1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_LOOPNODE_HPP
  26 #define SHARE_VM_OPTO_LOOPNODE_HPP
  27 
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/multnode.hpp"
  30 #include "opto/phaseX.hpp"
  31 #include "opto/subnode.hpp"
  32 #include "opto/type.hpp"
  33 
  34 class CmpNode;
  35 class CountedLoopEndNode;
  36 class CountedLoopNode;
  37 class IdealLoopTree;
  38 class LoopNode;
  39 class Node;
  40 class OuterStripMinedLoopEndNode;
  41 class PhaseIdealLoop;
  42 class CountedLoopReserveKit;
  43 class VectorSet;
  44 class Invariance;
  45 struct small_cache;
  46 
  47 //
  48 //                  I D E A L I Z E D   L O O P S
  49 //
  50 // Idealized loops are the set of loops I perform more interesting
  51 // transformations on, beyond simple hoisting.
  52 
  53 //------------------------------LoopNode---------------------------------------
  54 // Simple loop header.  Fall in path on left, loop-back path on right.
  55 class LoopNode : public RegionNode {
  56   // Size is bigger to hold the flags.  However, the flags do not change
  57   // the semantics so it does not appear in the hash & cmp functions.
  58   virtual uint size_of() const { return sizeof(*this); }
  59 protected:
  60   short _loop_flags;
  61   // Names for flag bitfields
  62   enum { Normal=0, Pre=1, Main=2, Post=3, PreMainPostFlagsMask=3,
  63          MainHasNoPreLoop=4,
  64          HasExactTripCount=8,
  65          InnerLoop=16,
  66          PartialPeelLoop=32,
  67          PartialPeelFailed=64,
  68          HasReductions=128,
  69          WasSlpAnalyzed=256,
  70          PassedSlpAnalysis=512,
  71          DoUnrollOnly=1024,
  72          VectorizedLoop=2048,
  73          HasAtomicPostLoop=4096,
  74          HasRangeChecks=8192,
  75          IsMultiversioned=16384,
  76          StripMined=32768};
  77   char _unswitch_count;
  78   enum { _unswitch_max=3 };
  79   char _postloop_flags;
  80   enum { LoopNotRCEChecked = 0, LoopRCEChecked = 1, RCEPostLoop = 2 };
  81 
  82 public:
  83   // Names for edge indices
  84   enum { Self=0, EntryControl, LoopBackControl };
  85 
  86   int is_inner_loop() const { return _loop_flags & InnerLoop; }
  87   void set_inner_loop() { _loop_flags |= InnerLoop; }
  88 
  89   int range_checks_present() const { return _loop_flags & HasRangeChecks; }
  90   int is_multiversioned() const { return _loop_flags & IsMultiversioned; }
  91   int is_vectorized_loop() const { return _loop_flags & VectorizedLoop; }
  92   int is_partial_peel_loop() const { return _loop_flags & PartialPeelLoop; }
  93   void set_partial_peel_loop() { _loop_flags |= PartialPeelLoop; }
  94   int partial_peel_has_failed() const { return _loop_flags & PartialPeelFailed; }
  95   int is_strip_mined() const { return _loop_flags & StripMined; }
  96 
  97   void mark_partial_peel_failed() { _loop_flags |= PartialPeelFailed; }
  98   void mark_has_reductions() { _loop_flags |= HasReductions; }
  99   void mark_was_slp() { _loop_flags |= WasSlpAnalyzed; }
 100   void mark_passed_slp() { _loop_flags |= PassedSlpAnalysis; }
 101   void mark_do_unroll_only() { _loop_flags |= DoUnrollOnly; }
 102   void mark_loop_vectorized() { _loop_flags |= VectorizedLoop; }
 103   void mark_has_atomic_post_loop() { _loop_flags |= HasAtomicPostLoop; }
 104   void mark_has_range_checks() { _loop_flags |=  HasRangeChecks; }
 105   void mark_is_multiversioned() { _loop_flags |= IsMultiversioned; }
 106   void mark_strip_mined() { _loop_flags |= StripMined; }
 107   void clear_strip_mined() { _loop_flags &= ~StripMined; }
 108 
 109   int unswitch_max() { return _unswitch_max; }
 110   int unswitch_count() { return _unswitch_count; }
 111 
 112   int has_been_range_checked() const { return _postloop_flags & LoopRCEChecked; }
 113   void set_has_been_range_checked() { _postloop_flags |= LoopRCEChecked; }
 114   int is_rce_post_loop() const { return _postloop_flags & RCEPostLoop; }
 115   void set_is_rce_post_loop() { _postloop_flags |= RCEPostLoop; }
 116 
 117   void set_unswitch_count(int val) {
 118     assert (val <= unswitch_max(), "too many unswitches");
 119     _unswitch_count = val;
 120   }
 121 
 122   LoopNode(Node *entry, Node *backedge) : RegionNode(3), _loop_flags(0), _unswitch_count(0), _postloop_flags(0) {
 123     init_class_id(Class_Loop);
 124     init_req(EntryControl, entry);
 125     init_req(LoopBackControl, backedge);
 126   }
 127 
 128   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 129   virtual int Opcode() const;
 130   bool can_be_counted_loop(PhaseTransform* phase) const {
 131     return req() == 3 && in(0) != NULL &&
 132       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
 133       in(2) != NULL && phase->type(in(2)) != Type::TOP;
 134   }
 135   bool is_valid_counted_loop() const;
 136 #ifndef PRODUCT
 137   virtual void dump_spec(outputStream *st) const;
 138 #endif
 139 
 140   void verify_strip_mined(int expect_skeleton) const;
 141   virtual LoopNode* skip_strip_mined(int expect_skeleton = 1) { return this; }
 142   virtual IfTrueNode* outer_loop_tail() const { ShouldNotReachHere(); return NULL; }
 143   virtual OuterStripMinedLoopEndNode* outer_loop_end() const { ShouldNotReachHere(); return NULL; }
 144   virtual IfFalseNode* outer_loop_exit() const { ShouldNotReachHere(); return NULL; }
 145   virtual SafePointNode* outer_safepoint() const { ShouldNotReachHere(); return NULL; }
 146 };
 147 
 148 //------------------------------Counted Loops----------------------------------
 149 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
 150 // path (and maybe some other exit paths).  The trip-counter exit is always
 151 // last in the loop.  The trip-counter have to stride by a constant;
 152 // the exit value is also loop invariant.
 153 
 154 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 155 // CountedLoopNode has the incoming loop control and the loop-back-control
 156 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 157 // CountedLoopEndNode has an incoming control (possibly not the
 158 // CountedLoopNode if there is control flow in the loop), the post-increment
 159 // trip-counter value, and the limit.  The trip-counter value is always of
 160 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 161 // by a Phi connected to the CountedLoopNode.  The stride is constant.
 162 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 163 // CountedLoopEndNode also takes in the loop-invariant limit value.
 164 
 165 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 166 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 167 // via the old-trip-counter from the Op node.
