottom_type();
1575       if (adr_type->isa_rawptr()) {
1576 #ifdef ASSERT
1577         // Raw pointers are used for initializing stores so skip it
1578         // since it should be recorded already
1579         Node* base = get_addp_base(field->ideal_node());
1580         assert(adr_type->isa_rawptr() && base->is_Proj() &&
1581                (base->in(0) == alloc),"unexpected pointer type");
1582 #endif
1583         continue;
1584       }
1585       if (!offsets_worklist.contains(offset)) {
1586         offsets_worklist.append(offset);
1587         Node* value = NULL;
1588         if (ini != NULL) {
1589           // StoreP::memory_type() == T_ADDRESS
1590           BasicType ft = UseCompressedOops ? T_NARROWOOP : T_ADDRESS;
1591           Node* store = ini->find_captured_store(offset, type2aelembytes(ft, true), phase);
1592           // Make sure initializing store has the same type as this AddP.
1593           // This AddP may reference non existing field because it is on a
1594           // dead branch of bimorphic call which is not eliminated yet.
1595           if (store != NULL && store->is_Store() &&
1596               store->as_Store()->memory_type() == ft) {
1597             value = store->in(MemNode::ValueIn);
1598 #ifdef ASSERT
1599             if (VerifyConnectionGraph) {
1600               // Verify that AddP already points to all objects the value points to.
1601               PointsToNode* val = ptnode_adr(value->_idx);
1602               assert((val != NULL), "should be processed already");
1603               PointsToNode* missed_obj = NULL;
1604               if (val->is_JavaObject()) {
1605                 if (!field->points_to(val->as_JavaObject())) {
1606                   missed_obj = val;
1607                 }
1608               } else {
1609                 if (!val->is_LocalVar() || (val->edge_count() == 0)) {
1610                   tty->print_cr("----------init store has invalid value -----");
1611                   store->dump();
1612                   val->dump();
1613                   assert(val->is_LocalVar() && (val->edge_count() > 0), "should be processed already");
1614                 }
1615                 for (EdgeIterator j(val); j.has_next(); j.next()) {
1616                   PointsToNode* obj = j.get();
1617                   if (obj->is_JavaObject()) {
1618                     if (!field->points_to(obj->as_JavaObject())) {
1619                       missed_obj = obj;
1620                       break;
1621                     }
1622                   }
1623                 }
1624               }
1625               if (missed_obj != NULL) {
1626                 tty->print_cr("----------field---------------------------------");
1627                 field->dump();
1628                 tty->print_cr("----------missed referernce to object-----------");
1629                 missed_obj->dump();
1630                 tty->print_cr("----------object referernced by init store -----");
1631                 store->dump();
1632                 val->dump();
1633                 assert(!field->points_to(missed_obj->as_JavaObject()), "missed JavaObject reference");
1634               }
1635             }
1636 #endif
1637           } else {
1638             // There could be initializing stores which follow allocation.
1639             // For example, a volatile field store is not collected
1640             // by Initialize node.
1641             //
1642             // Need to check for dependent loads to separate such stores from
1643             // stores which follow loads. For now, add initial value NULL so
1644             // that compare pointers optimization works correctly.
1645           }
1646         }
1647         if (value == NULL) {
1648           // A field's initializing value was not recorded. Add NULL.
1649           if (add_edge(field, null_obj)) {
1650             // New edge was added
1651             new_edges++;
1652             add_field_uses_to_worklist(field->as_Field());
1653           }
1654         }
1655       }
1656     }
1657   }
1658   return new_edges;
1659 }
1660 
1661 // Adjust scalar_replaceable state after Connection Graph is built.
1662 void ConnectionGraph::adjust_scalar_replaceable_state(JavaObjectNode* jobj) {
1663   // Search for non-escaping objects which are not scalar replaceable
1664   // and mark them to propagate the state to referenced objects.
1665 
1666   // 1. An object is not scalar replaceable if the field into which it is
1667   // stored has unknown offset (stored into unknown element of an array).
1668   //
1669   for (UseIterator i(jobj); i.has_next(); i.next()) {
1670     PointsToNode* use = i.get();
1671     if (use->is_Arraycopy()) {
1672       continue;
1673     }
1674     if (use->is_Field()) {
1675       FieldNode* field = use->as_Field();
1676       assert(field->is_oop() && field->scalar_replaceable(), "sanity");
1677       if (field->offset() == Type::OffsetBot) {
1678         jobj->set_scalar_replaceable(false);
1679         return;
1680       }
1681       // 2. An object is not scalar replaceable if the field into which it is
1682       // stored has multiple bases one of which is null.
1683       if (field->base_count() > 1) {
1684         for (BaseIterator i(field); i.has_next(); i.next()) {
1685           PointsToNode* base = i.get();
1686           if (base == null_obj) {
1687             jobj->set_scalar_replaceable(false);
1688             return;
1689           }
1690         }
1691       }
1692     }
1693     assert(use->is_Field() || use->is_LocalVar(), "sanity");
1694     // 3. An object is not scalar replaceable if it is merged with other objects.
1695     for (EdgeIterator j(use); j.has_next(); j.next()) {
1696       PointsToNode* ptn = j.get();
1697       if (ptn->is_JavaObject() && ptn != jobj) {
1698         // Mark all objects.
1699         jobj->set_scalar_replaceable(false);
1700          ptn->set_scalar_replaceable(false);
1701       }
1702     }
1703     if (!jobj->scalar_replaceable()) {
1704       return;
1705     }
1706   }
1707 
1708   for (EdgeIterator j(jobj); j.has_next(); j.next()) {
1709     if (j.get()->is_Arraycopy()) {
1710       continue;
1711     }
1712 
1713     // Non-escaping object node should point only to field nodes.
1714     FieldNode* field = j.get()->as_Field();
1715     int offset = field->as_Field()->offset();
1716 
1717     // 4. An object is not scalar replaceable if it has a field with unknown
1718     // offset (array's element is accessed in loop).
1719     if (offset == Type::OffsetBot) {
1720       jobj->set_scalar_replaceable(false);
1721       return;
1722     }
1723     // 5. Currently an object is not scalar replaceable if a LoadStore node
1724     // access its field since the field value is unknown after it.
1725     //
1726     Node* n = field->ideal_node();
1727     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1728       if (n->fast_out(i)->is_LoadStore()) {
1729         jobj->set_scalar_replaceable(false);
1730         return;
1731       }
1732     }
1733 
1734     // 6. Or the address may point to more then one object. This may produce
1735     // the false positive result (set not scalar replaceable)
1736     // since the flow-insensitive escape analysis can't separate
1737     // the case when stores overwrite the field's value from the case
1738     // when stores happened on different control branches.
1739     //
1740     // Note: it will disable scalar replacement in some cases:
1741     //
1742     //    Point p[] = new Point[1];
1743     //    p[0] = new Point(); // Will be not scalar replaced
1744     //
1745     // but it will save us from incorrect optimizations in next cases:
1746     //
1747     //    Point p[] = new Point[1];
1748     //    if ( x ) p[0] = new Point(); // Will be not scalar replaced
1749     //
1750     if (field->base_count() > 1) {
1751       for (BaseIterator i(field); i.has_next(); i.next()) {
1752         PointsToNode* base = i.get();
1753         // Don't take into account LocalVar nodes which
1754         // may point to only one object which should be also
1755         // this field's base by now.
1756         if (base->is_JavaObject() && base != jobj) {
1757           // Mark all bases.
1758           jobj->set_scalar_replaceable(false);
1759           base->set_scalar_replaceable(false);
1760         }
1761       }
1762     }
1763   }
1764 }
1765 
1766 #ifdef ASSERT
1767 void ConnectionGraph::verify_connection_graph(
1768                          GrowableArray<PointsToNode*>&   ptnodes_worklist,
1769                          GrowableArray<JavaObjectNode*>& non_escaped_worklist,
1770                          GrowableArray<JavaObjectNode*>& java_objects_worklist,
1771                          GrowableArray<Node*>& addp_worklist) {
1772   // Verify that graph is complete - no new edges could be added.
1773   int java_objects_length = java_objects_worklist.length();
1774   int non_escaped_length  = non_escaped_worklist.length();
1775   int new_edges = 0;
1776   for (int next = 0; next < java_objects_length; ++next) {
1777     JavaObjectNode* ptn = java_objects_worklist.at(next);
1778     new_edges += add_java_object_edges(ptn, true);
1779   }
1780   assert(new_edges == 0, "graph was not complete");
1781   // Verify that escape state is final.
1782   int length = non_escaped_worklist.length();
1783   find_non_escaped_objects(ptnodes_worklist, non_escaped_worklist);
1784   assert((non_escaped_length == non_escaped_worklist.length()) &&
1785          (non_escaped_length == length) &&
1786          (_worklist.length() == 0), "escape state was not final");
1787 
1788   // Verify fields information.
1789   int addp_length = addp_worklist.length();
1790   for (int next = 0; next < addp_length; ++next ) {
1791     Node* n = addp_worklist.at(next);
1792     FieldNode* field = ptnode_adr(n->_idx)->as_Field();
1793     if (field->is_oop()) {
1794       // Verify that field has all bases
1795       Node* base = get_addp_base(n);
1796       PointsToNode* ptn = ptnode_adr(base->_idx);
1797       if (ptn->is_JavaObject()) {
1798         assert(field->has_base(ptn->as_JavaObject()), "sanity");
1799       } else {
1800         assert(ptn->is_LocalVar(), "sanity");
1801         for (EdgeIterator i(ptn); i.has_next(); i.next()) {
1802           PointsToNode* e = i.get();
1803           if (e->is_JavaObject()) {
1804             assert(field->has_base(e->as_JavaObject()), "sanity");
1805           }
1806         }
1807       }
1808       // Verify that all fields have initializing values.
1809       if (field->edge_count() == 0) {
1810         tty->print_cr("----------field does not have references----------");
1811         field->dump();
1812         for (BaseIterator i(field); i.has_next(); i.next()) {
1813           PointsToNode* base = i.get();
1814           tty->print_cr("----------field has next base---------------------");
1815           base->dump();
1816           if (base->is_JavaObject() && (base != phantom_obj) && (base != null_obj)) {
1817             tty->print_cr("----------base has fields-------------------------");
1818             for (EdgeIterator j(base); j.has_next(); j.next()) {
1819               j.get()->dump();
1820             }
1821             tty->print_cr("----------base has references---------------------");
1822             for (UseIterator j(base); j.has_next(); j.next()) {
1823               j.get()->dump();
1824             }
1825           }
1826         }
1827         for (UseIterator i(field); i.has_next(); i.next()) {
1828           i.get()->dump();
1829         }
1830         assert(field->edge_count() > 0, "sanity");
1831       }
1832     }
1833   }
1834 }
1835 #endif
1836 
1837 // Optimize ideal graph.
