1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "opto/castnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/machnode.hpp"
  34 #include "opto/matcher.hpp"
  35 #include "opto/node.hpp"
  36 #include "opto/opcodes.hpp"
  37 #include "opto/regmask.hpp"
  38 #include "opto/type.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 class RegMask;
  42 // #include "phase.hpp"
  43 class PhaseTransform;
  44 class PhaseGVN;
  45 
  46 // Arena we are currently building Nodes in
  47 const uint Node::NotAMachineReg = 0xffff0000;
  48 
  49 #ifndef PRODUCT
  50 extern int nodes_created;
  51 #endif
  52 #ifdef __clang__
  53 #pragma clang diagnostic push
  54 #pragma GCC diagnostic ignored "-Wuninitialized"
  55 #endif
  56 
  57 #ifdef ASSERT
  58 
  59 //-------------------------- construct_node------------------------------------
  60 // Set a breakpoint here to identify where a particular node index is built.
  61 void Node::verify_construction() {
  62   _debug_orig = NULL;
  63   int old_debug_idx = Compile::debug_idx();
  64   int new_debug_idx = old_debug_idx+1;
  65   if (new_debug_idx > 0) {
  66     // Arrange that the lowest five decimal digits of _debug_idx
  67     // will repeat those of _idx. In case this is somehow pathological,
  68     // we continue to assign negative numbers (!) consecutively.
  69     const int mod = 100000;
  70     int bump = (int)(_idx - new_debug_idx) % mod;
  71     if (bump < 0)  bump += mod;
  72     assert(bump >= 0 && bump < mod, "");
  73     new_debug_idx += bump;
  74   }
  75   Compile::set_debug_idx(new_debug_idx);
  76   set_debug_idx( new_debug_idx );
  77   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  78   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  79   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  80     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  81     BREAKPOINT;
  82   }
  83 #if OPTO_DU_ITERATOR_ASSERT
  84   _last_del = NULL;
  85   _del_tick = 0;
  86 #endif
  87   _hash_lock = 0;
  88 }
  89 
  90 
  91 // #ifdef ASSERT ...
  92 
  93 #if OPTO_DU_ITERATOR_ASSERT
  94 void DUIterator_Common::sample(const Node* node) {
  95   _vdui     = VerifyDUIterators;
  96   _node     = node;
  97   _outcnt   = node->_outcnt;
  98   _del_tick = node->_del_tick;
  99   _last     = NULL;
 100 }
 101 
 102 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 103   assert(_node     == node, "consistent iterator source");
 104   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 105 }
 106 
 107 void DUIterator_Common::verify_resync() {
 108   // Ensure that the loop body has just deleted the last guy produced.
 109   const Node* node = _node;
 110   // Ensure that at least one copy of the last-seen edge was deleted.
 111   // Note:  It is OK to delete multiple copies of the last-seen edge.
 112   // Unfortunately, we have no way to verify that all the deletions delete
 113   // that same edge.  On this point we must use the Honor System.
 114   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 115   assert(node->_last_del == _last, "must have deleted the edge just produced");
 116   // We liked this deletion, so accept the resulting outcnt and tick.
 117   _outcnt   = node->_outcnt;
 118   _del_tick = node->_del_tick;
 119 }
 120 
 121 void DUIterator_Common::reset(const DUIterator_Common& that) {
 122   if (this == &that)  return;  // ignore assignment to self
 123   if (!_vdui) {
 124     // We need to initialize everything, overwriting garbage values.
 125     _last = that._last;
 126     _vdui = that._vdui;
 127   }
 128   // Note:  It is legal (though odd) for an iterator over some node x
 129   // to be reassigned to iterate over another node y.  Some doubly-nested
 130   // progress loops depend on being able to do this.
 131   const Node* node = that._node;
 132   // Re-initialize everything, except _last.
 133   _node     = node;
 134   _outcnt   = node->_outcnt;
 135   _del_tick = node->_del_tick;
 136 }
 137 
 138 void DUIterator::sample(const Node* node) {
 139   DUIterator_Common::sample(node);      // Initialize the assertion data.
 140   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 141 }
 142 
 143 void DUIterator::verify(const Node* node, bool at_end_ok) {
 144   DUIterator_Common::verify(node, at_end_ok);
 145   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 146 }
 147 
 148 void DUIterator::verify_increment() {
 149   if (_refresh_tick & 1) {
 150     // We have refreshed the index during this loop.
 151     // Fix up _idx to meet asserts.
 152     if (_idx > _outcnt)  _idx = _outcnt;
 153   }
 154   verify(_node, true);
 155 }
 156 
 157 void DUIterator::verify_resync() {
 158   // Note:  We do not assert on _outcnt, because insertions are OK here.
 159   DUIterator_Common::verify_resync();
 160   // Make sure we are still in sync, possibly with no more out-edges:
 161   verify(_node, true);
 162 }
 163 
 164 void DUIterator::reset(const DUIterator& that) {
 165   if (this == &that)  return;  // self assignment is always a no-op
 166   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 167   assert(that._idx          == 0, "assign only the result of Node::outs()");
 168   assert(_idx               == that._idx, "already assigned _idx");
 169   if (!_vdui) {
 170     // We need to initialize everything, overwriting garbage values.
 171     sample(that._node);
 172   } else {
 173     DUIterator_Common::reset(that);
 174     if (_refresh_tick & 1) {
 175       _refresh_tick++;                  // Clear the "was refreshed" flag.
 176     }
 177     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 178   }
 179 }
 180 
 181 void DUIterator::refresh() {
 182   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 183   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 184 }
 185 
 186 void DUIterator::verify_finish() {
 187   // If the loop has killed the node, do not require it to re-run.
 188   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 189   // If this assert triggers, it means that a loop used refresh_out_pos
 190   // to re-synch an iteration index, but the loop did not correctly
 191   // re-run itself, using a "while (progress)" construct.
 192   // This iterator enforces the rule that you must keep trying the loop
 193   // until it "runs clean" without any need for refreshing.
 194   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 195 }
 196 
 197 
 198 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 199   DUIterator_Common::verify(node, at_end_ok);
 200   Node** out    = node->_out;
 201   uint   cnt    = node->_outcnt;
 202   assert(cnt == _outcnt, "no insertions allowed");
 203   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 204   // This last check is carefully designed to work for NO_OUT_ARRAY.
 205 }
 206 
 207 void DUIterator_Fast::verify_limit() {
 208   const Node* node = _node;
 209   verify(node, true);
 210   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 211 }
 212 
 213 void DUIterator_Fast::verify_resync() {
 214   const Node* node = _node;
 215   if (_outp == node->_out + _outcnt) {
 216     // Note that the limit imax, not the pointer i, gets updated with the
 217     // exact count of deletions.  (For the pointer it's always "--i".)
 218     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 219     // This is a limit pointer, with a name like "imax".
 220     // Fudge the _last field so that the common assert will be happy.
 221     _last = (Node*) node->_last_del;
 222     DUIterator_Common::verify_resync();
 223   } else {
 224     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 225     // A normal internal pointer.
 226     DUIterator_Common::verify_resync();
 227     // Make sure we are still in sync, possibly with no more out-edges:
 228     verify(node, true);
 229   }
 230 }
 231 
 232 void DUIterator_Fast::verify_relimit(uint n) {
 233   const Node* node = _node;
 234   assert((int)n > 0, "use imax -= n only with a positive count");
 235   // This must be a limit pointer, with a name like "imax".
 236   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 237   // The reported number of deletions must match what the node saw.
 238   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 239   // Fudge the _last field so that the common assert will be happy.
 240   _last = (Node*) node->_last_del;
 241   DUIterator_Common::verify_resync();
 242 }
 243 
 244 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 245   assert(_outp              == that._outp, "already assigned _outp");
 246   DUIterator_Common::reset(that);
 247 }
 248 
 249 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 250   // at_end_ok means the _outp is allowed to underflow by 1
 251   _outp += at_end_ok;
 252   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 253   _outp -= at_end_ok;
 254   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 255 }
 256 
 257 void DUIterator_Last::verify_limit() {
 258   // Do not require the limit address to be resynched.
 259   //verify(node, true);
 260   assert(_outp == _node->_out, "limit still correct");
 261 }
 262 
 263 void DUIterator_Last::verify_step(uint num_edges) {
 264   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 265   _outcnt   -= num_edges;
 266   _del_tick += num_edges;
 267   // Make sure we are still in sync, possibly with no more out-edges:
 268   const Node* node = _node;
 269   verify(node, true);
 270   assert(node->_last_del == _last, "must have deleted the edge just produced");
 271 }
 272 
 273 #endif //OPTO_DU_ITERATOR_ASSERT
 274 
 275 
 276 #endif //ASSERT
 277 
 278 
 279 // This constant used to initialize _out may be any non-null value.
 280 // The value NULL is reserved for the top node only.
 281 #define NO_OUT_ARRAY ((Node**)-1)
 282 
 283 // Out-of-line code from node constructors.
 284 // Executed only when extra debug info. is being passed around.
 285 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 286   C->set_node_notes_at(idx, nn);
 287 }
 288 
 289 // Shared initialization code.
 290 inline int Node::Init(int req) {
 291   Compile* C = Compile::current();
 292   int idx = C->next_unique();
 293 
 294   // Allocate memory for the necessary number of edges.
 295   if (req > 0) {
 296     // Allocate space for _in array to have double alignment.
 297     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 298   }
 299   // If there are default notes floating around, capture them:
 300   Node_Notes* nn = C->default_node_notes();
 301   if (nn != NULL)  init_node_notes(C, idx, nn);
 302 
 303   // Note:  At this point, C is dead,
 304   // and we begin to initialize the new Node.
 305 
 306   _cnt = _max = req;
 307   _outcnt = _outmax = 0;
 308   _class_id = Class_Node;
 309   _flags = 0;
 310   _out = NO_OUT_ARRAY;
 311   return idx;
 312 }
 313 
 314 //------------------------------Node-------------------------------------------
 315 // Create a Node, with a given number of required edges.