 168 
 169 //------------------------------CountedLoopNode--------------------------------
 170 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 171 // inputs the incoming loop-start control and the loop-back control, so they
 172 // act like RegionNodes.  They also take in the initial trip counter, the
 173 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes
 174 // produce a loop-body control and the trip counter value.  Since
 175 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 176 
 177 class CountedLoopNode : public LoopNode {
 178   // Size is bigger to hold _main_idx.  However, _main_idx does not change
 179   // the semantics so it does not appear in the hash & cmp functions.
 180   virtual uint size_of() const { return sizeof(*this); }
 181 
 182   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 183   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 184   node_idx_t _main_idx;
 185 
 186   // Known trip count calculated by compute_exact_trip_count()
 187   uint  _trip_count;
 188 
 189   // Expected trip count from profile data
 190   float _profile_trip_cnt;
 191 
 192   // Log2 of original loop bodies in unrolled loop
 193   int _unrolled_count_log2;
 194 
 195   // Node count prior to last unrolling - used to decide if
 196   // unroll,optimize,unroll,optimize,... is making progress
 197   int _node_count_before_unroll;
 198 
 199   // If slp analysis is performed we record the maximum
 200   // vector mapped unroll factor here
 201   int _slp_maximum_unroll_factor;
 202 
 203 public:
 204   CountedLoopNode( Node *entry, Node *backedge )
 205     : LoopNode(entry, backedge), _main_idx(0), _trip_count(max_juint),
 206       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 207       _node_count_before_unroll(0), _slp_maximum_unroll_factor(0) {
 208     init_class_id(Class_CountedLoop);
 209     // Initialize _trip_count to the largest possible value.
 210     // Will be reset (lower) if the loop's trip count is known.
 211   }
 212 
 213   virtual int Opcode() const;
 214   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 215 
 216   Node *init_control() const { return in(EntryControl); }
 217   Node *back_control() const { return in(LoopBackControl); }
 218   CountedLoopEndNode *loopexit_or_null() const;
 219   CountedLoopEndNode *loopexit() const;
 220   Node *init_trip() const;
 221   Node *stride() const;
 222   int   stride_con() const;
 223   bool  stride_is_con() const;
 224   Node *limit() const;
 225   Node *incr() const;
 226   Node *phi() const;
 227 
 228   // Match increment with optional truncation
 229   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 230 
 231   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 232   // can run short a few iterations and may start a few iterations in.
 233   // It will be RCE'd and unrolled and aligned.
 234 
 235   // A following 'post' loop will run any remaining iterations.  Used
 236   // during Range Check Elimination, the 'post' loop will do any final
 237   // iterations with full checks.  Also used by Loop Unrolling, where
 238   // the 'post' loop will do any epilog iterations needed.  Basically,
 239   // a 'post' loop can not profitably be further unrolled or RCE'd.
 240 
 241   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 242   // it may do under-flow checks for RCE and may do alignment iterations
 243   // so the following main loop 'knows' that it is striding down cache
 244   // lines.
 245 
 246   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 247   // Aligned, may be missing it's pre-loop.
 248   int is_normal_loop   () const { return (_loop_flags&PreMainPostFlagsMask) == Normal; }
 249   int is_pre_loop      () const { return (_loop_flags&PreMainPostFlagsMask) == Pre;    }
 250   int is_main_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Main;   }
 251   int is_post_loop     () const { return (_loop_flags&PreMainPostFlagsMask) == Post;   }
 252   int is_reduction_loop() const { return (_loop_flags&HasReductions) == HasReductions; }
 253   int was_slp_analyzed () const { return (_loop_flags&WasSlpAnalyzed) == WasSlpAnalyzed; }
 254   int has_passed_slp   () const { return (_loop_flags&PassedSlpAnalysis) == PassedSlpAnalysis; }
 255   int do_unroll_only      () const { return (_loop_flags&DoUnrollOnly) == DoUnrollOnly; }
 256   int is_main_no_pre_loop() const { return _loop_flags & MainHasNoPreLoop; }
 257   int has_atomic_post_loop  () const { return (_loop_flags & HasAtomicPostLoop) == HasAtomicPostLoop; }
 258   void set_main_no_pre_loop() { _loop_flags |= MainHasNoPreLoop; }
 259 
 260   int main_idx() const { return _main_idx; }
 261 
 262 
 263   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 264   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 265   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 266   void set_normal_loop(                    ) { _loop_flags &= ~PreMainPostFlagsMask; }
 267 
 268   void set_trip_count(uint tc) { _trip_count = tc; }
 269   uint trip_count()            { return _trip_count; }
 270 
 271   bool has_exact_trip_count() const { return (_loop_flags & HasExactTripCount) != 0; }
 272   void set_exact_trip_count(uint tc) {
 273     _trip_count = tc;
 274     _loop_flags |= HasExactTripCount;
 275   }
 276   void set_nonexact_trip_count() {
 277     _loop_flags &= ~HasExactTripCount;
 278   }
 279   void set_notpassed_slp() {
 280     _loop_flags &= ~PassedSlpAnalysis;
 281   }
 282 
 283   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 284   float profile_trip_cnt()             { return _profile_trip_cnt; }
 285 
 286   void double_unrolled_count() { _unrolled_count_log2++; }
 287   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 288 
 289   void set_node_count_before_unroll(int ct)  { _node_count_before_unroll = ct; }
 290   int  node_count_before_unroll()            { return _node_count_before_unroll; }
 291   void set_slp_max_unroll(int unroll_factor) { _slp_maximum_unroll_factor = unroll_factor; }
 292   int  slp_max_unroll() const                { return _slp_maximum_unroll_factor; }
 293 
 294   virtual LoopNode* skip_strip_mined(int expect_opaq = 1);
 295   OuterStripMinedLoopNode* outer_loop() const;
 296   virtual IfTrueNode* outer_loop_tail() const;
 297   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 298   virtual IfFalseNode* outer_loop_exit() const;
 299   virtual SafePointNode* outer_safepoint() const;
 300 
 301   // If this is a main loop in a pre/main/post loop nest, walk over
 302   // the predicates that were inserted by
 303   // duplicate_predicates()/add_range_check_predicate()
 304   Node* skip_predicates();
 305 
 306 #ifndef PRODUCT
 307   virtual void dump_spec(outputStream *st) const;
 308 #endif
 309 };
 310 
 311 //------------------------------CountedLoopEndNode-----------------------------
 312 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 313 // IfNodes.