1838 void ConnectionGraph::optimize_ideal_graph(GrowableArray<Node*>& ptr_cmp_worklist,
1839                                            GrowableArray<Node*>& storestore_worklist) {
1840   Compile* C = _compile;
1841   PhaseIterGVN* igvn = _igvn;
1842   if (EliminateLocks) {
1843     // Mark locks before changing ideal graph.
1844     int cnt = C->macro_count();
1845     for( int i=0; i < cnt; i++ ) {
1846       Node *n = C->macro_node(i);
1847       if (n->is_AbstractLock()) { // Lock and Unlock nodes
1848         AbstractLockNode* alock = n->as_AbstractLock();
1849         if (!alock->is_non_esc_obj()) {
1850           if (not_global_escape(alock->obj_node())) {
1851             assert(!alock->is_eliminated() || alock->is_coarsened(), "sanity");
1852             // The lock could be marked eliminated by lock coarsening
1853             // code during first IGVN before EA. Replace coarsened flag
1854             // to eliminate all associated locks/unlocks.
1855 #ifdef ASSERT
1856             alock->log_lock_optimization(C, "eliminate_lock_set_non_esc3");
1857 #endif
1858             alock->set_non_esc_obj();
1859           }
1860         }
1861       }
1862     }
1863   }
1864 
1865   if (OptimizePtrCompare) {
1866     // Add ConI(#CC_GT) and ConI(#CC_EQ).
1867     _pcmp_neq = igvn->makecon(TypeInt::CC_GT);
1868     _pcmp_eq = igvn->makecon(TypeInt::CC_EQ);
1869     // Optimize objects compare.
1870     while (ptr_cmp_worklist.length() != 0) {
1871       Node *n = ptr_cmp_worklist.pop();
1872       Node *res = optimize_ptr_compare(n);
1873       if (res != NULL) {
1874 #ifndef PRODUCT
1875         if (PrintOptimizePtrCompare) {
1876           tty->print_cr("++++ Replaced: %d %s(%d,%d) --> %s", n->_idx, (n->Opcode() == Op_CmpP ? "CmpP" : "CmpN"), n->in(1)->_idx, n->in(2)->_idx, (res == _pcmp_eq ? "EQ" : "NotEQ"));
1877           if (Verbose) {
1878             n->dump(1);
1879           }
1880         }
1881 #endif
1882         igvn->replace_node(n, res);
1883       }
1884     }
1885     // cleanup
1886     if (_pcmp_neq->outcnt() == 0)
1887       igvn->hash_delete(_pcmp_neq);
1888     if (_pcmp_eq->outcnt()  == 0)
1889       igvn->hash_delete(_pcmp_eq);
1890   }
1891 
1892   // For MemBarStoreStore nodes added in library_call.cpp, check
1893   // escape status of associated AllocateNode and optimize out
1894   // MemBarStoreStore node if the allocated object never escapes.
1895   while (storestore_worklist.length() != 0) {
1896     Node *n = storestore_worklist.pop();
1897     MemBarStoreStoreNode *storestore = n ->as_MemBarStoreStore();
1898     Node *alloc = storestore->in(MemBarNode::Precedent)->in(0);
1899     assert (alloc->is_Allocate(), "storestore should point to AllocateNode");
1900     if (not_global_escape(alloc)) {
1901       MemBarNode* mb = MemBarNode::make(C, Op_MemBarCPUOrder, Compile::AliasIdxBot);
1902       mb->init_req(TypeFunc::Memory, storestore->in(TypeFunc::Memory));
1903       mb->init_req(TypeFunc::Control, storestore->in(TypeFunc::Control));
1904       igvn->register_new_node_with_optimizer(mb);
1905       igvn->replace_node(storestore, mb);
1906     }
1907   }
1908 }
1909 
1910 // Optimize objects compare.
1911 Node* ConnectionGraph::optimize_ptr_compare(Node* n) {
1912   assert(OptimizePtrCompare, "sanity");
1913   PointsToNode* ptn1 = ptnode_adr(n->in(1)->_idx);
1914   PointsToNode* ptn2 = ptnode_adr(n->in(2)->_idx);
1915   JavaObjectNode* jobj1 = unique_java_object(n->in(1));
1916   JavaObjectNode* jobj2 = unique_java_object(n->in(2));
1917   assert(ptn1->is_JavaObject() || ptn1->is_LocalVar(), "sanity");
1918   assert(ptn2->is_JavaObject() || ptn2->is_LocalVar(), "sanity");
1919 
1920   // Check simple cases first.
1921   if (jobj1 != NULL) {
1922     if (jobj1->escape_state() == PointsToNode::NoEscape) {
1923       if (jobj1 == jobj2) {
1924         // Comparing the same not escaping object.
1925         return _pcmp_eq;
1926       }
1927       Node* obj = jobj1->ideal_node();
1928       // Comparing not escaping allocation.
1929       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1930           !ptn2->points_to(jobj1)) {
1931         return _pcmp_neq; // This includes nullness check.
1932       }
1933     }
1934   }
1935   if (jobj2 != NULL) {
1936     if (jobj2->escape_state() == PointsToNode::NoEscape) {
1937       Node* obj = jobj2->ideal_node();
1938       // Comparing not escaping allocation.
1939       if ((obj->is_Allocate() || obj->is_CallStaticJava()) &&
1940           !ptn1->points_to(jobj2)) {
1941         return _pcmp_neq; // This includes nullness check.
1942       }
1943     }
1944   }
1945   if (jobj1 != NULL && jobj1 != phantom_obj &&
1946       jobj2 != NULL && jobj2 != phantom_obj &&
1947       jobj1->ideal_node()->is_Con() &&
1948       jobj2->ideal_node()->is_Con()) {
1949     // Klass or String constants compare. Need to be careful with
1950     // compressed pointers - compare types of ConN and ConP instead of nodes.
1951     const Type* t1 = jobj1->ideal_node()->get_ptr_type();
1952     const Type* t2 = jobj2->ideal_node()->get_ptr_type();
1953     if (t1->make_ptr() == t2->make_ptr()) {
1954       return _pcmp_eq;
1955     } else {
1956       return _pcmp_neq;
1957     }
1958   }
1959   if (ptn1->meet(ptn2)) {
1960     return NULL; // Sets are not disjoint
1961   }
1962 
1963   // Sets are disjoint.
1964   bool set1_has_unknown_ptr = ptn1->points_to(phantom_obj);
1965   bool set2_has_unknown_ptr = ptn2->points_to(phantom_obj);
1966   bool set1_has_null_ptr    = ptn1->points_to(null_obj);
1967   bool set2_has_null_ptr    = ptn2->points_to(null_obj);
1968   if ((set1_has_unknown_ptr && set2_has_null_ptr) ||
1969       (set2_has_unknown_ptr && set1_has_null_ptr)) {
1970     // Check nullness of unknown object.
1971     return NULL;
1972   }
1973 
1974   // Disjointness by itself is not sufficient since
1975   // alias analysis is not complete for escaped objects.
1976   // Disjoint sets are definitely unrelated only when
1977   // at least one set has only not escaping allocations.
1978   if (!set1_has_unknown_ptr && !set1_has_null_ptr) {
1979     if (ptn1->non_escaping_allocation()) {
1980       return _pcmp_neq;
1981     }
1982   }
1983   if (!set2_has_unknown_ptr && !set2_has_null_ptr) {
1984     if (ptn2->non_escaping_allocation()) {
1985       return _pcmp_neq;
1986     }
1987   }
1988   return NULL;
1989 }
1990 
1991 // Connection Graph constuction functions.
1992 
1993 void ConnectionGraph::add_local_var(Node *n, PointsToNode::EscapeState es) {
1994   PointsToNode* ptadr = _nodes.at(n->_idx);
1995   if (ptadr != NULL) {
1996     assert(ptadr->is_LocalVar() && ptadr->ideal_node() == n, "sanity");
1997     return;
1998   }
1999   Compile* C = _compile;
2000   ptadr = new (C->comp_arena()) LocalVarNode(this, n, es);
2001   _nodes.at_put(n->_idx, ptadr);
2002 }
2003 
2004 void ConnectionGraph::add_java_object(Node *n, PointsToNode::EscapeState es) {
2005   PointsToNode* ptadr = _nodes.at(n->_idx);
2006   if (ptadr != NULL) {
2007     assert(ptadr->is_JavaObject() && ptadr->ideal_node() == n, "sanity");
2008     return;
2009   }
2010   Compile* C = _compile;
2011   ptadr = new (C->comp_arena()) JavaObjectNode(this, n, es);
2012   _nodes.at_put(n->_idx, ptadr);
2013 }
2014 
2015 void ConnectionGraph::add_field(Node *n, PointsToNode::EscapeState es, int offset) {
2016   PointsToNode* ptadr = _nodes.at(n->_idx);
2017   if (ptadr != NULL) {
2018     assert(ptadr->is_Field() && ptadr->ideal_node() == n, "sanity");
2019     return;
2020   }
2021   bool unsafe = false;
2022   bool is_oop = is_oop_field(n, offset, &unsafe);
2023   if (unsafe) {
2024     es = PointsToNode::GlobalEscape;
2025   }
2026   Compile* C = _compile;
2027   FieldNode* field = new (C->comp_arena()) FieldNode(this, n, es, offset, is_oop);
2028   _nodes.at_put(n->_idx, field);
2029 }
2030 
2031 void ConnectionGraph::add_arraycopy(Node *n, PointsToNode::EscapeState es,
2032                                     PointsToNode* src, PointsToNode* dst) {
2033   assert(!src->is_Field() && !dst->is_Field(), "only for JavaObject and LocalVar");
2034   assert((src != null_obj) && (dst != null_obj), "not for ConP NULL");
2035   PointsToNode* ptadr = _nodes.at(n->_idx);
2036   if (ptadr != NULL) {
2037     assert(ptadr->is_Arraycopy() && ptadr->ideal_node() == n, "sanity");
2038     return;
2039   }
2040   Compile* C = _compile;
2041   ptadr = new (C->comp_arena()) ArraycopyNode(this, n, es);
2042   _nodes.at_put(n->_idx, ptadr);
2043   // Add edge from arraycopy node to source object.
2044   (void)add_edge(ptadr, src);
2045   src->set_arraycopy_src();
2046   // Add edge from destination object to arraycopy node.
2047   (void)add_edge(dst, ptadr);
2048   dst->set_arraycopy_dst();
2049 }
2050 
2051 bool ConnectionGraph::is_oop_field(Node* n, int offset, bool* unsafe) {
2052   const Type* adr_type = n->as_AddP()->bottom_type();
2053   BasicType bt = T_INT;
2054   if (offset == Type::OffsetBot) {
2055     // Check only oop fields.
2056     if (!adr_type->isa_aryptr() ||
2057         (adr_type->isa_aryptr()->klass() == NULL) ||
2058          adr_type->isa_aryptr()->klass()->is_obj_array_klass()) {
2059       // OffsetBot is used to reference array's element. Ignore first AddP.