 316 Node::Node(uint req)
 317   : _idx(Init(req))
 318 #ifdef ASSERT
 319   , _parse_idx(_idx)
 320 #endif
 321 {
 322   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 323   debug_only( verify_construction() );
 324   NOT_PRODUCT(nodes_created++);
 325   if (req == 0) {
 326     _in = NULL;
 327   } else {
 328     Node** to = _in;
 329     for(uint i = 0; i < req; i++) {
 330       to[i] = NULL;
 331     }
 332   }
 333 }
 334 
 335 //------------------------------Node-------------------------------------------
 336 Node::Node(Node *n0)
 337   : _idx(Init(1))
 338 #ifdef ASSERT
 339   , _parse_idx(_idx)
 340 #endif
 341 {
 342   debug_only( verify_construction() );
 343   NOT_PRODUCT(nodes_created++);
 344   assert( is_not_dead(n0), "can not use dead node");
 345   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 346 }
 347 
 348 //------------------------------Node-------------------------------------------
 349 Node::Node(Node *n0, Node *n1)
 350   : _idx(Init(2))
 351 #ifdef ASSERT
 352   , _parse_idx(_idx)
 353 #endif
 354 {
 355   debug_only( verify_construction() );
 356   NOT_PRODUCT(nodes_created++);
 357   assert( is_not_dead(n0), "can not use dead node");
 358   assert( is_not_dead(n1), "can not use dead node");
 359   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 360   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 361 }
 362 
 363 //------------------------------Node-------------------------------------------
 364 Node::Node(Node *n0, Node *n1, Node *n2)
 365   : _idx(Init(3))
 366 #ifdef ASSERT
 367   , _parse_idx(_idx)
 368 #endif
 369 {
 370   debug_only( verify_construction() );
 371   NOT_PRODUCT(nodes_created++);
 372   assert( is_not_dead(n0), "can not use dead node");
 373   assert( is_not_dead(n1), "can not use dead node");
 374   assert( is_not_dead(n2), "can not use dead node");
 375   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 376   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 377   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 378 }
 379 
 380 //------------------------------Node-------------------------------------------
 381 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 382   : _idx(Init(4))
 383 #ifdef ASSERT
 384   , _parse_idx(_idx)
 385 #endif
 386 {
 387   debug_only( verify_construction() );
 388   NOT_PRODUCT(nodes_created++);
 389   assert( is_not_dead(n0), "can not use dead node");
 390   assert( is_not_dead(n1), "can not use dead node");
 391   assert( is_not_dead(n2), "can not use dead node");
 392   assert( is_not_dead(n3), "can not use dead node");
 393   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 394   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 395   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 396   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 397 }
 398 
 399 //------------------------------Node-------------------------------------------
 400 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 401   : _idx(Init(5))
 402 #ifdef ASSERT
 403   , _parse_idx(_idx)
 404 #endif
 405 {
 406   debug_only( verify_construction() );
 407   NOT_PRODUCT(nodes_created++);
 408   assert( is_not_dead(n0), "can not use dead node");
 409   assert( is_not_dead(n1), "can not use dead node");
 410   assert( is_not_dead(n2), "can not use dead node");
 411   assert( is_not_dead(n3), "can not use dead node");
 412   assert( is_not_dead(n4), "can not use dead node");
 413   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 414   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 415   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 416   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 417   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 418 }
 419 
 420 //------------------------------Node-------------------------------------------
 421 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 422                      Node *n4, Node *n5)
 423   : _idx(Init(6))
 424 #ifdef ASSERT
 425   , _parse_idx(_idx)
 426 #endif
 427 {
 428   debug_only( verify_construction() );
 429   NOT_PRODUCT(nodes_created++);
 430   assert( is_not_dead(n0), "can not use dead node");
 431   assert( is_not_dead(n1), "can not use dead node");
 432   assert( is_not_dead(n2), "can not use dead node");
 433   assert( is_not_dead(n3), "can not use dead node");
 434   assert( is_not_dead(n4), "can not use dead node");
 435   assert( is_not_dead(n5), "can not use dead node");
 436   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 437   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 438   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 439   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 440   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 441   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 442 }
 443 
 444 //------------------------------Node-------------------------------------------
 445 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 446                      Node *n4, Node *n5, Node *n6)
 447   : _idx(Init(7))
 448 #ifdef ASSERT
 449   , _parse_idx(_idx)
 450 #endif
 451 {
 452   debug_only( verify_construction() );
 453   NOT_PRODUCT(nodes_created++);
 454   assert( is_not_dead(n0), "can not use dead node");
 455   assert( is_not_dead(n1), "can not use dead node");
 456   assert( is_not_dead(n2), "can not use dead node");
 457   assert( is_not_dead(n3), "can not use dead node");
 458   assert( is_not_dead(n4), "can not use dead node");
 459   assert( is_not_dead(n5), "can not use dead node");
 460   assert( is_not_dead(n6), "can not use dead node");
 461   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 462   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 463   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 464   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 465   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 466   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 467   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 468 }
 469 
 470 #ifdef __clang__
 471 #pragma clang diagnostic pop
 472 #endif
 473 
 474 
 475 //------------------------------clone------------------------------------------
 476 // Clone a Node.
 477 Node *Node::clone() const {
 478   Compile* C = Compile::current();
 479   uint s = size_of();           // Size of inherited Node
 480   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 481   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 482   // Set the new input pointer array
 483   n->_in = (Node**)(((char*)n)+s);
 484   // Cannot share the old output pointer array, so kill it
 485   n->_out = NO_OUT_ARRAY;
 486   // And reset the counters to 0
 487   n->_outcnt = 0;
 488   n->_outmax = 0;
 489   // Unlock this guy, since he is not in any hash table.
 490   debug_only(n->_hash_lock = 0);
 491   // Walk the old node's input list to duplicate its edges
 492   uint i;
 493   for( i = 0; i < len(); i++ ) {
 494     Node *x = in(i);
 495     n->_in[i] = x;
 496     if (x != NULL) x->add_out(n);
 497   }
 498   if (is_macro())
 499     C->add_macro_node(n);
 500   if (is_expensive())
 501     C->add_expensive_node(n);
 502   // If the cloned node is a range check dependent CastII, add it to the list.
 503   CastIINode* cast = n->isa_CastII();
 504   if (cast != NULL && cast->has_range_check()) {
 505     C->add_range_check_cast(cast);
 506   }
 507   if (n->Opcode() == Op_Opaque4) {
 508     C->add_opaque4_node(n);
 509   }
 510 
 511   n->set_idx(C->next_unique()); // Get new unique index as well
 512   debug_only( n->verify_construction() );
 513   NOT_PRODUCT(nodes_created++);
 514   // Do not patch over the debug_idx of a clone, because it makes it
 515   // impossible to break on the clone's moment of creation.
 516   //debug_only( n->set_debug_idx( debug_idx() ) );
 517 
 518   C->copy_node_notes_to(n, (Node*) this);
 519 
 520   // MachNode clone
 521   uint nopnds;
 522   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 523     MachNode *mach  = n->as_Mach();
 524     MachNode *mthis = this->as_Mach();
 525     // Get address of _opnd_array.
 526     // It should be the same offset since it is the clone of this node.
 527     MachOper **from = mthis->_opnds;
 528     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 529                     pointer_delta((const void*)from,
 530                                   (const void*)(&mthis->_opnds), 1));
 531     mach->_opnds = to;
 532     for ( uint i = 0; i < nopnds; ++i ) {
 533       to[i] = from[i]->clone();
 534     }
 535   }
 536   // cloning CallNode may need to clone JVMState
 537   if (n->is_Call()) {
 538     n->as_Call()->clone_jvms(C);
 539   }
 540   if (n->is_SafePoint()) {
 541     n->as_SafePoint()->clone_replaced_nodes();
 542   }
 543   return n;                     // Return the clone
 544 }
 545 
 546 //---------------------------setup_is_top--------------------------------------
 547 // Call this when changing the top node, to reassert the invariants
 548 // required by Node::is_top.  See Compile::set_cached_top_node.
 549 void Node::setup_is_top() {
 550   if (this == (Node*)Compile::current()->top()) {
 551     // This node has just become top.  Kill its out array.
 552     _outcnt = _outmax = 0;
 553     _out = NULL;                           // marker value for top
 554     assert(is_top(), "must be top");
 555   } else {
 556     if (_out == NULL)  _out = NO_OUT_ARRAY;
 557     assert(!is_top(), "must not be top");
 558   }
 559 }
 560 
 561 
 562 //------------------------------~Node------------------------------------------
 563 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 564 void Node::destruct() {
 565   // Eagerly reclaim unique Node numberings
 566   Compile* compile = Compile::current();
 567   if ((uint)_idx+1 == compile->unique()) {
 568     compile->set_unique(compile->unique()-1);
 569   }
 570   // Clear debug info:
 571   Node_Notes* nn = compile->node_notes_at(_idx);
 572   if (nn != NULL)  nn->clear();
 573   // Walk the input array, freeing the corresponding output edges
 574   _cnt = _max;  // forget req/prec distinction
 575   uint i;
 576   for( i = 0; i < _max; i++ ) {
 577     set_req(i, NULL);
 578     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 579   }
 580   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 581   // See if the input array was allocated just prior to the object
 582   int edge_size = _max*sizeof(void*);
 583   int out_edge_size = _outmax*sizeof(void*);
 584   char *edge_end = ((char*)_in) + edge_size;
 585   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 586   int node_size = size_of();
 587 
 588   // Free the output edge array
 589   if (out_edge_size > 0) {
 590     compile->node_arena()->Afree(out_array, out_edge_size);
 591   }
 592 
 593   // Free the input edge array and the node itself
 594   if( edge_end == (char*)this ) {
 595     // It was; free the input array and object all in one hit
 596 #ifndef ASSERT
 597     compile->node_arena()->Afree(_in,edge_size+node_size);
 598 #endif
 599   } else {
 600     // Free just the input array
 601     compile->node_arena()->Afree(_in,edge_size);
 602 
 603     // Free just the object
 604 #ifndef ASSERT
 605     compile->node_arena()->Afree(this,node_size);
 606 #endif
 607   }
 608   if (is_macro()) {
 609     compile->remove_macro_node(this);
 610   }
 611   if (is_expensive()) {
 612     compile->remove_expensive_node(this);
 613   }
 614   CastIINode* cast = isa_CastII();
 615   if (cast != NULL && cast->has_range_check()) {
 616     compile->remove_range_check_cast(cast);
 617   }
 618   if (Opcode() == Op_Opaque4) {
 619     compile->remove_opaque4_node(this);
 620   }
 621 
 622   if (is_SafePoint()) {
 623     as_SafePoint()->delete_replaced_nodes();
 624   }
 625 #ifdef ASSERT
 626   // We will not actually delete the storage, but we'll make the node unusable.