 314 class CountedLoopEndNode : public IfNode {
 315 public:
 316   enum { TestControl, TestValue };
 317 
 318   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 319     : IfNode( control, test, prob, cnt) {
 320     init_class_id(Class_CountedLoopEnd);
 321   }
 322   virtual int Opcode() const;
 323 
 324   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 325   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 326   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 327   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 328   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 329   int stride_con() const;
 330   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 331   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 332   PhiNode *phi() const {
 333     Node *tmp = incr();
 334     if (tmp && tmp->req() == 3) {
 335       Node* phi = tmp->in(1);
 336       if (phi->is_Phi()) {
 337         return phi->as_Phi();
 338       }
 339     }
 340     return NULL;
 341   }
 342   CountedLoopNode *loopnode() const {
 343     // The CountedLoopNode that goes with this CountedLoopEndNode may
 344     // have been optimized out by the IGVN so be cautious with the
 345     // pattern matching on the graph
 346     PhiNode* iv_phi = phi();
 347     if (iv_phi == NULL) {
 348       return NULL;
 349     }
 350     Node *ln = iv_phi->in(0);
 351     if (ln->is_CountedLoop() && ln->as_CountedLoop()->loopexit_or_null() == this) {
 352       return (CountedLoopNode*)ln;
 353     }
 354     return NULL;
 355   }
 356 
 357 #ifndef PRODUCT
 358   virtual void dump_spec(outputStream *st) const;
 359 #endif
 360 };
 361 
 362 
 363 inline CountedLoopEndNode *CountedLoopNode::loopexit_or_null() const {
 364   Node *bc = back_control();
 365   if( bc == NULL ) return NULL;
 366   Node *le = bc->in(0);
 367   if( le->Opcode() != Op_CountedLoopEnd )
 368     return NULL;
 369   return (CountedLoopEndNode*)le;
 370 }
 371 inline CountedLoopEndNode *CountedLoopNode::loopexit() const {
 372   CountedLoopEndNode* cle = loopexit_or_null();
 373   assert(cle != NULL, "loopexit is NULL");
 374   return cle;
 375 }
 376 inline Node *CountedLoopNode::init_trip() const { return loopexit_or_null() ? loopexit()->init_trip() : NULL; }
 377 inline Node *CountedLoopNode::stride() const { return loopexit_or_null() ? loopexit()->stride() : NULL; }
 378 inline int CountedLoopNode::stride_con() const { return loopexit_or_null() ? loopexit()->stride_con() : 0; }
 379 inline bool CountedLoopNode::stride_is_con() const { return loopexit_or_null() && loopexit()->stride_is_con(); }
 380 inline Node *CountedLoopNode::limit() const { return loopexit_or_null() ? loopexit()->limit() : NULL; }
 381 inline Node *CountedLoopNode::incr() const { return loopexit_or_null() ? loopexit()->incr() : NULL; }
 382 inline Node *CountedLoopNode::phi() const { return loopexit_or_null() ? loopexit()->phi() : NULL; }
 383 
 384 //------------------------------LoopLimitNode-----------------------------
 385 // Counted Loop limit node which represents exact final iterator value:
 386 // trip_count = (limit - init_trip + stride - 1)/stride
 387 // final_value= trip_count * stride + init_trip.
 388 // Use HW instructions to calculate it when it can overflow in integer.
 389 // Note, final_value should fit into integer since counted loop has
 390 // limit check: limit <= max_int-stride.
 391 class LoopLimitNode : public Node {
 392   enum { Init=1, Limit=2, Stride=3 };
 393  public:
 394   LoopLimitNode( Compile* C, Node *init, Node *limit, Node *stride ) : Node(0,init,limit,stride) {
 395     // Put it on the Macro nodes list to optimize during macro nodes expansion.
 396     init_flags(Flag_is_macro);
 397     C->add_macro_node(this);
 398   }
 399   virtual int Opcode() const;
 400   virtual const Type *bottom_type() const { return TypeInt::INT; }
 401   virtual uint ideal_reg() const { return Op_RegI; }
 402   virtual const Type* Value(PhaseGVN* phase) const;
 403   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 404   virtual Node* Identity(PhaseGVN* phase);
 405 };
 406 
 407 // Support for strip mining
 408 class OuterStripMinedLoopNode : public LoopNode {
 409 private:
 410   CountedLoopNode* inner_loop() const;
 411 public:
 412   OuterStripMinedLoopNode(Compile* C, Node *entry, Node *backedge)
 413     : LoopNode(entry, backedge) {
 414     init_class_id(Class_OuterStripMinedLoop);
 415     init_flags(Flag_is_macro);
 416     C->add_macro_node(this);
 417   }
 418 
 419   virtual int Opcode() const;
 420 
 421   virtual IfTrueNode* outer_loop_tail() const;
 422   virtual OuterStripMinedLoopEndNode* outer_loop_end() const;
 423   virtual IfFalseNode* outer_loop_exit() const;
 424   virtual SafePointNode* outer_safepoint() const;
 425   void adjust_strip_mined_loop(PhaseIterGVN* igvn);
 426 };
 427 
 428 class OuterStripMinedLoopEndNode : public IfNode {
 429 public:
 430   OuterStripMinedLoopEndNode(Node *control, Node *test, float prob, float cnt)
 431     : IfNode(control, test, prob, cnt) {
 432     init_class_id(Class_OuterStripMinedLoopEnd);
 433   }
 434 
 435   virtual int Opcode() const;
 436 
 437   virtual const Type* Value(PhaseGVN* phase) const;
 438   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 439 };
 440 
 441 // -----------------------------IdealLoopTree----------------------------------
 442 class IdealLoopTree : public ResourceObj {
 443 public:
 444   IdealLoopTree *_parent;       // Parent in loop tree
 445   IdealLoopTree *_next;         // Next sibling in loop tree
 446   IdealLoopTree *_child;        // First child in loop tree
 447 
 448   // The head-tail backedge defines the loop.
 449   // If tail is NULL then this loop has multiple backedges as part of the
 450   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 451   // them at the loop bottom and flow 1 real backedge into the loop.
 452   Node *_head;                  // Head of loop
 453   Node *_tail;                  // Tail of loop
 454   inline Node *tail();          // Handle lazy update of _tail field
 455   PhaseIdealLoop* _phase;
 456   int _local_loop_unroll_limit;
 457   int _local_loop_unroll_factor;
 458 
 459   Node_List _body;              // Loop body for inner loops
 460 
 461   uint8_t _nest;                // Nesting depth
 462   uint8_t _irreducible:1,       // True if irreducible
 463           _has_call:1,          // True if has call safepoint
 464           _has_sfpt:1,          // True if has non-call safepoint
 465           _rce_candidate:1;     // True if candidate for range check elimination
 466 
 467   Node_List* _safepts;          // List of safepoints in this loop
 468   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 469   bool  _allow_optimizations;   // Allow loop optimizations
 470 
 471   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 472     : _parent(0), _next(0), _child(0),
 473       _head(head), _tail(tail),
 474       _phase(phase),
 475       _safepts(NULL),
 476       _required_safept(NULL),
 477       _allow_optimizations(true),
 478       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0),
 479       _local_loop_unroll_limit(0), _local_loop_unroll_factor(0)
 480   { }
 481 
 482   // Is 'l' a member of 'this'?
 483   bool is_member(const IdealLoopTree *l) const; // Test for nested membership
 484 
 485   // Set loop nesting depth.  Accumulate has_call bits.
 486   int set_nest( uint depth );
 487 
 488   // Split out multiple fall-in edges from the loop header.  Move them to a
 489   // private RegionNode before the loop.  This becomes the loop landing pad.
 490   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 491 
 492   // Split out the outermost loop from this shared header.
 493   void split_outer_loop( PhaseIdealLoop *phase );
 494 
 495   // Merge all the backedges from the shared header into a private Region.
