1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciUtilities.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "gc/g1/heapRegion.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/idealKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/opaquenode.hpp"
  42 #include "opto/parse.hpp"
  43 #include "opto/rootnode.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 //----------------------------GraphKit-----------------------------------------
  49 // Main utility constructor.
  50 GraphKit::GraphKit(JVMState* jvms)
  51   : Phase(Phase::Parser),
  52     _env(C->env()),
  53     _gvn(*C->initial_gvn()),
  54     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  55 {
  56   _exceptions = jvms->map()->next_exception();
  57   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  58   set_jvms(jvms);
  59 }
  60 
  61 // Private constructor for parser.
  62 GraphKit::GraphKit()
  63   : Phase(Phase::Parser),
  64     _env(C->env()),
  65     _gvn(*C->initial_gvn()),
  66     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  67 {
  68   _exceptions = NULL;
  69   set_map(NULL);
  70   debug_only(_sp = -99);
  71   debug_only(set_bci(-99));
  72 }
  73 
  74 
  75 
  76 //---------------------------clean_stack---------------------------------------
  77 // Clear away rubbish from the stack area of the JVM state.
  78 // This destroys any arguments that may be waiting on the stack.
  79 void GraphKit::clean_stack(int from_sp) {
  80   SafePointNode* map      = this->map();
  81   JVMState*      jvms     = this->jvms();
  82   int            stk_size = jvms->stk_size();
  83   int            stkoff   = jvms->stkoff();
  84   Node*          top      = this->top();
  85   for (int i = from_sp; i < stk_size; i++) {
  86     if (map->in(stkoff + i) != top) {
  87       map->set_req(stkoff + i, top);
  88     }
  89   }
  90 }
  91 
  92 
  93 //--------------------------------sync_jvms-----------------------------------
  94 // Make sure our current jvms agrees with our parse state.
  95 JVMState* GraphKit::sync_jvms() const {
  96   JVMState* jvms = this->jvms();
  97   jvms->set_bci(bci());       // Record the new bci in the JVMState
  98   jvms->set_sp(sp());         // Record the new sp in the JVMState
  99   assert(jvms_in_sync(), "jvms is now in sync");
 100   return jvms;
 101 }
 102 
 103 //--------------------------------sync_jvms_for_reexecute---------------------
 104 // Make sure our current jvms agrees with our parse state.  This version
 105 // uses the reexecute_sp for reexecuting bytecodes.
 106 JVMState* GraphKit::sync_jvms_for_reexecute() {
 107   JVMState* jvms = this->jvms();
 108   jvms->set_bci(bci());          // Record the new bci in the JVMState
 109   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 110   return jvms;
 111 }
 112 
 113 #ifdef ASSERT
 114 bool GraphKit::jvms_in_sync() const {
 115   Parse* parse = is_Parse();
 116   if (parse == NULL) {
 117     if (bci() !=      jvms()->bci())          return false;
 118     if (sp()  != (int)jvms()->sp())           return false;
 119     return true;
 120   }
 121   if (jvms()->method() != parse->method())    return false;
 122   if (jvms()->bci()    != parse->bci())       return false;
 123   int jvms_sp = jvms()->sp();
 124   if (jvms_sp          != parse->sp())        return false;
 125   int jvms_depth = jvms()->depth();
 126   if (jvms_depth       != parse->depth())     return false;
 127   return true;
 128 }
 129 
 130 // Local helper checks for special internal merge points
 131 // used to accumulate and merge exception states.
 132 // They are marked by the region's in(0) edge being the map itself.
 133 // Such merge points must never "escape" into the parser at large,
 134 // until they have been handed to gvn.transform.
 135 static bool is_hidden_merge(Node* reg) {
 136   if (reg == NULL)  return false;
 137   if (reg->is_Phi()) {
 138     reg = reg->in(0);
 139     if (reg == NULL)  return false;
 140   }
 141   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 142 }
 143 
 144 void GraphKit::verify_map() const {
 145   if (map() == NULL)  return;  // null map is OK
 146   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 147   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 148   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 149 }
 150 
 151 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 152   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 153   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 154 }
 155 #endif
 156 
 157 //---------------------------stop_and_kill_map---------------------------------
 158 // Set _map to NULL, signalling a stop to further bytecode execution.
 159 // First smash the current map's control to a constant, to mark it dead.
 160 void GraphKit::stop_and_kill_map() {
 161   SafePointNode* dead_map = stop();
 162   if (dead_map != NULL) {
 163     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 164     assert(dead_map->is_killed(), "must be so marked");
 165   }
 166 }
 167 
 168 
 169 //--------------------------------stopped--------------------------------------
 170 // Tell if _map is NULL, or control is top.
 171 bool GraphKit::stopped() {
 172   if (map() == NULL)           return true;
 173   else if (control() == top()) return true;
 174   else                         return false;
 175 }
 176 
 177 
 178 //-----------------------------has_ex_handler----------------------------------
 179 // Tell if this method or any caller method has exception handlers.
 180 bool GraphKit::has_ex_handler() {
 181   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 182     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 183       return true;
 184     }
 185   }
 186   return false;
 187 }
 188 
 189 //------------------------------save_ex_oop------------------------------------
 190 // Save an exception without blowing stack contents or other JVM state.
 191 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 192   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 193   ex_map->add_req(ex_oop);
 194   debug_only(verify_exception_state(ex_map));
 195 }
 196 
 197 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 198   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 199   Node* ex_oop = ex_map->in(ex_map->req()-1);
 200   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 201   return ex_oop;
 202 }
 203 
 204 //-----------------------------saved_ex_oop------------------------------------
 205 // Recover a saved exception from its map.
 206 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 207   return common_saved_ex_oop(ex_map, false);
 208 }
 209 
 210 //--------------------------clear_saved_ex_oop---------------------------------
 211 // Erase a previously saved exception from its map.
 212 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 213   return common_saved_ex_oop(ex_map, true);
 214 }
 215 
 216 #ifdef ASSERT
 217 //---------------------------has_saved_ex_oop----------------------------------
 218 // Erase a previously saved exception from its map.
 219 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 220   return ex_map->req() == ex_map->jvms()->endoff()+1;
 221 }
 222 #endif
 223 
 224 //-------------------------make_exception_state--------------------------------
 225 // Turn the current JVM state into an exception state, appending the ex_oop.
 226 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 227   sync_jvms();
 228   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 229   set_saved_ex_oop(ex_map, ex_oop);
 230   return ex_map;
 231 }
 232 
 233 
 234 //--------------------------add_exception_state--------------------------------
 235 // Add an exception to my list of exceptions.
 236 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 237   if (ex_map == NULL || ex_map->control() == top()) {
 238     return;
 239   }
 240 #ifdef ASSERT
 241   verify_exception_state(ex_map);
 242   if (has_exceptions()) {
 243     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 244   }
 245 #endif
 246 
 247   // If there is already an exception of exactly this type, merge with it.
 248   // In particular, null-checks and other low-level exceptions common up here.
 249   Node*       ex_oop  = saved_ex_oop(ex_map);
 250   const Type* ex_type = _gvn.type(ex_oop);
 251   if (ex_oop == top()) {
 252     // No action needed.
 253     return;
 254   }
 255   assert(ex_type->isa_instptr(), "exception must be an instance");
 256   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 257     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 258     // We check sp also because call bytecodes can generate exceptions
 259     // both before and after arguments are popped!
 260     if (ex_type2 == ex_type
 261         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 262       combine_exception_states(ex_map, e2);
 263       return;
 264     }
 265   }
 266 
 267   // No pre-existing exception of the same type.  Chain it on the list.
 268   push_exception_state(ex_map);
 269 }
 270 
 271 //-----------------------add_exception_states_from-----------------------------
 272 void GraphKit::add_exception_states_from(JVMState* jvms) {
 273   SafePointNode* ex_map = jvms->map()->next_exception();
 274   if (ex_map != NULL) {
 275     jvms->map()->set_next_exception(NULL);
 276     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 277       next_map = ex_map->next_exception();
 278       ex_map->set_next_exception(NULL);
 279       add_exception_state(ex_map);
 280     }
 281   }
 282 }
 283 
 284 //-----------------------transfer_exceptions_into_jvms-------------------------
 285 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 286   if (map() == NULL) {
 287     // We need a JVMS to carry the exceptions, but the map has gone away.
 288     // Create a scratch JVMS, cloned from any of the exception states...
 289     if (has_exceptions()) {
 290       _map = _exceptions;
 291       _map = clone_map();
 292       _map->set_next_exception(NULL);
 293       clear_saved_ex_oop(_map);
 294       debug_only(verify_map());
 295     } else {
 296       // ...or created from scratch
 297       JVMState* jvms = new (C) JVMState(_method, NULL);
 298       jvms->set_bci(_bci);
 299       jvms->set_sp(_sp);
 300       jvms->set_map(new SafePointNode(TypeFunc::Parms, jvms));
 301       set_jvms(jvms);
 302       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 303       set_all_memory(top());
 304       while (map()->req() < jvms->endoff())  map()->add_req(top());
 305     }
 306     // (This is a kludge, in case you didn't notice.)
 307     set_control(top());
 308   }
 309   JVMState* jvms = sync_jvms();
 310   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 311   jvms->map()->set_next_exception(_exceptions);
 312   _exceptions = NULL;   // done with this set of exceptions
 313   return jvms;
 314 }
 315 
 316 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 317   assert(is_hidden_merge(dstphi), "must be a special merge node");
 318   assert(is_hidden_merge(srcphi), "must be a special merge node");
 319   uint limit = srcphi->req();
 320   for (uint i = PhiNode::Input; i < limit; i++) {
 321     dstphi->add_req(srcphi->in(i));
 322   }
 323 }
 324 static inline void add_one_req(Node* dstphi, Node* src) {
 325   assert(is_hidden_merge(dstphi), "must be a special merge node");
 326   assert(!is_hidden_merge(src), "must not be a special merge node");
 327   dstphi->add_req(src);
 328 }
 329 
 330 //-----------------------combine_exception_states------------------------------
 331 // This helper function combines exception states by building phis on a
 332 // specially marked state-merging region.  These regions and phis are
 333 // untransformed, and can build up gradually.  The region is marked by
 334 // having a control input of its exception map, rather than NULL.  Such
 335 // regions do not appear except in this function, and in use_exception_state.
 336 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 337   if (failing())  return;  // dying anyway...
 338   JVMState* ex_jvms = ex_map->_jvms;
 339   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 340   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 341   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 342   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 343   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 344   assert(ex_map->req() == phi_map->req(), "matching maps");
 345   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 346   Node*         hidden_merge_mark = root();
 347   Node*         region  = phi_map->control();
 348   MergeMemNode* phi_mem = phi_map->merged_memory();
 349   MergeMemNode* ex_mem  = ex_map->merged_memory();
 350   if (region->in(0) != hidden_merge_mark) {
 351     // The control input is not (yet) a specially-marked region in phi_map.
 352     // Make it so, and build some phis.
 353     region = new RegionNode(2);
 354     _gvn.set_type(region, Type::CONTROL);
 355     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 356     region->init_req(1, phi_map->control());
 357     phi_map->set_control(region);
 358     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 359     record_for_igvn(io_phi);
 360     _gvn.set_type(io_phi, Type::ABIO);
 361     phi_map->set_i_o(io_phi);
 362     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 363       Node* m = mms.memory();
 364       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 365       record_for_igvn(m_phi);
 366       _gvn.set_type(m_phi, Type::MEMORY);
 367       mms.set_memory(m_phi);
 368     }
 369   }
 370 
 371   // Either or both of phi_map and ex_map might already be converted into phis.
 372   Node* ex_control = ex_map->control();
 373   // if there is special marking on ex_map also, we add multiple edges from src
 374   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 375   // how wide was the destination phi_map, originally?
 376   uint orig_width = region->req();
 377 
 378   if (add_multiple) {
 379     add_n_reqs(region, ex_control);
 380     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 381   } else {
 382     // ex_map has no merges, so we just add single edges everywhere
 383     add_one_req(region, ex_control);
 384     add_one_req(phi_map->i_o(), ex_map->i_o());
 385   }
 386   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 387     if (mms.is_empty()) {
 388       // get a copy of the base memory, and patch some inputs into it
 389       const TypePtr* adr_type = mms.adr_type(C);
 390       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 391       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 392       mms.set_memory(phi);
 393       // Prepare to append interesting stuff onto the newly sliced phi:
 394       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 395     }
 396     // Append stuff from ex_map:
 397     if (add_multiple) {
 398       add_n_reqs(mms.memory(), mms.memory2());
 399     } else {
 400       add_one_req(mms.memory(), mms.memory2());
 401     }
 402   }
 403   uint limit = ex_map->req();
 404   for (uint i = TypeFunc::Parms; i < limit; i++) {
 405     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 406     if (i == tos)  i = ex_jvms->monoff();
 407     Node* src = ex_map->in(i);
 408     Node* dst = phi_map->in(i);
 409     if (src != dst) {
 410       PhiNode* phi;
 411       if (dst->in(0) != region) {
 412         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 413         record_for_igvn(phi);
 414         _gvn.set_type(phi, phi->type());
 415         phi_map->set_req(i, dst);
 416         // Prepare to append interesting stuff onto the new phi:
 417         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 418       } else {
 419         assert(dst->is_Phi(), "nobody else uses a hidden region");
 420         phi = dst->as_Phi();
 421       }
 422       if (add_multiple && src->in(0) == ex_control) {
 423         // Both are phis.
 424         add_n_reqs(dst, src);
 425       } else {
 426         while (dst->req() < region->req())  add_one_req(dst, src);
 427       }
 428       const Type* srctype = _gvn.type(src);
 429       if (phi->type() != srctype) {
 430         const Type* dsttype = phi->type()->meet_speculative(srctype);
 431         if (phi->type() != dsttype) {
 432           phi->set_type(dsttype);
 433           _gvn.set_type(phi, dsttype);
 434         }
 435       }
 436     }
 437   }
 438   phi_map->merge_replaced_nodes_with(ex_map);
 439 }
 440 
 441 //--------------------------use_exception_state--------------------------------
 442 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 443   if (failing()) { stop(); return top(); }
 444   Node* region = phi_map->control();
 445   Node* hidden_merge_mark = root();
 446   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 447   Node* ex_oop = clear_saved_ex_oop(phi_map);
 448   if (region->in(0) == hidden_merge_mark) {
 449     // Special marking for internal ex-states.  Process the phis now.
 450     region->set_req(0, region);  // now it's an ordinary region
 451     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 452     // Note: Setting the jvms also sets the bci and sp.
 453     set_control(_gvn.transform(region));
 454     uint tos = jvms()->stkoff() + sp();
 455     for (uint i = 1; i < tos; i++) {
 456       Node* x = phi_map->in(i);
 457       if (x->in(0) == region) {
 458         assert(x->is_Phi(), "expected a special phi");
 459         phi_map->set_req(i, _gvn.transform(x));
 460       }
 461     }
 462     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 463       Node* x = mms.memory();
 464       if (x->in(0) == region) {
 465         assert(x->is_Phi(), "nobody else uses a hidden region");
 466         mms.set_memory(_gvn.transform(x));
 467       }
 468     }
 469     if (ex_oop->in(0) == region) {
 470       assert(ex_oop->is_Phi(), "expected a special phi");
 471       ex_oop = _gvn.transform(ex_oop);
 472     }
 473   } else {
 474     set_jvms(phi_map->jvms());
 475   }
 476 
 477   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 478   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 479   return ex_oop;
 480 }
 481 
 482 //---------------------------------java_bc-------------------------------------
 483 Bytecodes::Code GraphKit::java_bc() const {
 484   ciMethod* method = this->method();
 485   int       bci    = this->bci();
 486   if (method != NULL && bci != InvocationEntryBci)
 487     return method->java_code_at_bci(bci);
 488   else
 489     return Bytecodes::_illegal;
 490 }
 491 
 492 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 493                                                           bool must_throw) {
 494     // if the exception capability is set, then we will generate code
 495     // to check the JavaThread.should_post_on_exceptions flag to see
 496     // if we actually need to report exception events (for this
 497     // thread).  If we don't need to report exception events, we will
 498     // take the normal fast path provided by add_exception_events.  If
 499     // exception event reporting is enabled for this thread, we will
 500     // take the uncommon_trap in the BuildCutout below.
 501 
 502     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 503     Node* jthread = _gvn.transform(new ThreadLocalNode());
 504     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 505     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
 506 
 507     // Test the should_post_on_exceptions_flag vs. 0
 508     Node* chk = _gvn.transform( new CmpINode(should_post_flag, intcon(0)) );
 509     Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) );
 510 
 511     // Branch to slow_path if should_post_on_exceptions_flag was true
 512     { BuildCutout unless(this, tst, PROB_MAX);
 513       // Do not try anything fancy if we're notifying the VM on every throw.
 514       // Cf. case Bytecodes::_athrow in parse2.cpp.
 515       uncommon_trap(reason, Deoptimization::Action_none,
 516                     (ciKlass*)NULL, (char*)NULL, must_throw);
 517     }
 518 
 519 }
 520 
 521 //------------------------------builtin_throw----------------------------------
 522 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 523   bool must_throw = true;
 524 
 525   if (env()->jvmti_can_post_on_exceptions()) {
 526     // check if we must post exception events, take uncommon trap if so
 527     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 528     // here if should_post_on_exceptions is false
 529     // continue on with the normal codegen
 530   }
 531 
 532   // If this particular condition has not yet happened at this
 533   // bytecode, then use the uncommon trap mechanism, and allow for
 534   // a future recompilation if several traps occur here.
 535   // If the throw is hot, try to use a more complicated inline mechanism
 536   // which keeps execution inside the compiled code.
 537   bool treat_throw_as_hot = false;
 538   ciMethodData* md = method()->method_data();
 539 
 540   if (ProfileTraps) {
 541     if (too_many_traps(reason)) {
 542       treat_throw_as_hot = true;
 543     }
 544     // (If there is no MDO at all, assume it is early in
 545     // execution, and that any deopts are part of the
 546     // startup transient, and don't need to be remembered.)