2060       if (find_second_addp(n, n->in(AddPNode::Base)) == NULL) {
2061         bt = T_OBJECT;
2062       }
2063     }
2064   } else if (offset != oopDesc::klass_offset_in_bytes()) {
2065     if (adr_type->isa_instptr()) {
2066       ciField* field = _compile->alias_type(adr_type->isa_instptr())->field();
2067       if (field != NULL) {
2068         bt = field->layout_type();
2069       } else {
2070         // Check for unsafe oop field access
2071         if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2072             n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2073             n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2074           bt = T_OBJECT;
2075           (*unsafe) = true;
2076         }
2077       }
2078     } else if (adr_type->isa_aryptr()) {
2079       if (offset == arrayOopDesc::length_offset_in_bytes()) {
2080         // Ignore array length load.
2081       } else if (find_second_addp(n, n->in(AddPNode::Base)) != NULL) {
2082         // Ignore first AddP.
2083       } else {
2084         const Type* elemtype = adr_type->isa_aryptr()->elem();
2085         bt = elemtype->array_element_basic_type();
2086       }
2087     } else if (adr_type->isa_rawptr() || adr_type->isa_klassptr()) {
2088       // Allocation initialization, ThreadLocal field access, unsafe access
2089       if (n->has_out_with(Op_StoreP, Op_LoadP, Op_StoreN, Op_LoadN) ||
2090           n->has_out_with(Op_GetAndSetP, Op_GetAndSetN, Op_CompareAndExchangeP, Op_CompareAndExchangeN) ||
2091           n->has_out_with(Op_CompareAndSwapP, Op_CompareAndSwapN, Op_WeakCompareAndSwapP, Op_WeakCompareAndSwapN)) {
2092         bt = T_OBJECT;
2093       }
2094     }
2095   }
2096   return (bt == T_OBJECT || bt == T_NARROWOOP || bt == T_ARRAY);
2097 }
2098 
2099 // Returns unique pointed java object or NULL.
2100 JavaObjectNode* ConnectionGraph::unique_java_object(Node *n) {
2101   assert(!_collecting, "should not call when contructed graph");
2102   // If the node was created after the escape computation we can't answer.
2103   uint idx = n->_idx;
2104   if (idx >= nodes_size()) {
2105     return NULL;
2106   }
2107   PointsToNode* ptn = ptnode_adr(idx);
2108   if (ptn->is_JavaObject()) {
2109     return ptn->as_JavaObject();
2110   }
2111   assert(ptn->is_LocalVar(), "sanity");
2112   // Check all java objects it points to.
2113   JavaObjectNode* jobj = NULL;
2114   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2115     PointsToNode* e = i.get();
2116     if (e->is_JavaObject()) {
2117       if (jobj == NULL) {
2118         jobj = e->as_JavaObject();
2119       } else if (jobj != e) {
2120         return NULL;
2121       }
2122     }
2123   }
2124   return jobj;
2125 }
2126 
2127 // Return true if this node points only to non-escaping allocations.
2128 bool PointsToNode::non_escaping_allocation() {
2129   if (is_JavaObject()) {
2130     Node* n = ideal_node();
2131     if (n->is_Allocate() || n->is_CallStaticJava()) {
2132       return (escape_state() == PointsToNode::NoEscape);
2133     } else {
2134       return false;
2135     }
2136   }
2137   assert(is_LocalVar(), "sanity");
2138   // Check all java objects it points to.
2139   for (EdgeIterator i(this); i.has_next(); i.next()) {
2140     PointsToNode* e = i.get();
2141     if (e->is_JavaObject()) {
2142       Node* n = e->ideal_node();
2143       if ((e->escape_state() != PointsToNode::NoEscape) ||
2144           !(n->is_Allocate() || n->is_CallStaticJava())) {
2145         return false;
2146       }
2147     }
2148   }
2149   return true;
2150 }
2151 
2152 // Return true if we know the node does not escape globally.
2153 bool ConnectionGraph::not_global_escape(Node *n) {
2154   assert(!_collecting, "should not call during graph construction");
2155   // If the node was created after the escape computation we can't answer.
2156   uint idx = n->_idx;
2157   if (idx >= nodes_size()) {
2158     return false;
2159   }
2160   PointsToNode* ptn = ptnode_adr(idx);
2161   PointsToNode::EscapeState es = ptn->escape_state();
2162   // If we have already computed a value, return it.
2163   if (es >= PointsToNode::GlobalEscape)
2164     return false;
2165   if (ptn->is_JavaObject()) {
2166     return true; // (es < PointsToNode::GlobalEscape);
2167   }
2168   assert(ptn->is_LocalVar(), "sanity");
2169   // Check all java objects it points to.
2170   for (EdgeIterator i(ptn); i.has_next(); i.next()) {
2171     if (i.get()->escape_state() >= PointsToNode::GlobalEscape)
2172       return false;
2173   }
2174   return true;
2175 }
2176 
2177 
2178 // Helper functions
2179 
2180 // Return true if this node points to specified node or nodes it points to.
2181 bool PointsToNode::points_to(JavaObjectNode* ptn) const {
2182   if (is_JavaObject()) {
2183     return (this == ptn);
2184   }
2185   assert(is_LocalVar() || is_Field(), "sanity");
2186   for (EdgeIterator i(this); i.has_next(); i.next()) {
2187     if (i.get() == ptn)
2188       return true;
2189   }
2190   return false;
2191 }
2192 
2193 // Return true if one node points to an other.
2194 bool PointsToNode::meet(PointsToNode* ptn) {
2195   if (this == ptn) {
2196     return true;
2197   } else if (ptn->is_JavaObject()) {
2198     return this->points_to(ptn->as_JavaObject());
2199   } else if (this->is_JavaObject()) {
2200     return ptn->points_to(this->as_JavaObject());
2201   }
2202   assert(this->is_LocalVar() && ptn->is_LocalVar(), "sanity");
2203   int ptn_count =  ptn->edge_count();
2204   for (EdgeIterator i(this); i.has_next(); i.next()) {
2205     PointsToNode* this_e = i.get();
2206     for (int j = 0; j < ptn_count; j++) {
2207       if (this_e == ptn->edge(j))
2208         return true;
2209     }
2210   }
2211   return false;
2212 }
2213 
2214 #ifdef ASSERT
2215 // Return true if bases point to this java object.
2216 bool FieldNode::has_base(JavaObjectNode* jobj) const {
2217   for (BaseIterator i(this); i.has_next(); i.next()) {
2218     if (i.get() == jobj)
2219       return true;
2220   }
2221   return false;
2222 }
2223 #endif
2224 
2225 int ConnectionGraph::address_offset(Node* adr, PhaseTransform *phase) {
2226   const Type *adr_type = phase->type(adr);
2227   if (adr->is_AddP() && adr_type->isa_oopptr() == NULL &&
2228       adr->in(AddPNode::Address)->is_Proj() &&
2229       adr->in(AddPNode::Address)->in(0)->is_Allocate()) {
2230     // We are computing a raw address for a store captured by an Initialize
2231     // compute an appropriate address type. AddP cases #3 and #5 (see below).
2232     int offs = (int)phase->find_intptr_t_con(adr->in(AddPNode::Offset), Type::OffsetBot);
2233     assert(offs != Type::OffsetBot ||
2234            adr->in(AddPNode::Address)->in(0)->is_AllocateArray(),
2235            "offset must be a constant or it is initialization of array");
2236     return offs;
2237   }
2238   const TypePtr *t_ptr = adr_type->isa_ptr();
2239   assert(t_ptr != NULL, "must be a pointer type");
2240   return t_ptr->offset();
2241 }
2242 
2243 Node* ConnectionGraph::get_addp_base(Node *addp) {
2244   assert(addp->is_AddP(), "must be AddP");
2245   //
2246   // AddP cases for Base and Address inputs:
2247   // case #1. Direct object's field reference:
2248   //     Allocate
2249   //       |
2250   //     Proj #5 ( oop result )
2251   //       |
2252   //     CheckCastPP (cast to instance type)
2253   //      | |
2254   //     AddP  ( base == address )
2255   //
2256   // case #2. Indirect object's field reference:
2257   //      Phi
2258   //       |
2259   //     CastPP (cast to instance type)
2260   //      | |
2261   //     AddP  ( base == address )
2262   //
2263   // case #3. Raw object's field reference for Initialize node:
2264   //      Allocate
2265   //        |
2266   //      Proj #5 ( oop result )
2267   //  top   |
2268   //     \  |
2269   //     AddP  ( base == top )
2270   //
2271   // case #4. Array's element reference:
2272   //   {CheckCastPP | CastPP}
2273   //     |  | |
2274   //     |  AddP ( array's element offset )
2275   //     |  |
2276   //     AddP ( array's offset )
2277   //
2278   // case #5. Raw object's field reference for arraycopy stub call:
2279   //          The inline_native_clone() case when the arraycopy stub is called
2280   //          after the allocation before Initialize and CheckCastPP nodes.
2281   //      Allocate
2282   //        |
2283   //      Proj #5 ( oop result )
2284   //       | |
2285   //       AddP  ( base == address )
2286   //
2287   // case #6. Constant Pool, ThreadLocal, CastX2P or
2288   //          Raw object's field reference:
2289   //      {ConP, ThreadLocal, CastX2P, raw Load}
2290   //  top   |
2291   //     \  |
2292   //     AddP  ( base == top )
2293   //
2294   // case #7. Klass's field reference.
2295   //      LoadKlass
2296   //       | |
2297   //       AddP  ( base == address )
2298   //
2299   // case #8. narrow Klass's field reference.
2300   //      LoadNKlass
2301   //       |
2302   //      DecodeN
2303   //       | |
2304   //       AddP  ( base == address )
2305   //
2306   // case #9. Mixed unsafe access
2307   //    {instance}
2308   //        |
2309   //      CheckCastPP (raw)
2310   //  top   |
2311   //     \  |
2312   //     AddP  ( base == top )
2313   //
2314   Node *base = addp->in(AddPNode::Base);
2315   if (base->uncast()->is_top()) { // The AddP case #3 and #6 and #9.
2316     base = addp->in(AddPNode::Address);
2317     while (base->is_AddP()) {
2318       // Case #6 (unsafe access) may have several chained AddP nodes.