 496   // Feed that region as the one backedge to this loop.
 497   void merge_many_backedges( PhaseIdealLoop *phase );
 498 
 499   // Split shared headers and insert loop landing pads.
 500   // Insert a LoopNode to replace the RegionNode.
 501   // Returns TRUE if loop tree is structurally changed.
 502   bool beautify_loops( PhaseIdealLoop *phase );
 503 
 504   // Perform optimization to use the loop predicates for null checks and range checks.
 505   // Applies to any loop level (not just the innermost one)
 506   bool loop_predication( PhaseIdealLoop *phase);
 507 
 508   // Perform iteration-splitting on inner loops.  Split iterations to
 509   // avoid range checks or one-shot null checks.  Returns false if the
 510   // current round of loop opts should stop.
 511   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 512 
 513   // Driver for various flavors of iteration splitting.  Returns false
 514   // if the current round of loop opts should stop.
 515   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 516 
 517   // Given dominators, try to find loops with calls that must always be
 518   // executed (call dominates loop tail).  These loops do not need non-call
 519   // safepoints (ncsfpt).
 520   void check_safepts(VectorSet &visited, Node_List &stack);
 521 
 522   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 523   // encountered.
 524   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 525 
 526   // Remove safepoints from loop. Optionally keeping one.
 527   void remove_safepoints(PhaseIdealLoop* phase, bool keep_one);
 528 
 529   // Convert to counted loops where possible
 530   void counted_loop( PhaseIdealLoop *phase );
 531 
 532   // Check for Node being a loop-breaking test
 533   Node *is_loop_exit(Node *iff) const;
 534 
 535   // Remove simplistic dead code from loop body
 536   void DCE_loop_body();
 537 
 538   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 539   // Replace with a 1-in-10 exit guess.
 540   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 541 
 542   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.
 543   // Useful for unrolling loops with NO array accesses.
 544   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 545 
 546   // Return TRUE or FALSE if the loop should be unswitched -- clone
 547   // loop with an invariant test
 548   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 549 
 550   // Micro-benchmark spamming.  Remove empty loops.
 551   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 552 
 553   // Convert one iteration loop into normal code.
 554   bool policy_do_one_iteration_loop( PhaseIdealLoop *phase );
 555 
 556   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 557   // make some loop-invariant test (usually a null-check) happen before the
 558   // loop.
 559   bool policy_peeling( PhaseIdealLoop *phase ) const;
 560 
 561   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 562   // known trip count in the counted loop node.
 563   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 564 
 565   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 566   // the loop is a CountedLoop and the body is small enough.
 567   bool policy_unroll(PhaseIdealLoop *phase);
 568 
 569   // Loop analyses to map to a maximal superword unrolling for vectorization.
 570   void policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct);
 571 
 572   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 573   // Gather a list of IF tests that are dominated by iteration splitting;
 574   // also gather the end of the first split and the start of the 2nd split.
 575   bool policy_range_check( PhaseIdealLoop *phase ) const;
 576 
 577   // Return TRUE or FALSE if the loop should be cache-line aligned.
 578   // Gather the expression that does the alignment.  Note that only
 579   // one array base can be aligned in a loop (unless the VM guarantees
 580   // mutual alignment).  Note that if we vectorize short memory ops
 581   // into longer memory ops, we may want to increase alignment.
 582   bool policy_align( PhaseIdealLoop *phase ) const;
 583 
 584   // Return TRUE if "iff" is a range check.
 585   bool is_range_check_if(IfNode *iff, PhaseIdealLoop *phase, Invariance& invar) const;
 586 
 587   // Compute loop trip count if possible
 588   void compute_trip_count(PhaseIdealLoop* phase);
 589 
 590   // Compute loop trip count from profile data
 591   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 592 
 593   // Reassociate invariant expressions.
 594   void reassociate_invariants(PhaseIdealLoop *phase);
 595   // Reassociate invariant add and subtract expressions.
 596   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 597   // Return nonzero index of invariant operand if invariant and variant
 598   // are combined with an Add or Sub. Helper for reassociate_invariants.
 599   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 600 
 601   // Return true if n is invariant
 602   bool is_invariant(Node* n) const;
 603 
 604   // Put loop body on igvn work list
 605   void record_for_igvn();
 606 
 607   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 608   bool is_inner()   { return is_loop() && _child == NULL; }
 609   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 610 
 611   void remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase);
 612 
 613 #ifndef PRODUCT
 614   void dump_head( ) const;      // Dump loop head only
 615   void dump() const;            // Dump this loop recursively
 616   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 617 #endif
 618 
 619 };
 620 
 621 // -----------------------------PhaseIdealLoop---------------------------------
 622 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 623 // loop tree.  Drives the loop-based transformations on the ideal graph.
 624 class PhaseIdealLoop : public PhaseTransform {
 625   friend class IdealLoopTree;
 626   friend class SuperWord;
 627   friend class CountedLoopReserveKit;
 628 
 629   // Pre-computed def-use info
 630   PhaseIterGVN &_igvn;
 631 
 632   // Head of loop tree
 633   IdealLoopTree *_ltree_root;
 634 
 635   // Array of pre-order numbers, plus post-visited bit.
 636   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 637   // ODD for post-visited.  Other bits are the pre-order number.
 638   uint *_preorders;
 639   uint _max_preorder;
 640 
 641   const PhaseIdealLoop* _verify_me;
 642   bool _verify_only;
 643 
 644   // Allocate _preorders[] array
 645   void allocate_preorders() {
 646     _max_preorder = C->unique()+8;
 647     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 648     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 649   }
 650 
 651   // Allocate _preorders[] array
 652   void reallocate_preorders() {
 653     if ( _max_preorder < C->unique() ) {
 654       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 655       _max_preorder = C->unique();
 656     }
 657     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 658   }
 659 
 660   // Check to grow _preorders[] array for the case when build_loop_tree_impl()
 661   // adds new nodes.
 662   void check_grow_preorders( ) {
 663     if ( _max_preorder < C->unique() ) {
 664       uint newsize = _max_preorder<<1;  // double size of array
 665       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 666       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 667       _max_preorder = newsize;
 668     }
 669   }
 670   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 671   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 672   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 673   void set_preorder_visited( Node *n, int pre_order ) {
 674     assert( !is_visited( n ), "already set" );
 675     _preorders[n->_idx] = (pre_order<<1);
 676   };
 677   // Return pre-order number.
 678   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 679 
 680   // Check for being post-visited.
 681   // Should be previsited already (checked with assert(is_visited(n))).
 682   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 683 
 684   // Mark as post visited
 685   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 686 
 687 public:
 688   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 689   // Returns true if "n" is a data node, false if it's a control node.
 690   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 691 
 692 private:
 693   // clear out dead code after build_loop_late
 694   Node_List _deadlist;
 695 
 696   // Support for faster execution of get_late_ctrl()/dom_lca()
 697   // when a node has many uses and dominator depth is deep.