 547 
 548     // Also, if there is a local exception handler, treat all throws
 549     // as hot if there has been at least one in this method.
 550     if (C->trap_count(reason) != 0
 551         && method()->method_data()->trap_count(reason) != 0
 552         && has_ex_handler()) {
 553         treat_throw_as_hot = true;
 554     }
 555   }
 556 
 557   // If this throw happens frequently, an uncommon trap might cause
 558   // a performance pothole.  If there is a local exception handler,
 559   // and if this particular bytecode appears to be deoptimizing often,
 560   // let us handle the throw inline, with a preconstructed instance.
 561   // Note:   If the deopt count has blown up, the uncommon trap
 562   // runtime is going to flush this nmethod, not matter what.
 563   if (treat_throw_as_hot
 564       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 565     // If the throw is local, we use a pre-existing instance and
 566     // punt on the backtrace.  This would lead to a missing backtrace
 567     // (a repeat of 4292742) if the backtrace object is ever asked
 568     // for its backtrace.
 569     // Fixing this remaining case of 4292742 requires some flavor of
 570     // escape analysis.  Leave that for the future.
 571     ciInstance* ex_obj = NULL;
 572     switch (reason) {
 573     case Deoptimization::Reason_null_check:
 574       ex_obj = env()->NullPointerException_instance();
 575       break;
 576     case Deoptimization::Reason_div0_check:
 577       ex_obj = env()->ArithmeticException_instance();
 578       break;
 579     case Deoptimization::Reason_range_check:
 580       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 581       break;
 582     case Deoptimization::Reason_class_check:
 583       if (java_bc() == Bytecodes::_aastore) {
 584         ex_obj = env()->ArrayStoreException_instance();
 585       } else {
 586         ex_obj = env()->ClassCastException_instance();
 587       }
 588       break;
 589     default:
 590       break;
 591     }
 592     if (failing()) { stop(); return; }  // exception allocation might fail
 593     if (ex_obj != NULL) {
 594       // Cheat with a preallocated exception object.
 595       if (C->log() != NULL)
 596         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 597                        Deoptimization::trap_reason_name(reason));
 598       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 599       Node*              ex_node = _gvn.transform(ConNode::make(ex_con));
 600 
 601       // Clear the detail message of the preallocated exception object.
 602       // Weblogic sometimes mutates the detail message of exceptions
 603       // using reflection.
 604       int offset = java_lang_Throwable::get_detailMessage_offset();
 605       const TypePtr* adr_typ = ex_con->add_offset(offset);
 606 
 607       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 608       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 609       Node *store = access_store_at(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, IN_HEAP);
 610 
 611       add_exception_state(make_exception_state(ex_node));
 612       return;
 613     }
 614   }
 615 
 616   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 617   // It won't be much cheaper than bailing to the interp., since we'll
 618   // have to pass up all the debug-info, and the runtime will have to
 619   // create the stack trace.
 620 
 621   // Usual case:  Bail to interpreter.
 622   // Reserve the right to recompile if we haven't seen anything yet.
 623 
 624   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? C->method() : NULL;
 625   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 626   if (treat_throw_as_hot
 627       && (method()->method_data()->trap_recompiled_at(bci(), m)
 628           || C->too_many_traps(reason))) {
 629     // We cannot afford to take more traps here.  Suffer in the interpreter.
 630     if (C->log() != NULL)
 631       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 632                      Deoptimization::trap_reason_name(reason),
 633                      C->trap_count(reason));
 634     action = Deoptimization::Action_none;
 635   }
 636 
 637   // "must_throw" prunes the JVM state to include only the stack, if there
 638   // are no local exception handlers.  This should cut down on register
 639   // allocation time and code size, by drastically reducing the number
 640   // of in-edges on the call to the uncommon trap.
 641 
 642   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 643 }
 644 
 645 
 646 //----------------------------PreserveJVMState---------------------------------
 647 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 648   debug_only(kit->verify_map());
 649   _kit    = kit;
 650   _map    = kit->map();   // preserve the map
 651   _sp     = kit->sp();
 652   kit->set_map(clone_map ? kit->clone_map() : NULL);
 653 #ifdef ASSERT
 654   _bci    = kit->bci();
 655   Parse* parser = kit->is_Parse();
 656   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 657   _block  = block;
 658 #endif
 659 }
 660 PreserveJVMState::~PreserveJVMState() {
 661   GraphKit* kit = _kit;
 662 #ifdef ASSERT
 663   assert(kit->bci() == _bci, "bci must not shift");
 664   Parse* parser = kit->is_Parse();
 665   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 666   assert(block == _block,    "block must not shift");
 667 #endif
 668   kit->set_map(_map);
 669   kit->set_sp(_sp);
 670 }
 671 
 672 
 673 //-----------------------------BuildCutout-------------------------------------
 674 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 675   : PreserveJVMState(kit)
 676 {
 677   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 678   SafePointNode* outer_map = _map;   // preserved map is caller's
 679   SafePointNode* inner_map = kit->map();
 680   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 681   outer_map->set_control(kit->gvn().transform( new IfTrueNode(iff) ));
 682   inner_map->set_control(kit->gvn().transform( new IfFalseNode(iff) ));
 683 }
 684 BuildCutout::~BuildCutout() {
 685   GraphKit* kit = _kit;
 686   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 687 }
 688 
 689 //---------------------------PreserveReexecuteState----------------------------
 690 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 691   assert(!kit->stopped(), "must call stopped() before");
 692   _kit    =    kit;
 693   _sp     =    kit->sp();
 694   _reexecute = kit->jvms()->_reexecute;
 695 }
 696 PreserveReexecuteState::~PreserveReexecuteState() {
 697   if (_kit->stopped()) return;
 698   _kit->jvms()->_reexecute = _reexecute;
 699   _kit->set_sp(_sp);
 700 }
 701 
 702 //------------------------------clone_map--------------------------------------
 703 // Implementation of PreserveJVMState
 704 //
 705 // Only clone_map(...) here. If this function is only used in the
 706 // PreserveJVMState class we may want to get rid of this extra
 707 // function eventually and do it all there.
 708 
 709 SafePointNode* GraphKit::clone_map() {
 710   if (map() == NULL)  return NULL;
 711 
 712   // Clone the memory edge first
 713   Node* mem = MergeMemNode::make(map()->memory());
 714   gvn().set_type_bottom(mem);
 715 
 716   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 717   JVMState* jvms = this->jvms();
 718   JVMState* clonejvms = jvms->clone_shallow(C);
 719   clonemap->set_memory(mem);
 720   clonemap->set_jvms(clonejvms);
 721   clonejvms->set_map(clonemap);
 722   record_for_igvn(clonemap);
 723   gvn().set_type_bottom(clonemap);
 724   return clonemap;
 725 }
 726 
 727 
 728 //-----------------------------set_map_clone-----------------------------------
 729 void GraphKit::set_map_clone(SafePointNode* m) {
 730   _map = m;
 731   _map = clone_map();
 732   _map->set_next_exception(NULL);
 733   debug_only(verify_map());
 734 }
 735 
 736 
 737 //----------------------------kill_dead_locals---------------------------------
 738 // Detect any locals which are known to be dead, and force them to top.
 739 void GraphKit::kill_dead_locals() {
 740   // Consult the liveness information for the locals.  If any
 741   // of them are unused, then they can be replaced by top().  This
 742   // should help register allocation time and cut down on the size
 743   // of the deoptimization information.
 744 
 745   // This call is made from many of the bytecode handling
 746   // subroutines called from the Big Switch in do_one_bytecode.
 747   // Every bytecode which might include a slow path is responsible
 748   // for killing its dead locals.  The more consistent we
 749   // are about killing deads, the fewer useless phis will be
 750   // constructed for them at various merge points.
 751 
 752   // bci can be -1 (InvocationEntryBci).  We return the entry
 753   // liveness for the method.
 754 
 755   if (method() == NULL || method()->code_size() == 0) {
 756     // We are building a graph for a call to a native method.
 757     // All locals are live.
 758     return;
 759   }
 760 
 761   ResourceMark rm;
 762 
 763   // Consult the liveness information for the locals.  If any
 764   // of them are unused, then they can be replaced by top().  This
 765   // should help register allocation time and cut down on the size
 766   // of the deoptimization information.
 767   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 768 
 769   int len = (int)live_locals.size();
 770   assert(len <= jvms()->loc_size(), "too many live locals");
 771   for (int local = 0; local < len; local++) {
 772     if (!live_locals.at(local)) {
 773       set_local(local, top());
 774     }
 775   }
 776 }
 777 
 778 #ifdef ASSERT
 779 //-------------------------dead_locals_are_killed------------------------------
 780 // Return true if all dead locals are set to top in the map.
 781 // Used to assert "clean" debug info at various points.
 782 bool GraphKit::dead_locals_are_killed() {
 783   if (method() == NULL || method()->code_size() == 0) {
 784     // No locals need to be dead, so all is as it should be.
 785     return true;
 786   }
 787 
 788   // Make sure somebody called kill_dead_locals upstream.
 789   ResourceMark rm;
 790   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 791     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 792     SafePointNode* map = jvms->map();
 793     ciMethod* method = jvms->method();
 794     int       bci    = jvms->bci();
 795     if (jvms == this->jvms()) {
 796       bci = this->bci();  // it might not yet be synched
 797     }
 798     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 799     int len = (int)live_locals.size();
 800     if (!live_locals.is_valid() || len == 0)
 801       // This method is trivial, or is poisoned by a breakpoint.
 802       return true;
 803     assert(len == jvms->loc_size(), "live map consistent with locals map");
 804     for (int local = 0; local < len; local++) {
 805       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 806         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 807           tty->print_cr("Zombie local %d: ", local);
 808           jvms->dump();
 809         }
 810         return false;
 811       }
 812     }
 813   }
 814   return true;
 815 }
 816 
 817 #endif //ASSERT
 818 
 819 // Helper function for enforcing certain bytecodes to reexecute if
 820 // deoptimization happens
 821 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 822   ciMethod* cur_method = jvms->method();
 823   int       cur_bci   = jvms->bci();
 824   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 825     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 826     return Interpreter::bytecode_should_reexecute(code) ||
 827            (is_anewarray && code == Bytecodes::_multianewarray);
 828     // Reexecute _multianewarray bytecode which was replaced with
 829     // sequence of [a]newarray. See Parse::do_multianewarray().
 830     //
 831     // Note: interpreter should not have it set since this optimization
 832     // is limited by dimensions and guarded by flag so in some cases
 833     // multianewarray() runtime calls will be generated and
 834     // the bytecode should not be reexecutes (stack will not be reset).
 835   } else
 836     return false;
 837 }
 838 
 839 // Helper function for adding JVMState and debug information to node
 840 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 841   // Add the safepoint edges to the call (or other safepoint).
 842 
 843   // Make sure dead locals are set to top.  This
 844   // should help register allocation time and cut down on the size
 845   // of the deoptimization information.
 846   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 847 
 848   // Walk the inline list to fill in the correct set of JVMState's
 849   // Also fill in the associated edges for each JVMState.
 850 
 851   // If the bytecode needs to be reexecuted we need to put
 852   // the arguments back on the stack.
 853   const bool should_reexecute = jvms()->should_reexecute();
 854   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 855 
 856   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 857   // undefined if the bci is different.  This is normal for Parse but it
 858   // should not happen for LibraryCallKit because only one bci is processed.
 859   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 860          "in LibraryCallKit the reexecute bit should not change");
 861 
 862   // If we are guaranteed to throw, we can prune everything but the
 863   // input to the current bytecode.
 864   bool can_prune_locals = false;
 865   uint stack_slots_not_pruned = 0;
 866   int inputs = 0, depth = 0;
 867   if (must_throw) {
 868     assert(method() == youngest_jvms->method(), "sanity");
 869     if (compute_stack_effects(inputs, depth)) {
 870       can_prune_locals = true;
 871       stack_slots_not_pruned = inputs;
 872     }
 873   }
 874 
 875   if (env()->should_retain_local_variables()) {
 876     // At any safepoint, this method can get breakpointed, which would
 877     // then require an immediate deoptimization.
 878     can_prune_locals = false;  // do not prune locals
 879     stack_slots_not_pruned = 0;
 880   }
 881 
 882   // do not scribble on the input jvms
 883   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 884   call->set_jvms(out_jvms); // Start jvms list for call node
 885 
 886   // For a known set of bytecodes, the interpreter should reexecute them if
 887   // deoptimization happens. We set the reexecute state for them here
 888   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 889       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 890     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 891   }
 892 
 893   // Presize the call:
 894   DEBUG_ONLY(uint non_debug_edges = call->req());
 895   call->add_req_batch(top(), youngest_jvms->debug_depth());
 896   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 897 
 898   // Set up edges so that the call looks like this:
 899   //  Call [state:] ctl io mem fptr retadr
 900   //       [parms:] parm0 ... parmN
 901   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 902   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 903   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 904   // Note that caller debug info precedes callee debug info.
 905 
 906   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 907   uint debug_ptr = call->req();
 908 
 909   // Loop over the map input edges associated with jvms, add them
 910   // to the call node, & reset all offsets to match call node array.
 911   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 912     uint debug_end   = debug_ptr;
 913     uint debug_start = debug_ptr - in_jvms->debug_size();
 914     debug_ptr = debug_start;  // back up the ptr
 915 
 916     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 917     uint j, k, l;
 918     SafePointNode* in_map = in_jvms->map();
 919     out_jvms->set_map(call);
 920 
 921     if (can_prune_locals) {
 922       assert(in_jvms->method() == out_jvms->method(), "sanity");
 923       // If the current throw can reach an exception handler in this JVMS,
 924       // then we must keep everything live that can reach that handler.
 925       // As a quick and dirty approximation, we look for any handlers at all.
 926       if (in_jvms->method()->has_exception_handlers()) {
 927         can_prune_locals = false;
 928       }
 929     }
 930 
 931     // Add the Locals
 932     k = in_jvms->locoff();
 933     l = in_jvms->loc_size();
 934     out_jvms->set_locoff(p);
 935     if (!can_prune_locals) {
 936       for (j = 0; j < l; j++)
 937         call->set_req(p++, in_map->in(k+j));
 938     } else {
 939       p += l;  // already set to top above by add_req_batch
 940     }
 941 
 942     // Add the Expression Stack
 943     k = in_jvms->stkoff();
 944     l = in_jvms->sp();
 945     out_jvms->set_stkoff(p);
 946     if (!can_prune_locals) {
 947       for (j = 0; j < l; j++)
 948         call->set_req(p++, in_map->in(k+j));
 949     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 950       // Divide stack into {S0,...,S1}, where S0 is set to top.
 951       uint s1 = stack_slots_not_pruned;
 952       stack_slots_not_pruned = 0;  // for next iteration
 953       if (s1 > l)  s1 = l;
 954       uint s0 = l - s1;
 955       p += s0;  // skip the tops preinstalled by add_req_batch
 956       for (j = s0; j < l; j++)
 957         call->set_req(p++, in_map->in(k+j));
 958     } else {
 959       p += l;  // already set to top above by add_req_batch
 960     }
 961 
 962     // Add the Monitors
 963     k = in_jvms->monoff();
 964     l = in_jvms->mon_size();
 965     out_jvms->set_monoff(p);
 966     for (j = 0; j < l; j++)
 967       call->set_req(p++, in_map->in(k+j));
 968 
 969     // Copy any scalar object fields.
 970     k = in_jvms->scloff();
 971     l = in_jvms->scl_size();
 972     out_jvms->set_scloff(p);
 973     for (j = 0; j < l; j++)
 974       call->set_req(p++, in_map->in(k+j));
 975 
 976     // Finish the new jvms.
 977     out_jvms->set_endoff(p);
 978 
 979     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 980     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 981     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 982     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 983     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 984     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 985 
 986     // Update the two tail pointers in parallel.