2319       assert(base->in(AddPNode::Base)->uncast()->is_top(), "expected unsafe access address only");
2320       base = base->in(AddPNode::Address);
2321     }
2322     if (base->Opcode() == Op_CheckCastPP &&
2323         base->bottom_type()->isa_rawptr() &&
2324         _igvn->type(base->in(1))->isa_oopptr()) {
2325       base = base->in(1); // Case #9
2326     } else {
2327       Node* uncast_base = base->uncast();
2328       int opcode = uncast_base->Opcode();
2329       assert(opcode == Op_ConP || opcode == Op_ThreadLocal ||
2330              opcode == Op_CastX2P || uncast_base->is_DecodeNarrowPtr() ||
2331              (uncast_base->is_Mem() && (uncast_base->bottom_type()->isa_rawptr() != NULL)) ||
2332              (uncast_base->is_Proj() && uncast_base->in(0)->is_Allocate()), "sanity");
2333     }
2334   }
2335   return base;
2336 }
2337 
2338 Node* ConnectionGraph::find_second_addp(Node* addp, Node* n) {
2339   assert(addp->is_AddP() && addp->outcnt() > 0, "Don't process dead nodes");
2340   Node* addp2 = addp->raw_out(0);
2341   if (addp->outcnt() == 1 && addp2->is_AddP() &&
2342       addp2->in(AddPNode::Base) == n &&
2343       addp2->in(AddPNode::Address) == addp) {
2344     assert(addp->in(AddPNode::Base) == n, "expecting the same base");
2345     //
2346     // Find array's offset to push it on worklist first and
2347     // as result process an array's element offset first (pushed second)
2348     // to avoid CastPP for the array's offset.
2349     // Otherwise the inserted CastPP (LocalVar) will point to what
2350     // the AddP (Field) points to. Which would be wrong since
2351     // the algorithm expects the CastPP has the same point as
2352     // as AddP's base CheckCastPP (LocalVar).
2353     //
2354     //    ArrayAllocation
2355     //     |
2356     //    CheckCastPP
2357     //     |
2358     //    memProj (from ArrayAllocation CheckCastPP)
2359     //     |  ||
2360     //     |  ||   Int (element index)
2361     //     |  ||    |   ConI (log(element size))
2362     //     |  ||    |   /
2363     //     |  ||   LShift
2364     //     |  ||  /
2365     //     |  AddP (array's element offset)
2366     //     |  |
2367     //     |  | ConI (array's offset: #12(32-bits) or #24(64-bits))
2368     //     | / /
2369     //     AddP (array's offset)
2370     //      |
2371     //     Load/Store (memory operation on array's element)
2372     //
2373     return addp2;
2374   }
2375   return NULL;
2376 }
2377 
2378 //
2379 // Adjust the type and inputs of an AddP which computes the
2380 // address of a field of an instance
2381 //
2382 bool ConnectionGraph::split_AddP(Node *addp, Node *base) {
2383   PhaseGVN* igvn = _igvn;
2384   const TypeOopPtr *base_t = igvn->type(base)->isa_oopptr();
2385   assert(base_t != NULL && base_t->is_known_instance(), "expecting instance oopptr");
2386   const TypeOopPtr *t = igvn->type(addp)->isa_oopptr();
2387   if (t == NULL) {
2388     // We are computing a raw address for a store captured by an Initialize
2389     // compute an appropriate address type (cases #3 and #5).
2390     assert(igvn->type(addp) == TypeRawPtr::NOTNULL, "must be raw pointer");
2391     assert(addp->in(AddPNode::Address)->is_Proj(), "base of raw address must be result projection from allocation");
2392     intptr_t offs = (int)igvn->find_intptr_t_con(addp->in(AddPNode::Offset), Type::OffsetBot);
2393     assert(offs != Type::OffsetBot, "offset must be a constant");
2394     t = base_t->add_offset(offs)->is_oopptr();
2395   }
2396   int inst_id =  base_t->instance_id();
2397   assert(!t->is_known_instance() || t->instance_id() == inst_id,
2398                              "old type must be non-instance or match new type");
2399 
2400   // The type 't' could be subclass of 'base_t'.
2401   // As result t->offset() could be large then base_t's size and it will
2402   // cause the failure in add_offset() with narrow oops since TypeOopPtr()
2403   // constructor verifies correctness of the offset.
2404   //
2405   // It could happened on subclass's branch (from the type profiling
2406   // inlining) which was not eliminated during parsing since the exactness
2407   // of the allocation type was not propagated to the subclass type check.
2408   //
2409   // Or the type 't' could be not related to 'base_t' at all.
2410   // It could happened when CHA type is different from MDO type on a dead path
2411   // (for example, from instanceof check) which is not collapsed during parsing.
2412   //
2413   // Do nothing for such AddP node and don't process its users since
2414   // this code branch will go away.
2415   //
2416   if (!t->is_known_instance() &&
2417       !base_t->klass()->is_subtype_of(t->klass())) {
2418      return false; // bail out
2419   }
2420   const TypeOopPtr *tinst = base_t->add_offset(t->offset())->is_oopptr();
2421   // Do NOT remove the next line: ensure a new alias index is allocated
2422   // for the instance type. Note: C++ will not remove it since the call
2423   // has side effect.
2424   int alias_idx = _compile->get_alias_index(tinst);
2425   igvn->set_type(addp, tinst);
2426   // record the allocation in the node map
2427   set_map(addp, get_map(base->_idx));
2428   // Set addp's Base and Address to 'base'.
2429   Node *abase = addp->in(AddPNode::Base);
2430   Node *adr   = addp->in(AddPNode::Address);
2431   if (adr->is_Proj() && adr->in(0)->is_Allocate() &&
2432       adr->in(0)->_idx == (uint)inst_id) {
2433     // Skip AddP cases #3 and #5.
2434   } else {
2435     assert(!abase->is_top(), "sanity"); // AddP case #3
2436     if (abase != base) {
2437       igvn->hash_delete(addp);
2438       addp->set_req(AddPNode::Base, base);
2439       if (abase == adr) {
2440         addp->set_req(AddPNode::Address, base);
2441       } else {
2442         // AddP case #4 (adr is array's element offset AddP node)
2443 #ifdef ASSERT
2444         const TypeOopPtr *atype = igvn->type(adr)->isa_oopptr();
2445         assert(adr->is_AddP() && atype != NULL &&
2446                atype->instance_id() == inst_id, "array's element offset should be processed first");
2447 #endif
2448       }
2449       igvn->hash_insert(addp);
2450     }
2451   }
2452   // Put on IGVN worklist since at least addp's type was changed above.
2453   record_for_optimizer(addp);
2454   return true;
2455 }
2456 
2457 //
2458 // Create a new version of orig_phi if necessary. Returns either the newly
2459 // created phi or an existing phi.  Sets create_new to indicate whether a new
2460 // phi was created.  Cache the last newly created phi in the node map.
2461 //
2462 PhiNode *ConnectionGraph::create_split_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist, bool &new_created) {
2463   Compile *C = _compile;
2464   PhaseGVN* igvn = _igvn;
2465   new_created = false;
2466   int phi_alias_idx = C->get_alias_index(orig_phi->adr_type());
2467   // nothing to do if orig_phi is bottom memory or matches alias_idx
2468   if (phi_alias_idx == alias_idx) {
2469     return orig_phi;
2470   }
2471   // Have we recently created a Phi for this alias index?
2472   PhiNode *result = get_map_phi(orig_phi->_idx);
2473   if (result != NULL && C->get_alias_index(result->adr_type()) == alias_idx) {
2474     return result;
2475   }
2476   // Previous check may fail when the same wide memory Phi was split into Phis
2477   // for different memory slices. Search all Phis for this region.
2478   if (result != NULL) {
2479     Node* region = orig_phi->in(0);
2480     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
2481       Node* phi = region->fast_out(i);
2482       if (phi->is_Phi() &&
2483           C->get_alias_index(phi->as_Phi()->adr_type()) == alias_idx) {
2484         assert(phi->_idx >= nodes_size(), "only new Phi per instance memory slice");
2485         return phi->as_Phi();
2486       }
2487     }
2488   }
2489   if (C->live_nodes() + 2*NodeLimitFudgeFactor > C->max_node_limit()) {
2490     if (C->do_escape_analysis() == true && !C->failing()) {
2491       // Retry compilation without escape analysis.
2492       // If this is the first failure, the sentinel string will "stick"
2493       // to the Compile object, and the C2Compiler will see it and retry.
2494       C->record_failure(C2Compiler::retry_no_escape_analysis());
2495     }
2496     return NULL;
2497   }
2498   orig_phi_worklist.append_if_missing(orig_phi);
2499   const TypePtr *atype = C->get_adr_type(alias_idx);
2500   result = PhiNode::make(orig_phi->in(0), NULL, Type::MEMORY, atype);
2501   C->copy_node_notes_to(result, orig_phi);
2502   igvn->set_type(result, result->bottom_type());
2503   record_for_optimizer(result);
2504   set_map(orig_phi, result);
2505   new_created = true;
2506   return result;
2507 }
2508 
2509 //
2510 // Return a new version of Memory Phi "orig_phi" with the inputs having the
2511 // specified alias index.
2512 //
2513 PhiNode *ConnectionGraph::split_memory_phi(PhiNode *orig_phi, int alias_idx, GrowableArray<PhiNode *>  &orig_phi_worklist) {
2514   assert(alias_idx != Compile::AliasIdxBot, "can't split out bottom memory");
2515   Compile *C = _compile;
2516   PhaseGVN* igvn = _igvn;
2517   bool new_phi_created;
2518   PhiNode *result = create_split_phi(orig_phi, alias_idx, orig_phi_worklist, new_phi_created);
2519   if (!new_phi_created) {
2520     return result;
2521   }
2522   GrowableArray<PhiNode *>  phi_list;
2523   GrowableArray<uint>  cur_input;
2524   PhiNode *phi = orig_phi;
2525   uint idx = 1;
2526   bool finished = false;
2527   while(!finished) {
2528     while (idx < phi->req()) {
2529       Node *mem = find_inst_mem(phi->in(idx), alias_idx, orig_phi_worklist);
2530       if (mem != NULL && mem->is_Phi()) {
2531         PhiNode *newphi = create_split_phi(mem->as_Phi(), alias_idx, orig_phi_worklist, new_phi_created);
2532         if (new_phi_created) {
2533           // found an phi for which we created a new split, push current one on worklist and begin
2534           // processing new one
2535           phi_list.push(phi);
2536           cur_input.push(idx);
2537           phi = mem->as_Phi();
2538           result = newphi;
2539           idx = 1;
2540           continue;
2541         } else {
2542           mem = newphi;
2543         }
2544       }
2545       if (C->failing()) {
2546         return NULL;
2547       }
2548       result->set_req(idx++, mem);
2549     }
2550 #ifdef ASSERT
2551     // verify that the new Phi has an input for each input of the original
2552     assert( phi->req() == result->req(), "must have same number of inputs.");
2553     assert( result->in(0) != NULL && result->in(0) == phi->in(0), "regions must match");
2554 #endif
2555     // Check if all new phi's inputs have specified alias index.
2556     // Otherwise use old phi.
2557     for (uint i = 1; i < phi->req(); i++) {
2558       Node* in = result->in(i);
2559       assert((phi->in(i) == NULL) == (in == NULL), "inputs must correspond.");
2560     }
2561     // we have finished processing a Phi, see if there are any more to do
2562     finished = (phi_list.length() == 0 );
2563     if (!finished) {
2564       phi = phi_list.pop();
2565       idx = cur_input.pop();
2566       PhiNode *prev_result = get_map_phi(phi->_idx);
2567       prev_result->set_req(idx++, result);
2568       result = prev_result;
2569     }
2570   }
2571   return result;
2572 }
2573 
2574 //
2575 // The next methods are derived from methods in MemNode.