 698   Node_Array _dom_lca_tags;
 699   void   init_dom_lca_tags();
 700   void   clear_dom_lca_tags();
 701 
 702   // Helper for debugging bad dominance relationships
 703   bool verify_dominance(Node* n, Node* use, Node* LCA, Node* early);
 704 
 705   Node* compute_lca_of_uses(Node* n, Node* early, bool verify = false);
 706 
 707   // Inline wrapper for frequent cases:
 708   // 1) only one use
 709   // 2) a use is the same as the current LCA passed as 'n1'
 710   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 711     assert( n->is_CFG(), "" );
 712     // Fast-path NULL lca
 713     if( lca != NULL && lca != n ) {
 714       assert( lca->is_CFG(), "" );
 715       // find LCA of all uses
 716       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 717     }
 718     return find_non_split_ctrl(n);
 719   }
 720   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 721 
 722   // Helper function for directing control inputs away from CFG split
 723   // points.
 724   Node *find_non_split_ctrl( Node *ctrl ) const {
 725     if (ctrl != NULL) {
 726       if (ctrl->is_MultiBranch()) {
 727         ctrl = ctrl->in(0);
 728       }
 729       assert(ctrl->is_CFG(), "CFG");
 730     }
 731     return ctrl;
 732   }
 733 
 734   Node* cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop);
 735   void duplicate_predicates(CountedLoopNode* pre_head, Node *min_taken, Node* castii,
 736                             IdealLoopTree* outer_loop, LoopNode* outer_main_head,
 737                             uint dd_main_head);
 738 
 739 public:
 740 
 741   PhaseIterGVN &igvn() const { return _igvn; }
 742 
 743   static bool is_canonical_loop_entry(CountedLoopNode* cl);
 744 
 745   bool has_node( Node* n ) const {
 746     guarantee(n != NULL, "No Node.");
 747     return _nodes[n->_idx] != NULL;
 748   }
 749   // check if transform created new nodes that need _ctrl recorded
 750   Node *get_late_ctrl( Node *n, Node *early );
 751   Node *get_early_ctrl( Node *n );
 752   Node *get_early_ctrl_for_expensive(Node *n, Node* earliest);
 753   void set_early_ctrl( Node *n );
 754   void set_subtree_ctrl( Node *root );
 755   void set_ctrl( Node *n, Node *ctrl ) {
 756     assert( !has_node(n) || has_ctrl(n), "" );
 757     assert( ctrl->in(0), "cannot set dead control node" );
 758     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 759     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 760   }
 761   // Set control and update loop membership
 762   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 763     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 764     IdealLoopTree* new_loop = get_loop(ctrl);
 765     if (old_loop != new_loop) {
 766       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 767       if (new_loop->_child == NULL) new_loop->_body.push(n);
 768     }
 769     set_ctrl(n, ctrl);
 770   }
 771   // Control nodes can be replaced or subsumed.  During this pass they
 772   // get their replacement Node in slot 1.  Instead of updating the block
 773   // location of all Nodes in the subsumed block, we lazily do it.  As we
 774   // pull such a subsumed block out of the array, we write back the final
 775   // correct block.
 776   Node *get_ctrl( Node *i ) {
 777     assert(has_node(i), "");
 778     Node *n = get_ctrl_no_update(i);
 779     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 780     assert(has_node(i) && has_ctrl(i), "");
 781     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 782     return n;
 783   }
 784   // true if CFG node d dominates CFG node n
 785   bool is_dominator(Node *d, Node *n);
 786   // return get_ctrl for a data node and self(n) for a CFG node
 787   Node* ctrl_or_self(Node* n) {
 788     if (has_ctrl(n))
 789       return get_ctrl(n);
 790     else {
 791       assert (n->is_CFG(), "must be a CFG node");
 792       return n;
 793     }
 794   }
 795 
 796   Node *get_ctrl_no_update_helper(Node *i) const {
 797     assert(has_ctrl(i), "should be control, not loop");
 798     return (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 799   }
 800 
 801   Node *get_ctrl_no_update(Node *i) const {
 802     assert( has_ctrl(i), "" );
 803     Node *n = get_ctrl_no_update_helper(i);
 804     if (!n->in(0)) {
 805       // Skip dead CFG nodes
 806       do {
 807         n = get_ctrl_no_update_helper(n);
 808       } while (!n->in(0));
 809       n = find_non_split_ctrl(n);
 810     }
 811     return n;
 812   }
 813 
 814   // Check for loop being set
 815   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 816   bool has_loop( Node *n ) const {
 817     assert(!has_node(n) || !has_ctrl(n), "");
 818     return has_node(n);
 819   }
 820   // Set loop
 821   void set_loop( Node *n, IdealLoopTree *loop ) {
 822     _nodes.map(n->_idx, (Node*)loop);
 823   }
 824   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 825   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 826   // from old_node to new_node to support the lazy update.  Reference
 827   // replaces loop reference, since that is not needed for dead node.
 828   void lazy_update(Node *old_node, Node *new_node) {
 829     assert(old_node != new_node, "no cycles please");
 830     // Re-use the side array slot for this node to provide the
 831     // forwarding pointer.
 832     _nodes.map(old_node->_idx, (Node*)((intptr_t)new_node + 1));
 833   }
 834   void lazy_replace(Node *old_node, Node *new_node) {
 835     _igvn.replace_node(old_node, new_node);
 836     lazy_update(old_node, new_node);
 837   }
 838 
 839 private:
 840 
 841   // Place 'n' in some loop nest, where 'n' is a CFG node
 842   void build_loop_tree();
 843   int build_loop_tree_impl( Node *n, int pre_order );
 844   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 845   // loop tree, not the root.
 846   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 847 
 848   // Place Data nodes in some loop nest
 849   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 850   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack );
 851   void build_loop_late_post ( Node* n );
 852   void verify_strip_mined_scheduling(Node *n, Node* least);
 853 
 854   // Array of immediate dominance info for each CFG node indexed by node idx
 855 private:
 856   uint _idom_size;
 857   Node **_idom;                 // Array of immediate dominators
 858   uint *_dom_depth;           // Used for fast LCA test
 859   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 860 
 861 public:
 862   Node* idom_no_update(Node* d) const {
 863     assert(d->_idx < _idom_size, "oob");
 864     Node* n = _idom[d->_idx];
 865     assert(n != NULL,"Bad immediate dominator info.");
 866     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 867       //n = n->in(1);
 868       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 869       assert(n != NULL,"Bad immediate dominator info.");
 870     }
 871     return n;
 872   }
 873   Node *idom(Node* d) const {
 874     uint didx = d->_idx;
 875     Node *n = idom_no_update(d);
 876     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 877     return n;
 878   }
 879   uint dom_depth(Node* d) const {
 880     guarantee(d != NULL, "Null dominator info.");
 881     guarantee(d->_idx < _idom_size, "");
 882     return _dom_depth[d->_idx];
 883   }
 884   void set_idom(Node* d, Node* n, uint dom_depth);
 885   // Locally compute IDOM using dom_lca call
 886   Node *compute_idom( Node *region ) const;
 887   // Recompute dom_depth
 888   void recompute_dom_depth();
 889 
 890   // Is safept not required by an outer loop?
