1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "interpreter/linkResolver.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "memory/universe.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/divnode.hpp"
  38 #include "opto/idealGraphPrinter.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "runtime/deoptimization.hpp"
  46 #include "runtime/sharedRuntime.hpp"
  47 
  48 #ifndef PRODUCT
  49 extern int explicit_null_checks_inserted,
  50            explicit_null_checks_elided;
  51 #endif
  52 
  53 //---------------------------------array_load----------------------------------
  54 void Parse::array_load(BasicType bt) {
  55   const Type* elemtype = Type::TOP;
  56   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  57   Node* adr = array_addressing(bt, 0, &elemtype);
  58   if (stopped())  return;     // guaranteed null or range check
  59 
  60   pop();                      // index (already used)
  61   Node* array = pop();        // the array itself
  62 
  63   if (elemtype == TypeInt::BOOL) {
  64     bt = T_BOOLEAN;
  65   } else if (bt == T_OBJECT) {
  66     elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
  67   }
  68 
  69   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
  70 
  71   Node* ld = access_load_at(array, adr, adr_type, elemtype, bt,
  72                             IN_HEAP | IN_HEAP_ARRAY | C2_CONTROL_DEPENDENT_LOAD);
  73   if (big_val) {
  74     push_pair(ld);
  75   } else {
  76     push(ld);
  77   }
  78 }
  79 
  80 
  81 //--------------------------------array_store----------------------------------
  82 void Parse::array_store(BasicType bt) {
  83   const Type* elemtype = Type::TOP;
  84   bool big_val = bt == T_DOUBLE || bt == T_LONG;
  85   Node* adr = array_addressing(bt, big_val ? 2 : 1, &elemtype);
  86   if (stopped())  return;     // guaranteed null or range check
  87   if (bt == T_OBJECT) {
  88     array_store_check();
  89   }
  90   Node* val;                  // Oop to store
  91   if (big_val) {
  92     val = pop_pair();
  93   } else {
  94     val = pop();
  95   }
  96   pop();                      // index (already used)
  97   Node* array = pop();        // the array itself
  98 
  99   if (elemtype == TypeInt::BOOL) {
 100     bt = T_BOOLEAN;
 101   } else if (bt == T_OBJECT) {
 102     elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 103   }
 104 
 105   const TypeAryPtr* adr_type = TypeAryPtr::get_array_body_type(bt);
 106 
 107   access_store_at(control(), array, adr, adr_type, val, elemtype, bt, MO_UNORDERED | IN_HEAP | IN_HEAP_ARRAY);
 108 }
 109 
 110 
 111 //------------------------------array_addressing-------------------------------
 112 // Pull array and index from the stack.  Compute pointer-to-element.
 113 Node* Parse::array_addressing(BasicType type, int vals, const Type* *result2) {
 114   Node *idx   = peek(0+vals);   // Get from stack without popping
 115   Node *ary   = peek(1+vals);   // in case of exception
 116 
 117   // Null check the array base, with correct stack contents
 118   ary = null_check(ary, T_ARRAY);
 119   // Compile-time detect of null-exception?
 120   if (stopped())  return top();
 121 
 122   const TypeAryPtr* arytype  = _gvn.type(ary)->is_aryptr();
 123   const TypeInt*    sizetype = arytype->size();
 124   const Type*       elemtype = arytype->elem();
 125 
 126   if (UseUniqueSubclasses && result2 != NULL) {
 127     const Type* el = elemtype->make_ptr();
 128     if (el && el->isa_instptr()) {
 129       const TypeInstPtr* toop = el->is_instptr();
 130       if (toop->klass()->as_instance_klass()->unique_concrete_subklass()) {
 131         // If we load from "AbstractClass[]" we must see "ConcreteSubClass".
 132         const Type* subklass = Type::get_const_type(toop->klass());
 133         elemtype = subklass->join_speculative(el);
 134       }
 135     }
 136   }
 137 
 138   // Check for big class initializers with all constant offsets
 139   // feeding into a known-size array.