2576 //
2577 Node* ConnectionGraph::step_through_mergemem(MergeMemNode *mmem, int alias_idx, const TypeOopPtr *toop) {
2578   Node *mem = mmem;
2579   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
2580   // means an array I have not precisely typed yet.  Do not do any
2581   // alias stuff with it any time soon.
2582   if (toop->base() != Type::AnyPtr &&
2583       !(toop->klass() != NULL &&
2584         toop->klass()->is_java_lang_Object() &&
2585         toop->offset() == Type::OffsetBot)) {
2586     mem = mmem->memory_at(alias_idx);
2587     // Update input if it is progress over what we have now
2588   }
2589   return mem;
2590 }
2591 
2592 //
2593 // Move memory users to their memory slices.
2594 //
2595 void ConnectionGraph::move_inst_mem(Node* n, GrowableArray<PhiNode *>  &orig_phis) {
2596   Compile* C = _compile;
2597   PhaseGVN* igvn = _igvn;
2598   const TypePtr* tp = igvn->type(n->in(MemNode::Address))->isa_ptr();
2599   assert(tp != NULL, "ptr type");
2600   int alias_idx = C->get_alias_index(tp);
2601   int general_idx = C->get_general_index(alias_idx);
2602 
2603   // Move users first
2604   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2605     Node* use = n->fast_out(i);
2606     if (use->is_MergeMem()) {
2607       MergeMemNode* mmem = use->as_MergeMem();
2608       assert(n == mmem->memory_at(alias_idx), "should be on instance memory slice");
2609       if (n != mmem->memory_at(general_idx) || alias_idx == general_idx) {
2610         continue; // Nothing to do
2611       }
2612       // Replace previous general reference to mem node.
2613       uint orig_uniq = C->unique();
2614       Node* m = find_inst_mem(n, general_idx, orig_phis);
2615       assert(orig_uniq == C->unique(), "no new nodes");
2616       mmem->set_memory_at(general_idx, m);
2617       --imax;
2618       --i;
2619     } else if (use->is_MemBar()) {
2620       assert(!use->is_Initialize(), "initializing stores should not be moved");
2621       if (use->req() > MemBarNode::Precedent &&
2622           use->in(MemBarNode::Precedent) == n) {
2623         // Don't move related membars.
2624         record_for_optimizer(use);
2625         continue;
2626       }
2627       tp = use->as_MemBar()->adr_type()->isa_ptr();
2628       if ((tp != NULL && C->get_alias_index(tp) == alias_idx) ||
2629           alias_idx == general_idx) {
2630         continue; // Nothing to do
2631       }
2632       // Move to general memory slice.
2633       uint orig_uniq = C->unique();
2634       Node* m = find_inst_mem(n, general_idx, orig_phis);
2635       assert(orig_uniq == C->unique(), "no new nodes");
2636       igvn->hash_delete(use);
2637       imax -= use->replace_edge(n, m);
2638       igvn->hash_insert(use);
2639       record_for_optimizer(use);
2640       --i;
2641 #ifdef ASSERT
2642     } else if (use->is_Mem()) {
2643       if (use->Opcode() == Op_StoreCM && use->in(MemNode::OopStore) == n) {
2644         // Don't move related cardmark.
2645         continue;
2646       }
2647       // Memory nodes should have new memory input.
2648       tp = igvn->type(use->in(MemNode::Address))->isa_ptr();
2649       assert(tp != NULL, "ptr type");
2650       int idx = C->get_alias_index(tp);
2651       assert(get_map(use->_idx) != NULL || idx == alias_idx,
2652              "Following memory nodes should have new memory input or be on the same memory slice");
2653     } else if (use->is_Phi()) {
2654       // Phi nodes should be split and moved already.
2655       tp = use->as_Phi()->adr_type()->isa_ptr();
2656       assert(tp != NULL, "ptr type");
2657       int idx = C->get_alias_index(tp);
2658       assert(idx == alias_idx, "Following Phi nodes should be on the same memory slice");
2659     } else {
2660       use->dump();
2661       assert(false, "should not be here");
2662 #endif
2663     }
2664   }
2665 }
2666 
2667 //
2668 // Search memory chain of "mem" to find a MemNode whose address
2669 // is the specified alias index.
2670 //
2671 Node* ConnectionGraph::find_inst_mem(Node *orig_mem, int alias_idx, GrowableArray<PhiNode *>  &orig_phis) {
2672   if (orig_mem == NULL)
2673     return orig_mem;
2674   Compile* C = _compile;
2675   PhaseGVN* igvn = _igvn;
2676   const TypeOopPtr *toop = C->get_adr_type(alias_idx)->isa_oopptr();
2677   bool is_instance = (toop != NULL) && toop->is_known_instance();
2678   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
2679   Node *prev = NULL;
2680   Node *result = orig_mem;
2681   while (prev != result) {
2682     prev = result;
2683     if (result == start_mem)
2684       break;  // hit one of our sentinels
2685     if (result->is_Mem()) {
2686       const Type *at = igvn->type(result->in(MemNode::Address));
2687       if (at == Type::TOP)
2688         break; // Dead
2689       assert (at->isa_ptr() != NULL, "pointer type required.");
2690       int idx = C->get_alias_index(at->is_ptr());
2691       if (idx == alias_idx)
2692         break; // Found
2693       if (!is_instance && (at->isa_oopptr() == NULL ||
2694                            !at->is_oopptr()->is_known_instance())) {
2695         break; // Do not skip store to general memory slice.
2696       }
2697       result = result->in(MemNode::Memory);
2698     }
2699     if (!is_instance)
2700       continue;  // don't search further for non-instance types
2701     // skip over a call which does not affect this memory slice
2702     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
2703       Node *proj_in = result->in(0);
2704       if (proj_in->is_Allocate() && proj_in->_idx == (uint)toop->instance_id()) {
2705         break;  // hit one of our sentinels
2706       } else if (proj_in->is_Call()) {
2707         // ArrayCopy node processed here as well
2708         CallNode *call = proj_in->as_Call();
2709         if (!call->may_modify(toop, igvn)) {
2710           result = call->in(TypeFunc::Memory);
2711         }
2712       } else if (proj_in->is_Initialize()) {
2713         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
2714         // Stop if this is the initialization for the object instance which
2715         // which contains this memory slice, otherwise skip over it.
2716         if (alloc == NULL || alloc->_idx != (uint)toop->instance_id()) {
2717           result = proj_in->in(TypeFunc::Memory);
2718         }
2719       } else if (proj_in->is_MemBar()) {
2720         if (proj_in->in(TypeFunc::Memory)->is_MergeMem() &&
2721             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->is_Proj() &&
2722             proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->is_ArrayCopy()) {
2723           // clone
2724           ArrayCopyNode* ac = proj_in->in(TypeFunc::Memory)->as_MergeMem()->in(Compile::AliasIdxRaw)->in(0)->as_ArrayCopy();
2725           if (ac->may_modify(toop, igvn)) {
2726             break;
2727           }
2728         }
2729         result = proj_in->in(TypeFunc::Memory);
2730       }
2731     } else if (result->is_MergeMem()) {
2732       MergeMemNode *mmem = result->as_MergeMem();
2733       result = step_through_mergemem(mmem, alias_idx, toop);
2734       if (result == mmem->base_memory()) {
2735         // Didn't find instance memory, search through general slice recursively.
2736         result = mmem->memory_at(C->get_general_index(alias_idx));
2737         result = find_inst_mem(result, alias_idx, orig_phis);
2738         if (C->failing()) {
2739           return NULL;
2740         }
2741         mmem->set_memory_at(alias_idx, result);
2742       }
2743     } else if (result->is_Phi() &&
2744                C->get_alias_index(result->as_Phi()->adr_type()) != alias_idx) {
2745       Node *un = result->as_Phi()->unique_input(igvn);
2746       if (un != NULL) {
2747         orig_phis.append_if_missing(result->as_Phi());
2748         result = un;
2749       } else {
2750         break;
2751       }
2752     } else if (result->is_ClearArray()) {
2753       if (!ClearArrayNode::step_through(&result, (uint)toop->instance_id(), igvn)) {
2754         // Can not bypass initialization of the instance
2755         // we are looking for.
2756         break;
2757       }
2758       // Otherwise skip it (the call updated 'result' value).
2759     } else if (result->Opcode() == Op_SCMemProj) {
2760       Node* mem = result->in(0);
2761       Node* adr = NULL;
2762       if (mem->is_LoadStore()) {
2763         adr = mem->in(MemNode::Address);
2764       } else {
2765         assert(mem->Opcode() == Op_EncodeISOArray ||
2766                mem->Opcode() == Op_StrCompressedCopy, "sanity");
2767         adr = mem->in(3); // Memory edge corresponds to destination array
2768       }
2769       const Type *at = igvn->type(adr);
2770       if (at != Type::TOP) {
2771         assert(at->isa_ptr() != NULL, "pointer type required.");
2772         int idx = C->get_alias_index(at->is_ptr());
2773         if (idx == alias_idx) {
2774           // Assert in debug mode
2775           assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
2776           break; // In product mode return SCMemProj node
2777         }
2778       }
2779       result = mem->in(MemNode::Memory);
2780     } else if (result->Opcode() == Op_StrInflatedCopy) {
2781       Node* adr = result->in(3); // Memory edge corresponds to destination array
2782       const Type *at = igvn->type(adr);
2783       if (at != Type::TOP) {
2784         assert(at->isa_ptr() != NULL, "pointer type required.");
2785         int idx = C->get_alias_index(at->is_ptr());
2786         if (idx == alias_idx) {
2787           // Assert in debug mode
2788           assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
2789           break; // In product mode return SCMemProj node
2790         }
2791       }
2792       result = result->in(MemNode::Memory);
2793     }
2794   }
2795   if (result->is_Phi()) {
2796     PhiNode *mphi = result->as_Phi();
2797     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
2798     const TypePtr *t = mphi->adr_type();
2799     if (!is_instance) {
2800       // Push all non-instance Phis on the orig_phis worklist to update inputs
2801       // during Phase 4 if needed.
2802       orig_phis.append_if_missing(mphi);
2803     } else if (C->get_alias_index(t) != alias_idx) {
2804       // Create a new Phi with the specified alias index type.
2805       result = split_memory_phi(mphi, alias_idx, orig_phis);
2806     }
2807   }
2808   // the result is either MemNode, PhiNode, InitializeNode.
2809   return result;
2810 }
2811 
2812 //
2813 //  Convert the types of unescaped object to instance types where possible,
2814 //  propagate the new type information through the graph, and update memory
2815 //  edges and MergeMem inputs to reflect the new type.