 627   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 628   _in = _out = (Node**) badAddress;
 629   _max = _cnt = _outmax = _outcnt = 0;
 630   compile->remove_modified_node(this);
 631 #endif
 632 }
 633 
 634 //------------------------------grow-------------------------------------------
 635 // Grow the input array, making space for more edges
 636 void Node::grow( uint len ) {
 637   Arena* arena = Compile::current()->node_arena();
 638   uint new_max = _max;
 639   if( new_max == 0 ) {
 640     _max = 4;
 641     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 642     Node** to = _in;
 643     to[0] = NULL;
 644     to[1] = NULL;
 645     to[2] = NULL;
 646     to[3] = NULL;
 647     return;
 648   }
 649   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 650   // Trimming to limit allows a uint8 to handle up to 255 edges.
 651   // Previously I was using only powers-of-2 which peaked at 128 edges.
 652   //if( new_max >= limit ) new_max = limit-1;
 653   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 654   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 655   _max = new_max;               // Record new max length
 656   // This assertion makes sure that Node::_max is wide enough to
 657   // represent the numerical value of new_max.
 658   assert(_max == new_max && _max > len, "int width of _max is too small");
 659 }
 660 
 661 //-----------------------------out_grow----------------------------------------
 662 // Grow the input array, making space for more edges
 663 void Node::out_grow( uint len ) {
 664   assert(!is_top(), "cannot grow a top node's out array");
 665   Arena* arena = Compile::current()->node_arena();
 666   uint new_max = _outmax;
 667   if( new_max == 0 ) {
 668     _outmax = 4;
 669     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 670     return;
 671   }
 672   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 673   // Trimming to limit allows a uint8 to handle up to 255 edges.
 674   // Previously I was using only powers-of-2 which peaked at 128 edges.
 675   //if( new_max >= limit ) new_max = limit-1;
 676   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 677   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 678   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 679   _outmax = new_max;               // Record new max length
 680   // This assertion makes sure that Node::_max is wide enough to
 681   // represent the numerical value of new_max.
 682   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 683 }
 684 
 685 #ifdef ASSERT
 686 //------------------------------is_dead----------------------------------------
 687 bool Node::is_dead() const {
 688   // Mach and pinch point nodes may look like dead.
 689   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 690     return false;
 691   for( uint i = 0; i < _max; i++ )
 692     if( _in[i] != NULL )
 693       return false;
 694   dump();
 695   return true;
 696 }
 697 #endif
 698 
 699 
 700 //------------------------------is_unreachable---------------------------------
 701 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 702   assert(!is_Mach(), "doesn't work with MachNodes");
 703   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
 704 }
 705 
 706 //------------------------------add_req----------------------------------------
 707 // Add a new required input at the end
 708 void Node::add_req( Node *n ) {
 709   assert( is_not_dead(n), "can not use dead node");
 710 
 711   // Look to see if I can move precedence down one without reallocating
 712   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 713     grow( _max+1 );
 714 
 715   // Find a precedence edge to move
 716   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 717     uint i;
 718     for( i=_cnt; i<_max; i++ )
 719       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 720         break;                  // There must be one, since we grew the array
 721     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 722   }
 723   _in[_cnt++] = n;            // Stuff over old prec edge
 724   if (n != NULL) n->add_out((Node *)this);
 725 }
 726 
 727 //---------------------------add_req_batch-------------------------------------
 728 // Add a new required input at the end
 729 void Node::add_req_batch( Node *n, uint m ) {
 730   assert( is_not_dead(n), "can not use dead node");
 731   // check various edge cases
 732   if ((int)m <= 1) {
 733     assert((int)m >= 0, "oob");
 734     if (m != 0)  add_req(n);
 735     return;
 736   }
 737 
 738   // Look to see if I can move precedence down one without reallocating
 739   if( (_cnt+m) > _max || _in[_max-m] )
 740     grow( _max+m );
 741 
 742   // Find a precedence edge to move
 743   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 744     uint i;
 745     for( i=_cnt; i<_max; i++ )
 746       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 747         break;                  // There must be one, since we grew the array
 748     // Slide all the precs over by m positions (assume #prec << m).
 749     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 750   }
 751 
 752   // Stuff over the old prec edges
 753   for(uint i=0; i<m; i++ ) {
 754     _in[_cnt++] = n;
 755   }
 756 
 757   // Insert multiple out edges on the node.
 758   if (n != NULL && !n->is_top()) {
 759     for(uint i=0; i<m; i++ ) {
 760       n->add_out((Node *)this);
 761     }
 762   }
 763 }
 764 
 765 //------------------------------del_req----------------------------------------
 766 // Delete the required edge and compact the edge array
 767 void Node::del_req( uint idx ) {
 768   assert( idx < _cnt, "oob");
 769   assert( !VerifyHashTableKeys || _hash_lock == 0,
 770           "remove node from hash table before modifying it");
 771   // First remove corresponding def-use edge
 772   Node *n = in(idx);
 773   if (n != NULL) n->del_out((Node *)this);
 774   _in[idx] = in(--_cnt); // Compact the array
 775   // Avoid spec violation: Gap in prec edges.
 776   close_prec_gap_at(_cnt);
 777   Compile::current()->record_modified_node(this);
 778 }
 779 
 780 //------------------------------del_req_ordered--------------------------------
 781 // Delete the required edge and compact the edge array with preserved order
 782 void Node::del_req_ordered( uint idx ) {
 783   assert( idx < _cnt, "oob");
 784   assert( !VerifyHashTableKeys || _hash_lock == 0,
 785           "remove node from hash table before modifying it");
 786   // First remove corresponding def-use edge
 787   Node *n = in(idx);
 788   if (n != NULL) n->del_out((Node *)this);
 789   if (idx < --_cnt) {    // Not last edge ?
 790     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 791   }
 792   // Avoid spec violation: Gap in prec edges.
 793   close_prec_gap_at(_cnt);
 794   Compile::current()->record_modified_node(this);
 795 }
 796 
 797 //------------------------------ins_req----------------------------------------
 798 // Insert a new required input at the end
 799 void Node::ins_req( uint idx, Node *n ) {
 800   assert( is_not_dead(n), "can not use dead node");
 801   add_req(NULL);                // Make space
 802   assert( idx < _max, "Must have allocated enough space");
 803   // Slide over
 804   if(_cnt-idx-1 > 0) {
 805     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 806   }
 807   _in[idx] = n;                            // Stuff over old required edge
 808   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 809 }
 810 
 811 //-----------------------------find_edge---------------------------------------
 812 int Node::find_edge(Node* n) {
 813   for (uint i = 0; i < len(); i++) {
 814     if (_in[i] == n)  return i;
 815   }
 816   return -1;
 817 }
 818 
 819 //----------------------------replace_edge-------------------------------------
 820 int Node::replace_edge(Node* old, Node* neww) {
 821   if (old == neww)  return 0;  // nothing to do
 822   uint nrep = 0;
 823   for (uint i = 0; i < len(); i++) {
 824     if (in(i) == old) {
 825       if (i < req()) {
 826         set_req(i, neww);
 827       } else {
 828         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 829         set_prec(i, neww);
 830       }
 831       nrep++;
 832     }
 833   }
 834   return nrep;
 835 }
 836 
 837 /**
 838  * Replace input edges in the range pointing to 'old' node.
 839  */
 840 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 841   if (old == neww)  return 0;  // nothing to do
 842   uint nrep = 0;
 843   for (int i = start; i < end; i++) {
 844     if (in(i) == old) {
 845       set_req(i, neww);
 846       nrep++;
 847     }
 848   }
 849   return nrep;
 850 }
 851 
 852 //-------------------------disconnect_inputs-----------------------------------
 853 // NULL out all inputs to eliminate incoming Def-Use edges.
 854 // Return the number of edges between 'n' and 'this'
 855 int Node::disconnect_inputs(Node *n, Compile* C) {
 856   int edges_to_n = 0;
 857 
 858   uint cnt = req();
 859   for( uint i = 0; i < cnt; ++i ) {
 860     if( in(i) == 0 ) continue;
 861     if( in(i) == n ) ++edges_to_n;
 862     set_req(i, NULL);
 863   }
 864   // Remove precedence edges if any exist
 865   // Note: Safepoints may have precedence edges, even during parsing
 866   if( (req() != len()) && (in(req()) != NULL) ) {
 867     uint max = len();
 868     for( uint i = 0; i < max; ++i ) {
 869       if( in(i) == 0 ) continue;
 870       if( in(i) == n ) ++edges_to_n;
 871       set_prec(i, NULL);
 872     }
 873   }
 874 
 875   // Node::destruct requires all out edges be deleted first
 876   // debug_only(destruct();)   // no reuse benefit expected
 877   if (edges_to_n == 0) {
 878     C->record_dead_node(_idx);
 879   }
 880   return edges_to_n;
 881 }
 882 
 883 //-----------------------------uncast---------------------------------------
 884 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 885 // Strip away casting.  (It is depth-limited.)
 886 Node* Node::uncast() const {
 887   // Should be inline:
 888   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 889   if (is_ConstraintCast())
 890     return uncast_helper(this);
 891   else
 892     return (Node*) this;
 893 }
 894 
 895 // Find out of current node that matches opcode.
 896 Node* Node::find_out_with(int opcode) {
 897   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 898     Node* use = fast_out(i);
 899     if (use->Opcode() == opcode) {
 900       return use;
 901     }
 902   }
 903   return NULL;
 904 }
 905 
 906 // Return true if the current node has an out that matches opcode.
 907 bool Node::has_out_with(int opcode) {
 908   return (find_out_with(opcode) != NULL);
 909 }
 910 
 911 // Return true if the current node has an out that matches any of the opcodes.
 912 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 913   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 914       int opcode = fast_out(i)->Opcode();
 915       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 916         return true;
 917       }
 918   }
 919   return false;
 920 }
 921 
 922 
 923 //---------------------------uncast_helper-------------------------------------
 924 Node* Node::uncast_helper(const Node* p) {
 925 #ifdef ASSERT
 926   uint depth_count = 0;
 927   const Node* orig_p = p;
 928 #endif
 929 
 930   while (true) {
 931 #ifdef ASSERT
 932     if (depth_count >= K) {
 933       orig_p->dump(4);
 934       if (p != orig_p)
 935         p->dump(1);
 936     }
 937     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 938 #endif
 939     if (p == NULL || p->req() != 2) {
 940       break;
 941     } else if (p->is_ConstraintCast()) {
 942       p = p->in(1);
 943     } else {
 944       break;
 945     }
 946   }
 947   return (Node*) p;
 948 }
 949 
 950 //------------------------------add_prec---------------------------------------
 951 // Add a new precedence input.  Precedence inputs are unordered, with
 952 // duplicates removed and NULLs packed down at the end.