 987     out_jvms = out_jvms->caller();
 988     in_jvms  = in_jvms->caller();
 989   }
 990 
 991   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 992 
 993   // Test the correctness of JVMState::debug_xxx accessors:
 994   assert(call->jvms()->debug_start() == non_debug_edges, "");
 995   assert(call->jvms()->debug_end()   == call->req(), "");
 996   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 997 }
 998 
 999 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1000   Bytecodes::Code code = java_bc();
1001   if (code == Bytecodes::_wide) {
1002     code = method()->java_code_at_bci(bci() + 1);
1003   }
1004 
1005   BasicType rtype = T_ILLEGAL;
1006   int       rsize = 0;
1007 
1008   if (code != Bytecodes::_illegal) {
1009     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1010     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1011     if (rtype < T_CONFLICT)
1012       rsize = type2size[rtype];
1013   }
1014 
1015   switch (code) {
1016   case Bytecodes::_illegal:
1017     return false;
1018 
1019   case Bytecodes::_ldc:
1020   case Bytecodes::_ldc_w:
1021   case Bytecodes::_ldc2_w:
1022     inputs = 0;
1023     break;
1024 
1025   case Bytecodes::_dup:         inputs = 1;  break;
1026   case Bytecodes::_dup_x1:      inputs = 2;  break;
1027   case Bytecodes::_dup_x2:      inputs = 3;  break;
1028   case Bytecodes::_dup2:        inputs = 2;  break;
1029   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1030   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1031   case Bytecodes::_swap:        inputs = 2;  break;
1032   case Bytecodes::_arraylength: inputs = 1;  break;
1033 
1034   case Bytecodes::_getstatic:
1035   case Bytecodes::_putstatic:
1036   case Bytecodes::_getfield:
1037   case Bytecodes::_putfield:
1038     {
1039       bool ignored_will_link;
1040       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1041       int      size  = field->type()->size();
1042       bool is_get = (depth >= 0), is_static = (depth & 1);
1043       inputs = (is_static ? 0 : 1);
1044       if (is_get) {
1045         depth = size - inputs;
1046       } else {
1047         inputs += size;        // putxxx pops the value from the stack
1048         depth = - inputs;
1049       }
1050     }
1051     break;
1052 
1053   case Bytecodes::_invokevirtual:
1054   case Bytecodes::_invokespecial:
1055   case Bytecodes::_invokestatic:
1056   case Bytecodes::_invokedynamic:
1057   case Bytecodes::_invokeinterface:
1058     {
1059       bool ignored_will_link;
1060       ciSignature* declared_signature = NULL;
1061       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1062       assert(declared_signature != NULL, "cannot be null");
1063       inputs   = declared_signature->arg_size_for_bc(code);
1064       int size = declared_signature->return_type()->size();
1065       depth = size - inputs;
1066     }
1067     break;
1068 
1069   case Bytecodes::_multianewarray:
1070     {
1071       ciBytecodeStream iter(method());
1072       iter.reset_to_bci(bci());
1073       iter.next();
1074       inputs = iter.get_dimensions();
1075       assert(rsize == 1, "");
1076       depth = rsize - inputs;
1077     }
1078     break;
1079 
1080   case Bytecodes::_ireturn:
1081   case Bytecodes::_lreturn:
1082   case Bytecodes::_freturn:
1083   case Bytecodes::_dreturn:
1084   case Bytecodes::_areturn:
1085     assert(rsize == -depth, "");
1086     inputs = rsize;
1087     break;
1088 
1089   case Bytecodes::_jsr:
1090   case Bytecodes::_jsr_w:
1091     inputs = 0;
1092     depth  = 1;                  // S.B. depth=1, not zero
1093     break;
1094 
1095   default:
1096     // bytecode produces a typed result
1097     inputs = rsize - depth;
1098     assert(inputs >= 0, "");
1099     break;
1100   }
1101 
1102 #ifdef ASSERT
1103   // spot check
1104   int outputs = depth + inputs;
1105   assert(outputs >= 0, "sanity");
1106   switch (code) {
1107   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1108   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1109   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1110   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1111   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1112   default:                    break;
1113   }
1114 #endif //ASSERT
1115 
1116   return true;
1117 }
1118 
1119 
1120 
1121 //------------------------------basic_plus_adr---------------------------------
1122 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1123   // short-circuit a common case
1124   if (offset == intcon(0))  return ptr;
1125   return _gvn.transform( new AddPNode(base, ptr, offset) );
1126 }
1127 
1128 Node* GraphKit::ConvI2L(Node* offset) {
1129   // short-circuit a common case
1130   jint offset_con = find_int_con(offset, Type::OffsetBot);
1131   if (offset_con != Type::OffsetBot) {
1132     return longcon((jlong) offset_con);
1133   }
1134   return _gvn.transform( new ConvI2LNode(offset));
1135 }
1136 
1137 Node* GraphKit::ConvI2UL(Node* offset) {
1138   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1139   if (offset_con != (juint) Type::OffsetBot) {
1140     return longcon((julong) offset_con);
1141   }
1142   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1143   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1144   return _gvn.transform( new AndLNode(conv, mask) );
1145 }
1146 
1147 Node* GraphKit::ConvL2I(Node* offset) {
1148   // short-circuit a common case
1149   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1150   if (offset_con != (jlong)Type::OffsetBot) {
1151     return intcon((int) offset_con);
1152   }
1153   return _gvn.transform( new ConvL2INode(offset));
1154 }
1155 
1156 //-------------------------load_object_klass-----------------------------------
1157 Node* GraphKit::load_object_klass(Node* obj) {
1158   // Special-case a fresh allocation to avoid building nodes:
1159   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1160   if (akls != NULL)  return akls;
1161   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1162   return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1163 }
1164 
1165 //-------------------------load_array_length-----------------------------------
1166 Node* GraphKit::load_array_length(Node* array) {
1167   // Special-case a fresh allocation to avoid building nodes:
1168   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1169   Node *alen;
1170   if (alloc == NULL) {
1171     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1172     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1173   } else {
1174     alen = alloc->Ideal_length();
1175     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1176     if (ccast != alen) {
1177       alen = _gvn.transform(ccast);
1178     }
1179   }
1180   return alen;
1181 }
1182 
1183 //------------------------------do_null_check----------------------------------
1184 // Helper function to do a NULL pointer check.  Returned value is
1185 // the incoming address with NULL casted away.  You are allowed to use the
1186 // not-null value only if you are control dependent on the test.
1187 #ifndef PRODUCT
1188 extern int explicit_null_checks_inserted,
1189            explicit_null_checks_elided;
1190 #endif
1191 Node* GraphKit::null_check_common(Node* value, BasicType type,
1192                                   // optional arguments for variations:
1193                                   bool assert_null,
1194                                   Node* *null_control,
1195                                   bool speculative) {
1196   assert(!assert_null || null_control == NULL, "not both at once");
1197   if (stopped())  return top();
1198   NOT_PRODUCT(explicit_null_checks_inserted++);
1199 
1200   // Construct NULL check
1201   Node *chk = NULL;
1202   switch(type) {
1203     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1204     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1205     case T_ARRAY  : // fall through
1206       type = T_OBJECT;  // simplify further tests
1207     case T_OBJECT : {
1208       const Type *t = _gvn.type( value );
1209 
1210       const TypeOopPtr* tp = t->isa_oopptr();
1211       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1212           // Only for do_null_check, not any of its siblings:
1213           && !assert_null && null_control == NULL) {
1214         // Usually, any field access or invocation on an unloaded oop type
1215         // will simply fail to link, since the statically linked class is
1216         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1217         // the static class is loaded but the sharper oop type is not.
1218         // Rather than checking for this obscure case in lots of places,
1219         // we simply observe that a null check on an unloaded class
1220         // will always be followed by a nonsense operation, so we
1221         // can just issue the uncommon trap here.
1222         // Our access to the unloaded class will only be correct
1223         // after it has been loaded and initialized, which requires
1224         // a trip through the interpreter.
1225 #ifndef PRODUCT
1226         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1227 #endif
1228         uncommon_trap(Deoptimization::Reason_unloaded,
1229                       Deoptimization::Action_reinterpret,
1230                       tp->klass(), "!loaded");
1231         return top();
1232       }
1233 
1234       if (assert_null) {
1235         // See if the type is contained in NULL_PTR.
1236         // If so, then the value is already null.
1237         if (t->higher_equal(TypePtr::NULL_PTR)) {
1238           NOT_PRODUCT(explicit_null_checks_elided++);
1239           return value;           // Elided null assert quickly!
1240         }
1241       } else {
1242         // See if mixing in the NULL pointer changes type.
1243         // If so, then the NULL pointer was not allowed in the original
1244         // type.  In other words, "value" was not-null.
1245         if (t->meet(TypePtr::NULL_PTR) != t->remove_speculative()) {
1246           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1247           NOT_PRODUCT(explicit_null_checks_elided++);
1248           return value;           // Elided null check quickly!
1249         }
1250       }
1251       chk = new CmpPNode( value, null() );
1252       break;
1253     }
1254 
1255     default:
1256       fatal("unexpected type: %s", type2name(type));
1257   }
1258   assert(chk != NULL, "sanity check");
1259   chk = _gvn.transform(chk);
1260 
1261   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1262   BoolNode *btst = new BoolNode( chk, btest);
1263   Node   *tst = _gvn.transform( btst );
1264 
1265   //-----------
1266   // if peephole optimizations occurred, a prior test existed.
1267   // If a prior test existed, maybe it dominates as we can avoid this test.
1268   if (tst != btst && type == T_OBJECT) {
1269     // At this point we want to scan up the CFG to see if we can
1270     // find an identical test (and so avoid this test altogether).
1271     Node *cfg = control();
1272     int depth = 0;
1273     while( depth < 16 ) {       // Limit search depth for speed
1274       if( cfg->Opcode() == Op_IfTrue &&
1275           cfg->in(0)->in(1) == tst ) {
1276         // Found prior test.  Use "cast_not_null" to construct an identical
1277         // CastPP (and hence hash to) as already exists for the prior test.
1278         // Return that casted value.
1279         if (assert_null) {
1280           replace_in_map(value, null());
1281           return null();  // do not issue the redundant test
1282         }
1283         Node *oldcontrol = control();
1284         set_control(cfg);
1285         Node *res = cast_not_null(value);
1286         set_control(oldcontrol);
1287         NOT_PRODUCT(explicit_null_checks_elided++);
1288         return res;
1289       }
1290       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1291       if (cfg == NULL)  break;  // Quit at region nodes
1292       depth++;
1293     }
1294   }
1295 
1296   //-----------
1297   // Branch to failure if null
1298   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1299   Deoptimization::DeoptReason reason;
1300   if (assert_null) {
1301     reason = Deoptimization::reason_null_assert(speculative);
1302   } else if (type == T_OBJECT) {
1303     reason = Deoptimization::reason_null_check(speculative);
1304   } else {
1305     reason = Deoptimization::Reason_div0_check;
1306   }
1307   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1308   // ciMethodData::has_trap_at will return a conservative -1 if any
1309   // must-be-null assertion has failed.  This could cause performance
1310   // problems for a method after its first do_null_assert failure.
1311   // Consider using 'Reason_class_check' instead?
1312 
1313   // To cause an implicit null check, we set the not-null probability
1314   // to the maximum (PROB_MAX).  For an explicit check the probability
1315   // is set to a smaller value.
1316   if (null_control != NULL || too_many_traps(reason)) {
1317     // probability is less likely
1318     ok_prob =  PROB_LIKELY_MAG(3);
1319   } else if (!assert_null &&
1320              (ImplicitNullCheckThreshold > 0) &&
1321              method() != NULL &&
1322              (method()->method_data()->trap_count(reason)
1323               >= (uint)ImplicitNullCheckThreshold)) {
1324     ok_prob =  PROB_LIKELY_MAG(3);
1325   }
1326 
1327   if (null_control != NULL) {
1328     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1329     Node* null_true = _gvn.transform( new IfFalseNode(iff));
1330     set_control(      _gvn.transform( new IfTrueNode(iff)));
1331 #ifndef PRODUCT
1332     if (null_true == top()) {
1333       explicit_null_checks_elided++;
1334     }
1335 #endif
1336     (*null_control) = null_true;
1337   } else {
1338     BuildCutout unless(this, tst, ok_prob);
1339     // Check for optimizer eliding test at parse time
1340     if (stopped()) {
1341       // Failure not possible; do not bother making uncommon trap.
1342       NOT_PRODUCT(explicit_null_checks_elided++);
1343     } else if (assert_null) {
1344       uncommon_trap(reason,
1345                     Deoptimization::Action_make_not_entrant,
1346                     NULL, "assert_null");
1347     } else {
1348       replace_in_map(value, zerocon(type));
1349       builtin_throw(reason);
1350     }
1351   }
1352 
1353   // Must throw exception, fall-thru not possible?
1354   if (stopped()) {
1355     return top();               // No result
1356   }
1357 
1358   if (assert_null) {
1359     // Cast obj to null on this path.
1360     replace_in_map(value, zerocon(type));
1361     return zerocon(type);
1362   }
1363 
1364   // Cast obj to not-null on this path, if there is no null_control.
1365   // (If there is a null_control, a non-null value may come back to haunt us.)
1366   if (type == T_OBJECT) {
1367     Node* cast = cast_not_null(value, false);
1368     if (null_control == NULL || (*null_control) == top())
1369       replace_in_map(value, cast);
1370     value = cast;
1371   }
1372 
1373   return value;
1374 }
1375 
1376 
1377 //------------------------------cast_not_null----------------------------------
1378 // Cast obj to not-null on this path
1379 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1380   const Type *t = _gvn.type(obj);
1381   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1382   // Object is already not-null?
1383   if( t == t_not_null ) return obj;
1384 
1385   Node *cast = new CastPPNode(obj,t_not_null);
1386   cast->init_req(0, control());
1387   cast = _gvn.transform( cast );
1388 
1389   // Scan for instances of 'obj' in the current JVM mapping.
1390   // These instances are known to be not-null after the test.
1391   if (do_replace_in_map)
1392     replace_in_map(obj, cast);
1393 
1394   return cast;                  // Return casted value
1395 }
1396 
1397 // Sometimes in intrinsics, we implicitly know an object is not null
1398 // (there's no actual null check) so we can cast it to not null. In
1399 // the course of optimizations, the input to the cast can become null.
1400 // In that case that data path will die and we need the control path
1401 // to become dead as well to keep the graph consistent. So we have to
1402 // add a check for null for which one branch can't be taken. It uses
1403 // an Opaque4 node that will cause the check to be removed after loop
1404 // opts so the test goes away and the compiled code doesn't execute a
1405 // useless check.
1406 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1407   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1408   Node *tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1409   Node* opaq = _gvn.transform(new Opaque4Node(C, tst, intcon(1)));
1410   IfNode *iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1411   _gvn.set_type(iff, iff->Value(&_gvn));
1412   Node *if_f = _gvn.transform(new IfFalseNode(iff));
1413   Node *frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
1414   Node *halt = _gvn.transform(new HaltNode(if_f, frame));
1415   C->root()->add_req(halt);
1416   Node *if_t = _gvn.transform(new IfTrueNode(iff));
1417   set_control(if_t);
1418   return cast_not_null(value, do_replace_in_map);
1419 }
1420 
1421 
1422 //--------------------------replace_in_map-------------------------------------
1423 void GraphKit::replace_in_map(Node* old, Node* neww) {
1424   if (old == neww) {
1425     return;
1426   }
1427 
1428   map()->replace_edge(old, neww);
1429 
1430   // Note: This operation potentially replaces any edge
1431   // on the map.  This includes locals, stack, and monitors
1432   // of the current (innermost) JVM state.
1433 
1434   // don't let inconsistent types from profiling escape this
1435   // method
1436 
1437   const Type* told = _gvn.type(old);
1438   const Type* tnew = _gvn.type(neww);
1439 
1440   if (!tnew->higher_equal(told)) {
1441     return;
1442   }
1443 
1444   map()->record_replaced_node(old, neww);
1445 }
1446 
1447 
1448 //=============================================================================
1449 //--------------------------------memory---------------------------------------
1450 Node* GraphKit::memory(uint alias_idx) {
1451   MergeMemNode* mem = merged_memory();
1452   Node* p = mem->memory_at(alias_idx);
1453   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1454   return p;
1455 }
1456 
1457 //-----------------------------reset_memory------------------------------------
1458 Node* GraphKit::reset_memory() {
1459   Node* mem = map()->memory();
1460   // do not use this node for any more parsing!
1461   debug_only( map()->set_memory((Node*)NULL) );
1462   return _gvn.transform( mem );
1463 }
1464 
1465 //------------------------------set_all_memory---------------------------------
1466 void GraphKit::set_all_memory(Node* newmem) {
1467   Node* mergemem = MergeMemNode::make(newmem);
1468   gvn().set_type_bottom(mergemem);
1469   map()->set_memory(mergemem);
1470 }
1471 
1472 //------------------------------set_all_memory_call----------------------------
1473 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1474   Node* newmem = _gvn.transform( new ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1475   set_all_memory(newmem);
1476 }
1477 
1478 //=============================================================================
1479 //
1480 // parser factory methods for MemNodes
1481 //
1482 // These are layered on top of the factory methods in LoadNode and StoreNode,
1483 // and integrate with the parser's memory state and _gvn engine.
1484 //
1485 
1486 // factory methods in "int adr_idx"
1487 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1488                           int adr_idx,
1489                           MemNode::MemOrd mo,
1490                           LoadNode::ControlDependency control_dependency,
1491                           bool require_atomic_access,
1492                           bool unaligned,
1493                           bool mismatched) {
1494   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1495   const TypePtr* adr_type = NULL; // debug-mode-only argument
1496   debug_only(adr_type = C->get_adr_type(adr_idx));
1497   Node* mem = memory(adr_idx);
1498   Node* ld;
1499   if (require_atomic_access && bt == T_LONG) {
1500     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1501   } else if (require_atomic_access && bt == T_DOUBLE) {
1502     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched);
1503   } else {
1504     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched);
1505   }
1506   ld = _gvn.transform(ld);
1507   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1508     // Improve graph before escape analysis and boxing elimination.
1509     record_for_igvn(ld);
1510   }
1511   return ld;
1512 }
1513 
1514 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1515                                 int adr_idx,
1516                                 MemNode::MemOrd mo,
1517                                 bool require_atomic_access,
1518                                 bool unaligned,
1519                                 bool mismatched) {
1520   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1521   const TypePtr* adr_type = NULL;
1522   debug_only(adr_type = C->get_adr_type(adr_idx));
1523   Node *mem = memory(adr_idx);
1524   Node* st;
1525   if (require_atomic_access && bt == T_LONG) {
1526     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1527   } else if (require_atomic_access && bt == T_DOUBLE) {
1528     st = StoreDNode::make_atomic(ctl, mem, adr, adr_type, val, mo);
1529   } else {
1530     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo);
1531   }
1532   if (unaligned) {
1533     st->as_Store()->set_unaligned_access();
1534   }
1535   if (mismatched) {
1536     st->as_Store()->set_mismatched_access();
1537   }
1538   st = _gvn.transform(st);
1539   set_memory(st, adr_idx);
1540   // Back-to-back stores can only remove intermediate store with DU info
1541   // so push on worklist for optimizer.
1542   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1543     record_for_igvn(st);
1544 
1545   return st;
1546 }
1547 
1548 Node* GraphKit::access_store_at(Node* ctl,
1549                                 Node* obj,
1550                                 Node* adr,
1551                                 const TypePtr* adr_type,
1552                                 Node* val,
1553                                 const Type* val_type,
1554                                 BasicType bt,
1555                                 DecoratorSet decorators) {
1556   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1557   // could be delayed during Parse (for example, in adjust_map_after_if()).
1558   // Execute transformation here to avoid barrier generation in such case.
1559   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1560     val = _gvn.makecon(TypePtr::NULL_PTR);
1561   }
1562 
1563   set_control(ctl);
1564   if (stopped()) {
1565     return top(); // Dead path ?