2816 //
2817 //  We start with allocations (and calls which may be allocations)  on alloc_worklist.
2818 //  The processing is done in 4 phases:
2819 //
2820 //  Phase 1:  Process possible allocations from alloc_worklist.  Create instance
2821 //            types for the CheckCastPP for allocations where possible.
2822 //            Propagate the new types through users as follows:
2823 //               casts and Phi:  push users on alloc_worklist
2824 //               AddP:  cast Base and Address inputs to the instance type
2825 //                      push any AddP users on alloc_worklist and push any memnode
2826 //                      users onto memnode_worklist.
2827 //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
2828 //            search the Memory chain for a store with the appropriate type
2829 //            address type.  If a Phi is found, create a new version with
2830 //            the appropriate memory slices from each of the Phi inputs.
2831 //            For stores, process the users as follows:
2832 //               MemNode:  push on memnode_worklist
2833 //               MergeMem: push on mergemem_worklist
2834 //  Phase 3:  Process MergeMem nodes from mergemem_worklist.  Walk each memory slice
2835 //            moving the first node encountered of each  instance type to the
2836 //            the input corresponding to its alias index.
2837 //            appropriate memory slice.
2838 //  Phase 4:  Update the inputs of non-instance memory Phis and the Memory input of memnodes.
2839 //
2840 // In the following example, the CheckCastPP nodes are the cast of allocation
2841 // results and the allocation of node 29 is unescaped and eligible to be an
2842 // instance type.
2843 //
2844 // We start with:
2845 //
2846 //     7 Parm #memory
2847 //    10  ConI  "12"
2848 //    19  CheckCastPP   "Foo"
2849 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2850 //    29  CheckCastPP   "Foo"
2851 //    30  AddP  _ 29 29 10  Foo+12  alias_index=4
2852 //
2853 //    40  StoreP  25   7  20   ... alias_index=4
2854 //    50  StoreP  35  40  30   ... alias_index=4
2855 //    60  StoreP  45  50  20   ... alias_index=4
2856 //    70  LoadP    _  60  30   ... alias_index=4
2857 //    80  Phi     75  50  60   Memory alias_index=4
2858 //    90  LoadP    _  80  30   ... alias_index=4
2859 //   100  LoadP    _  80  20   ... alias_index=4
2860 //
2861 //
2862 // Phase 1 creates an instance type for node 29 assigning it an instance id of 24
2863 // and creating a new alias index for node 30.  This gives:
2864 //
2865 //     7 Parm #memory
2866 //    10  ConI  "12"
2867 //    19  CheckCastPP   "Foo"
2868 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2869 //    29  CheckCastPP   "Foo"  iid=24
2870 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2871 //
2872 //    40  StoreP  25   7  20   ... alias_index=4
2873 //    50  StoreP  35  40  30   ... alias_index=6
2874 //    60  StoreP  45  50  20   ... alias_index=4
2875 //    70  LoadP    _  60  30   ... alias_index=6
2876 //    80  Phi     75  50  60   Memory alias_index=4
2877 //    90  LoadP    _  80  30   ... alias_index=6
2878 //   100  LoadP    _  80  20   ... alias_index=4
2879 //
2880 // In phase 2, new memory inputs are computed for the loads and stores,
2881 // And a new version of the phi is created.  In phase 4, the inputs to
2882 // node 80 are updated and then the memory nodes are updated with the
2883 // values computed in phase 2.  This results in:
2884 //
2885 //     7 Parm #memory
2886 //    10  ConI  "12"
2887 //    19  CheckCastPP   "Foo"
2888 //    20  AddP  _ 19 19 10  Foo+12  alias_index=4
2889 //    29  CheckCastPP   "Foo"  iid=24
2890 //    30  AddP  _ 29 29 10  Foo+12  alias_index=6  iid=24
2891 //
2892 //    40  StoreP  25  7   20   ... alias_index=4
2893 //    50  StoreP  35  7   30   ... alias_index=6
2894 //    60  StoreP  45  40  20   ... alias_index=4
2895 //    70  LoadP    _  50  30   ... alias_index=6
2896 //    80  Phi     75  40  60   Memory alias_index=4
2897 //   120  Phi     75  50  50   Memory alias_index=6
2898 //    90  LoadP    _ 120  30   ... alias_index=6
2899 //   100  LoadP    _  80  20   ... alias_index=4
2900 //
2901 void ConnectionGraph::split_unique_types(GrowableArray<Node *>  &alloc_worklist, GrowableArray<ArrayCopyNode*> &arraycopy_worklist) {
2902   GrowableArray<Node *>  memnode_worklist;
2903   GrowableArray<PhiNode *>  orig_phis;
2904   PhaseIterGVN  *igvn = _igvn;
2905   uint new_index_start = (uint) _compile->num_alias_types();
2906   Arena* arena = Thread::current()->resource_area();
2907   VectorSet visited(arena);
2908   ideal_nodes.clear(); // Reset for use with set_map/get_map.
2909   uint unique_old = _compile->unique();
2910 
2911   //  Phase 1:  Process possible allocations from alloc_worklist.
2912   //  Create instance types for the CheckCastPP for allocations where possible.
2913   //
2914   // (Note: don't forget to change the order of the second AddP node on
2915   //  the alloc_worklist if the order of the worklist processing is changed,
2916   //  see the comment in find_second_addp().)
2917   //
2918   while (alloc_worklist.length() != 0) {
2919     Node *n = alloc_worklist.pop();
2920     uint ni = n->_idx;
2921     if (n->is_Call()) {
2922       CallNode *alloc = n->as_Call();
2923       // copy escape information to call node
2924       PointsToNode* ptn = ptnode_adr(alloc->_idx);
2925       PointsToNode::EscapeState es = ptn->escape_state();
2926       // We have an allocation or call which returns a Java object,
2927       // see if it is unescaped.
2928       if (es != PointsToNode::NoEscape || !ptn->scalar_replaceable())
2929         continue;
2930       // Find CheckCastPP for the allocate or for the return value of a call
2931       n = alloc->result_cast();
2932       if (n == NULL) {            // No uses except Initialize node
2933         if (alloc->is_Allocate()) {
2934           // Set the scalar_replaceable flag for allocation
2935           // so it could be eliminated if it has no uses.
2936           alloc->as_Allocate()->_is_scalar_replaceable = true;
2937         }
2938         if (alloc->is_CallStaticJava()) {
2939           // Set the scalar_replaceable flag for boxing method
2940           // so it could be eliminated if it has no uses.
2941           alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2942         }
2943         continue;
2944       }
2945       if (!n->is_CheckCastPP()) { // not unique CheckCastPP.
2946         assert(!alloc->is_Allocate(), "allocation should have unique type");
2947         continue;
2948       }
2949 
2950       // The inline code for Object.clone() casts the allocation result to
2951       // java.lang.Object and then to the actual type of the allocated
2952       // object. Detect this case and use the second cast.
2953       // Also detect j.l.reflect.Array.newInstance(jobject, jint) case when
2954       // the allocation result is cast to java.lang.Object and then
2955       // to the actual Array type.
2956       if (alloc->is_Allocate() && n->as_Type()->type() == TypeInstPtr::NOTNULL
2957           && (alloc->is_AllocateArray() ||
2958               igvn->type(alloc->in(AllocateNode::KlassNode)) != TypeKlassPtr::OBJECT)) {
2959         Node *cast2 = NULL;
2960         for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2961           Node *use = n->fast_out(i);
2962           if (use->is_CheckCastPP()) {
2963             cast2 = use;
2964             break;
2965           }
2966         }
2967         if (cast2 != NULL) {
2968           n = cast2;
2969         } else {
2970           // Non-scalar replaceable if the allocation type is unknown statically
2971           // (reflection allocation), the object can't be restored during
2972           // deoptimization without precise type.
2973           continue;
2974         }
2975       }
2976 
2977       const TypeOopPtr *t = igvn->type(n)->isa_oopptr();
2978       if (t == NULL)
2979         continue;  // not a TypeOopPtr
2980       if (!t->klass_is_exact())
2981         continue; // not an unique type
2982 
2983       if (alloc->is_Allocate()) {
2984         // Set the scalar_replaceable flag for allocation
2985         // so it could be eliminated.
2986         alloc->as_Allocate()->_is_scalar_replaceable = true;
2987       }
2988       if (alloc->is_CallStaticJava()) {
2989         // Set the scalar_replaceable flag for boxing method
2990         // so it could be eliminated.
2991         alloc->as_CallStaticJava()->_is_scalar_replaceable = true;
2992       }
2993       set_escape_state(ptnode_adr(n->_idx), es); // CheckCastPP escape state
2994       // in order for an object to be scalar-replaceable, it must be:
2995       //   - a direct allocation (not a call returning an object)
2996       //   - non-escaping
2997       //   - eligible to be a unique type
2998       //   - not determined to be ineligible by escape analysis
2999       set_map(alloc, n);
3000       set_map(n, alloc);
3001       const TypeOopPtr* tinst = t->cast_to_instance_id(ni);
3002       igvn->hash_delete(n);
3003       igvn->set_type(n,  tinst);
3004       n->raise_bottom_type(tinst);
3005       igvn->hash_insert(n);
3006       record_for_optimizer(n);
3007       if (alloc->is_Allocate() && (t->isa_instptr() || t->isa_aryptr())) {
3008 
3009         // First, put on the worklist all Field edges from Connection Graph
3010         // which is more accurate than putting immediate users from Ideal Graph.
3011         for (EdgeIterator e(ptn); e.has_next(); e.next()) {
3012           PointsToNode* tgt = e.get();
3013           if (tgt->is_Arraycopy()) {
3014             continue;
3015           }
3016           Node* use = tgt->ideal_node();
3017           assert(tgt->is_Field() && use->is_AddP(),
3018                  "only AddP nodes are Field edges in CG");
3019           if (use->outcnt() > 0) { // Don't process dead nodes
3020             Node* addp2 = find_second_addp(use, use->in(AddPNode::Base));
3021             if (addp2 != NULL) {
3022               assert(alloc->is_AllocateArray(),"array allocation was expected");
3023               alloc_worklist.append_if_missing(addp2);
3024             }
3025             alloc_worklist.append_if_missing(use);
3026           }
3027         }
3028 
3029         // An allocation may have an Initialize which has raw stores. Scan
3030         // the users of the raw allocation result and push AddP users
3031         // on alloc_worklist.