 953 void Node::add_prec( Node *n ) {
 954   assert( is_not_dead(n), "can not use dead node");
 955 
 956   // Check for NULL at end
 957   if( _cnt >= _max || in(_max-1) )
 958     grow( _max+1 );
 959 
 960   // Find a precedence edge to move
 961   uint i = _cnt;
 962   while( in(i) != NULL ) {
 963     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 964     i++;
 965   }
 966   _in[i] = n;                                // Stuff prec edge over NULL
 967   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 968 
 969 #ifdef ASSERT
 970   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 971 #endif
 972 }
 973 
 974 //------------------------------rm_prec----------------------------------------
 975 // Remove a precedence input.  Precedence inputs are unordered, with
 976 // duplicates removed and NULLs packed down at the end.
 977 void Node::rm_prec( uint j ) {
 978   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 979   assert(j >= _cnt, "not a precedence edge");
 980   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 981   _in[j]->del_out((Node *)this);
 982   close_prec_gap_at(j);
 983 }
 984 
 985 //------------------------------size_of----------------------------------------
 986 uint Node::size_of() const { return sizeof(*this); }
 987 
 988 //------------------------------ideal_reg--------------------------------------
 989 uint Node::ideal_reg() const { return 0; }
 990 
 991 //------------------------------jvms-------------------------------------------
 992 JVMState* Node::jvms() const { return NULL; }
 993 
 994 #ifdef ASSERT
 995 //------------------------------jvms-------------------------------------------
 996 bool Node::verify_jvms(const JVMState* using_jvms) const {
 997   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 998     if (jvms == using_jvms)  return true;
 999   }
1000   return false;
1001 }
1002 
1003 //------------------------------init_NodeProperty------------------------------
1004 void Node::init_NodeProperty() {
1005   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1006   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1007 }
1008 #endif
1009 
1010 //------------------------------format-----------------------------------------
1011 // Print as assembly
1012 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1013 //------------------------------emit-------------------------------------------
1014 // Emit bytes starting at parameter 'ptr'.
1015 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1016 //------------------------------size-------------------------------------------
1017 // Size of instruction in bytes
1018 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1019 
1020 //------------------------------CFG Construction-------------------------------
1021 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1022 // Goto and Return.
1023 const Node *Node::is_block_proj() const { return 0; }
1024 
1025 // Minimum guaranteed type
1026 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1027 
1028 
1029 //------------------------------raise_bottom_type------------------------------
1030 // Get the worst-case Type output for this Node.
1031 void Node::raise_bottom_type(const Type* new_type) {
1032   if (is_Type()) {
1033     TypeNode *n = this->as_Type();
1034     if (VerifyAliases) {
1035       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1036     }
1037     n->set_type(new_type);
1038   } else if (is_Load()) {
1039     LoadNode *n = this->as_Load();
1040     if (VerifyAliases) {
1041       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1042     }
1043     n->set_type(new_type);
1044   }
1045 }
1046 
1047 //------------------------------Identity---------------------------------------
1048 // Return a node that the given node is equivalent to.
1049 Node* Node::Identity(PhaseGVN* phase) {
1050   return this;                  // Default to no identities
1051 }
1052 
1053 //------------------------------Value------------------------------------------
1054 // Compute a new Type for a node using the Type of the inputs.
1055 const Type* Node::Value(PhaseGVN* phase) const {
1056   return bottom_type();         // Default to worst-case Type
1057 }
1058 
1059 //------------------------------Ideal------------------------------------------
1060 //
1061 // 'Idealize' the graph rooted at this Node.
1062 //
1063 // In order to be efficient and flexible there are some subtle invariants
1064 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1065 // these invariants, although its too slow to have on by default.  If you are
1066 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1067 //
1068 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1069 // pointer.  If ANY change is made, it must return the root of the reshaped
1070 // graph - even if the root is the same Node.  Example: swapping the inputs
1071 // to an AddINode gives the same answer and same root, but you still have to
1072 // return the 'this' pointer instead of NULL.
1073 //
1074 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1075 // Identity call to return an old Node; basically if Identity can find
1076 // another Node have the Ideal call make no change and return NULL.
1077 // Example: AddINode::Ideal must check for add of zero; in this case it
1078 // returns NULL instead of doing any graph reshaping.
1079 //
1080 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1081 // sharing there may be other users of the old Nodes relying on their current
1082 // semantics.  Modifying them will break the other users.
1083 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1084 // "X+3" unchanged in case it is shared.
1085 //
1086 // If you modify the 'this' pointer's inputs, you should use
1087 // 'set_req'.  If you are making a new Node (either as the new root or
1088 // some new internal piece) you may use 'init_req' to set the initial
1089 // value.  You can make a new Node with either 'new' or 'clone'.  In
1090 // either case, def-use info is correctly maintained.
1091 //
1092 // Example: reshape "(X+3)+4" into "X+7":
1093 //    set_req(1, in(1)->in(1));
1094 //    set_req(2, phase->intcon(7));
1095 //    return this;
1096 // Example: reshape "X*4" into "X<<2"
1097 //    return new LShiftINode(in(1), phase->intcon(2));
1098 //
1099 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1100 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1101 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1102 //    return new AddINode(shift, in(1));
1103 //
1104 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1105 // These forms are faster than 'phase->transform(new ConNode())' and Do
1106 // The Right Thing with def-use info.
1107 //
1108 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1109 // graph uses the 'this' Node it must be the root.  If you want a Node with
1110 // the same Opcode as the 'this' pointer use 'clone'.
1111 //
1112 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1113   return NULL;                  // Default to being Ideal already
1114 }
1115 
1116 // Some nodes have specific Ideal subgraph transformations only if they are
1117 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1118 // for the transformations to happen.
1119 bool Node::has_special_unique_user() const {
1120   assert(outcnt() == 1, "match only for unique out");
1121   Node* n = unique_out();
1122   int op  = Opcode();
1123   if (this->is_Store()) {
1124     // Condition for back-to-back stores folding.
1125     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1126   } else if (this->is_Load() || this->is_DecodeN()) {
1127     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1128     return n->Opcode() == Op_MemBarAcquire;
1129   } else if (op == Op_AddL) {
1130     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1131     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1132   } else if (op == Op_SubI || op == Op_SubL) {
1133     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1134     return n->Opcode() == op && n->in(2) == this;
1135   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1136     // See IfProjNode::Identity()
1137     return true;
1138   }
1139   return false;
1140 };
1141 
1142 //--------------------------find_exact_control---------------------------------
1143 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1144 Node* Node::find_exact_control(Node* ctrl) {
1145   if (ctrl == NULL && this->is_Region())
1146     ctrl = this->as_Region()->is_copy();
1147 
1148   if (ctrl != NULL && ctrl->is_CatchProj()) {
1149     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1150       ctrl = ctrl->in(0);
1151     if (ctrl != NULL && !ctrl->is_top())
1152       ctrl = ctrl->in(0);
1153   }
1154 
1155   if (ctrl != NULL && ctrl->is_Proj())
1156     ctrl = ctrl->in(0);
1157 
1158   return ctrl;
1159 }
1160 
1161 //--------------------------dominates------------------------------------------
1162 // Helper function for MemNode::all_controls_dominate().
1163 // Check if 'this' control node dominates or equal to 'sub' control node.
1164 // We already know that if any path back to Root or Start reaches 'this',
1165 // then all paths so, so this is a simple search for one example,
1166 // not an exhaustive search for a counterexample.
1167 bool Node::dominates(Node* sub, Node_List &nlist) {
1168   assert(this->is_CFG(), "expecting control");
1169   assert(sub != NULL && sub->is_CFG(), "expecting control");
1170 
1171   // detect dead cycle without regions
1172   int iterations_without_region_limit = DominatorSearchLimit;
1173 
1174   Node* orig_sub = sub;
1175   Node* dom      = this;
1176   bool  met_dom  = false;
1177   nlist.clear();
1178 
1179   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1180   // After seeing 'dom', continue up to Root or Start.
1181   // If we hit a region (backward split point), it may be a loop head.
1182   // Keep going through one of the region's inputs.  If we reach the
1183   // same region again, go through a different input.  Eventually we
1184   // will either exit through the loop head, or give up.
1185   // (If we get confused, break out and return a conservative 'false'.)
1186   while (sub != NULL) {
1187     if (sub->is_top())  break; // Conservative answer for dead code.
1188     if (sub == dom) {
1189       if (nlist.size() == 0) {
1190         // No Region nodes except loops were visited before and the EntryControl
1191         // path was taken for loops: it did not walk in a cycle.
1192         return true;
1193       } else if (met_dom) {
1194         break;          // already met before: walk in a cycle
1195       } else {
1196         // Region nodes were visited. Continue walk up to Start or Root
1197         // to make sure that it did not walk in a cycle.
1198         met_dom = true; // first time meet
1199         iterations_without_region_limit = DominatorSearchLimit; // Reset
1200      }
1201     }
1202     if (sub->is_Start() || sub->is_Root()) {
1203       // Success if we met 'dom' along a path to Start or Root.
1204       // We assume there are no alternative paths that avoid 'dom'.
1205       // (This assumption is up to the caller to ensure!)
1206       return met_dom;
1207     }
1208     Node* up = sub->in(0);
1209     // Normalize simple pass-through regions and projections:
1210     up = sub->find_exact_control(up);
1211     // If sub == up, we found a self-loop.  Try to push past it.
1212     if (sub == up && sub->is_Loop()) {
1213       // Take loop entry path on the way up to 'dom'.
1214       up = sub->in(1); // in(LoopNode::EntryControl);
1215     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1216       // Always take in(1) path on the way up to 'dom' for clone regions
1217       // (with only one input) or regions which merge > 2 paths
1218       // (usually used to merge fast/slow paths).
1219       up = sub->in(1);
1220     } else if (sub == up && sub->is_Region()) {
1221       // Try both paths for Regions with 2 input paths (it may be a loop head).
1222       // It could give conservative 'false' answer without information
1223       // which region's input is the entry path.