1566   }
1567 
1568   assert(val != NULL, "not dead path");
1569 
1570   C2AccessValuePtr addr(adr, adr_type);
1571   C2AccessValue value(val, val_type);
1572   C2Access access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1573   if (access.is_raw()) {
1574     return _barrier_set->BarrierSetC2::store_at(access, value);
1575   } else {
1576     return _barrier_set->store_at(access, value);
1577   }
1578 }
1579 
1580 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1581                                Node* adr,   // actual adress to store val at
1582                                const TypePtr* adr_type,
1583                                const Type* val_type,
1584                                BasicType bt,
1585                                DecoratorSet decorators) {
1586   if (stopped()) {
1587     return top(); // Dead path ?
1588   }
1589 
1590   C2AccessValuePtr addr(adr, adr_type);
1591   C2Access access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1592   if (access.is_raw()) {
1593     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1594   } else {
1595     return _barrier_set->load_at(access, val_type);
1596   }
1597 }
1598 
1599 Node* GraphKit::access_atomic_cmpxchg_val_at(Node* ctl,
1600                                              Node* obj,
1601                                              Node* adr,
1602                                              const TypePtr* adr_type,
1603                                              int alias_idx,
1604                                              Node* expected_val,
1605                                              Node* new_val,
1606                                              const Type* value_type,
1607                                              BasicType bt,
1608                                              DecoratorSet decorators) {
1609   set_control(ctl);
1610   C2AccessValuePtr addr(adr, adr_type);
1611   C2AtomicAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1612                         bt, obj, addr, alias_idx);
1613   if (access.is_raw()) {
1614     return _barrier_set->BarrierSetC2::atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1615   } else {
1616     return _barrier_set->atomic_cmpxchg_val_at(access, expected_val, new_val, value_type);
1617   }
1618 }
1619 
1620 Node* GraphKit::access_atomic_cmpxchg_bool_at(Node* ctl,
1621                                               Node* obj,
1622                                               Node* adr,
1623                                               const TypePtr* adr_type,
1624                                               int alias_idx,
1625                                               Node* expected_val,
1626                                               Node* new_val,
1627                                               const Type* value_type,
1628                                               BasicType bt,
1629                                               DecoratorSet decorators) {
1630   set_control(ctl);
1631   C2AccessValuePtr addr(adr, adr_type);
1632   C2AtomicAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1633                         bt, obj, addr, alias_idx);
1634   if (access.is_raw()) {
1635     return _barrier_set->BarrierSetC2::atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1636   } else {
1637     return _barrier_set->atomic_cmpxchg_bool_at(access, expected_val, new_val, value_type);
1638   }
1639 }
1640 
1641 Node* GraphKit::access_atomic_xchg_at(Node* ctl,
1642                                       Node* obj,
1643                                       Node* adr,
1644                                       const TypePtr* adr_type,
1645                                       int alias_idx,
1646                                       Node* new_val,
1647                                       const Type* value_type,
1648                                       BasicType bt,
1649                                       DecoratorSet decorators) {
1650   set_control(ctl);
1651   C2AccessValuePtr addr(adr, adr_type);
1652   C2AtomicAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS,
1653                         bt, obj, addr, alias_idx);
1654   if (access.is_raw()) {
1655     return _barrier_set->BarrierSetC2::atomic_xchg_at(access, new_val, value_type);
1656   } else {
1657     return _barrier_set->atomic_xchg_at(access, new_val, value_type);
1658   }
1659 }
1660 
1661 Node* GraphKit::access_atomic_add_at(Node* ctl,
1662                                      Node* obj,
1663                                      Node* adr,
1664                                      const TypePtr* adr_type,
1665                                      int alias_idx,
1666                                      Node* new_val,
1667                                      const Type* value_type,
1668                                      BasicType bt,
1669                                      DecoratorSet decorators) {
1670   set_control(ctl);
1671   C2AccessValuePtr addr(adr, adr_type);
1672   C2AtomicAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1673   if (access.is_raw()) {
1674     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1675   } else {
1676     return _barrier_set->atomic_add_at(access, new_val, value_type);
1677   }
1678 }
1679 
1680 void GraphKit::access_clone(Node* ctl, Node* src, Node* dst, Node* size, bool is_array) {
1681   set_control(ctl);
1682   return _barrier_set->clone(this, src, dst, size, is_array);
1683 }
1684 
1685 //-------------------------array_element_address-------------------------
1686 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1687                                       const TypeInt* sizetype, Node* ctrl) {
1688   uint shift  = exact_log2(type2aelembytes(elembt));
1689   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1690 
1691   // short-circuit a common case (saves lots of confusing waste motion)
1692   jint idx_con = find_int_con(idx, -1);
1693   if (idx_con >= 0) {
1694     intptr_t offset = header + ((intptr_t)idx_con << shift);
1695     return basic_plus_adr(ary, offset);
1696   }
1697 
1698   // must be correct type for alignment purposes
1699   Node* base  = basic_plus_adr(ary, header);
1700   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1701   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1702   return basic_plus_adr(ary, base, scale);
1703 }
1704 
1705 //-------------------------load_array_element-------------------------
1706 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1707   const Type* elemtype = arytype->elem();
1708   BasicType elembt = elemtype->array_element_basic_type();
1709   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1710   if (elembt == T_NARROWOOP) {
1711     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1712   }
1713   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1714   return ld;
1715 }
1716 
1717 //-------------------------set_arguments_for_java_call-------------------------
1718 // Arguments (pre-popped from the stack) are taken from the JVMS.
1719 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1720   // Add the call arguments:
1721   uint nargs = call->method()->arg_size();
1722   for (uint i = 0; i < nargs; i++) {
1723     Node* arg = argument(i);
1724     call->init_req(i + TypeFunc::Parms, arg);
1725   }
1726 }
1727 
1728 //---------------------------set_edges_for_java_call---------------------------
1729 // Connect a newly created call into the current JVMS.
1730 // A return value node (if any) is returned from set_edges_for_java_call.
1731 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1732 
1733   // Add the predefined inputs:
1734   call->init_req( TypeFunc::Control, control() );
1735   call->init_req( TypeFunc::I_O    , i_o() );
1736   call->init_req( TypeFunc::Memory , reset_memory() );
1737   call->init_req( TypeFunc::FramePtr, frameptr() );
1738   call->init_req( TypeFunc::ReturnAdr, top() );
1739 
1740   add_safepoint_edges(call, must_throw);
1741 
1742   Node* xcall = _gvn.transform(call);
1743 
1744   if (xcall == top()) {
1745     set_control(top());
1746     return;
1747   }
1748   assert(xcall == call, "call identity is stable");
1749 
1750   // Re-use the current map to produce the result.
1751 
1752   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1753   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1754   set_all_memory_call(xcall, separate_io_proj);
1755 
1756   //return xcall;   // no need, caller already has it
1757 }
1758 
1759 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1760   if (stopped())  return top();  // maybe the call folded up?
1761 
1762   // Capture the return value, if any.
1763   Node* ret;
1764   if (call->method() == NULL ||
1765       call->method()->return_type()->basic_type() == T_VOID)
1766         ret = top();
1767   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1768 
1769   // Note:  Since any out-of-line call can produce an exception,
1770   // we always insert an I_O projection from the call into the result.
1771 
1772   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1773 
1774   if (separate_io_proj) {
1775     // The caller requested separate projections be used by the fall
1776     // through and exceptional paths, so replace the projections for
1777     // the fall through path.
1778     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1779     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1780   }
1781   return ret;
1782 }
1783 
1784 //--------------------set_predefined_input_for_runtime_call--------------------
1785 // Reading and setting the memory state is way conservative here.
1786 // The real problem is that I am not doing real Type analysis on memory,
1787 // so I cannot distinguish card mark stores from other stores.  Across a GC
1788 // point the Store Barrier and the card mark memory has to agree.  I cannot
1789 // have a card mark store and its barrier split across the GC point from
1790 // either above or below.  Here I get that to happen by reading ALL of memory.
1791 // A better answer would be to separate out card marks from other memory.
1792 // For now, return the input memory state, so that it can be reused
1793 // after the call, if this call has restricted memory effects.
1794 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1795   // Set fixed predefined input arguments
1796   Node* memory = reset_memory();
1797   call->init_req( TypeFunc::Control,   control()  );
1798   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1799   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1800   call->init_req( TypeFunc::FramePtr,  frameptr() );
1801   call->init_req( TypeFunc::ReturnAdr, top()      );
1802   return memory;
1803 }
1804 
1805 //-------------------set_predefined_output_for_runtime_call--------------------
1806 // Set control and memory (not i_o) from the call.
1807 // If keep_mem is not NULL, use it for the output state,
1808 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1809 // If hook_mem is NULL, this call produces no memory effects at all.
1810 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1811 // then only that memory slice is taken from the call.
1812 // In the last case, we must put an appropriate memory barrier before
1813 // the call, so as to create the correct anti-dependencies on loads
1814 // preceding the call.
1815 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1816                                                       Node* keep_mem,
1817                                                       const TypePtr* hook_mem) {
1818   // no i/o
1819   set_control(_gvn.transform( new ProjNode(call,TypeFunc::Control) ));
1820   if (keep_mem) {
1821     // First clone the existing memory state
1822     set_all_memory(keep_mem);
1823     if (hook_mem != NULL) {
1824       // Make memory for the call
1825       Node* mem = _gvn.transform( new ProjNode(call, TypeFunc::Memory) );
1826       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1827       // We also use hook_mem to extract specific effects from arraycopy stubs.
1828       set_memory(mem, hook_mem);
1829     }
1830     // ...else the call has NO memory effects.
1831 
1832     // Make sure the call advertises its memory effects precisely.
1833     // This lets us build accurate anti-dependences in gcm.cpp.
1834     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1835            "call node must be constructed correctly");
1836   } else {
1837     assert(hook_mem == NULL, "");
1838     // This is not a "slow path" call; all memory comes from the call.
1839     set_all_memory_call(call);
1840   }
1841 }
1842 
1843 
1844 // Replace the call with the current state of the kit.
1845 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1846   JVMState* ejvms = NULL;
1847   if (has_exceptions()) {
1848     ejvms = transfer_exceptions_into_jvms();
1849   }
1850 
1851   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1852   ReplacedNodes replaced_nodes_exception;
1853   Node* ex_ctl = top();
1854 
1855   SafePointNode* final_state = stop();
1856 
1857   // Find all the needed outputs of this call
1858   CallProjections callprojs;
1859   call->extract_projections(&callprojs, true);
1860 
1861   Node* init_mem = call->in(TypeFunc::Memory);
1862   Node* final_mem = final_state->in(TypeFunc::Memory);
1863   Node* final_ctl = final_state->in(TypeFunc::Control);
1864   Node* final_io = final_state->in(TypeFunc::I_O);
1865 
1866   // Replace all the old call edges with the edges from the inlining result
1867   if (callprojs.fallthrough_catchproj != NULL) {
1868     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1869   }
1870   if (callprojs.fallthrough_memproj != NULL) {
1871     if (final_mem->is_MergeMem()) {
1872       // Parser's exits MergeMem was not transformed but may be optimized
1873       final_mem = _gvn.transform(final_mem);
1874     }
1875     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1876   }
1877   if (callprojs.fallthrough_ioproj != NULL) {
1878     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1879   }
1880 
1881   // Replace the result with the new result if it exists and is used
1882   if (callprojs.resproj != NULL && result != NULL) {
1883     C->gvn_replace_by(callprojs.resproj, result);
1884   }
1885 
1886   if (ejvms == NULL) {
1887     // No exception edges to simply kill off those paths
1888     if (callprojs.catchall_catchproj != NULL) {
1889       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1890     }
1891     if (callprojs.catchall_memproj != NULL) {
1892       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1893     }
1894     if (callprojs.catchall_ioproj != NULL) {
1895       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1896     }
1897     // Replace the old exception object with top
1898     if (callprojs.exobj != NULL) {
1899       C->gvn_replace_by(callprojs.exobj, C->top());
1900     }
1901   } else {
1902     GraphKit ekit(ejvms);
1903 
1904     // Load my combined exception state into the kit, with all phis transformed:
1905     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1906     replaced_nodes_exception = ex_map->replaced_nodes();
1907 
1908     Node* ex_oop = ekit.use_exception_state(ex_map);
1909 
1910     if (callprojs.catchall_catchproj != NULL) {
1911       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1912       ex_ctl = ekit.control();
1913     }
1914     if (callprojs.catchall_memproj != NULL) {
1915       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1916     }
1917     if (callprojs.catchall_ioproj != NULL) {
1918       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1919     }
1920 
1921     // Replace the old exception object with the newly created one
1922     if (callprojs.exobj != NULL) {
1923       C->gvn_replace_by(callprojs.exobj, ex_oop);
1924     }
1925   }
1926 
1927   // Disconnect the call from the graph
1928   call->disconnect_inputs(NULL, C);
1929   C->gvn_replace_by(call, C->top());
1930 
1931   // Clean up any MergeMems that feed other MergeMems since the
1932   // optimizer doesn't like that.
1933   if (final_mem->is_MergeMem()) {
1934     Node_List wl;
1935     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1936       Node* m = i.get();
1937       if (m->is_MergeMem() && !wl.contains(m)) {
1938         wl.push(m);
1939       }
1940     }
1941     while (wl.size()  > 0) {
1942       _gvn.transform(wl.pop());
1943     }
1944   }
1945 
1946   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1947     replaced_nodes.apply(C, final_ctl);
1948   }
1949   if (!ex_ctl->is_top() && do_replaced_nodes) {
1950     replaced_nodes_exception.apply(C, ex_ctl);
1951   }
1952 }
1953 
1954 
1955 //------------------------------increment_counter------------------------------
1956 // for statistics: increment a VM counter by 1
1957 
1958 void GraphKit::increment_counter(address counter_addr) {
1959   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1960   increment_counter(adr1);
1961 }
1962 
1963 void GraphKit::increment_counter(Node* counter_addr) {
1964   int adr_type = Compile::AliasIdxRaw;
1965   Node* ctrl = control();
1966   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
1967   Node* incr = _gvn.transform(new AddINode(cnt, _gvn.intcon(1)));
1968   store_to_memory(ctrl, counter_addr, incr, T_INT, adr_type, MemNode::unordered);
1969 }
1970 
1971 
1972 //------------------------------uncommon_trap----------------------------------
1973 // Bail out to the interpreter in mid-method.  Implemented by calling the
1974 // uncommon_trap blob.  This helper function inserts a runtime call with the
1975 // right debug info.
1976 void GraphKit::uncommon_trap(int trap_request,
1977                              ciKlass* klass, const char* comment,
1978                              bool must_throw,
1979                              bool keep_exact_action) {
1980   if (failing())  stop();
1981   if (stopped())  return; // trap reachable?
1982 
1983   // Note:  If ProfileTraps is true, and if a deopt. actually
1984   // occurs here, the runtime will make sure an MDO exists.  There is
1985   // no need to call method()->ensure_method_data() at this point.
1986 
1987   // Set the stack pointer to the right value for reexecution:
1988   set_sp(reexecute_sp());
1989 
1990 #ifdef ASSERT
1991   if (!must_throw) {
1992     // Make sure the stack has at least enough depth to execute
1993     // the current bytecode.
1994     int inputs, ignored_depth;
1995     if (compute_stack_effects(inputs, ignored_depth)) {
1996       assert(sp() >= inputs, "must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1997              Bytecodes::name(java_bc()), sp(), inputs);
1998     }
1999   }
2000 #endif
2001 
2002   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
2003   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
2004 
2005   switch (action) {
2006   case Deoptimization::Action_maybe_recompile:
2007   case Deoptimization::Action_reinterpret:
2008     // Temporary fix for 6529811 to allow virtual calls to be sure they
2009     // get the chance to go from mono->bi->mega
2010     if (!keep_exact_action &&
2011         Deoptimization::trap_request_index(trap_request) < 0 &&
2012         too_many_recompiles(reason)) {
2013       // This BCI is causing too many recompilations.
2014       if (C->log() != NULL) {
2015         C->log()->elem("observe that='trap_action_change' reason='%s' from='%s' to='none'",
2016                 Deoptimization::trap_reason_name(reason),
2017                 Deoptimization::trap_action_name(action));
2018       }
2019       action = Deoptimization::Action_none;
2020       trap_request = Deoptimization::make_trap_request(reason, action);
2021     } else {
2022       C->set_trap_can_recompile(true);
2023     }
2024     break;
2025   case Deoptimization::Action_make_not_entrant:
2026     C->set_trap_can_recompile(true);
2027     break;
2028   case Deoptimization::Action_none:
2029   case Deoptimization::Action_make_not_compilable:
2030     break;
2031   default:
2032 #ifdef ASSERT
2033     fatal("unknown action %d: %s", action, Deoptimization::trap_action_name(action));
2034 #endif
2035     break;
2036   }
2037 
2038   if (TraceOptoParse) {
2039     char buf[100];
2040     tty->print_cr("Uncommon trap %s at bci:%d",
2041                   Deoptimization::format_trap_request(buf, sizeof(buf),
2042                                                       trap_request), bci());
2043   }
2044 
2045   CompileLog* log = C->log();
2046   if (log != NULL) {
2047     int kid = (klass == NULL)? -1: log->identify(klass);
2048     log->begin_elem("uncommon_trap bci='%d'", bci());
2049     char buf[100];
2050     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
2051                                                           trap_request));
2052     if (kid >= 0)         log->print(" klass='%d'", kid);
2053     if (comment != NULL)  log->print(" comment='%s'", comment);
2054     log->end_elem();
2055   }
2056 
2057   // Make sure any guarding test views this path as very unlikely
2058   Node *i0 = control()->in(0);
2059   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
2060     IfNode *iff = i0->as_If();
2061     float f = iff->_prob;   // Get prob
2062     if (control()->Opcode() == Op_IfTrue) {
2063       if (f > PROB_UNLIKELY_MAG(4))
2064         iff->_prob = PROB_MIN;
2065     } else {
2066       if (f < PROB_LIKELY_MAG(4))
2067         iff->_prob = PROB_MAX;
2068     }
2069   }
2070 
2071   // Clear out dead values from the debug info.