 891   bool is_deleteable_safept(Node* sfpt);
 892 
 893   // Replace parallel induction variable (parallel to trip counter)
 894   void replace_parallel_iv(IdealLoopTree *loop);
 895 
 896   // Perform verification that the graph is valid.
 897   PhaseIdealLoop( PhaseIterGVN &igvn) :
 898     PhaseTransform(Ideal_Loop),
 899     _igvn(igvn),
 900     _dom_lca_tags(arena()), // Thread::resource_area
 901     _verify_me(NULL),
 902     _verify_only(true) {
 903     build_and_optimize(false, false);
 904   }
 905 
 906   // build the loop tree and perform any requested optimizations
 907   void build_and_optimize(bool do_split_if, bool skip_loop_opts);
 908 
 909   // Dominators for the sea of nodes
 910   void Dominators();
 911   Node *dom_lca( Node *n1, Node *n2 ) const {
 912     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 913   }
 914   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 915 
 916   // Compute the Ideal Node to Loop mapping
 917   PhaseIdealLoop( PhaseIterGVN &igvn, bool do_split_ifs, bool skip_loop_opts = false) :
 918     PhaseTransform(Ideal_Loop),
 919     _igvn(igvn),
 920     _dom_lca_tags(arena()), // Thread::resource_area
 921     _verify_me(NULL),
 922     _verify_only(false) {
 923     build_and_optimize(do_split_ifs, skip_loop_opts);
 924   }
 925 
 926   // Verify that verify_me made the same decisions as a fresh run.
 927   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me) :
 928     PhaseTransform(Ideal_Loop),
 929     _igvn(igvn),
 930     _dom_lca_tags(arena()), // Thread::resource_area
 931     _verify_me(verify_me),
 932     _verify_only(false) {
 933     build_and_optimize(false, false);
 934   }
 935 
 936   // Build and verify the loop tree without modifying the graph.  This
 937   // is useful to verify that all inputs properly dominate their uses.
 938   static void verify(PhaseIterGVN& igvn) {
 939 #ifdef ASSERT
 940     PhaseIdealLoop v(igvn);
 941 #endif
 942   }
 943 
 944   // True if the method has at least 1 irreducible loop
 945   bool _has_irreducible_loops;
 946 
 947   // Per-Node transform
 948   virtual Node *transform( Node *a_node ) { return 0; }
 949 
 950   bool is_counted_loop(Node* x, IdealLoopTree*& loop);
 951   IdealLoopTree* create_outer_strip_mined_loop(BoolNode *test, Node *cmp, Node *init_control,
 952                                                IdealLoopTree* loop, float cl_prob, float le_fcnt,
 953                                                Node*& entry_control, Node*& iffalse);
 954 
 955   Node* exact_limit( IdealLoopTree *loop );
 956 
 957   // Return a post-walked LoopNode
 958   IdealLoopTree *get_loop( Node *n ) const {
 959     // Dead nodes have no loop, so return the top level loop instead
 960     if (!has_node(n))  return _ltree_root;
 961     assert(!has_ctrl(n), "");
 962     return (IdealLoopTree*)_nodes[n->_idx];
 963   }
 964 
 965   IdealLoopTree *ltree_root() const { return _ltree_root; }
 966 
 967   // Is 'n' a (nested) member of 'loop'?
 968   int is_member( const IdealLoopTree *loop, Node *n ) const {
 969     return loop->is_member(get_loop(n)); }
 970 
 971   // This is the basic building block of the loop optimizations.  It clones an
 972   // entire loop body.  It makes an old_new loop body mapping; with this
 973   // mapping you can find the new-loop equivalent to an old-loop node.  All
 974   // new-loop nodes are exactly equal to their old-loop counterparts, all
 975   // edges are the same.  All exits from the old-loop now have a RegionNode
 976   // that merges the equivalent new-loop path.  This is true even for the
 977   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 978   // now come from (one or more) Phis that merge their new-loop equivalents.
 979   // Parameter side_by_side_idom:
 980   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 981   //      the clone loop to dominate the original.  Used in construction of
 982   //      pre-main-post loop sequence.
 983   //   When nonnull, the clone and original are side-by-side, both are
 984   //      dominated by the passed in side_by_side_idom node.  Used in
 985   //      construction of unswitched loops.
 986   enum CloneLoopMode {
 987     IgnoreStripMined = 0,        // Only clone inner strip mined loop
 988     CloneIncludesStripMined = 1, // clone both inner and outer strip mined loops
 989     ControlAroundStripMined = 2  // Only clone inner strip mined loop,
 990                                  // result control flow branches
 991                                  // either to inner clone or outer
 992                                  // strip mined loop.
 993   };
 994   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 995                   CloneLoopMode mode, Node* side_by_side_idom = NULL);
 996   void clone_loop_handle_data_uses(Node* old, Node_List &old_new,
 997                                    IdealLoopTree* loop, IdealLoopTree* companion_loop,
 998                                    Node_List*& split_if_set, Node_List*& split_bool_set,
 999                                    Node_List*& split_cex_set, Node_List& worklist,
1000                                    uint new_counter, CloneLoopMode mode);
1001   void clone_outer_loop(LoopNode* head, CloneLoopMode mode, IdealLoopTree *loop,
1002                         IdealLoopTree* outer_loop, int dd, Node_List &old_new,
1003                         Node_List& extra_data_nodes);
1004 
1005   // If we got the effect of peeling, either by actually peeling or by
1006   // making a pre-loop which must execute at least once, we can remove
1007   // all loop-invariant dominated tests in the main body.
1008   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
1009 
1010   // Generate code to do a loop peel for the given loop (and body).
1011   // old_new is a temp array.
1012   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
1013 
1014   // Add pre and post loops around the given loop.  These loops are used
1015   // during RCE, unrolling and aligning loops.
1016   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
1017 
1018   // Add post loop after the given loop.
1019   Node *insert_post_loop(IdealLoopTree *loop, Node_List &old_new,
1020                          CountedLoopNode *main_head, CountedLoopEndNode *main_end,
1021                          Node *incr, Node *limit, CountedLoopNode *&post_head);
1022 
1023   // Add an RCE'd post loop which we will multi-version adapt for run time test path usage
1024   void insert_scalar_rced_post_loop( IdealLoopTree *loop, Node_List &old_new );
1025 
1026   // Add a vector post loop between a vector main loop and the current post loop
1027   void insert_vector_post_loop(IdealLoopTree *loop, Node_List &old_new);
1028   // If Node n lives in the back_ctrl block, we clone a private version of n
1029   // in preheader_ctrl block and return that, otherwise return n.
1030   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones );
1031 
1032   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
1033   // unroll to do double iterations.  The next round of major loop transforms
1034   // will repeat till the doubled loop body does all remaining iterations in 1
1035   // pass.
1036   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
1037 
1038   // Unroll the loop body one step - make each trip do 2 iterations.