1224       iterations_without_region_limit = DominatorSearchLimit; // Reset
1225 
1226       bool region_was_visited_before = false;
1227       // Was this Region node visited before?
1228       // If so, we have reached it because we accidentally took a
1229       // loop-back edge from 'sub' back into the body of the loop,
1230       // and worked our way up again to the loop header 'sub'.
1231       // So, take the first unexplored path on the way up to 'dom'.
1232       for (int j = nlist.size() - 1; j >= 0; j--) {
1233         intptr_t ni = (intptr_t)nlist.at(j);
1234         Node* visited = (Node*)(ni & ~1);
1235         bool  visited_twice_already = ((ni & 1) != 0);
1236         if (visited == sub) {
1237           if (visited_twice_already) {
1238             // Visited 2 paths, but still stuck in loop body.  Give up.
1239             return false;
1240           }
1241           // The Region node was visited before only once.
1242           // (We will repush with the low bit set, below.)
1243           nlist.remove(j);
1244           // We will find a new edge and re-insert.
1245           region_was_visited_before = true;
1246           break;
1247         }
1248       }
1249 
1250       // Find an incoming edge which has not been seen yet; walk through it.
1251       assert(up == sub, "");
1252       uint skip = region_was_visited_before ? 1 : 0;
1253       for (uint i = 1; i < sub->req(); i++) {
1254         Node* in = sub->in(i);
1255         if (in != NULL && !in->is_top() && in != sub) {
1256           if (skip == 0) {
1257             up = in;
1258             break;
1259           }
1260           --skip;               // skip this nontrivial input
1261         }
1262       }
1263 
1264       // Set 0 bit to indicate that both paths were taken.
1265       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1266     }
1267 
1268     if (up == sub) {
1269       break;    // some kind of tight cycle
1270     }
1271     if (up == orig_sub && met_dom) {
1272       // returned back after visiting 'dom'
1273       break;    // some kind of cycle
1274     }
1275     if (--iterations_without_region_limit < 0) {
1276       break;    // dead cycle
1277     }
1278     sub = up;
1279   }
1280 
1281   // Did not meet Root or Start node in pred. chain.
1282   // Conservative answer for dead code.
1283   return false;
1284 }
1285 
1286 //------------------------------remove_dead_region-----------------------------
1287 // This control node is dead.  Follow the subgraph below it making everything
1288 // using it dead as well.  This will happen normally via the usual IterGVN
1289 // worklist but this call is more efficient.  Do not update use-def info
1290 // inside the dead region, just at the borders.
1291 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1292   // Con's are a popular node to re-hit in the hash table again.
1293   if( dead->is_Con() ) return;
1294 
1295   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1296   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1297   Node_List  nstack(Thread::current()->resource_area());
1298 
1299   Node *top = igvn->C->top();
1300   nstack.push(dead);
1301   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1302 
1303   while (nstack.size() > 0) {
1304     dead = nstack.pop();
1305     if (dead->outcnt() > 0) {
1306       // Keep dead node on stack until all uses are processed.
1307       nstack.push(dead);
1308       // For all Users of the Dead...    ;-)
1309       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1310         Node* use = dead->last_out(k);
1311         igvn->hash_delete(use);       // Yank from hash table prior to mod
1312         if (use->in(0) == dead) {     // Found another dead node
1313           assert (!use->is_Con(), "Control for Con node should be Root node.");
1314           use->set_req(0, top);       // Cut dead edge to prevent processing
1315           nstack.push(use);           // the dead node again.
1316         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1317                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1318                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1319           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1320           use->set_req(0, top);       // Cut self edge
1321           nstack.push(use);
1322         } else {                      // Else found a not-dead user
1323           // Dead if all inputs are top or null
1324           bool dead_use = !use->is_Root(); // Keep empty graph alive
1325           for (uint j = 1; j < use->req(); j++) {
1326             Node* in = use->in(j);
1327             if (in == dead) {         // Turn all dead inputs into TOP
1328               use->set_req(j, top);
1329             } else if (in != NULL && !in->is_top()) {
1330               dead_use = false;
1331             }
1332           }
1333           if (dead_use) {
1334             if (use->is_Region()) {
1335               use->set_req(0, top);   // Cut self edge
1336             }
1337             nstack.push(use);
1338           } else {
1339             igvn->_worklist.push(use);
1340           }
1341         }
1342         // Refresh the iterator, since any number of kills might have happened.
1343         k = dead->last_outs(kmin);
1344       }
1345     } else { // (dead->outcnt() == 0)
1346       // Done with outputs.
1347       igvn->hash_delete(dead);
1348       igvn->_worklist.remove(dead);
1349       igvn->C->remove_modified_node(dead);
1350       igvn->set_type(dead, Type::TOP);
1351       if (dead->is_macro()) {
1352         igvn->C->remove_macro_node(dead);
1353       }
1354       if (dead->is_expensive()) {
1355         igvn->C->remove_expensive_node(dead);
1356       }
1357       CastIINode* cast = dead->isa_CastII();
1358       if (cast != NULL && cast->has_range_check()) {
1359         igvn->C->remove_range_check_cast(cast);
1360       }
1361       if (dead->Opcode() == Op_Opaque4) {
1362         igvn->C->remove_range_check_cast(dead);
1363       }
1364       igvn->C->record_dead_node(dead->_idx);
1365       // Kill all inputs to the dead guy
1366       for (uint i=0; i < dead->req(); i++) {
1367         Node *n = dead->in(i);      // Get input to dead guy
1368         if (n != NULL && !n->is_top()) { // Input is valid?
1369           dead->set_req(i, top);    // Smash input away
1370           if (n->outcnt() == 0) {   // Input also goes dead?
1371             if (!n->is_Con())
1372               nstack.push(n);       // Clear it out as well
1373           } else if (n->outcnt() == 1 &&
1374                      n->has_special_unique_user()) {
1375             igvn->add_users_to_worklist( n );
1376           } else if (n->outcnt() <= 2 && n->is_Store()) {
1377             // Push store's uses on worklist to enable folding optimization for
1378             // store/store and store/load to the same address.
1379             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1380             // and remove_globally_dead_node().
1381             igvn->add_users_to_worklist( n );
1382           }
1383         }
1384       }
1385     } // (dead->outcnt() == 0)
1386   }   // while (nstack.size() > 0) for outputs
1387   return;
1388 }
1389 
1390 //------------------------------remove_dead_region-----------------------------
1391 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1392   Node *n = in(0);
1393   if( !n ) return false;
1394   // Lost control into this guy?  I.e., it became unreachable?
1395   // Aggressively kill all unreachable code.
1396   if (can_reshape && n->is_top()) {
1397     kill_dead_code(this, phase->is_IterGVN());
1398     return false; // Node is dead.
1399   }
1400 
1401   if( n->is_Region() && n->as_Region()->is_copy() ) {
1402     Node *m = n->nonnull_req();
1403     set_req(0, m);
1404     return true;
1405   }
1406   return false;
1407 }
1408 
1409 //------------------------------hash-------------------------------------------
1410 // Hash function over Nodes.
1411 uint Node::hash() const {
1412   uint sum = 0;
1413   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1414     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1415   return (sum>>2) + _cnt + Opcode();
1416 }
1417 
1418 //------------------------------cmp--------------------------------------------
1419 // Compare special parts of simple Nodes
1420 uint Node::cmp( const Node &n ) const {
1421   return 1;                     // Must be same
1422 }
1423 
1424 //------------------------------rematerialize-----------------------------------
1425 // Should we clone rather than spill this instruction?
1426 bool Node::rematerialize() const {
1427   if ( is_Mach() )
1428     return this->as_Mach()->rematerialize();
1429   else
1430     return (_flags & Flag_rematerialize) != 0;
1431 }
1432 
1433 //------------------------------needs_anti_dependence_check---------------------
1434 // Nodes which use memory without consuming it, hence need antidependences.
1435 bool Node::needs_anti_dependence_check() const {
1436   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1437     return false;
1438   else
1439     return in(1)->bottom_type()->has_memory();
1440 }
1441 
1442 
1443 // Get an integer constant from a ConNode (or CastIINode).
1444 // Return a default value if there is no apparent constant here.
1445 const TypeInt* Node::find_int_type() const {
1446   if (this->is_Type()) {
1447     return this->as_Type()->type()->isa_int();
1448   } else if (this->is_Con()) {
1449     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1450     return this->bottom_type()->isa_int();
1451   }
1452   return NULL;
1453 }
1454 
1455 // Get a pointer constant from a ConstNode.
1456 // Returns the constant if it is a pointer ConstNode
1457 intptr_t Node::get_ptr() const {
1458   assert( Opcode() == Op_ConP, "" );
1459   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1460 }
1461 
1462 // Get a narrow oop constant from a ConNNode.
1463 intptr_t Node::get_narrowcon() const {
1464   assert( Opcode() == Op_ConN, "" );
1465   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1466 }
1467 
1468 // Get a long constant from a ConNode.
1469 // Return a default value if there is no apparent constant here.
1470 const TypeLong* Node::find_long_type() const {
1471   if (this->is_Type()) {
1472     return this->as_Type()->type()->isa_long();
1473   } else if (this->is_Con()) {
1474     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1475     return this->bottom_type()->isa_long();
1476   }
1477   return NULL;
1478 }
1479 
1480 
1481 /**
1482  * Return a ptr type for nodes which should have it.
1483  */
1484 const TypePtr* Node::get_ptr_type() const {
1485   const TypePtr* tp = this->bottom_type()->make_ptr();
1486 #ifdef ASSERT
1487   if (tp == NULL) {
1488     this->dump(1);
1489     assert((tp != NULL), "unexpected node type");
1490   }
1491 #endif
1492   return tp;
1493 }
1494 
1495 // Get a double constant from a ConstNode.
1496 // Returns the constant if it is a double ConstNode
1497 jdouble Node::getd() const {
1498   assert( Opcode() == Op_ConD, "" );
1499   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1500 }
1501 
1502 // Get a float constant from a ConstNode.
1503 // Returns the constant if it is a float ConstNode
1504 jfloat Node::getf() const {
1505   assert( Opcode() == Op_ConF, "" );
1506   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1507 }
1508 
1509 #ifndef PRODUCT
1510 
1511 //------------------------------find------------------------------------------
1512 // Find a neighbor of this Node with the given _idx
1513 // If idx is negative, find its absolute value, following both _in and _out.