2072   kill_dead_locals();
2073 
2074   // Now insert the uncommon trap subroutine call
2075   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2076   const TypePtr* no_memory_effects = NULL;
2077   // Pass the index of the class to be loaded
2078   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2079                                  (must_throw ? RC_MUST_THROW : 0),
2080                                  OptoRuntime::uncommon_trap_Type(),
2081                                  call_addr, "uncommon_trap", no_memory_effects,
2082                                  intcon(trap_request));
2083   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2084          "must extract request correctly from the graph");
2085   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2086 
2087   call->set_req(TypeFunc::ReturnAdr, returnadr());
2088   // The debug info is the only real input to this call.
2089 
2090   // Halt-and-catch fire here.  The above call should never return!
2091   HaltNode* halt = new HaltNode(control(), frameptr());
2092   _gvn.set_type_bottom(halt);
2093   root()->add_req(halt);
2094 
2095   stop_and_kill_map();
2096 }
2097 
2098 
2099 //--------------------------just_allocated_object------------------------------
2100 // Report the object that was just allocated.
2101 // It must be the case that there are no intervening safepoints.
2102 // We use this to determine if an object is so "fresh" that
2103 // it does not require card marks.
2104 Node* GraphKit::just_allocated_object(Node* current_control) {
2105   if (C->recent_alloc_ctl() == current_control)
2106     return C->recent_alloc_obj();
2107   return NULL;
2108 }
2109 
2110 
2111 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2112   // (Note:  TypeFunc::make has a cache that makes this fast.)
2113   const TypeFunc* tf    = TypeFunc::make(dest_method);
2114   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2115   for (int j = 0; j < nargs; j++) {
2116     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2117     if( targ->basic_type() == T_DOUBLE ) {
2118       // If any parameters are doubles, they must be rounded before
2119       // the call, dstore_rounding does gvn.transform
2120       Node *arg = argument(j);
2121       arg = dstore_rounding(arg);
2122       set_argument(j, arg);
2123     }
2124   }
2125 }
2126 
2127 /**
2128  * Record profiling data exact_kls for Node n with the type system so
2129  * that it can propagate it (speculation)
2130  *
2131  * @param n          node that the type applies to
2132  * @param exact_kls  type from profiling
2133  * @param maybe_null did profiling see null?
2134  *
2135  * @return           node with improved type
2136  */
2137 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2138   const Type* current_type = _gvn.type(n);
2139   assert(UseTypeSpeculation, "type speculation must be on");
2140 
2141   const TypePtr* speculative = current_type->speculative();
2142 
2143   // Should the klass from the profile be recorded in the speculative type?
2144   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2145     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2146     const TypeOopPtr* xtype = tklass->as_instance_type();
2147     assert(xtype->klass_is_exact(), "Should be exact");
2148     // Any reason to believe n is not null (from this profiling or a previous one)?
2149     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2150     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2151     // record the new speculative type's depth
2152     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2153     speculative = speculative->with_inline_depth(jvms()->depth());
2154   } else if (current_type->would_improve_ptr(ptr_kind)) {
2155     // Profiling report that null was never seen so we can change the
2156     // speculative type to non null ptr.
2157     if (ptr_kind == ProfileAlwaysNull) {
2158       speculative = TypePtr::NULL_PTR;
2159     } else {
2160       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2161       const TypePtr* ptr = TypePtr::NOTNULL;
2162       if (speculative != NULL) {
2163         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2164       } else {
2165         speculative = ptr;
2166       }
2167     }
2168   }
2169 
2170   if (speculative != current_type->speculative()) {
2171     // Build a type with a speculative type (what we think we know
2172     // about the type but will need a guard when we use it)
2173     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2174     // We're changing the type, we need a new CheckCast node to carry
2175     // the new type. The new type depends on the control: what
2176     // profiling tells us is only valid from here as far as we can
2177     // tell.
2178     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2179     cast = _gvn.transform(cast);
2180     replace_in_map(n, cast);
2181     n = cast;
2182   }
2183 
2184   return n;
2185 }
2186 
2187 /**
2188  * Record profiling data from receiver profiling at an invoke with the
2189  * type system so that it can propagate it (speculation)
2190  *
2191  * @param n  receiver node
2192  *
2193  * @return   node with improved type
2194  */
2195 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2196   if (!UseTypeSpeculation) {
2197     return n;
2198   }
2199   ciKlass* exact_kls = profile_has_unique_klass();
2200   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2201   if ((java_bc() == Bytecodes::_checkcast ||
2202        java_bc() == Bytecodes::_instanceof ||
2203        java_bc() == Bytecodes::_aastore) &&
2204       method()->method_data()->is_mature()) {
2205     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2206     if (data != NULL) {
2207       if (!data->as_BitData()->null_seen()) {
2208         ptr_kind = ProfileNeverNull;
2209       } else {
2210         assert(data->is_ReceiverTypeData(), "bad profile data type");
2211         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2212         uint i = 0;
2213         for (; i < call->row_limit(); i++) {
2214           ciKlass* receiver = call->receiver(i);
2215           if (receiver != NULL) {
2216             break;
2217           }
2218         }
2219         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2220       }
2221     }
2222   }
2223   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2224 }
2225 
2226 /**
2227  * Record profiling data from argument profiling at an invoke with the
2228  * type system so that it can propagate it (speculation)
2229  *
2230  * @param dest_method  target method for the call
2231  * @param bc           what invoke bytecode is this?
2232  */
2233 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2234   if (!UseTypeSpeculation) {
2235     return;
2236   }
2237   const TypeFunc* tf    = TypeFunc::make(dest_method);
2238   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2239   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2240   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2241     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2242     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2243       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2244       ciKlass* better_type = NULL;
2245       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2246         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2247       }
2248       i++;
2249     }
2250   }
2251 }
2252 
2253 /**
2254  * Record profiling data from parameter profiling at an invoke with
2255  * the type system so that it can propagate it (speculation)
2256  */
2257 void GraphKit::record_profiled_parameters_for_speculation() {
2258   if (!UseTypeSpeculation) {
2259     return;
2260   }
2261   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2262     if (_gvn.type(local(i))->isa_oopptr()) {
2263       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2264       ciKlass* better_type = NULL;
2265       if (method()->parameter_profiled_type(j, better_type, ptr_kind)) {
2266         record_profile_for_speculation(local(i), better_type, ptr_kind);
2267       }
2268       j++;
2269     }
2270   }
2271 }
2272 
2273 /**
2274  * Record profiling data from return value profiling at an invoke with
2275  * the type system so that it can propagate it (speculation)
2276  */
2277 void GraphKit::record_profiled_return_for_speculation() {
2278   if (!UseTypeSpeculation) {
2279     return;
2280   }
2281   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2282   ciKlass* better_type = NULL;
2283   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2284     // If profiling reports a single type for the return value,
2285     // feed it to the type system so it can propagate it as a
2286     // speculative type
2287     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2288   }
2289 }
2290 
2291 void GraphKit::round_double_result(ciMethod* dest_method) {
2292   // A non-strict method may return a double value which has an extended
2293   // exponent, but this must not be visible in a caller which is 'strict'
2294   // If a strict caller invokes a non-strict callee, round a double result
2295 
2296   BasicType result_type = dest_method->return_type()->basic_type();
2297   assert( method() != NULL, "must have caller context");
2298   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2299     // Destination method's return value is on top of stack
2300     // dstore_rounding() does gvn.transform
2301     Node *result = pop_pair();
2302     result = dstore_rounding(result);
2303     push_pair(result);
2304   }
2305 }
2306 
2307 // rounding for strict float precision conformance
2308 Node* GraphKit::precision_rounding(Node* n) {
2309   return UseStrictFP && _method->flags().is_strict()
2310     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2311     ? _gvn.transform( new RoundFloatNode(0, n) )
2312     : n;
2313 }
2314 
2315 // rounding for strict double precision conformance
2316 Node* GraphKit::dprecision_rounding(Node *n) {
2317   return UseStrictFP && _method->flags().is_strict()
2318     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2319     ? _gvn.transform( new RoundDoubleNode(0, n) )
2320     : n;
2321 }
2322 
2323 // rounding for non-strict double stores
2324 Node* GraphKit::dstore_rounding(Node* n) {
2325   return Matcher::strict_fp_requires_explicit_rounding
2326     && UseSSE <= 1
2327     ? _gvn.transform( new RoundDoubleNode(0, n) )
2328     : n;
2329 }
2330 
2331 //=============================================================================
2332 // Generate a fast path/slow path idiom.  Graph looks like:
2333 // [foo] indicates that 'foo' is a parameter
2334 //
2335 //              [in]     NULL
2336 //                 \    /
2337 //                  CmpP
2338 //                  Bool ne
2339 //                   If
2340 //                  /  \
2341 //              True    False-<2>
2342 //              / |
2343 //             /  cast_not_null
2344 //           Load  |    |   ^
2345 //        [fast_test]   |   |
2346 // gvn to   opt_test    |   |
2347 //          /    \      |  <1>
2348 //      True     False  |
2349 //        |         \\  |
2350 //   [slow_call]     \[fast_result]
2351 //    Ctl   Val       \      \
2352 //     |               \      \
2353 //    Catch       <1>   \      \
2354 //   /    \        ^     \      \
2355 //  Ex    No_Ex    |      \      \
2356 //  |       \   \  |       \ <2>  \
2357 //  ...      \  [slow_res] |  |    \   [null_result]
2358 //            \         \--+--+---  |  |
2359 //             \           | /    \ | /
2360 //              --------Region     Phi
2361 //
2362 //=============================================================================
2363 // Code is structured as a series of driver functions all called 'do_XXX' that
2364 // call a set of helper functions.  Helper functions first, then drivers.
2365 
2366 //------------------------------null_check_oop---------------------------------
2367 // Null check oop.  Set null-path control into Region in slot 3.
2368 // Make a cast-not-nullness use the other not-null control.  Return cast.
2369 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2370                                bool never_see_null,
2371                                bool safe_for_replace,
2372                                bool speculative) {
2373   // Initial NULL check taken path
2374   (*null_control) = top();
2375   Node* cast = null_check_common(value, T_OBJECT, false, null_control, speculative);
2376 
2377   // Generate uncommon_trap:
2378   if (never_see_null && (*null_control) != top()) {
2379     // If we see an unexpected null at a check-cast we record it and force a
2380     // recompile; the offending check-cast will be compiled to handle NULLs.
2381     // If we see more than one offending BCI, then all checkcasts in the
2382     // method will be compiled to handle NULLs.
2383     PreserveJVMState pjvms(this);
2384     set_control(*null_control);
2385     replace_in_map(value, null());
2386     Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculative);
2387     uncommon_trap(reason,
2388                   Deoptimization::Action_make_not_entrant);
2389     (*null_control) = top();    // NULL path is dead
2390   }
2391   if ((*null_control) == top() && safe_for_replace) {
2392     replace_in_map(value, cast);
2393   }
2394 
2395   // Cast away null-ness on the result
2396   return cast;
2397 }
2398 
2399 //------------------------------opt_iff----------------------------------------
2400 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2401 // Return slow-path control.
2402 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2403   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2404 
2405   // Fast path taken; set region slot 2
2406   Node *fast_taken = _gvn.transform( new IfFalseNode(opt_iff) );
2407   region->init_req(2,fast_taken); // Capture fast-control
2408 
2409   // Fast path not-taken, i.e. slow path
2410   Node *slow_taken = _gvn.transform( new IfTrueNode(opt_iff) );
2411   return slow_taken;
2412 }
2413 
2414 //-----------------------------make_runtime_call-------------------------------
2415 Node* GraphKit::make_runtime_call(int flags,
2416                                   const TypeFunc* call_type, address call_addr,
2417                                   const char* call_name,
2418                                   const TypePtr* adr_type,
2419                                   // The following parms are all optional.
2420                                   // The first NULL ends the list.
2421                                   Node* parm0, Node* parm1,
2422                                   Node* parm2, Node* parm3,
2423                                   Node* parm4, Node* parm5,
2424                                   Node* parm6, Node* parm7) {
2425   // Slow-path call
2426   bool is_leaf = !(flags & RC_NO_LEAF);
2427   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2428   if (call_name == NULL) {
2429     assert(!is_leaf, "must supply name for leaf");
2430     call_name = OptoRuntime::stub_name(call_addr);
2431   }
2432   CallNode* call;
2433   if (!is_leaf) {
2434     call = new CallStaticJavaNode(call_type, call_addr, call_name,
2435                                            bci(), adr_type);
2436   } else if (flags & RC_NO_FP) {
2437     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2438   } else {
2439     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2440   }
2441 
2442   // The following is similar to set_edges_for_java_call,
2443   // except that the memory effects of the call are restricted to AliasIdxRaw.
2444 
2445   // Slow path call has no side-effects, uses few values
2446   bool wide_in  = !(flags & RC_NARROW_MEM);
2447   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2448 
2449   Node* prev_mem = NULL;
2450   if (wide_in) {
2451     prev_mem = set_predefined_input_for_runtime_call(call);
2452   } else {
2453     assert(!wide_out, "narrow in => narrow out");
2454     Node* narrow_mem = memory(adr_type);
2455     prev_mem = reset_memory();
2456     map()->set_memory(narrow_mem);
2457     set_predefined_input_for_runtime_call(call);
2458   }
2459 
2460   // Hook each parm in order.  Stop looking at the first NULL.
2461   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2462   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2463   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2464   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2465   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2466   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2467   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2468   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2469     /* close each nested if ===> */  } } } } } } } }
2470   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2471 
2472   if (!is_leaf) {
2473     // Non-leaves can block and take safepoints:
2474     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2475   }
2476   // Non-leaves can throw exceptions:
2477   if (has_io) {
2478     call->set_req(TypeFunc::I_O, i_o());
2479   }
2480 
2481   if (flags & RC_UNCOMMON) {
2482     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2483     // (An "if" probability corresponds roughly to an unconditional count.
2484     // Sort of.)
2485     call->set_cnt(PROB_UNLIKELY_MAG(4));
2486   }
2487 
2488   Node* c = _gvn.transform(call);
2489   assert(c == call, "cannot disappear");
2490 
2491   if (wide_out) {
2492     // Slow path call has full side-effects.
2493     set_predefined_output_for_runtime_call(call);
2494   } else {
2495     // Slow path call has few side-effects, and/or sets few values.
2496     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2497   }
2498 
2499   if (has_io) {
2500     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2501   }
2502   return call;
2503 
2504 }
2505 
2506 //------------------------------merge_memory-----------------------------------
2507 // Merge memory from one path into the current memory state.
2508 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2509   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2510     Node* old_slice = mms.force_memory();
2511     Node* new_slice = mms.memory2();
2512     if (old_slice != new_slice) {
2513       PhiNode* phi;
2514       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2515         if (mms.is_empty()) {
2516           // clone base memory Phi's inputs for this memory slice
2517           assert(old_slice == mms.base_memory(), "sanity");
2518           phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2519           _gvn.set_type(phi, Type::MEMORY);
2520           for (uint i = 1; i < phi->req(); i++) {
2521             phi->init_req(i, old_slice->in(i));
2522           }
2523         } else {
2524           phi = old_slice->as_Phi(); // Phi was generated already
2525         }
2526       } else {
2527         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2528         _gvn.set_type(phi, Type::MEMORY);
2529       }
2530       phi->set_req(new_path, new_slice);
2531       mms.set_memory(phi);
2532     }
2533   }
2534 }
2535 
2536 //------------------------------make_slow_call_ex------------------------------
2537 // Make the exception handler hookups for the slow call
2538 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj, bool deoptimize) {
2539   if (stopped())  return;
2540 
2541   // Make a catch node with just two handlers:  fall-through and catch-all
2542   Node* i_o  = _gvn.transform( new ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2543   Node* catc = _gvn.transform( new CatchNode(control(), i_o, 2) );
2544   Node* norm = _gvn.transform( new CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2545   Node* excp = _gvn.transform( new CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2546 
2547   { PreserveJVMState pjvms(this);
2548     set_control(excp);
2549     set_i_o(i_o);
2550 
2551     if (excp != top()) {
2552       if (deoptimize) {
2553         // Deoptimize if an exception is caught. Don't construct exception state in this case.
2554         uncommon_trap(Deoptimization::Reason_unhandled,
2555                       Deoptimization::Action_none);
2556       } else {
2557         // Create an exception state also.
2558         // Use an exact type if the caller has specified a specific exception.
2559         const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2560         Node*       ex_oop  = new CreateExNode(ex_type, control(), i_o);
2561         add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2562       }
2563     }
2564   }
2565 
2566   // Get the no-exception control from the CatchNode.
2567   set_control(norm);
2568 }
2569 
2570 static IfNode* gen_subtype_check_compare(Node* ctrl, Node* in1, Node* in2, BoolTest::mask test, float p, PhaseGVN* gvn, BasicType bt) {
2571   Node* cmp = NULL;
2572   switch(bt) {
2573   case T_INT: cmp = new CmpINode(in1, in2); break;
2574   case T_ADDRESS: cmp = new CmpPNode(in1, in2); break;
2575   default: fatal("unexpected comparison type %s", type2name(bt));
2576   }
2577   gvn->transform(cmp);
2578   Node* bol = gvn->transform(new BoolNode(cmp, test));
2579   IfNode* iff = new IfNode(ctrl, bol, p, COUNT_UNKNOWN);
2580   gvn->transform(iff);
2581   if (!bol->is_Con()) gvn->record_for_igvn(iff);
2582   return iff;
2583 }
2584 
2585 
2586 //-------------------------------gen_subtype_check-----------------------------
2587 // Generate a subtyping check.  Takes as input the subtype and supertype.