3032         Node *raw_result = alloc->proj_out_or_null(TypeFunc::Parms);
3033         assert (raw_result != NULL, "must have an allocation result");
3034         for (DUIterator_Fast imax, i = raw_result->fast_outs(imax); i < imax; i++) {
3035           Node *use = raw_result->fast_out(i);
3036           if (use->is_AddP() && use->outcnt() > 0) { // Don't process dead nodes
3037             Node* addp2 = find_second_addp(use, raw_result);
3038             if (addp2 != NULL) {
3039               assert(alloc->is_AllocateArray(),"array allocation was expected");
3040               alloc_worklist.append_if_missing(addp2);
3041             }
3042             alloc_worklist.append_if_missing(use);
3043           } else if (use->is_MemBar()) {
3044             memnode_worklist.append_if_missing(use);
3045           }
3046         }
3047       }
3048     } else if (n->is_AddP()) {
3049       JavaObjectNode* jobj = unique_java_object(get_addp_base(n));
3050       if (jobj == NULL || jobj == phantom_obj) {
3051 #ifdef ASSERT
3052         ptnode_adr(get_addp_base(n)->_idx)->dump();
3053         ptnode_adr(n->_idx)->dump();
3054         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3055 #endif
3056         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3057         return;
3058       }
3059       Node *base = get_map(jobj->idx());  // CheckCastPP node
3060       if (!split_AddP(n, base)) continue; // wrong type from dead path
3061     } else if (n->is_Phi() ||
3062                n->is_CheckCastPP() ||
3063                n->is_EncodeP() ||
3064                n->is_DecodeN() ||
3065                (n->is_ConstraintCast() && n->Opcode() == Op_CastPP)) {
3066       if (visited.test_set(n->_idx)) {
3067         assert(n->is_Phi(), "loops only through Phi's");
3068         continue;  // already processed
3069       }
3070       JavaObjectNode* jobj = unique_java_object(n);
3071       if (jobj == NULL || jobj == phantom_obj) {
3072 #ifdef ASSERT
3073         ptnode_adr(n->_idx)->dump();
3074         assert(jobj != NULL && jobj != phantom_obj, "escaped allocation");
3075 #endif
3076         _compile->record_failure(C2Compiler::retry_no_escape_analysis());
3077         return;
3078       } else {
3079         Node *val = get_map(jobj->idx());   // CheckCastPP node
3080         TypeNode *tn = n->as_Type();
3081         const TypeOopPtr* tinst = igvn->type(val)->isa_oopptr();
3082         assert(tinst != NULL && tinst->is_known_instance() &&
3083                tinst->instance_id() == jobj->idx() , "instance type expected.");
3084 
3085         const Type *tn_type = igvn->type(tn);
3086         const TypeOopPtr *tn_t;
3087         if (tn_type->isa_narrowoop()) {
3088           tn_t = tn_type->make_ptr()->isa_oopptr();
3089         } else {
3090           tn_t = tn_type->isa_oopptr();
3091         }
3092         if (tn_t != NULL && tinst->klass()->is_subtype_of(tn_t->klass())) {
3093           if (tn_type->isa_narrowoop()) {
3094             tn_type = tinst->make_narrowoop();
3095           } else {
3096             tn_type = tinst;
3097           }
3098           igvn->hash_delete(tn);
3099           igvn->set_type(tn, tn_type);
3100           tn->set_type(tn_type);
3101           igvn->hash_insert(tn);
3102           record_for_optimizer(n);
3103         } else {
3104           assert(tn_type == TypePtr::NULL_PTR ||
3105                  tn_t != NULL && !tinst->klass()->is_subtype_of(tn_t->klass()),
3106                  "unexpected type");
3107           continue; // Skip dead path with different type
3108         }
3109       }
3110     } else {
3111       debug_only(n->dump();)
3112       assert(false, "EA: unexpected node");
3113       continue;
3114     }
3115     // push allocation's users on appropriate worklist
3116     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3117       Node *use = n->fast_out(i);
3118       if(use->is_Mem() && use->in(MemNode::Address) == n) {
3119         // Load/store to instance's field
3120         memnode_worklist.append_if_missing(use);
3121       } else if (use->is_MemBar()) {
3122         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3123           memnode_worklist.append_if_missing(use);
3124         }
3125       } else if (use->is_AddP() && use->outcnt() > 0) { // No dead nodes
3126         Node* addp2 = find_second_addp(use, n);
3127         if (addp2 != NULL) {
3128           alloc_worklist.append_if_missing(addp2);
3129         }
3130         alloc_worklist.append_if_missing(use);
3131       } else if (use->is_Phi() ||
3132                  use->is_CheckCastPP() ||
3133                  use->is_EncodeNarrowPtr() ||
3134                  use->is_DecodeNarrowPtr() ||
3135                  (use->is_ConstraintCast() && use->Opcode() == Op_CastPP)) {
3136         alloc_worklist.append_if_missing(use);
3137 #ifdef ASSERT
3138       } else if (use->is_Mem()) {
3139         assert(use->in(MemNode::Address) != n, "EA: missing allocation reference path");
3140       } else if (use->is_MergeMem()) {
3141         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3142       } else if (use->is_SafePoint()) {
3143         // Look for MergeMem nodes for calls which reference unique allocation
3144         // (through CheckCastPP nodes) even for debug info.
3145         Node* m = use->in(TypeFunc::Memory);
3146         if (m->is_MergeMem()) {
3147           assert(_mergemem_worklist.contains(m->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3148         }
3149       } else if (use->Opcode() == Op_EncodeISOArray) {
3150         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3151           // EncodeISOArray overwrites destination array
3152           memnode_worklist.append_if_missing(use);
3153         }
3154       } else {
3155         uint op = use->Opcode();
3156         if ((op == Op_StrCompressedCopy || op == Op_StrInflatedCopy) &&
3157             (use->in(MemNode::Memory) == n)) {
3158           // They overwrite memory edge corresponding to destination array,
3159           memnode_worklist.append_if_missing(use);
3160         } else if (!(op == Op_CmpP || op == Op_Conv2B ||
3161               op == Op_CastP2X || op == Op_StoreCM ||
3162               op == Op_FastLock || op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3163               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3164               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3165           n->dump();
3166           use->dump();
3167           assert(false, "EA: missing allocation reference path");
3168         }
3169 #endif
3170       }
3171     }
3172 
3173   }
3174 
3175   // Go over all ArrayCopy nodes and if one of the inputs has a unique
3176   // type, record it in the ArrayCopy node so we know what memory this
3177   // node uses/modified.
3178   for (int next = 0; next < arraycopy_worklist.length(); next++) {
3179     ArrayCopyNode* ac = arraycopy_worklist.at(next);
3180     Node* dest = ac->in(ArrayCopyNode::Dest);
3181     if (dest->is_AddP()) {
3182       dest = get_addp_base(dest);
3183     }
3184     JavaObjectNode* jobj = unique_java_object(dest);
3185     if (jobj != NULL) {
3186       Node *base = get_map(jobj->idx());
3187       if (base != NULL) {
3188         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3189         ac->_dest_type = base_t;
3190       }
3191     }
3192     Node* src = ac->in(ArrayCopyNode::Src);
3193     if (src->is_AddP()) {
3194       src = get_addp_base(src);
3195     }
3196     jobj = unique_java_object(src);
3197     if (jobj != NULL) {
3198       Node* base = get_map(jobj->idx());
3199       if (base != NULL) {
3200         const TypeOopPtr *base_t = _igvn->type(base)->isa_oopptr();
3201         ac->_src_type = base_t;
3202       }
3203     }
3204   }
3205 
3206   // New alias types were created in split_AddP().
3207   uint new_index_end = (uint) _compile->num_alias_types();
3208   assert(unique_old == _compile->unique(), "there should be no new ideal nodes after Phase 1");
3209 
3210   //  Phase 2:  Process MemNode's from memnode_worklist. compute new address type and
3211   //            compute new values for Memory inputs  (the Memory inputs are not
3212   //            actually updated until phase 4.)
3213   if (memnode_worklist.length() == 0)
3214     return;  // nothing to do
3215   while (memnode_worklist.length() != 0) {
3216     Node *n = memnode_worklist.pop();
3217     if (visited.test_set(n->_idx))
3218       continue;
3219     if (n->is_Phi() || n->is_ClearArray()) {
3220       // we don't need to do anything, but the users must be pushed
3221     } else if (n->is_MemBar()) { // Initialize, MemBar nodes
3222       // we don't need to do anything, but the users must be pushed
3223       n = n->as_MemBar()->proj_out_or_null(TypeFunc::Memory);
3224       if (n == NULL)
3225         continue;
3226     } else if (n->Opcode() == Op_StrCompressedCopy ||
3227                n->Opcode() == Op_EncodeISOArray) {
3228       // get the memory projection
3229       n = n->find_out_with(Op_SCMemProj);
3230       assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3231     } else {
3232       assert(n->is_Mem(), "memory node required.");
3233       Node *addr = n->in(MemNode::Address);
3234       const Type *addr_t = igvn->type(addr);
3235       if (addr_t == Type::TOP)
3236         continue;
3237       assert (addr_t->isa_ptr() != NULL, "pointer type required.");
3238       int alias_idx = _compile->get_alias_index(addr_t->is_ptr());
3239       assert ((uint)alias_idx < new_index_end, "wrong alias index");
3240       Node *mem = find_inst_mem(n->in(MemNode::Memory), alias_idx, orig_phis);
3241       if (_compile->failing()) {
3242         return;
3243       }
3244       if (mem != n->in(MemNode::Memory)) {
3245         // We delay the memory edge update since we need old one in
3246         // MergeMem code below when instances memory slices are separated.
3247         set_map(n, mem);
3248       }
3249       if (n->is_Load()) {
3250         continue;  // don't push users
3251       } else if (n->is_LoadStore()) {
3252         // get the memory projection
3253         n = n->find_out_with(Op_SCMemProj);
3254         assert(n != NULL && n->Opcode() == Op_SCMemProj, "memory projection required");
3255       }
3256     }
3257     // push user on appropriate worklist
3258     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
3259       Node *use = n->fast_out(i);
3260       if (use->is_Phi() || use->is_ClearArray()) {
3261         memnode_worklist.append_if_missing(use);
3262       } else if (use->is_Mem() && use->in(MemNode::Memory) == n) {
3263         if (use->Opcode() == Op_StoreCM) // Ignore cardmark stores
3264           continue;
3265         memnode_worklist.append_if_missing(use);
3266       } else if (use->is_MemBar()) {
3267         if (use->in(TypeFunc::Memory) == n) { // Ignore precedent edge
3268           memnode_worklist.append_if_missing(use);
3269         }
3270 #ifdef ASSERT
3271       } else if(use->is_Mem()) {
3272         assert(use->in(MemNode::Memory) != n, "EA: missing memory path");
3273       } else if (use->is_MergeMem()) {
3274         assert(_mergemem_worklist.contains(use->as_MergeMem()), "EA: missing MergeMem node in the worklist");
3275       } else if (use->Opcode() == Op_EncodeISOArray) {
3276         if (use->in(MemNode::Memory) == n || use->in(3) == n) {
3277           // EncodeISOArray overwrites destination array
3278           memnode_worklist.append_if_missing(use);
3279         }
3280       } else {
3281         uint op = use->Opcode();
3282         if ((use->in(MemNode::Memory) == n) &&
3283             (op == Op_StrCompressedCopy || op == Op_StrInflatedCopy)) {
3284           // They overwrite memory edge corresponding to destination array,
3285           memnode_worklist.append_if_missing(use);
3286         } else if (!(BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(use) ||
3287               op == Op_AryEq || op == Op_StrComp || op == Op_HasNegatives ||
3288               op == Op_StrCompressedCopy || op == Op_StrInflatedCopy ||
3289               op == Op_StrEquals || op == Op_StrIndexOf || op == Op_StrIndexOfChar)) {
3290           n->dump();
3291           use->dump();
3292           assert(false, "EA: missing memory path");
3293         }
3294 #endif
3295       }
3296     }
3297   }
3298 
3299   //  Phase 3:  Process MergeMem nodes from mergemem_worklist.