1514 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1515                         VectorSet* old_space, VectorSet* new_space ) {
1516   int node_idx = (idx >= 0) ? idx : -idx;
1517   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1518   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1519   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1520   if( v->test(n->_idx) ) return;
1521   if( (int)n->_idx == node_idx
1522       debug_only(|| n->debug_idx() == node_idx) ) {
1523     if (result != NULL)
1524       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1525                  (uintptr_t)result, (uintptr_t)n, node_idx);
1526     result = n;
1527   }
1528   v->set(n->_idx);
1529   for( uint i=0; i<n->len(); i++ ) {
1530     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1531     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1532   }
1533   // Search along forward edges also:
1534   if (idx < 0 && !only_ctrl) {
1535     for( uint j=0; j<n->outcnt(); j++ ) {
1536       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1537     }
1538   }
1539 #ifdef ASSERT
1540   // Search along debug_orig edges last, checking for cycles
1541   Node* orig = n->debug_orig();
1542   if (orig != NULL) {
1543     do {
1544       if (NotANode(orig))  break;
1545       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1546       orig = orig->debug_orig();
1547     } while (orig != NULL && orig != n->debug_orig());
1548   }
1549 #endif //ASSERT
1550 }
1551 
1552 // call this from debugger:
1553 Node* find_node(Node* n, int idx) {
1554   return n->find(idx);
1555 }
1556 
1557 //------------------------------find-------------------------------------------
1558 Node* Node::find(int idx) const {
1559   ResourceArea *area = Thread::current()->resource_area();
1560   VectorSet old_space(area), new_space(area);
1561   Node* result = NULL;
1562   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1563   return result;
1564 }
1565 
1566 //------------------------------find_ctrl--------------------------------------
1567 // Find an ancestor to this node in the control history with given _idx
1568 Node* Node::find_ctrl(int idx) const {
1569   ResourceArea *area = Thread::current()->resource_area();
1570   VectorSet old_space(area), new_space(area);
1571   Node* result = NULL;
1572   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1573   return result;
1574 }
1575 #endif
1576 
1577 
1578 
1579 #ifndef PRODUCT
1580 
1581 // -----------------------------Name-------------------------------------------
1582 extern const char *NodeClassNames[];
1583 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1584 
1585 static bool is_disconnected(const Node* n) {
1586   for (uint i = 0; i < n->req(); i++) {
1587     if (n->in(i) != NULL)  return false;
1588   }
1589   return true;
1590 }
1591 
1592 #ifdef ASSERT
1593 static void dump_orig(Node* orig, outputStream *st) {
1594   Compile* C = Compile::current();
1595   if (NotANode(orig)) orig = NULL;
1596   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1597   if (orig == NULL) return;
1598   st->print(" !orig=");
1599   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1600   if (NotANode(fast)) fast = NULL;
1601   while (orig != NULL) {
1602     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1603     if (discon) st->print("[");
1604     if (!Compile::current()->node_arena()->contains(orig))
1605       st->print("o");
1606     st->print("%d", orig->_idx);
1607     if (discon) st->print("]");
1608     orig = orig->debug_orig();
1609     if (NotANode(orig)) orig = NULL;
1610     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1611     if (orig != NULL) st->print(",");
1612     if (fast != NULL) {
1613       // Step fast twice for each single step of orig:
1614       fast = fast->debug_orig();
1615       if (NotANode(fast)) fast = NULL;
1616       if (fast != NULL && fast != orig) {
1617         fast = fast->debug_orig();
1618         if (NotANode(fast)) fast = NULL;
1619       }
1620       if (fast == orig) {
1621         st->print("...");
1622         break;
1623       }
1624     }
1625   }
1626 }
1627 
1628 void Node::set_debug_orig(Node* orig) {
1629   _debug_orig = orig;
1630   if (BreakAtNode == 0)  return;
1631   if (NotANode(orig))  orig = NULL;
1632   int trip = 10;
1633   while (orig != NULL) {
1634     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1635       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1636                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1637       BREAKPOINT;
1638     }
1639     orig = orig->debug_orig();
1640     if (NotANode(orig))  orig = NULL;
1641     if (trip-- <= 0)  break;
1642   }
1643 }
1644 #endif //ASSERT
1645 
1646 //------------------------------dump------------------------------------------
1647 // Dump a Node
1648 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1649   Compile* C = Compile::current();
1650   bool is_new = C->node_arena()->contains(this);
1651   C->_in_dump_cnt++;
1652   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1653 
1654   // Dump the required and precedence inputs
1655   dump_req(st);
1656   dump_prec(st);
1657   // Dump the outputs
1658   dump_out(st);
1659 
1660   if (is_disconnected(this)) {
1661 #ifdef ASSERT
1662     st->print("  [%d]",debug_idx());
1663     dump_orig(debug_orig(), st);
1664 #endif
1665     st->cr();
1666     C->_in_dump_cnt--;
1667     return;                     // don't process dead nodes
1668   }
1669 
1670   if (C->clone_map().value(_idx) != 0) {
1671     C->clone_map().dump(_idx);
1672   }
1673   // Dump node-specific info
1674   dump_spec(st);
1675 #ifdef ASSERT
1676   // Dump the non-reset _debug_idx
1677   if (Verbose && WizardMode) {
1678     st->print("  [%d]",debug_idx());
1679   }
1680 #endif
1681 
1682   const Type *t = bottom_type();
1683 
1684   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1685     const TypeInstPtr  *toop = t->isa_instptr();
1686     const TypeKlassPtr *tkls = t->isa_klassptr();
1687     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1688     if (klass && klass->is_loaded() && klass->is_interface()) {
1689       st->print("  Interface:");
1690     } else if (toop) {
1691       st->print("  Oop:");
1692     } else if (tkls) {
1693       st->print("  Klass:");
1694     }
1695     t->dump_on(st);
1696   } else if (t == Type::MEMORY) {
1697     st->print("  Memory:");
1698     MemNode::dump_adr_type(this, adr_type(), st);
1699   } else if (Verbose || WizardMode) {
1700     st->print("  Type:");
1701     if (t) {
1702       t->dump_on(st);
1703     } else {
1704       st->print("no type");
1705     }
1706   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1707     // Dump MachSpillcopy vector type.
1708     t->dump_on(st);
1709   }
1710   if (is_new) {
1711     debug_only(dump_orig(debug_orig(), st));
1712     Node_Notes* nn = C->node_notes_at(_idx);
1713     if (nn != NULL && !nn->is_clear()) {
1714       if (nn->jvms() != NULL) {
1715         st->print(" !jvms:");
1716         nn->jvms()->dump_spec(st);
1717       }
1718     }
1719   }
1720   if (suffix) st->print("%s", suffix);
1721   C->_in_dump_cnt--;
1722 }
1723 
1724 //------------------------------dump_req--------------------------------------
1725 void Node::dump_req(outputStream *st) const {
1726   // Dump the required input edges
1727   for (uint i = 0; i < req(); i++) {    // For all required inputs
1728     Node* d = in(i);
1729     if (d == NULL) {
1730       st->print("_ ");
1731     } else if (NotANode(d)) {
1732       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1733     } else {
1734       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1735     }
1736   }
1737 }
1738 
1739 
1740 //------------------------------dump_prec-------------------------------------
1741 void Node::dump_prec(outputStream *st) const {
1742   // Dump the precedence edges
1743   int any_prec = 0;
1744   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1745     Node* p = in(i);
1746     if (p != NULL) {
1747       if (!any_prec++) st->print(" |");
1748       if (NotANode(p)) { st->print("NotANode "); continue; }
1749       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1750     }
1751   }
1752 }
1753 
1754 //------------------------------dump_out--------------------------------------
1755 void Node::dump_out(outputStream *st) const {
1756   // Delimit the output edges
1757   st->print(" [[");
1758   // Dump the output edges
1759   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1760     Node* u = _out[i];
1761     if (u == NULL) {
1762       st->print("_ ");
1763     } else if (NotANode(u)) {
1764       st->print("NotANode ");
1765     } else {
1766       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1767     }
1768   }
1769   st->print("]] ");
1770 }
1771 
1772 //----------------------------collect_nodes_i----------------------------------
1773 // Collects nodes from an Ideal graph, starting from a given start node and
1774 // moving in a given direction until a certain depth (distance from the start
1775 // node) is reached. Duplicates are ignored.
1776 // Arguments:
1777 //   nstack:        the nodes are collected into this array.
1778 //   start:         the node at which to start collecting.
1779 //   direction:     if this is a positive number, collect input nodes; if it is
1780 //                  a negative number, collect output nodes.
1781 //   depth:         collect nodes up to this distance from the start node.
1782 //   include_start: whether to include the start node in the result collection.
1783 //   only_ctrl:     whether to regard control edges only during traversal.
1784 //   only_data:     whether to regard data edges only during traversal.
1785 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1786   Node* s = (Node*) start; // remove const
1787   nstack->append(s);
1788   int begin = 0;
1789   int end = 0;
1790   for(uint i = 0; i < depth; i++) {
1791     end = nstack->length();
1792     for(int j = begin; j < end; j++) {
1793       Node* tp  = nstack->at(j);
1794       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1795       for(uint k = 0; k < limit; k++) {
1796         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1797 
1798         if (NotANode(n))  continue;
1799         // do not recurse through top or the root (would reach unrelated stuff)
1800         if (n->is_Root() || n->is_top()) continue;
1801         if (only_ctrl && !n->is_CFG()) continue;
1802         if (only_data && n->is_CFG()) continue;
1803 
1804         bool on_stack = nstack->contains(n);
1805         if (!on_stack) {
1806           nstack->append(n);
1807         }
1808       }
1809     }
1810     begin = end;
1811   }
1812   if (!include_start) {
1813     nstack->remove(s);
1814   }
1815 }
1816 
1817 //------------------------------dump_nodes-------------------------------------
1818 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1819   if (NotANode(start)) return;
1820 
1821   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1822   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1823 
1824   int end = nstack.length();
1825   if (d > 0) {
1826     for(int j = end-1; j >= 0; j--) {
1827       nstack.at(j)->dump();
1828     }
1829   } else {
1830     for(int j = 0; j < end; j++) {
1831       nstack.at(j)->dump();
1832     }
1833   }
1834 }
1835 
1836 //------------------------------dump-------------------------------------------
1837 void Node::dump(int d) const {
1838   dump_nodes(this, d, false);
1839 }
1840 
1841 //------------------------------dump_ctrl--------------------------------------
1842 // Dump a Node's control history to depth
1843 void Node::dump_ctrl(int d) const {
1844   dump_nodes(this, d, true);
1845 }
1846 
1847 //-----------------------------dump_compact------------------------------------
1848 void Node::dump_comp() const {
1849   this->dump_comp("\n");
1850 }
1851 
1852 //-----------------------------dump_compact------------------------------------
1853 // Dump a Node in compact representation, i.e., just print its name and index.