2588 // Returns 2 values: sets the default control() to the true path and returns
2589 // the false path.  Only reads invariant memory; sets no (visible) memory.
2590 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2591 // but that's not exposed to the optimizer.  This call also doesn't take in an
2592 // Object; if you wish to check an Object you need to load the Object's class
2593 // prior to coming here.
2594 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, MergeMemNode* mem, PhaseGVN* gvn) {
2595   Compile* C = gvn->C;
2596 
2597   if ((*ctrl)->is_top()) {
2598     return C->top();
2599   }
2600 
2601   // Fast check for identical types, perhaps identical constants.
2602   // The types can even be identical non-constants, in cases
2603   // involving Array.newInstance, Object.clone, etc.
2604   if (subklass == superklass)
2605     return C->top();             // false path is dead; no test needed.
2606 
2607   if (gvn->type(superklass)->singleton()) {
2608     ciKlass* superk = gvn->type(superklass)->is_klassptr()->klass();
2609     ciKlass* subk   = gvn->type(subklass)->is_klassptr()->klass();
2610 
2611     // In the common case of an exact superklass, try to fold up the
2612     // test before generating code.  You may ask, why not just generate
2613     // the code and then let it fold up?  The answer is that the generated
2614     // code will necessarily include null checks, which do not always
2615     // completely fold away.  If they are also needless, then they turn
2616     // into a performance loss.  Example:
2617     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2618     // Here, the type of 'fa' is often exact, so the store check
2619     // of fa[1]=x will fold up, without testing the nullness of x.
2620     switch (C->static_subtype_check(superk, subk)) {
2621     case Compile::SSC_always_false:
2622       {
2623         Node* always_fail = *ctrl;
2624         *ctrl = gvn->C->top();
2625         return always_fail;
2626       }
2627     case Compile::SSC_always_true:
2628       return C->top();
2629     case Compile::SSC_easy_test:
2630       {
2631         // Just do a direct pointer compare and be done.
2632         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2633         *ctrl = gvn->transform(new IfTrueNode(iff));
2634         return gvn->transform(new IfFalseNode(iff));
2635       }
2636     case Compile::SSC_full_test:
2637       break;
2638     default:
2639       ShouldNotReachHere();
2640     }
2641   }
2642 
2643   // %%% Possible further optimization:  Even if the superklass is not exact,
2644   // if the subklass is the unique subtype of the superklass, the check
2645   // will always succeed.  We could leave a dependency behind to ensure this.
2646 
2647   // First load the super-klass's check-offset
2648   Node *p1 = gvn->transform(new AddPNode(superklass, superklass, gvn->MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2649   Node* m = mem->memory_at(C->get_alias_index(gvn->type(p1)->is_ptr()));
2650   Node *chk_off = gvn->transform(new LoadINode(NULL, m, p1, gvn->type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2651   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2652   bool might_be_cache = (gvn->find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2653 
2654   // Load from the sub-klass's super-class display list, or a 1-word cache of
2655   // the secondary superclass list, or a failing value with a sentinel offset
2656   // if the super-klass is an interface or exceptionally deep in the Java
2657   // hierarchy and we have to scan the secondary superclass list the hard way.
2658   // Worst-case type is a little odd: NULL is allowed as a result (usually
2659   // klass loads can never produce a NULL).
2660   Node *chk_off_X = chk_off;
2661 #ifdef _LP64
2662   chk_off_X = gvn->transform(new ConvI2LNode(chk_off_X));
2663 #endif
2664   Node *p2 = gvn->transform(new AddPNode(subklass,subklass,chk_off_X));
2665   // For some types like interfaces the following loadKlass is from a 1-word
2666   // cache which is mutable so can't use immutable memory.  Other
2667   // types load from the super-class display table which is immutable.
2668   m = mem->memory_at(C->get_alias_index(gvn->type(p2)->is_ptr()));
2669   Node *kmem = might_be_cache ? m : C->immutable_memory();
2670   Node *nkls = gvn->transform(LoadKlassNode::make(*gvn, NULL, kmem, p2, gvn->type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL));
2671 
2672   // Compile speed common case: ARE a subtype and we canNOT fail
2673   if( superklass == nkls )
2674     return C->top();             // false path is dead; no test needed.
2675 
2676   // See if we get an immediate positive hit.  Happens roughly 83% of the
2677   // time.  Test to see if the value loaded just previously from the subklass
2678   // is exactly the superklass.
2679   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);
2680   Node *iftrue1 = gvn->transform( new IfTrueNode (iff1));
2681   *ctrl = gvn->transform(new IfFalseNode(iff1));
2682 
2683   // Compile speed common case: Check for being deterministic right now.  If
2684   // chk_off is a constant and not equal to cacheoff then we are NOT a
2685   // subklass.  In this case we need exactly the 1 test above and we can
2686   // return those results immediately.
2687   if (!might_be_cache) {
2688     Node* not_subtype_ctrl = *ctrl;
2689     *ctrl = iftrue1; // We need exactly the 1 test above
2690     return not_subtype_ctrl;
2691   }
2692 
2693   // Gather the various success & failures here
2694   RegionNode *r_ok_subtype = new RegionNode(4);
2695   gvn->record_for_igvn(r_ok_subtype);
2696   RegionNode *r_not_subtype = new RegionNode(3);
2697   gvn->record_for_igvn(r_not_subtype);
2698 
2699   r_ok_subtype->init_req(1, iftrue1);
2700 
2701   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2702   // is roughly 63% of the remaining cases).  Test to see if the loaded
2703   // check-offset points into the subklass display list or the 1-element
2704   // cache.  If it points to the display (and NOT the cache) and the display
2705   // missed then it's not a subtype.
2706   Node *cacheoff = gvn->intcon(cacheoff_con);
2707   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2708   r_not_subtype->init_req(1, gvn->transform(new IfTrueNode (iff2)));
2709   *ctrl = gvn->transform(new IfFalseNode(iff2));
2710 
2711   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2712   // No performance impact (too rare) but allows sharing of secondary arrays
2713   // which has some footprint reduction.
2714   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2715   r_ok_subtype->init_req(2, gvn->transform(new IfTrueNode(iff3)));
2716   *ctrl = gvn->transform(new IfFalseNode(iff3));
2717 
2718   // -- Roads not taken here: --
2719   // We could also have chosen to perform the self-check at the beginning
2720   // of this code sequence, as the assembler does.  This would not pay off
2721   // the same way, since the optimizer, unlike the assembler, can perform
2722   // static type analysis to fold away many successful self-checks.
2723   // Non-foldable self checks work better here in second position, because
2724   // the initial primary superclass check subsumes a self-check for most
2725   // types.  An exception would be a secondary type like array-of-interface,
2726   // which does not appear in its own primary supertype display.
2727   // Finally, we could have chosen to move the self-check into the
2728   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2729   // dependent manner.  But it is worthwhile to have the check here,
2730   // where it can be perhaps be optimized.  The cost in code space is
2731   // small (register compare, branch).
2732 
2733   // Now do a linear scan of the secondary super-klass array.  Again, no real
2734   // performance impact (too rare) but it's gotta be done.
2735   // Since the code is rarely used, there is no penalty for moving it
2736   // out of line, and it can only improve I-cache density.
2737   // The decision to inline or out-of-line this final check is platform
2738   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2739   Node* psc = gvn->transform(
2740     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2741 
2742   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2743   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2744   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2745 
2746   // Return false path; set default control to true path.
2747   *ctrl = gvn->transform(r_ok_subtype);
2748   return gvn->transform(r_not_subtype);
2749 }
2750 
2751 // Profile-driven exact type check:
2752 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2753                                     float prob,
2754                                     Node* *casted_receiver) {
2755   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2756   Node* recv_klass = load_object_klass(receiver);
2757   Node* want_klass = makecon(tklass);
2758   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2759   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2760   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2761   set_control( _gvn.transform( new IfTrueNode (iff) ));
2762   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2763 
2764   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2765   assert(recv_xtype->klass_is_exact(), "");
2766 
2767   // Subsume downstream occurrences of receiver with a cast to
2768   // recv_xtype, since now we know what the type will be.
2769   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2770   (*casted_receiver) = _gvn.transform(cast);
2771   // (User must make the replace_in_map call.)
2772 
2773   return fail;
2774 }
2775 
2776 
2777 //------------------------------seems_never_null-------------------------------
2778 // Use null_seen information if it is available from the profile.
2779 // If we see an unexpected null at a type check we record it and force a
2780 // recompile; the offending check will be recompiled to handle NULLs.
2781 // If we see several offending BCIs, then all checks in the
2782 // method will be recompiled.
2783 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2784   speculating = !_gvn.type(obj)->speculative_maybe_null();
2785   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2786   if (UncommonNullCast               // Cutout for this technique
2787       && obj != null()               // And not the -Xcomp stupid case?
2788       && !too_many_traps(reason)
2789       ) {
2790     if (speculating) {
2791       return true;
2792     }
2793     if (data == NULL)
2794       // Edge case:  no mature data.  Be optimistic here.
2795       return true;
2796     // If the profile has not seen a null, assume it won't happen.
2797     assert(java_bc() == Bytecodes::_checkcast ||
2798            java_bc() == Bytecodes::_instanceof ||
2799            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2800     return !data->as_BitData()->null_seen();
2801   }
2802   speculating = false;
2803   return false;
2804 }
2805 
2806 //------------------------maybe_cast_profiled_receiver-------------------------
2807 // If the profile has seen exactly one type, narrow to exactly that type.
2808 // Subsequent type checks will always fold up.
2809 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2810                                              ciKlass* require_klass,
2811                                              ciKlass* spec_klass,
2812                                              bool safe_for_replace) {
2813   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2814 
2815   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2816 
2817   // Make sure we haven't already deoptimized from this tactic.
2818   if (too_many_traps(reason) || too_many_recompiles(reason))
2819     return NULL;
2820 
2821   // (No, this isn't a call, but it's enough like a virtual call
2822   // to use the same ciMethod accessor to get the profile info...)
2823   // If we have a speculative type use it instead of profiling (which
2824   // may not help us)
2825   ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2826   if (exact_kls != NULL) {// no cast failures here
2827     if (require_klass == NULL ||
2828         C->static_subtype_check(require_klass, exact_kls) == Compile::SSC_always_true) {
2829       // If we narrow the type to match what the type profile sees or
2830       // the speculative type, we can then remove the rest of the
2831       // cast.
2832       // This is a win, even if the exact_kls is very specific,
2833       // because downstream operations, such as method calls,
2834       // will often benefit from the sharper type.
2835       Node* exact_obj = not_null_obj; // will get updated in place...
2836       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2837                                             &exact_obj);
2838       { PreserveJVMState pjvms(this);
2839         set_control(slow_ctl);
2840         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
2841       }
2842       if (safe_for_replace) {
2843         replace_in_map(not_null_obj, exact_obj);
2844       }
2845       return exact_obj;
2846     }
2847     // assert(ssc == Compile::SSC_always_true)... except maybe the profile lied to us.
2848   }
2849 
2850   return NULL;
2851 }
2852 
2853 /**
2854  * Cast obj to type and emit guard unless we had too many traps here
2855  * already
2856  *
2857  * @param obj       node being casted
2858  * @param type      type to cast the node to
2859  * @param not_null  true if we know node cannot be null
2860  */
2861 Node* GraphKit::maybe_cast_profiled_obj(Node* obj,
2862                                         ciKlass* type,
2863                                         bool not_null) {
2864   if (stopped()) {
2865     return obj;
2866   }
2867 
2868   // type == NULL if profiling tells us this object is always null
2869   if (type != NULL) {
2870     Deoptimization::DeoptReason class_reason = Deoptimization::Reason_speculate_class_check;
2871     Deoptimization::DeoptReason null_reason = Deoptimization::Reason_speculate_null_check;
2872 
2873     if (!too_many_traps(null_reason) && !too_many_recompiles(null_reason) &&
2874         !too_many_traps(class_reason) &&
2875         !too_many_recompiles(class_reason)) {
2876       Node* not_null_obj = NULL;
2877       // not_null is true if we know the object is not null and
2878       // there's no need for a null check
2879       if (!not_null) {
2880         Node* null_ctl = top();
2881         not_null_obj = null_check_oop(obj, &null_ctl, true, true, true);
2882         assert(null_ctl->is_top(), "no null control here");
2883       } else {
2884         not_null_obj = obj;
2885       }
2886 
2887       Node* exact_obj = not_null_obj;
2888       ciKlass* exact_kls = type;
2889       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2890                                             &exact_obj);
2891       {
2892         PreserveJVMState pjvms(this);
2893         set_control(slow_ctl);
2894         uncommon_trap_exact(class_reason, Deoptimization::Action_maybe_recompile);
2895       }
2896       replace_in_map(not_null_obj, exact_obj);
2897       obj = exact_obj;
2898     }
2899   } else {
2900     if (!too_many_traps(Deoptimization::Reason_null_assert) &&
2901         !too_many_recompiles(Deoptimization::Reason_null_assert)) {
2902       Node* exact_obj = null_assert(obj);
2903       replace_in_map(obj, exact_obj);
2904       obj = exact_obj;
2905     }
2906   }
2907   return obj;
2908 }
2909 
2910 //-------------------------------gen_instanceof--------------------------------
2911 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2912 // and the reflective instance-of call.
2913 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2914   kill_dead_locals();           // Benefit all the uncommon traps
2915   assert( !stopped(), "dead parse path should be checked in callers" );
2916   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2917          "must check for not-null not-dead klass in callers");
2918 
2919   // Make the merge point
2920   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2921   RegionNode* region = new RegionNode(PATH_LIMIT);
2922   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2923   C->set_has_split_ifs(true); // Has chance for split-if optimization
2924 
2925   ciProfileData* data = NULL;
2926   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2927     data = method()->method_data()->bci_to_data(bci());
2928   }
2929   bool speculative_not_null = false;
2930   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2931                          && seems_never_null(obj, data, speculative_not_null));
2932 
2933   // Null check; get casted pointer; set region slot 3
2934   Node* null_ctl = top();
2935   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2936 
2937   // If not_null_obj is dead, only null-path is taken
2938   if (stopped()) {              // Doing instance-of on a NULL?
2939     set_control(null_ctl);
2940     return intcon(0);
2941   }
2942   region->init_req(_null_path, null_ctl);
2943   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2944   if (null_ctl == top()) {
2945     // Do this eagerly, so that pattern matches like is_diamond_phi
2946     // will work even during parsing.
2947     assert(_null_path == PATH_LIMIT-1, "delete last");
2948     region->del_req(_null_path);
2949     phi   ->del_req(_null_path);
2950   }
2951 
2952   // Do we know the type check always succeed?
2953   bool known_statically = false;
2954   if (_gvn.type(superklass)->singleton()) {
2955     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2956     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2957     if (subk != NULL && subk->is_loaded()) {
2958       int static_res = C->static_subtype_check(superk, subk);
2959       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
2960     }
2961   }
2962 
2963   if (!known_statically) {
2964     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
2965     // We may not have profiling here or it may not help us. If we
2966     // have a speculative type use it to perform an exact cast.
2967     ciKlass* spec_obj_type = obj_type->speculative_type();
2968     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
2969       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
2970       if (stopped()) {            // Profile disagrees with this path.
2971         set_control(null_ctl);    // Null is the only remaining possibility.
2972         return intcon(0);
2973       }
2974       if (cast_obj != NULL) {
2975         not_null_obj = cast_obj;
2976       }
2977     }
2978   }
2979 
2980   // Load the object's klass
2981   Node* obj_klass = load_object_klass(not_null_obj);
2982 
2983   // Generate the subtype check
2984   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2985 
2986   // Plug in the success path to the general merge in slot 1.
2987   region->init_req(_obj_path, control());
2988   phi   ->init_req(_obj_path, intcon(1));
2989 
2990   // Plug in the failing path to the general merge in slot 2.
2991   region->init_req(_fail_path, not_subtype_ctrl);
2992   phi   ->init_req(_fail_path, intcon(0));
2993 
2994   // Return final merged results
2995   set_control( _gvn.transform(region) );
2996   record_for_igvn(region);
2997 
2998   // If we know the type check always succeeds then we don't use the
2999   // profiling data at this bytecode. Don't lose it, feed it to the
3000   // type system as a speculative type.
3001   if (safe_for_replace) {
3002     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3003     replace_in_map(obj, casted_obj);
3004   }
3005 
3006   return _gvn.transform(phi);
3007 }
3008 
3009 //-------------------------------gen_checkcast---------------------------------
3010 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3011 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3012 // uncommon-trap paths work.  Adjust stack after this call.
3013 // If failure_control is supplied and not null, it is filled in with
3014 // the control edge for the cast failure.  Otherwise, an appropriate
3015 // uncommon trap or exception is thrown.
3016 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3017                               Node* *failure_control) {
3018   kill_dead_locals();           // Benefit all the uncommon traps
3019   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3020   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
3021 
3022   // Fast cutout:  Check the case that the cast is vacuously true.
3023   // This detects the common cases where the test will short-circuit
3024   // away completely.  We do this before we perform the null check,
3025   // because if the test is going to turn into zero code, we don't
3026   // want a residual null check left around.  (Causes a slowdown,
3027   // for example, in some objArray manipulations, such as a[i]=a[j].)
3028   if (tk->singleton()) {
3029     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3030     if (objtp != NULL && objtp->klass() != NULL) {
3031       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {
3032       case Compile::SSC_always_true:
3033         // If we know the type check always succeed then we don't use
3034         // the profiling data at this bytecode. Don't lose it, feed it
3035         // to the type system as a speculative type.
3036         return record_profiled_receiver_for_speculation(obj);
3037       case Compile::SSC_always_false:
3038         // It needs a null check because a null will *pass* the cast check.
3039         // A non-null value will always produce an exception.