3300   //            Walk each memory slice moving the first node encountered of each
3301   //            instance type to the the input corresponding to its alias index.
3302   uint length = _mergemem_worklist.length();
3303   for( uint next = 0; next < length; ++next ) {
3304     MergeMemNode* nmm = _mergemem_worklist.at(next);
3305     assert(!visited.test_set(nmm->_idx), "should not be visited before");
3306     // Note: we don't want to use MergeMemStream here because we only want to
3307     // scan inputs which exist at the start, not ones we add during processing.
3308     // Note 2: MergeMem may already contains instance memory slices added
3309     // during find_inst_mem() call when memory nodes were processed above.
3310     igvn->hash_delete(nmm);
3311     uint nslices = MIN2(nmm->req(), new_index_start);
3312     for (uint i = Compile::AliasIdxRaw+1; i < nslices; i++) {
3313       Node* mem = nmm->in(i);
3314       Node* cur = NULL;
3315       if (mem == NULL || mem->is_top())
3316         continue;
3317       // First, update mergemem by moving memory nodes to corresponding slices
3318       // if their type became more precise since this mergemem was created.
3319       while (mem->is_Mem()) {
3320         const Type *at = igvn->type(mem->in(MemNode::Address));
3321         if (at != Type::TOP) {
3322           assert (at->isa_ptr() != NULL, "pointer type required.");
3323           uint idx = (uint)_compile->get_alias_index(at->is_ptr());
3324           if (idx == i) {
3325             if (cur == NULL)
3326               cur = mem;
3327           } else {
3328             if (idx >= nmm->req() || nmm->is_empty_memory(nmm->in(idx))) {
3329               nmm->set_memory_at(idx, mem);
3330             }
3331           }
3332         }
3333         mem = mem->in(MemNode::Memory);
3334       }
3335       nmm->set_memory_at(i, (cur != NULL) ? cur : mem);
3336       // Find any instance of the current type if we haven't encountered
3337       // already a memory slice of the instance along the memory chain.
3338       for (uint ni = new_index_start; ni < new_index_end; ni++) {
3339         if((uint)_compile->get_general_index(ni) == i) {
3340           Node *m = (ni >= nmm->req()) ? nmm->empty_memory() : nmm->in(ni);
3341           if (nmm->is_empty_memory(m)) {
3342             Node* result = find_inst_mem(mem, ni, orig_phis);
3343             if (_compile->failing()) {
3344               return;
3345             }
3346             nmm->set_memory_at(ni, result);
3347           }
3348         }
3349       }
3350     }
3351     // Find the rest of instances values
3352     for (uint ni = new_index_start; ni < new_index_end; ni++) {
3353       const TypeOopPtr *tinst = _compile->get_adr_type(ni)->isa_oopptr();
3354       Node* result = step_through_mergemem(nmm, ni, tinst);
3355       if (result == nmm->base_memory()) {
3356         // Didn't find instance memory, search through general slice recursively.
3357         result = nmm->memory_at(_compile->get_general_index(ni));
3358         result = find_inst_mem(result, ni, orig_phis);
3359         if (_compile->failing()) {
3360           return;
3361         }
3362         nmm->set_memory_at(ni, result);
3363       }
3364     }
3365     igvn->hash_insert(nmm);
3366     record_for_optimizer(nmm);
3367   }
3368 
3369   //  Phase 4:  Update the inputs of non-instance memory Phis and
3370   //            the Memory input of memnodes
3371   // First update the inputs of any non-instance Phi's from
3372   // which we split out an instance Phi.  Note we don't have
3373   // to recursively process Phi's encounted on the input memory
3374   // chains as is done in split_memory_phi() since they  will
3375   // also be processed here.
3376   for (int j = 0; j < orig_phis.length(); j++) {
3377     PhiNode *phi = orig_phis.at(j);
3378     int alias_idx = _compile->get_alias_index(phi->adr_type());
3379     igvn->hash_delete(phi);
3380     for (uint i = 1; i < phi->req(); i++) {
3381       Node *mem = phi->in(i);
3382       Node *new_mem = find_inst_mem(mem, alias_idx, orig_phis);
3383       if (_compile->failing()) {
3384         return;
3385       }
3386       if (mem != new_mem) {
3387         phi->set_req(i, new_mem);
3388       }
3389     }
3390     igvn->hash_insert(phi);
3391     record_for_optimizer(phi);
3392   }
3393 
3394   // Update the memory inputs of MemNodes with the value we computed
3395   // in Phase 2 and move stores memory users to corresponding memory slices.
3396   // Disable memory split verification code until the fix for 6984348.
3397   // Currently it produces false negative results since it does not cover all cases.
3398 #if 0 // ifdef ASSERT
3399   visited.Reset();
3400   Node_Stack old_mems(arena, _compile->unique() >> 2);
3401 #endif
3402   for (uint i = 0; i < ideal_nodes.size(); i++) {
3403     Node*    n = ideal_nodes.at(i);
3404     Node* nmem = get_map(n->_idx);
3405     assert(nmem != NULL, "sanity");
3406     if (n->is_Mem()) {
3407 #if 0 // ifdef ASSERT
3408       Node* old_mem = n->in(MemNode::Memory);
3409       if (!visited.test_set(old_mem->_idx)) {
3410         old_mems.push(old_mem, old_mem->outcnt());
3411       }
3412 #endif
3413       assert(n->in(MemNode::Memory) != nmem, "sanity");
3414       if (!n->is_Load()) {
3415         // Move memory users of a store first.
3416         move_inst_mem(n, orig_phis);
3417       }
3418       // Now update memory input
3419       igvn->hash_delete(n);
3420       n->set_req(MemNode::Memory, nmem);
3421       igvn->hash_insert(n);
3422       record_for_optimizer(n);
3423     } else {
3424       assert(n->is_Allocate() || n->is_CheckCastPP() ||
3425              n->is_AddP() || n->is_Phi(), "unknown node used for set_map()");
3426     }
3427   }
3428 #if 0 // ifdef ASSERT
3429   // Verify that memory was split correctly
3430   while (old_mems.is_nonempty()) {
3431     Node* old_mem = old_mems.node();
3432     uint  old_cnt = old_mems.index();
3433     old_mems.pop();
3434     assert(old_cnt == old_mem->outcnt(), "old mem could be lost");
3435   }
3436 #endif
3437 }
3438 
3439 #ifndef PRODUCT
3440 static const char *node_type_names[] = {
3441   "UnknownType",
3442   "JavaObject",
3443   "LocalVar",
3444   "Field",
3445   "Arraycopy"
3446 };
3447 
3448 static const char *esc_names[] = {
3449   "UnknownEscape",
3450   "NoEscape",
3451   "ArgEscape",
3452   "GlobalEscape"
3453 };
3454 
3455 void PointsToNode::dump(bool print_state) const {
3456   NodeType nt = node_type();
3457   tty->print("%s ", node_type_names[(int) nt]);
3458   if (print_state) {
3459     EscapeState es = escape_state();
3460     EscapeState fields_es = fields_escape_state();
3461     tty->print("%s(%s) ", esc_names[(int)es], esc_names[(int)fields_es]);
3462     if (nt == PointsToNode::JavaObject && !this->scalar_replaceable())
3463       tty->print("NSR ");
3464   }
3465   if (is_Field()) {
3466     FieldNode* f = (FieldNode*)this;
3467     if (f->is_oop())
3468       tty->print("oop ");
3469     if (f->offset() > 0)
3470       tty->print("+%d ", f->offset());
3471     tty->print("(");
3472     for (BaseIterator i(f); i.has_next(); i.next()) {
3473       PointsToNode* b = i.get();
3474       tty->print(" %d%s", b->idx(),(b->is_JavaObject() ? "P" : ""));
3475     }
3476     tty->print(" )");
3477   }
3478   tty->print("[");
3479   for (EdgeIterator i(this); i.has_next(); i.next()) {
3480     PointsToNode* e = i.get();
3481     tty->print(" %d%s%s", e->idx(),(e->is_JavaObject() ? "P" : (e->is_Field() ? "F" : "")), e->is_Arraycopy() ? "cp" : "");
3482   }
3483   tty->print(" [");
3484   for (UseIterator i(this); i.has_next(); i.next()) {
3485     PointsToNode* u = i.get();
3486     bool is_base = false;
3487     if (PointsToNode::is_base_use(u)) {
3488       is_base = true;
3489       u = PointsToNode::get_use_node(u)->as_Field();
3490     }
3491     tty->print(" %d%s%s", u->idx(), is_base ? "b" : "", u->is_Arraycopy() ? "cp" : "");
3492   }
3493   tty->print(" ]]  ");
3494   if (_node == NULL)
3495     tty->print_cr("<null>");
3496   else
3497     _node->dump();
3498 }
3499 
3500 void ConnectionGraph::dump(GrowableArray<PointsToNode*>& ptnodes_worklist) {
3501   bool first = true;
3502   int ptnodes_length = ptnodes_worklist.length();
3503   for (int i = 0; i < ptnodes_length; i++) {
3504     PointsToNode *ptn = ptnodes_worklist.at(i);
3505     if (ptn == NULL || !ptn->is_JavaObject())
3506       continue;
3507     PointsToNode::EscapeState es = ptn->escape_state();
3508     if ((es != PointsToNode::NoEscape) && !Verbose) {
3509       continue;
3510     }
3511     Node* n = ptn->ideal_node();
3512     if (n->is_Allocate() || (n->is_CallStaticJava() &&
3513                              n->as_CallStaticJava()->is_boxing_method())) {
3514       if (first) {
3515         tty->cr();
3516         tty->print("======== Connection graph for ");
3517         _compile->method()->print_short_name();
3518         tty->cr();
3519         first = false;
3520       }
3521       ptn->dump();
3522       // Print all locals and fields which reference this allocation
3523       for (UseIterator j(ptn); j.has_next(); j.next()) {
3524         PointsToNode* use = j.get();
3525         if (use->is_LocalVar()) {
3526           use->dump(Verbose);
3527         } else if (Verbose) {
3528           use->dump();
3529         }
3530       }
3531       tty->cr();
3532     }
3533   }
3534 }
3535 #endif