1854 // Nodes can specify additional specifics to print in compact representation by
1855 // implementing dump_compact_spec.
1856 void Node::dump_comp(const char* suffix, outputStream *st) const {
1857   Compile* C = Compile::current();
1858   C->_in_dump_cnt++;
1859   st->print("%s(%d)", Name(), _idx);
1860   this->dump_compact_spec(st);
1861   if (suffix) {
1862     st->print("%s", suffix);
1863   }
1864   C->_in_dump_cnt--;
1865 }
1866 
1867 //----------------------------dump_related-------------------------------------
1868 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1869 // hand and is determined by the implementation of the virtual method rel.
1870 void Node::dump_related() const {
1871   Compile* C = Compile::current();
1872   GrowableArray <Node *> in_rel(C->unique());
1873   GrowableArray <Node *> out_rel(C->unique());
1874   this->related(&in_rel, &out_rel, false);
1875   for (int i = in_rel.length() - 1; i >= 0; i--) {
1876     in_rel.at(i)->dump();
1877   }
1878   this->dump("\n", true);
1879   for (int i = 0; i < out_rel.length(); i++) {
1880     out_rel.at(i)->dump();
1881   }
1882 }
1883 
1884 //----------------------------dump_related-------------------------------------
1885 // Dump a Node's related nodes up to a given depth (distance from the start
1886 // node).
1887 // Arguments:
1888 //   d_in:  depth for input nodes.
1889 //   d_out: depth for output nodes (note: this also is a positive number).
1890 void Node::dump_related(uint d_in, uint d_out) const {
1891   Compile* C = Compile::current();
1892   GrowableArray <Node *> in_rel(C->unique());
1893   GrowableArray <Node *> out_rel(C->unique());
1894 
1895   // call collect_nodes_i directly
1896   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1897   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1898 
1899   for (int i = in_rel.length() - 1; i >= 0; i--) {
1900     in_rel.at(i)->dump();
1901   }
1902   this->dump("\n", true);
1903   for (int i = 0; i < out_rel.length(); i++) {
1904     out_rel.at(i)->dump();
1905   }
1906 }
1907 
1908 //------------------------dump_related_compact---------------------------------
1909 // Dump a Node's related nodes in compact representation. The notion of
1910 // "related" depends on the Node at hand and is determined by the implementation
1911 // of the virtual method rel.
1912 void Node::dump_related_compact() const {
1913   Compile* C = Compile::current();
1914   GrowableArray <Node *> in_rel(C->unique());
1915   GrowableArray <Node *> out_rel(C->unique());
1916   this->related(&in_rel, &out_rel, true);
1917   int n_in = in_rel.length();
1918   int n_out = out_rel.length();
1919 
1920   this->dump_comp(n_in == 0 ? "\n" : "  ");
1921   for (int i = 0; i < n_in; i++) {
1922     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1923   }
1924   for (int i = 0; i < n_out; i++) {
1925     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1926   }
1927 }
1928 
1929 //------------------------------related----------------------------------------
1930 // Collect a Node's related nodes. The default behaviour just collects the
1931 // inputs and outputs at depth 1, including both control and data flow edges,
1932 // regardless of whether the presentation is compact or not. For data nodes,
1933 // the default is to collect all data inputs (till level 1 if compact), and
1934 // outputs till level 1.
1935 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1936   if (this->is_CFG()) {
1937     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1938     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1939   } else {
1940     if (compact) {
1941       this->collect_nodes(in_rel, 1, false, true);
1942     } else {
1943       this->collect_nodes_in_all_data(in_rel, false);
1944     }
1945     this->collect_nodes(out_rel, -1, false, false);
1946   }
1947 }
1948 
1949 //---------------------------collect_nodes-------------------------------------
1950 // An entry point to the low-level node collection facility, to start from a
1951 // given node in the graph. The start node is by default not included in the
1952 // result.
1953 // Arguments:
1954 //   ns:   collect the nodes into this data structure.
1955 //   d:    the depth (distance from start node) to which nodes should be
1956 //         collected. A value >0 indicates input nodes, a value <0, output
1957 //         nodes.
1958 //   ctrl: include only control nodes.
1959 //   data: include only data nodes.
1960 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1961   if (ctrl && data) {
1962     // ignore nonsensical combination
1963     return;
1964   }
1965   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1966 }
1967 
1968 //--------------------------collect_nodes_in-----------------------------------
1969 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1970   // The maximum depth is determined using a BFS that visits all primary (data
1971   // or control) inputs and increments the depth at each level.
1972   uint d_in = 0;
1973   GrowableArray<Node*> nodes(Compile::current()->unique());
1974   nodes.push(start);
1975   int nodes_at_current_level = 1;
1976   int n_idx = 0;
1977   while (nodes_at_current_level > 0) {
1978     // Add all primary inputs reachable from the current level to the list, and
1979     // increase the depth if there were any.
1980     int nodes_at_next_level = 0;
1981     bool nodes_added = false;
1982     while (nodes_at_current_level > 0) {
1983       nodes_at_current_level--;
1984       Node* current = nodes.at(n_idx++);
1985       for (uint i = 0; i < current->len(); i++) {
1986         Node* n = current->in(i);
1987         if (NotANode(n)) {
1988           continue;
1989         }
1990         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
1991           continue;
1992         }
1993         if (!nodes.contains(n)) {
1994           nodes.push(n);
1995           nodes_added = true;
1996           nodes_at_next_level++;
1997         }
1998       }
1999     }
2000     if (nodes_added) {
2001       d_in++;
2002     }
2003     nodes_at_current_level = nodes_at_next_level;
2004   }
2005   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2006   if (collect_secondary) {
2007     // Now, iterate over the secondary nodes in ns and add the respective
2008     // boundary reachable from them.
2009     GrowableArray<Node*> sns(Compile::current()->unique());
2010     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2011       Node* n = *it;
2012       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2013       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2014         ns->append_if_missing(*d);
2015       }
2016       sns.clear();
2017     }
2018   }
2019 }
2020 
2021 //---------------------collect_nodes_in_all_data-------------------------------
2022 // Collect the entire data input graph. Include the control boundary if
2023 // requested.
2024 // Arguments:
2025 //   ns:   collect the nodes into this data structure.
2026 //   ctrl: if true, include the control boundary.
2027 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2028   collect_nodes_in((Node*) this, ns, true, ctrl);
2029 }
2030 
2031 //--------------------------collect_nodes_in_all_ctrl--------------------------
2032 // Collect the entire control input graph. Include the data boundary if
2033 // requested.
2034 //   ns:   collect the nodes into this data structure.
2035 //   data: if true, include the control boundary.
2036 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2037   collect_nodes_in((Node*) this, ns, false, data);
2038 }
2039 
2040 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2041 // Collect the entire output graph until hitting control node boundaries, and
2042 // include those.
2043 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2044   // Perform a BFS and stop at control nodes.
2045   GrowableArray<Node*> nodes(Compile::current()->unique());
2046   nodes.push((Node*) this);
2047   while (nodes.length() > 0) {
2048     Node* current = nodes.pop();
2049     if (NotANode(current)) {
2050       continue;
2051     }
2052     ns->append_if_missing(current);
2053     if (!current->is_CFG()) {
2054       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2055         nodes.push(current->out(i));
2056       }
2057     }
2058   }
2059   ns->remove((Node*) this);
2060 }
2061 
2062 // VERIFICATION CODE
2063 // For each input edge to a node (ie - for each Use-Def edge), verify that
2064 // there is a corresponding Def-Use edge.
2065 //------------------------------verify_edges-----------------------------------
2066 void Node::verify_edges(Unique_Node_List &visited) {
2067   uint i, j, idx;
2068   int  cnt;
2069   Node *n;
2070 
2071   // Recursive termination test
2072   if (visited.member(this))  return;
2073   visited.push(this);
2074 
2075   // Walk over all input edges, checking for correspondence
2076   for( i = 0; i < len(); i++ ) {
2077     n = in(i);
2078     if (n != NULL && !n->is_top()) {
2079       // Count instances of (Node *)this
2080       cnt = 0;
2081       for (idx = 0; idx < n->_outcnt; idx++ ) {
2082         if (n->_out[idx] == (Node *)this)  cnt++;
2083       }
2084       assert( cnt > 0,"Failed to find Def-Use edge." );
2085       // Check for duplicate edges
2086       // walk the input array downcounting the input edges to n
2087       for( j = 0; j < len(); j++ ) {
2088         if( in(j) == n ) cnt--;
2089       }
2090       assert( cnt == 0,"Mismatched edge count.");
2091     } else if (n == NULL) {
2092       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2093     } else {
2094       assert(n->is_top(), "sanity");
2095       // Nothing to check.
2096     }
2097   }
2098   // Recursive walk over all input edges
2099   for( i = 0; i < len(); i++ ) {
2100     n = in(i);
2101     if( n != NULL )
2102       in(i)->verify_edges(visited);
2103   }
2104 }
2105 
2106 //------------------------------verify_recur-----------------------------------
2107 static const Node *unique_top = NULL;
2108 
2109 void Node::verify_recur(const Node *n, int verify_depth,
2110                         VectorSet &old_space, VectorSet &new_space) {
2111   if ( verify_depth == 0 )  return;
2112   if (verify_depth > 0)  --verify_depth;
2113 
2114   Compile* C = Compile::current();
2115 
2116   // Contained in new_space or old_space?
2117   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2118   // Check for visited in the proper space.  Numberings are not unique
2119   // across spaces so we need a separate VectorSet for each space.