3040         return null_assert(obj);
3041       }
3042     }
3043   }
3044 
3045   ciProfileData* data = NULL;
3046   bool safe_for_replace = false;
3047   if (failure_control == NULL) {        // use MDO in regular case only
3048     assert(java_bc() == Bytecodes::_aastore ||
3049            java_bc() == Bytecodes::_checkcast,
3050            "interpreter profiles type checks only for these BCs");
3051     data = method()->method_data()->bci_to_data(bci());
3052     safe_for_replace = true;
3053   }
3054 
3055   // Make the merge point
3056   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3057   RegionNode* region = new RegionNode(PATH_LIMIT);
3058   Node*       phi    = new PhiNode(region, toop);
3059   C->set_has_split_ifs(true); // Has chance for split-if optimization
3060 
3061   // Use null-cast information if it is available
3062   bool speculative_not_null = false;
3063   bool never_see_null = ((failure_control == NULL)  // regular case only
3064                          && seems_never_null(obj, data, speculative_not_null));
3065 
3066   // Null check; get casted pointer; set region slot 3
3067   Node* null_ctl = top();
3068   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3069 
3070   // If not_null_obj is dead, only null-path is taken
3071   if (stopped()) {              // Doing instance-of on a NULL?
3072     set_control(null_ctl);
3073     return null();
3074   }
3075   region->init_req(_null_path, null_ctl);
3076   phi   ->init_req(_null_path, null());  // Set null path value
3077   if (null_ctl == top()) {
3078     // Do this eagerly, so that pattern matches like is_diamond_phi
3079     // will work even during parsing.
3080     assert(_null_path == PATH_LIMIT-1, "delete last");
3081     region->del_req(_null_path);
3082     phi   ->del_req(_null_path);
3083   }
3084 
3085   Node* cast_obj = NULL;
3086   if (tk->klass_is_exact()) {
3087     // The following optimization tries to statically cast the speculative type of the object
3088     // (for example obtained during profiling) to the type of the superklass and then do a
3089     // dynamic check that the type of the object is what we expect. To work correctly
3090     // for checkcast and aastore the type of superklass should be exact.
3091     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3092     // We may not have profiling here or it may not help us. If we have
3093     // a speculative type use it to perform an exact cast.
3094     ciKlass* spec_obj_type = obj_type->speculative_type();
3095     if (spec_obj_type != NULL || data != NULL) {
3096       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3097       if (cast_obj != NULL) {
3098         if (failure_control != NULL) // failure is now impossible
3099           (*failure_control) = top();
3100         // adjust the type of the phi to the exact klass:
3101         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3102       }
3103     }
3104   }
3105 
3106   if (cast_obj == NULL) {
3107     // Load the object's klass
3108     Node* obj_klass = load_object_klass(not_null_obj);
3109 
3110     // Generate the subtype check
3111     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3112 
3113     // Plug in success path into the merge
3114     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3115     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3116     if (failure_control == NULL) {
3117       if (not_subtype_ctrl != top()) { // If failure is possible
3118         PreserveJVMState pjvms(this);
3119         set_control(not_subtype_ctrl);
3120         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3121       }
3122     } else {
3123       (*failure_control) = not_subtype_ctrl;
3124     }
3125   }
3126 
3127   region->init_req(_obj_path, control());
3128   phi   ->init_req(_obj_path, cast_obj);
3129 
3130   // A merge of NULL or Casted-NotNull obj
3131   Node* res = _gvn.transform(phi);
3132 
3133   // Note I do NOT always 'replace_in_map(obj,result)' here.
3134   //  if( tk->klass()->can_be_primary_super()  )
3135     // This means that if I successfully store an Object into an array-of-String
3136     // I 'forget' that the Object is really now known to be a String.  I have to
3137     // do this because we don't have true union types for interfaces - if I store
3138     // a Baz into an array-of-Interface and then tell the optimizer it's an
3139     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3140     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3141   //  replace_in_map( obj, res );
3142 
3143   // Return final merged results
3144   set_control( _gvn.transform(region) );
3145   record_for_igvn(region);
3146 
3147   return record_profiled_receiver_for_speculation(res);
3148 }
3149 
3150 //------------------------------next_monitor-----------------------------------
3151 // What number should be given to the next monitor?
3152 int GraphKit::next_monitor() {
3153   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3154   int next = current + C->sync_stack_slots();
3155   // Keep the toplevel high water mark current:
3156   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3157   return current;
3158 }
3159 
3160 //------------------------------insert_mem_bar---------------------------------
3161 // Memory barrier to avoid floating things around
3162 // The membar serves as a pinch point between both control and all memory slices.
3163 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3164   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3165   mb->init_req(TypeFunc::Control, control());
3166   mb->init_req(TypeFunc::Memory,  reset_memory());
3167   Node* membar = _gvn.transform(mb);
3168   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3169   set_all_memory_call(membar);
3170   return membar;
3171 }
3172 
3173 //-------------------------insert_mem_bar_volatile----------------------------
3174 // Memory barrier to avoid floating things around
3175 // The membar serves as a pinch point between both control and memory(alias_idx).
3176 // If you want to make a pinch point on all memory slices, do not use this
3177 // function (even with AliasIdxBot); use insert_mem_bar() instead.
3178 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
3179   // When Parse::do_put_xxx updates a volatile field, it appends a series
3180   // of MemBarVolatile nodes, one for *each* volatile field alias category.
3181   // The first membar is on the same memory slice as the field store opcode.
3182   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
3183   // All the other membars (for other volatile slices, including AliasIdxBot,
3184   // which stands for all unknown volatile slices) are control-dependent
3185   // on the first membar.  This prevents later volatile loads or stores
3186   // from sliding up past the just-emitted store.
3187 
3188   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
3189   mb->set_req(TypeFunc::Control,control());
3190   if (alias_idx == Compile::AliasIdxBot) {
3191     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
3192   } else {
3193     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
3194     mb->set_req(TypeFunc::Memory, memory(alias_idx));
3195   }
3196   Node* membar = _gvn.transform(mb);
3197   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3198   if (alias_idx == Compile::AliasIdxBot) {
3199     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3200   } else {
3201     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3202   }
3203   return membar;
3204 }
3205 
3206 //------------------------------shared_lock------------------------------------
3207 // Emit locking code.
3208 FastLockNode* GraphKit::shared_lock(Node* obj) {
3209   // bci is either a monitorenter bc or InvocationEntryBci
3210   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3211   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3212 
3213   if( !GenerateSynchronizationCode )
3214     return NULL;                // Not locking things?
3215   if (stopped())                // Dead monitor?
3216     return NULL;
3217 
3218   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3219 
3220   // Box the stack location
3221   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3222   Node* mem = reset_memory();
3223 
3224   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3225   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3226     // Create the counters for this fast lock.
3227     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3228   }
3229 
3230   // Create the rtm counters for this fast lock if needed.
3231   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3232 
3233   // Add monitor to debug info for the slow path.  If we block inside the
3234   // slow path and de-opt, we need the monitor hanging around
3235   map()->push_monitor( flock );
3236 
3237   const TypeFunc *tf = LockNode::lock_type();
3238   LockNode *lock = new LockNode(C, tf);
3239 
3240   lock->init_req( TypeFunc::Control, control() );
3241   lock->init_req( TypeFunc::Memory , mem );
3242   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3243   lock->init_req( TypeFunc::FramePtr, frameptr() );
3244   lock->init_req( TypeFunc::ReturnAdr, top() );
3245 
3246   lock->init_req(TypeFunc::Parms + 0, obj);
3247   lock->init_req(TypeFunc::Parms + 1, box);
3248   lock->init_req(TypeFunc::Parms + 2, flock);
3249   add_safepoint_edges(lock);
3250 
3251   lock = _gvn.transform( lock )->as_Lock();
3252 
3253   // lock has no side-effects, sets few values
3254   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
3255 
3256   insert_mem_bar(Op_MemBarAcquireLock);
3257 
3258   // Add this to the worklist so that the lock can be eliminated
3259   record_for_igvn(lock);
3260 
3261 #ifndef PRODUCT
3262   if (PrintLockStatistics) {
3263     // Update the counter for this lock.  Don't bother using an atomic
3264     // operation since we don't require absolute accuracy.
3265     lock->create_lock_counter(map()->jvms());
3266     increment_counter(lock->counter()->addr());
3267   }
3268 #endif
3269 
3270   return flock;
3271 }
3272 
3273 
3274 //------------------------------shared_unlock----------------------------------
3275 // Emit unlocking code.
3276 void GraphKit::shared_unlock(Node* box, Node* obj) {
3277   // bci is either a monitorenter bc or InvocationEntryBci
3278   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3279   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3280 
3281   if( !GenerateSynchronizationCode )
3282     return;
3283   if (stopped()) {               // Dead monitor?
3284     map()->pop_monitor();        // Kill monitor from debug info
3285     return;
3286   }
3287 
3288   // Memory barrier to avoid floating things down past the locked region
3289   insert_mem_bar(Op_MemBarReleaseLock);
3290 
3291   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3292   UnlockNode *unlock = new UnlockNode(C, tf);
3293 #ifdef ASSERT
3294   unlock->set_dbg_jvms(sync_jvms());
3295 #endif
3296   uint raw_idx = Compile::AliasIdxRaw;
3297   unlock->init_req( TypeFunc::Control, control() );
3298   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3299   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3300   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3301   unlock->init_req( TypeFunc::ReturnAdr, top() );
3302 
3303   unlock->init_req(TypeFunc::Parms + 0, obj);
3304   unlock->init_req(TypeFunc::Parms + 1, box);
3305   unlock = _gvn.transform(unlock)->as_Unlock();
3306 
3307   Node* mem = reset_memory();
3308 
3309   // unlock has no side-effects, sets few values
3310   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3311 
3312   // Kill monitor from debug info
3313   map()->pop_monitor( );
3314 }
3315 
3316 //-------------------------------get_layout_helper-----------------------------
3317 // If the given klass is a constant or known to be an array,
3318 // fetch the constant layout helper value into constant_value
3319 // and return (Node*)NULL.  Otherwise, load the non-constant
3320 // layout helper value, and return the node which represents it.
3321 // This two-faced routine is useful because allocation sites
3322 // almost always feature constant types.
3323 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3324   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3325   if (!StressReflectiveCode && inst_klass != NULL) {
3326     ciKlass* klass = inst_klass->klass();
3327     bool    xklass = inst_klass->klass_is_exact();
3328     if (xklass || klass->is_array_klass()) {
3329       jint lhelper = klass->layout_helper();
3330       if (lhelper != Klass::_lh_neutral_value) {
3331         constant_value = lhelper;
3332         return (Node*) NULL;
3333       }
3334     }
3335   }
3336   constant_value = Klass::_lh_neutral_value;  // put in a known value
3337   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3338   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3339 }
3340 
3341 // We just put in an allocate/initialize with a big raw-memory effect.
3342 // Hook selected additional alias categories on the initialization.
3343 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3344                                 MergeMemNode* init_in_merge,
3345                                 Node* init_out_raw) {
3346   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3347   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3348 
3349   Node* prevmem = kit.memory(alias_idx);
3350   init_in_merge->set_memory_at(alias_idx, prevmem);
3351   kit.set_memory(init_out_raw, alias_idx);
3352 }
3353 
3354 //---------------------------set_output_for_allocation-------------------------
3355 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3356                                           const TypeOopPtr* oop_type,
3357                                           bool deoptimize_on_exception) {
3358   int rawidx = Compile::AliasIdxRaw;
3359   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3360   add_safepoint_edges(alloc);
3361   Node* allocx = _gvn.transform(alloc);
3362   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3363   // create memory projection for i_o
3364   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3365   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3366 
3367   // create a memory projection as for the normal control path
3368   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3369   set_memory(malloc, rawidx);
3370 
3371   // a normal slow-call doesn't change i_o, but an allocation does
3372   // we create a separate i_o projection for the normal control path
3373   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3374   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3375 
3376   // put in an initialization barrier
3377   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3378                                                  rawoop)->as_Initialize();
3379   assert(alloc->initialization() == init,  "2-way macro link must work");
3380   assert(init ->allocation()     == alloc, "2-way macro link must work");
3381   {
3382     // Extract memory strands which may participate in the new object's
3383     // initialization, and source them from the new InitializeNode.
3384     // This will allow us to observe initializations when they occur,
3385     // and link them properly (as a group) to the InitializeNode.
3386     assert(init->in(InitializeNode::Memory) == malloc, "");
3387     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3388     init->set_req(InitializeNode::Memory, minit_in);
3389     record_for_igvn(minit_in); // fold it up later, if possible
3390     Node* minit_out = memory(rawidx);
3391     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3392     if (oop_type->isa_aryptr()) {
3393       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3394       int            elemidx  = C->get_alias_index(telemref);
3395       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3396     } else if (oop_type->isa_instptr()) {
3397       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3398       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3399         ciField* field = ik->nonstatic_field_at(i);
3400         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3401           continue;  // do not bother to track really large numbers of fields
3402         // Find (or create) the alias category for this field:
3403         int fieldidx = C->alias_type(field)->index();
3404         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3405       }
3406     }
3407   }
3408 
3409   // Cast raw oop to the real thing...
3410   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3411   javaoop = _gvn.transform(javaoop);
3412   C->set_recent_alloc(control(), javaoop);
3413   assert(just_allocated_object(control()) == javaoop, "just allocated");
3414 
3415 #ifdef ASSERT
3416   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3417     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3418            "Ideal_allocation works");
3419     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3420            "Ideal_allocation works");
3421     if (alloc->is_AllocateArray()) {
3422       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3423              "Ideal_allocation works");
3424       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3425              "Ideal_allocation works");
3426     } else {
3427       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3428     }
3429   }
3430 #endif //ASSERT
3431 
3432   return javaoop;
3433 }
3434 
3435 //---------------------------new_instance--------------------------------------
3436 // This routine takes a klass_node which may be constant (for a static type)
3437 // or may be non-constant (for reflective code).  It will work equally well
3438 // for either, and the graph will fold nicely if the optimizer later reduces
3439 // the type to a constant.
3440 // The optional arguments are for specialized use by intrinsics:
3441 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3442 //  - If 'return_size_val', report the the total object size to the caller.
3443 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3444 Node* GraphKit::new_instance(Node* klass_node,
3445                              Node* extra_slow_test,
3446                              Node* *return_size_val,
3447                              bool deoptimize_on_exception) {
3448   // Compute size in doublewords
3449   // The size is always an integral number of doublewords, represented
3450   // as a positive bytewise size stored in the klass's layout_helper.
3451   // The layout_helper also encodes (in a low bit) the need for a slow path.
3452   jint  layout_con = Klass::_lh_neutral_value;
3453   Node* layout_val = get_layout_helper(klass_node, layout_con);
3454   int   layout_is_con = (layout_val == NULL);
3455 
3456   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3457   // Generate the initial go-slow test.  It's either ALWAYS (return a
3458   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3459   // case) a computed value derived from the layout_helper.
3460   Node* initial_slow_test = NULL;
3461   if (layout_is_con) {
3462     assert(!StressReflectiveCode, "stress mode does not use these paths");
3463     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3464     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3465   } else {   // reflective case
3466     // This reflective path is used by Unsafe.allocateInstance.
3467     // (It may be stress-tested by specifying StressReflectiveCode.)
3468     // Basically, we want to get into the VM is there's an illegal argument.
3469     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3470     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3471     if (extra_slow_test != intcon(0)) {
3472       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3473     }
3474     // (Macro-expander will further convert this to a Bool, if necessary.)
3475   }
3476 
3477   // Find the size in bytes.  This is easy; it's the layout_helper.
3478   // The size value must be valid even if the slow path is taken.
3479   Node* size = NULL;
3480   if (layout_is_con) {
3481     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3482   } else {   // reflective case
3483     // This reflective path is used by clone and Unsafe.allocateInstance.
3484     size = ConvI2X(layout_val);
3485 
3486     // Clear the low bits to extract layout_helper_size_in_bytes:
3487     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3488     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3489     size = _gvn.transform( new AndXNode(size, mask) );
3490   }
3491   if (return_size_val != NULL) {
3492     (*return_size_val) = size;
3493   }
3494 
3495   // This is a precise notnull oop of the klass.
3496   // (Actually, it need not be precise if this is a reflective allocation.)
3497   // It's what we cast the result to.
3498   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3499   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3500   const TypeOopPtr* oop_type = tklass->as_instance_type();
3501 
3502   // Now generate allocation code
3503 
3504   // The entire memory state is needed for slow path of the allocation
3505   // since GC and deoptimization can happened.
3506   Node *mem = reset_memory();
3507   set_all_memory(mem); // Create new memory state
3508 
3509   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3510                                          control(), mem, i_o(),
3511                                          size, klass_node,
3512                                          initial_slow_test);
3513 
3514   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3515 }
3516 
3517 //-------------------------------new_array-------------------------------------
3518 // helper for both newarray and anewarray
3519 // The 'length' parameter is (obviously) the length of the array.
3520 // See comments on new_instance for the meaning of the other arguments.
3521 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3522                           Node* length,         // number of array elements
3523                           int   nargs,          // number of arguments to push back for uncommon trap
3524                           Node* *return_size_val,
3525                           bool deoptimize_on_exception) {
3526   jint  layout_con = Klass::_lh_neutral_value;
3527   Node* layout_val = get_layout_helper(klass_node, layout_con);
3528   int   layout_is_con = (layout_val == NULL);
3529 
3530   if (!layout_is_con && !StressReflectiveCode &&
3531       !too_many_traps(Deoptimization::Reason_class_check)) {
3532     // This is a reflective array creation site.
3533     // Optimistically assume that it is a subtype of Object[],
3534     // so that we can fold up all the address arithmetic.
3535     layout_con = Klass::array_layout_helper(T_OBJECT);
3536     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3537     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3538     { BuildCutout unless(this, bol_lh, PROB_MAX);
3539       inc_sp(nargs);
3540       uncommon_trap(Deoptimization::Reason_class_check,
3541                     Deoptimization::Action_maybe_recompile);
3542     }
3543     layout_val = NULL;
3544     layout_is_con = true;
3545   }
3546 
3547   // Generate the initial go-slow test.  Make sure we do not overflow
3548   // if length is huge (near 2Gig) or negative!  We do not need
3549   // exact double-words here, just a close approximation of needed
3550   // double-words.  We can't add any offset or rounding bits, lest we
3551   // take a size -1 of bytes and make it positive.  Use an unsigned
3552   // compare, so negative sizes look hugely positive.