1039   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
1040 
1041   // Mark vector reduction candidates before loop unrolling
1042   void mark_reductions( IdealLoopTree *loop );
1043 
1044   // Return true if exp is a constant times an induction var
1045   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
1046 
1047   // Return true if exp is a scaled induction var plus (or minus) constant
1048   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
1049 
1050   // Create a new if above the uncommon_trap_if_pattern for the predicate to be promoted
1051   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
1052                                         Deoptimization::DeoptReason reason,
1053                                         int opcode);
1054   void register_control(Node* n, IdealLoopTree *loop, Node* pred);
1055 
1056   // Clone loop predicates to cloned loops (peeled, unswitched)
1057   static ProjNode* clone_predicate(ProjNode* predicate_proj, Node* new_entry,
1058                                    Deoptimization::DeoptReason reason,
1059                                    PhaseIdealLoop* loop_phase,
1060                                    PhaseIterGVN* igvn);
1061 
1062   static Node* clone_loop_predicates(Node* old_entry, Node* new_entry,
1063                                          bool clone_limit_check,
1064                                          PhaseIdealLoop* loop_phase,
1065                                          PhaseIterGVN* igvn);
1066   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
1067 
1068   static Node* skip_loop_predicates(Node* entry);
1069 
1070   // Find a good location to insert a predicate
1071   static ProjNode* find_predicate_insertion_point(Node* start_c, Deoptimization::DeoptReason reason);
1072   // Find a predicate
1073   static Node* find_predicate(Node* entry);
1074   // Construct a range check for a predicate if
1075   BoolNode* rc_predicate(IdealLoopTree *loop, Node* ctrl,
1076                          int scale, Node* offset,
1077                          Node* init, Node* limit, jint stride,
1078                          Node* range, bool upper, bool &overflow);
1079 
1080   // Implementation of the loop predication to promote checks outside the loop
1081   bool loop_predication_impl(IdealLoopTree *loop);
1082   ProjNode* insert_skeleton_predicate(IfNode* iff, IdealLoopTree *loop,
1083                                       ProjNode* proj, ProjNode *predicate_proj,
1084                                       ProjNode* upper_bound_proj,
1085                                       int scale, Node* offset,
1086                                       Node* init, Node* limit, jint stride,
1087                                       Node* rng, bool& overflow);
1088   Node* add_range_check_predicate(IdealLoopTree* loop, CountedLoopNode* cl,
1089                                   Node* predicate_proj, int scale_con, Node* offset,
1090                                   Node* limit, jint stride_con);
1091 
1092   // Helper function to collect predicate for eliminating the useless ones
1093   void collect_potentially_useful_predicates(IdealLoopTree *loop, Unique_Node_List &predicate_opaque1);
1094   void eliminate_useless_predicates();
1095 
1096   // Change the control input of expensive nodes to allow commoning by
1097   // IGVN when it is guaranteed to not result in a more frequent
1098   // execution of the expensive node. Return true if progress.
1099   bool process_expensive_nodes();
1100 
1101   // Check whether node has become unreachable
1102   bool is_node_unreachable(Node *n) const {
1103     return !has_node(n) || n->is_unreachable(_igvn);
1104   }
1105 
1106   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1107   int do_range_check( IdealLoopTree *loop, Node_List &old_new );
1108 
1109   // Check to see if do_range_check(...) cleaned the main loop of range-checks
1110   void has_range_checks(IdealLoopTree *loop);
1111 
1112   // Process post loops which have range checks and try to build a multi-version
1113   // guard to safely determine if we can execute the post loop which was RCE'd.
1114   bool multi_version_post_loops(IdealLoopTree *rce_loop, IdealLoopTree *legacy_loop);
1115 
1116   // Cause the rce'd post loop to optimized away, this happens if we cannot complete multiverioning
1117   void poison_rce_post_loop(IdealLoopTree *rce_loop);
1118 
1119   // Create a slow version of the loop by cloning the loop
1120   // and inserting an if to select fast-slow versions.
1121   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
1122                                         Node_List &old_new,
1123                                         int opcode,
1124                                         CloneLoopMode mode);
1125 
1126   // Clone a loop and return the clone head (clone_loop_head).
1127   // Added nodes include int(1), int(0) - disconnected, If, IfTrue, IfFalse,
1128   // This routine was created for usage in CountedLoopReserveKit.
1129   //
1130   //    int(1) -> If -> IfTrue -> original_loop_head
1131   //              |
1132   //              V
1133   //           IfFalse -> clone_loop_head (returned by function pointer)
1134   //
1135   LoopNode* create_reserve_version_of_loop(IdealLoopTree *loop, CountedLoopReserveKit* lk);
1136   // Clone loop with an invariant test (that does not exit) and
1137   // insert a clone of the test that selects which version to
1138   // execute.
1139   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
1140 
1141   // Find candidate "if" for unswitching
1142   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
1143 
1144   // Range Check Elimination uses this function!
1145   // Constrain the main loop iterations so the affine function:
1146   //    low_limit <= scale_con * I + offset  <  upper_limit
1147   // always holds true.  That is, either increase the number of iterations in
1148   // the pre-loop or the post-loop until the condition holds true in the main
1149   // loop.  Scale_con, offset and limit are all loop invariant.
1150   void add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
1151   // Helper function for add_constraint().
1152   Node* adjust_limit( int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl );
1153 
1154   // Partially peel loop up through last_peel node.
1155   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
1156 
1157   // Create a scheduled list of nodes control dependent on ctrl set.
1158   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
1159   // Has a use in the vector set
1160   bool has_use_in_set( Node* n, VectorSet& vset );
1161   // Has use internal to the vector set (ie. not in a phi at the loop head)
1162   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
1163   // clone "n" for uses that are outside of loop
1164   int  clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
1165   // clone "n" for special uses that are in the not_peeled region
1166   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
1167                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
1168   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
1169   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
1170 #ifdef ASSERT
1171   // Validate the loop partition sets: peel and not_peel
1172   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
1173   // Ensure that uses outside of loop are of the right form
1174   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
1175                                  uint orig_exit_idx, uint clone_exit_idx);
1176   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
1177 #endif
1178 
1179   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
1180   int stride_of_possible_iv( Node* iff );
1181   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
1182   // Return the (unique) control output node that's in the loop (if it exists.)
1183   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
1184   // Insert a signed compare loop exit cloned from an unsigned compare.
1185   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
1186   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
1187   // Utility to register node "n" with PhaseIdealLoop
1188   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
1189   // Utility to create an if-projection
1190   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
1191   // Force the iff control output to be the live_proj
1192   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
1193   // Insert a region before an if projection
1194   RegionNode* insert_region_before_proj(ProjNode* proj);
1195   // Insert a new if before an if projection
1196   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
1197 
1198   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
1199   // "Nearly" because all Nodes have been cloned from the original in the loop,
1200   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs
1201   // through the Phi recursively, and return a Bool.
1202   Node *clone_iff( PhiNode *phi, IdealLoopTree *loop );
1203   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
1204 
1205 
1206   // Rework addressing expressions to get the most loop-invariant stuff
1207   // moved out.  We'd like to do all associative operators, but it's especially
1208   // important (common) to do address expressions.