2120   if( v->test_set(n->_idx) ) return;
2121 
2122   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2123     if (C->cached_top_node() == NULL)
2124       C->set_cached_top_node((Node*)n);
2125     assert(C->cached_top_node() == n, "TOP node must be unique");
2126   }
2127 
2128   for( uint i = 0; i < n->len(); i++ ) {
2129     Node *x = n->in(i);
2130     if (!x || x->is_top()) continue;
2131 
2132     // Verify my input has a def-use edge to me
2133     if (true /*VerifyDefUse*/) {
2134       // Count use-def edges from n to x
2135       int cnt = 0;
2136       for( uint j = 0; j < n->len(); j++ )
2137         if( n->in(j) == x )
2138           cnt++;
2139       // Count def-use edges from x to n
2140       uint max = x->_outcnt;
2141       for( uint k = 0; k < max; k++ )
2142         if (x->_out[k] == n)
2143           cnt--;
2144       assert( cnt == 0, "mismatched def-use edge counts" );
2145     }
2146 
2147     verify_recur(x, verify_depth, old_space, new_space);
2148   }
2149 
2150 }
2151 
2152 //------------------------------verify-----------------------------------------
2153 // Check Def-Use info for my subgraph
2154 void Node::verify() const {
2155   Compile* C = Compile::current();
2156   Node* old_top = C->cached_top_node();
2157   ResourceMark rm;
2158   ResourceArea *area = Thread::current()->resource_area();
2159   VectorSet old_space(area), new_space(area);
2160   verify_recur(this, -1, old_space, new_space);
2161   C->set_cached_top_node(old_top);
2162 }
2163 #endif
2164 
2165 
2166 //------------------------------walk-------------------------------------------
2167 // Graph walk, with both pre-order and post-order functions
2168 void Node::walk(NFunc pre, NFunc post, void *env) {
2169   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2170   walk_(pre, post, env, visited);
2171 }
2172 
2173 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2174   if( visited.test_set(_idx) ) return;
2175   pre(*this,env);               // Call the pre-order walk function
2176   for( uint i=0; i<_max; i++ )
2177     if( in(i) )                 // Input exists and is not walked?
2178       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2179   post(*this,env);              // Call the post-order walk function
2180 }
2181 
2182 void Node::nop(Node &, void*) {}
2183 
2184 //------------------------------Registers--------------------------------------
2185 // Do we Match on this edge index or not?  Generally false for Control
2186 // and true for everything else.  Weird for calls & returns.
2187 uint Node::match_edge(uint idx) const {
2188   return idx;                   // True for other than index 0 (control)
2189 }
2190 
2191 static RegMask _not_used_at_all;
2192 // Register classes are defined for specific machines
2193 const RegMask &Node::out_RegMask() const {
2194   ShouldNotCallThis();
2195   return _not_used_at_all;
2196 }
2197 
2198 const RegMask &Node::in_RegMask(uint) const {
2199   ShouldNotCallThis();
2200   return _not_used_at_all;
2201 }
2202 
2203 //=============================================================================
2204 //-----------------------------------------------------------------------------
2205 void Node_Array::reset( Arena *new_arena ) {
2206   _a->Afree(_nodes,_max*sizeof(Node*));
2207   _max   = 0;
2208   _nodes = NULL;
2209   _a     = new_arena;
2210 }
2211 
2212 //------------------------------clear------------------------------------------
2213 // Clear all entries in _nodes to NULL but keep storage
2214 void Node_Array::clear() {
2215   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2216 }
2217 
2218 //-----------------------------------------------------------------------------
2219 void Node_Array::grow( uint i ) {
2220   if( !_max ) {
2221     _max = 1;
2222     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2223     _nodes[0] = NULL;
2224   }
2225   uint old = _max;
2226   while( i >= _max ) _max <<= 1;        // Double to fit
2227   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2228   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2229 }
2230 
2231 //-----------------------------------------------------------------------------
2232 void Node_Array::insert( uint i, Node *n ) {
2233   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2234   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2235   _nodes[i] = n;
2236 }
2237 
2238 //-----------------------------------------------------------------------------
2239 void Node_Array::remove( uint i ) {
2240   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2241   _nodes[_max-1] = NULL;
2242 }
2243 
2244 //-----------------------------------------------------------------------------
2245 void Node_Array::sort( C_sort_func_t func) {
2246   qsort( _nodes, _max, sizeof( Node* ), func );
2247 }
2248 
2249 //-----------------------------------------------------------------------------
2250 void Node_Array::dump() const {
2251 #ifndef PRODUCT
2252   for( uint i = 0; i < _max; i++ ) {
2253     Node *nn = _nodes[i];
2254     if( nn != NULL ) {
2255       tty->print("%5d--> ",i); nn->dump();
2256     }
2257   }
2258 #endif
2259 }
2260 
2261 //--------------------------is_iteratively_computed------------------------------
2262 // Operation appears to be iteratively computed (such as an induction variable)
2263 // It is possible for this operation to return false for a loop-varying
2264 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2265 bool Node::is_iteratively_computed() {
2266   if (ideal_reg()) { // does operation have a result register?
2267     for (uint i = 1; i < req(); i++) {
2268       Node* n = in(i);
2269       if (n != NULL && n->is_Phi()) {
2270         for (uint j = 1; j < n->req(); j++) {
2271           if (n->in(j) == this) {
2272             return true;
2273           }
2274         }
2275       }
2276     }
2277   }
2278   return false;
2279 }
2280 
2281 //--------------------------find_similar------------------------------
2282 // Return a node with opcode "opc" and same inputs as "this" if one can
2283 // be found; Otherwise return NULL;
2284 Node* Node::find_similar(int opc) {
2285   if (req() >= 2) {
2286     Node* def = in(1);
2287     if (def && def->outcnt() >= 2) {
2288       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2289         Node* use = def->fast_out(i);
2290         if (use != this &&
2291             use->Opcode() == opc &&
2292             use->req() == req()) {
2293           uint j;
2294           for (j = 0; j < use->req(); j++) {
2295             if (use->in(j) != in(j)) {
2296               break;
2297             }
2298           }
2299           if (j == use->req()) {
2300             return use;
2301           }
2302         }
2303       }
2304     }
2305   }
2306   return NULL;
2307 }
2308 
2309 
2310 //--------------------------unique_ctrl_out------------------------------
2311 // Return the unique control out if only one. Null if none or more than one.
2312 Node* Node::unique_ctrl_out() const {
2313   Node* found = NULL;
2314   for (uint i = 0; i < outcnt(); i++) {
2315     Node* use = raw_out(i);
2316     if (use->is_CFG() && use != this) {
2317       if (found != NULL) return NULL;
2318       found = use;
2319     }
2320   }
2321   return found;
2322 }
2323 
2324 void Node::ensure_control_or_add_prec(Node* c) {
2325   if (in(0) == NULL) {
2326     set_req(0, c);
2327   } else if (in(0) != c) {
2328     add_prec(c);
2329   }
2330 }
2331 
2332 //=============================================================================
2333 //------------------------------yank-------------------------------------------
2334 // Find and remove
2335 void Node_List::yank( Node *n ) {
2336   uint i;
2337   for( i = 0; i < _cnt; i++ )
2338     if( _nodes[i] == n )
2339       break;
2340 
2341   if( i < _cnt )
2342     _nodes[i] = _nodes[--_cnt];
2343 }
2344 
2345 //------------------------------dump-------------------------------------------
2346 void Node_List::dump() const {
2347 #ifndef PRODUCT
2348   for( uint i = 0; i < _cnt; i++ )
2349     if( _nodes[i] ) {
2350       tty->print("%5d--> ",i);
2351       _nodes[i]->dump();
2352     }
2353 #endif
2354 }
2355 
2356 void Node_List::dump_simple() const {
2357 #ifndef PRODUCT
2358   for( uint i = 0; i < _cnt; i++ )
2359     if( _nodes[i] ) {
2360       tty->print(" %d", _nodes[i]->_idx);
2361     } else {
2362       tty->print(" NULL");
2363     }
2364 #endif
2365 }
2366 
2367 //=============================================================================
2368 //------------------------------remove-----------------------------------------
2369 void Unique_Node_List::remove( Node *n ) {
2370   if( _in_worklist[n->_idx] ) {
2371     for( uint i = 0; i < size(); i++ )
2372       if( _nodes[i] == n ) {
2373         map(i,Node_List::pop());
2374         _in_worklist >>= n->_idx;
2375         return;
2376       }
2377     ShouldNotReachHere();
2378   }
2379 }
2380 
2381 //-----------------------remove_useless_nodes----------------------------------
2382 // Remove useless nodes from worklist
2383 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2384 
2385   for( uint i = 0; i < size(); ++i ) {
2386     Node *n = at(i);
2387     assert( n != NULL, "Did not expect null entries in worklist");
2388     if( ! useful.test(n->_idx) ) {
2389       _in_worklist >>= n->_idx;
2390       map(i,Node_List::pop());
2391       // Node *replacement = Node_List::pop();
2392       // if( i != size() ) { // Check if removing last entry
2393       //   _nodes[i] = replacement;
2394       // }
2395       --i;  // Visit popped node
2396       // If it was last entry, loop terminates since size() was also reduced
2397     }
2398   }
2399 }
2400 
2401 //=============================================================================
2402 void Node_Stack::grow() {
2403   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2404   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2405   size_t max = old_max << 1;             // max * 2
2406   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2407   _inode_max = _inodes + max;
2408   _inode_top = _inodes + old_top;        // restore _top
2409 }
2410 
2411 // Node_Stack is used to map nodes.
2412 Node* Node_Stack::find(uint idx) const {
2413   uint sz = size();
2414   for (uint i=0; i < sz; i++) {
2415     if (idx == index_at(i) )
2416       return node_at(i);
2417   }
2418   return NULL;
2419 }
2420 
2421 //=============================================================================
2422 uint TypeNode::size_of() const { return sizeof(*this); }
2423 #ifndef PRODUCT
2424 void TypeNode::dump_spec(outputStream *st) const {
2425   if( !Verbose && !WizardMode ) {
2426     // standard dump does this in Verbose and WizardMode
2427     st->print(" #"); _type->dump_on(st);
2428   }
2429 }
2430 
2431 void TypeNode::dump_compact_spec(outputStream *st) const {
2432   st->print("#");
2433   _type->dump_on(st);
2434 }
2435 #endif
2436 uint TypeNode::hash() const {
2437   return Node::hash() + _type->hash();
2438 }
2439 uint TypeNode::cmp( const Node &n ) const
2440 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2441 const Type *TypeNode::bottom_type() const { return _type; }
2442 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2443 
2444 //------------------------------ideal_reg--------------------------------------
2445 uint TypeNode::ideal_reg() const {
2446   return _type->ideal_reg();
2447 }