3553   int fast_size_limit = FastAllocateSizeLimit;
3554   if (layout_is_con) {
3555     assert(!StressReflectiveCode, "stress mode does not use these paths");
3556     // Increase the size limit if we have exact knowledge of array type.
3557     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3558     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3559   }
3560 
3561   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3562   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3563 
3564   // --- Size Computation ---
3565   // array_size = round_to_heap(array_header + (length << elem_shift));
3566   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3567   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3568   // The rounding mask is strength-reduced, if possible.
3569   int round_mask = MinObjAlignmentInBytes - 1;
3570   Node* header_size = NULL;
3571   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3572   // (T_BYTE has the weakest alignment and size restrictions...)
3573   if (layout_is_con) {
3574     int       hsize  = Klass::layout_helper_header_size(layout_con);
3575     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3576     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3577     if ((round_mask & ~right_n_bits(eshift)) == 0)
3578       round_mask = 0;  // strength-reduce it if it goes away completely
3579     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3580     assert(header_size_min <= hsize, "generic minimum is smallest");
3581     header_size_min = hsize;
3582     header_size = intcon(hsize + round_mask);
3583   } else {
3584     Node* hss   = intcon(Klass::_lh_header_size_shift);
3585     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3586     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3587     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3588     Node* mask  = intcon(round_mask);
3589     header_size = _gvn.transform( new AddINode(hsize, mask) );
3590   }
3591 
3592   Node* elem_shift = NULL;
3593   if (layout_is_con) {
3594     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3595     if (eshift != 0)
3596       elem_shift = intcon(eshift);
3597   } else {
3598     // There is no need to mask or shift this value.
3599     // The semantics of LShiftINode include an implicit mask to 0x1F.
3600     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3601     elem_shift = layout_val;
3602   }
3603 
3604   // Transition to native address size for all offset calculations:
3605   Node* lengthx = ConvI2X(length);
3606   Node* headerx = ConvI2X(header_size);
3607 #ifdef _LP64
3608   { const TypeInt* tilen = _gvn.find_int_type(length);
3609     if (tilen != NULL && tilen->_lo < 0) {
3610       // Add a manual constraint to a positive range.  Cf. array_element_address.
3611       jint size_max = fast_size_limit;
3612       if (size_max > tilen->_hi)  size_max = tilen->_hi;
3613       const TypeInt* tlcon = TypeInt::make(0, size_max, Type::WidenMin);
3614 
3615       // Only do a narrow I2L conversion if the range check passed.
3616       IfNode* iff = new IfNode(control(), initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
3617       _gvn.transform(iff);
3618       RegionNode* region = new RegionNode(3);
3619       _gvn.set_type(region, Type::CONTROL);
3620       lengthx = new PhiNode(region, TypeLong::LONG);
3621       _gvn.set_type(lengthx, TypeLong::LONG);
3622 
3623       // Range check passed. Use ConvI2L node with narrow type.
3624       Node* passed = IfFalse(iff);
3625       region->init_req(1, passed);
3626       // Make I2L conversion control dependent to prevent it from
3627       // floating above the range check during loop optimizations.
3628       lengthx->init_req(1, C->constrained_convI2L(&_gvn, length, tlcon, passed));
3629 
3630       // Range check failed. Use ConvI2L with wide type because length may be invalid.
3631       region->init_req(2, IfTrue(iff));
3632       lengthx->init_req(2, ConvI2X(length));
3633 
3634       set_control(region);
3635       record_for_igvn(region);
3636       record_for_igvn(lengthx);
3637     }
3638   }
3639 #endif
3640 
3641   // Combine header size (plus rounding) and body size.  Then round down.
3642   // This computation cannot overflow, because it is used only in two
3643   // places, one where the length is sharply limited, and the other
3644   // after a successful allocation.
3645   Node* abody = lengthx;
3646   if (elem_shift != NULL)
3647     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3648   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3649   if (round_mask != 0) {
3650     Node* mask = MakeConX(~round_mask);
3651     size       = _gvn.transform( new AndXNode(size, mask) );
3652   }
3653   // else if round_mask == 0, the size computation is self-rounding
3654 
3655   if (return_size_val != NULL) {
3656     // This is the size
3657     (*return_size_val) = size;
3658   }
3659 
3660   // Now generate allocation code
3661 
3662   // The entire memory state is needed for slow path of the allocation
3663   // since GC and deoptimization can happened.
3664   Node *mem = reset_memory();
3665   set_all_memory(mem); // Create new memory state
3666 
3667   if (initial_slow_test->is_Bool()) {
3668     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3669     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3670   }
3671 
3672   // Create the AllocateArrayNode and its result projections
3673   AllocateArrayNode* alloc
3674     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3675                             control(), mem, i_o(),
3676                             size, klass_node,
3677                             initial_slow_test,
3678                             length);
3679 
3680   // Cast to correct type.  Note that the klass_node may be constant or not,
3681   // and in the latter case the actual array type will be inexact also.
3682   // (This happens via a non-constant argument to inline_native_newArray.)
3683   // In any case, the value of klass_node provides the desired array type.
3684   const TypeInt* length_type = _gvn.find_int_type(length);
3685   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3686   if (ary_type->isa_aryptr() && length_type != NULL) {
3687     // Try to get a better type than POS for the size
3688     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3689   }
3690 
3691   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3692 
3693   // Cast length on remaining path to be as narrow as possible
3694   if (map()->find_edge(length) >= 0) {
3695     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3696     if (ccast != length) {
3697       _gvn.set_type_bottom(ccast);
3698       record_for_igvn(ccast);
3699       replace_in_map(length, ccast);
3700     }
3701   }
3702 
3703   return javaoop;
3704 }
3705 
3706 // The following "Ideal_foo" functions are placed here because they recognize
3707 // the graph shapes created by the functions immediately above.
3708 
3709 //---------------------------Ideal_allocation----------------------------------
3710 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3711 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3712   if (ptr == NULL) {     // reduce dumb test in callers
3713     return NULL;
3714   }
3715   if (ptr->is_CheckCastPP()) { // strip only one raw-to-oop cast
3716     ptr = ptr->in(1);
3717     if (ptr == NULL) return NULL;
3718   }
3719   // Return NULL for allocations with several casts:
3720   //   j.l.reflect.Array.newInstance(jobject, jint)
3721   //   Object.clone()
3722   // to keep more precise type from last cast.
3723   if (ptr->is_Proj()) {
3724     Node* allo = ptr->in(0);
3725     if (allo != NULL && allo->is_Allocate()) {
3726       return allo->as_Allocate();
3727     }
3728   }
3729   // Report failure to match.
3730   return NULL;
3731 }
3732 
3733 // Fancy version which also strips off an offset (and reports it to caller).
3734 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3735                                              intptr_t& offset) {
3736   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3737   if (base == NULL)  return NULL;
3738   return Ideal_allocation(base, phase);
3739 }
3740 
3741 // Trace Initialize <- Proj[Parm] <- Allocate
3742 AllocateNode* InitializeNode::allocation() {
3743   Node* rawoop = in(InitializeNode::RawAddress);
3744   if (rawoop->is_Proj()) {
3745     Node* alloc = rawoop->in(0);
3746     if (alloc->is_Allocate()) {
3747       return alloc->as_Allocate();
3748     }
3749   }
3750   return NULL;
3751 }
3752 
3753 // Trace Allocate -> Proj[Parm] -> Initialize
3754 InitializeNode* AllocateNode::initialization() {
3755   ProjNode* rawoop = proj_out_or_null(AllocateNode::RawAddress);
3756   if (rawoop == NULL)  return NULL;
3757   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3758     Node* init = rawoop->fast_out(i);
3759     if (init->is_Initialize()) {
3760       assert(init->as_Initialize()->allocation() == this, "2-way link");
3761       return init->as_Initialize();
3762     }
3763   }
3764   return NULL;
3765 }
3766 
3767 //----------------------------- loop predicates ---------------------------
3768 
3769 //------------------------------add_predicate_impl----------------------------
3770 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3771   // Too many traps seen?
3772   if (too_many_traps(reason)) {
3773 #ifdef ASSERT
3774     if (TraceLoopPredicate) {
3775       int tc = C->trap_count(reason);
3776       tty->print("too many traps=%s tcount=%d in ",
3777                     Deoptimization::trap_reason_name(reason), tc);
3778       method()->print(); // which method has too many predicate traps
3779       tty->cr();
3780     }
3781 #endif
3782     // We cannot afford to take more traps here,
3783     // do not generate predicate.
3784     return;
3785   }
3786 
3787   Node *cont    = _gvn.intcon(1);
3788   Node* opq     = _gvn.transform(new Opaque1Node(C, cont));
3789   Node *bol     = _gvn.transform(new Conv2BNode(opq));
3790   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3791   Node* iffalse = _gvn.transform(new IfFalseNode(iff));
3792   C->add_predicate_opaq(opq);
3793   {
3794     PreserveJVMState pjvms(this);
3795     set_control(iffalse);
3796     inc_sp(nargs);
3797     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3798   }
3799   Node* iftrue = _gvn.transform(new IfTrueNode(iff));
3800   set_control(iftrue);
3801 }
3802 
3803 //------------------------------add_predicate---------------------------------
3804 void GraphKit::add_predicate(int nargs) {
3805   if (UseLoopPredicate) {
3806     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3807   }
3808   // loop's limit check predicate should be near the loop.
3809   add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3810 }
3811 
3812 void GraphKit::sync_kit(IdealKit& ideal) {
3813   set_all_memory(ideal.merged_memory());
3814   set_i_o(ideal.i_o());
3815   set_control(ideal.ctrl());
3816 }
3817 
3818 void GraphKit::final_sync(IdealKit& ideal) {
3819   // Final sync IdealKit and graphKit.
3820   sync_kit(ideal);
3821 }
3822 
3823 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
3824   Node* len = load_array_length(load_String_value(ctrl, str));
3825   Node* coder = load_String_coder(ctrl, str);
3826   // Divide length by 2 if coder is UTF16
3827   return _gvn.transform(new RShiftINode(len, coder));
3828 }
3829 
3830 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
3831   int value_offset = java_lang_String::value_offset_in_bytes();
3832   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3833                                                      false, NULL, 0);
3834   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3835   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
3836                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
3837                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
3838   Node* p = basic_plus_adr(str, str, value_offset);
3839   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
3840                               IN_HEAP | C2_CONTROL_DEPENDENT_LOAD);
3841   // String.value field is known to be @Stable.
3842   if (UseImplicitStableValues) {
3843     load = cast_array_to_stable(load, value_type);
3844   }
3845   return load;
3846 }
3847 
3848 Node* GraphKit::load_String_coder(Node* ctrl, Node* str) {
3849   if (!CompactStrings) {
3850     return intcon(java_lang_String::CODER_UTF16);
3851   }
3852   int coder_offset = java_lang_String::coder_offset_in_bytes();
3853   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3854                                                      false, NULL, 0);
3855   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3856   int coder_field_idx = C->get_alias_index(coder_field_type);
3857   return make_load(ctrl, basic_plus_adr(str, str, coder_offset),
3858                    TypeInt::BYTE, T_BYTE, coder_field_idx, MemNode::unordered);
3859 }
3860 
3861 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
3862   int value_offset = java_lang_String::value_offset_in_bytes();
3863   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3864                                                      false, NULL, 0);
3865   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3866   access_store_at(ctrl, str,  basic_plus_adr(str, value_offset), value_field_type,
3867                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP);
3868 }
3869 
3870 void GraphKit::store_String_coder(Node* ctrl, Node* str, Node* value) {
3871   int coder_offset = java_lang_String::coder_offset_in_bytes();
3872   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3873                                                      false, NULL, 0);
3874   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3875   int coder_field_idx = C->get_alias_index(coder_field_type);
3876   store_to_memory(ctrl, basic_plus_adr(str, coder_offset),
3877                   value, T_BYTE, coder_field_idx, MemNode::unordered);
3878 }
3879 
3880 // Capture src and dst memory state with a MergeMemNode
3881 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
3882   if (src_type == dst_type) {
3883     // Types are equal, we don't need a MergeMemNode
3884     return memory(src_type);
3885   }
3886   MergeMemNode* merge = MergeMemNode::make(map()->memory());
3887   record_for_igvn(merge); // fold it up later, if possible
3888   int src_idx = C->get_alias_index(src_type);
3889   int dst_idx = C->get_alias_index(dst_type);
3890   merge->set_memory_at(src_idx, memory(src_idx));
3891   merge->set_memory_at(dst_idx, memory(dst_idx));
3892   return merge;
3893 }
3894 
3895 Node* GraphKit::compress_string(Node* src, const TypeAryPtr* src_type, Node* dst, Node* count) {
3896   assert(Matcher::match_rule_supported(Op_StrCompressedCopy), "Intrinsic not supported");
3897   assert(src_type == TypeAryPtr::BYTES || src_type == TypeAryPtr::CHARS, "invalid source type");
3898   // If input and output memory types differ, capture both states to preserve
3899   // the dependency between preceding and subsequent loads/stores.
3900   // For example, the following program:
3901   //  StoreB
3902   //  compress_string
3903   //  LoadB
3904   // has this memory graph (use->def):
3905   //  LoadB -> compress_string -> CharMem
3906   //             ... -> StoreB -> ByteMem
3907   // The intrinsic hides the dependency between LoadB and StoreB, causing
3908   // the load to read from memory not containing the result of the StoreB.
3909   // The correct memory graph should look like this:
3910   //  LoadB -> compress_string -> MergeMem(CharMem, StoreB(ByteMem))
3911   Node* mem = capture_memory(src_type, TypeAryPtr::BYTES);
3912   StrCompressedCopyNode* str = new StrCompressedCopyNode(control(), mem, src, dst, count);
3913   Node* res_mem = _gvn.transform(new SCMemProjNode(str));
3914   set_memory(res_mem, TypeAryPtr::BYTES);
3915   return str;
3916 }
3917 
3918 void GraphKit::inflate_string(Node* src, Node* dst, const TypeAryPtr* dst_type, Node* count) {
3919   assert(Matcher::match_rule_supported(Op_StrInflatedCopy), "Intrinsic not supported");
3920   assert(dst_type == TypeAryPtr::BYTES || dst_type == TypeAryPtr::CHARS, "invalid dest type");
3921   // Capture src and dst memory (see comment in 'compress_string').
3922   Node* mem = capture_memory(TypeAryPtr::BYTES, dst_type);
3923   StrInflatedCopyNode* str = new StrInflatedCopyNode(control(), mem, src, dst, count);
3924   set_memory(_gvn.transform(str), dst_type);
3925 }
3926 
3927 void GraphKit::inflate_string_slow(Node* src, Node* dst, Node* start, Node* count) {
3928   /**
3929    * int i_char = start;
3930    * for (int i_byte = 0; i_byte < count; i_byte++) {
3931    *   dst[i_char++] = (char)(src[i_byte] & 0xff);
3932    * }
3933    */
3934   add_predicate();
3935   RegionNode* head = new RegionNode(3);
3936   head->init_req(1, control());
3937   gvn().set_type(head, Type::CONTROL);
3938   record_for_igvn(head);
3939 
3940   Node* i_byte = new PhiNode(head, TypeInt::INT);
3941   i_byte->init_req(1, intcon(0));
3942   gvn().set_type(i_byte, TypeInt::INT);
3943   record_for_igvn(i_byte);
3944 
3945   Node* i_char = new PhiNode(head, TypeInt::INT);
3946   i_char->init_req(1, start);
3947   gvn().set_type(i_char, TypeInt::INT);
3948   record_for_igvn(i_char);
3949 
3950   Node* mem = PhiNode::make(head, memory(TypeAryPtr::BYTES), Type::MEMORY, TypeAryPtr::BYTES);
3951   gvn().set_type(mem, Type::MEMORY);
3952   record_for_igvn(mem);
3953   set_control(head);
3954   set_memory(mem, TypeAryPtr::BYTES);
3955   Node* ch = load_array_element(control(), src, i_byte, TypeAryPtr::BYTES);
3956   Node* st = store_to_memory(control(), array_element_address(dst, i_char, T_BYTE),
3957                              AndI(ch, intcon(0xff)), T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
3958                              false, false, true /* mismatched */);
3959 
3960   IfNode* iff = create_and_map_if(head, Bool(CmpI(i_byte, count), BoolTest::lt), PROB_FAIR, COUNT_UNKNOWN);
3961   head->init_req(2, IfTrue(iff));
3962   mem->init_req(2, st);
3963   i_byte->init_req(2, AddI(i_byte, intcon(1)));
3964   i_char->init_req(2, AddI(i_char, intcon(2)));
3965 
3966   set_control(IfFalse(iff));
3967   set_memory(st, TypeAryPtr::BYTES);
3968 }
3969 
3970 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
3971   if (!field->is_constant()) {
3972     return NULL; // Field not marked as constant.
3973   }
3974   ciInstance* holder = NULL;
3975   if (!field->is_static()) {
3976     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
3977     if (const_oop != NULL && const_oop->is_instance()) {
3978       holder = const_oop->as_instance();
3979     }
3980   }
3981   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
3982                                                         /*is_unsigned_load=*/false);
3983   if (con_type != NULL) {
3984     return makecon(con_type);
3985   }
3986   return NULL;
3987 }
3988 
3989 Node* GraphKit::cast_array_to_stable(Node* ary, const TypeAryPtr* ary_type) {
3990   // Reify the property as a CastPP node in Ideal graph to comply with monotonicity
3991   // assumption of CCP analysis.
3992   return _gvn.transform(new CastPPNode(ary, ary_type->cast_to_stable(true)));
3993 }