1209   Node *remix_address_expressions( Node *n );
1210 
1211   // Attempt to use a conditional move instead of a phi/branch
1212   Node *conditional_move( Node *n );
1213 
1214   // Reorganize offset computations to lower register pressure.
1215   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
1216   // (which are then alive with the post-incremented trip counter
1217   // forcing an extra register move)
1218   void reorg_offsets( IdealLoopTree *loop );
1219 
1220   // Check for aggressive application of 'split-if' optimization,
1221   // using basic block level info.
1222   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
1223   Node *split_if_with_blocks_pre ( Node *n );
1224   void  split_if_with_blocks_post( Node *n );
1225   Node *has_local_phi_input( Node *n );
1226   // Mark an IfNode as being dominated by a prior test,
1227   // without actually altering the CFG (and hence IDOM info).
1228   void dominated_by( Node *prevdom, Node *iff, bool flip = false, bool exclude_loop_predicate = false );
1229 
1230   // Split Node 'n' through merge point
1231   Node *split_thru_region( Node *n, Node *region );
1232   // Split Node 'n' through merge point if there is enough win.
1233   Node *split_thru_phi( Node *n, Node *region, int policy );
1234   // Found an If getting its condition-code input from a Phi in the
1235   // same block.  Split thru the Region.
1236   void do_split_if( Node *iff );
1237 
1238   // Conversion of fill/copy patterns into intrisic versions
1239   bool do_intrinsify_fill();
1240   bool intrinsify_fill(IdealLoopTree* lpt);
1241   bool match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
1242                        Node*& shift, Node*& offset);
1243 
1244 private:
1245   // Return a type based on condition control flow
1246   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
1247   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
1248  // Helpers for filtered type
1249   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
1250 
1251   // Helper functions
1252   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
1253   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
1254   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
1255   bool split_up( Node *n, Node *blk1, Node *blk2 );
1256   void sink_use( Node *use, Node *post_loop );
1257   Node *place_near_use( Node *useblock ) const;
1258   Node* try_move_store_before_loop(Node* n, Node *n_ctrl);
1259   void try_move_store_after_loop(Node* n);
1260   bool identical_backtoback_ifs(Node *n);
1261   bool can_split_if(Node *n_ctrl);
1262 
1263   bool _created_loop_node;
1264 public:
1265   void set_created_loop_node() { _created_loop_node = true; }
1266   bool created_loop_node()     { return _created_loop_node; }
1267   void register_new_node( Node *n, Node *blk );
1268 
1269 #ifdef ASSERT
1270   void dump_bad_graph(const char* msg, Node* n, Node* early, Node* LCA);
1271 #endif
1272 
1273 #ifndef PRODUCT
1274   void dump( ) const;
1275   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
1276   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
1277   void verify() const;          // Major slow  :-)
1278   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
1279   IdealLoopTree *get_loop_idx(Node* n) const {
1280     // Dead nodes have no loop, so return the top level loop instead
1281     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
1282   }
1283   // Print some stats
1284   static void print_statistics();
1285   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
1286   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
1287 #endif
1288 };
1289 
1290 // This kit may be used for making of a reserved copy of a loop before this loop
1291 //  goes under non-reversible changes.
1292 //
1293 // Function create_reserve() creates a reserved copy (clone) of the loop.
1294 // The reserved copy is created by calling
1295 // PhaseIdealLoop::create_reserve_version_of_loop - see there how
1296 // the original and reserved loops are connected in the outer graph.
1297 // If create_reserve succeeded, it returns 'true' and _has_reserved is set to 'true'.
1298 //
1299 // By default the reserved copy (clone) of the loop is created as dead code - it is
1300 // dominated in the outer loop by this node chain:
1301 //   intcon(1)->If->IfFalse->reserved_copy.
1302 // The original loop is dominated by the the same node chain but IfTrue projection:
1303 //   intcon(0)->If->IfTrue->original_loop.
1304 //
1305 // In this implementation of CountedLoopReserveKit the ctor includes create_reserve()
1306 // and the dtor, checks _use_new value.
1307 // If _use_new == false, it "switches" control to reserved copy of the loop
1308 // by simple replacing of node intcon(1) with node intcon(0).
1309 //
1310 // Here is a proposed example of usage (see also SuperWord::output in superword.cpp).
1311 //
1312 // void CountedLoopReserveKit_example()
1313 // {
1314 //    CountedLoopReserveKit lrk((phase, lpt, DoReserveCopy = true); // create local object
1315 //    if (DoReserveCopy && !lrk.has_reserved()) {
1316 //      return; //failed to create reserved loop copy
1317 //    }
1318 //    ...
1319 //    //something is wrong, switch to original loop
1320 ///   if(something_is_wrong) return; // ~CountedLoopReserveKit makes the switch
1321 //    ...
1322 //    //everything worked ok, return with the newly modified loop
1323 //    lrk.use_new();
1324 //    return; // ~CountedLoopReserveKit does nothing once use_new() was called
1325 //  }
1326 //
1327 // Keep in mind, that by default if create_reserve() is not followed by use_new()
1328 // the dtor will "switch to the original" loop.
1329 // NOTE. You you modify outside of the original loop this class is no help.
1330 //
1331 class CountedLoopReserveKit {
1332   private:
1333     PhaseIdealLoop* _phase;
1334     IdealLoopTree*  _lpt;
1335     LoopNode*       _lp;
1336     IfNode*         _iff;
1337     LoopNode*       _lp_reserved;
1338     bool            _has_reserved;
1339     bool            _use_new;
1340     const bool      _active; //may be set to false in ctor, then the object is dummy
1341 
1342   public:
1343     CountedLoopReserveKit(PhaseIdealLoop* phase, IdealLoopTree *loop, bool active);
1344     ~CountedLoopReserveKit();
1345     void use_new()                {_use_new = true;}
1346     void set_iff(IfNode* x)       {_iff = x;}
1347     bool has_reserved()     const { return _active && _has_reserved;}
1348   private:
1349     bool create_reserve();
1350 };// class CountedLoopReserveKit
1351 
1352 inline Node* IdealLoopTree::tail() {
1353 // Handle lazy update of _tail field
1354   Node *n = _tail;
1355   //while( !n->in(0) )  // Skip dead CFG nodes
1356     //n = n->in(1);
1357   if (n->in(0) == NULL)
1358     n = _phase->get_ctrl(n);
1359   _tail = n;
1360   return n;
1361 }
1362 
1363 
1364 // Iterate over the loop tree using a preorder, left-to-right traversal.
1365 //
1366 // Example that visits all counted loops from within PhaseIdealLoop
1367 //
1368 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
1369 //   IdealLoopTree* lpt = iter.current();
1370 //   if (!lpt->is_counted()) continue;
1371 //   ...
1372 class LoopTreeIterator : public StackObj {
1373 private:
1374   IdealLoopTree* _root;
1375   IdealLoopTree* _curnt;
1376 
1377 public:
1378   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
1379 
1380   bool done() { return _curnt == NULL; }       // Finished iterating?
1381 
1382   void next();                                 // Advance to next loop tree
1383 
1384   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
1385 };
1386 
1387 #endif // SHARE_VM_OPTO_LOOPNODE_HPP