 140   const TypeInt* idxtype = _gvn.type(idx)->is_int();
 141   // See if the highest idx value is less than the lowest array bound,
 142   // and if the idx value cannot be negative:
 143   bool need_range_check = true;
 144   if (idxtype->_hi < sizetype->_lo && idxtype->_lo >= 0) {
 145     need_range_check = false;
 146     if (C->log() != NULL)   C->log()->elem("observe that='!need_range_check'");
 147   }
 148 
 149   ciKlass * arytype_klass = arytype->klass();
 150   if ((arytype_klass != NULL) && (!arytype_klass->is_loaded())) {
 151     // Only fails for some -Xcomp runs
 152     // The class is unloaded.  We have to run this bytecode in the interpreter.
 153     uncommon_trap(Deoptimization::Reason_unloaded,
 154                   Deoptimization::Action_reinterpret,
 155                   arytype->klass(), "!loaded array");
 156     return top();
 157   }
 158 
 159   // Do the range check
 160   if (GenerateRangeChecks && need_range_check) {
 161     Node* tst;
 162     if (sizetype->_hi <= 0) {
 163       // The greatest array bound is negative, so we can conclude that we're
 164       // compiling unreachable code, but the unsigned compare trick used below
 165       // only works with non-negative lengths.  Instead, hack "tst" to be zero so
 166       // the uncommon_trap path will always be taken.
 167       tst = _gvn.intcon(0);
 168     } else {
 169       // Range is constant in array-oop, so we can use the original state of mem
 170       Node* len = load_array_length(ary);
 171 
 172       // Test length vs index (standard trick using unsigned compare)
 173       Node* chk = _gvn.transform( new CmpUNode(idx, len) );
 174       BoolTest::mask btest = BoolTest::lt;
 175       tst = _gvn.transform( new BoolNode(chk, btest) );
 176     }
 177     RangeCheckNode* rc = new RangeCheckNode(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 178     _gvn.set_type(rc, rc->Value(&_gvn));
 179     if (!tst->is_Con()) {
 180       record_for_igvn(rc);
 181     }
 182     set_control(_gvn.transform(new IfTrueNode(rc)));
 183     // Branch to failure if out of bounds
 184     {
 185       PreserveJVMState pjvms(this);
 186       set_control(_gvn.transform(new IfFalseNode(rc)));
 187       if (C->allow_range_check_smearing()) {
 188         // Do not use builtin_throw, since range checks are sometimes
 189         // made more stringent by an optimistic transformation.
 190         // This creates "tentative" range checks at this point,
 191         // which are not guaranteed to throw exceptions.
 192         // See IfNode::Ideal, is_range_check, adjust_check.
 193         uncommon_trap(Deoptimization::Reason_range_check,
 194                       Deoptimization::Action_make_not_entrant,
 195                       NULL, "range_check");
 196       } else {
 197         // If we have already recompiled with the range-check-widening
 198         // heroic optimization turned off, then we must really be throwing
 199         // range check exceptions.
 200         builtin_throw(Deoptimization::Reason_range_check, idx);
 201       }
 202     }
 203   }
 204   // Check for always knowing you are throwing a range-check exception
 205   if (stopped())  return top();
 206 
 207   // Make array address computation control dependent to prevent it
 208   // from floating above the range check during loop optimizations.
 209   Node* ptr = array_element_address(ary, idx, type, sizetype, control());
 210 
 211   if (result2 != NULL)  *result2 = elemtype;
 212 
 213   assert(ptr != top(), "top should go hand-in-hand with stopped");
 214 
 215   return ptr;
 216 }
 217 
 218 
 219 // returns IfNode
 220 IfNode* Parse::jump_if_fork_int(Node* a, Node* b, BoolTest::mask mask, float prob, float cnt) {
 221   Node   *cmp = _gvn.transform(new CmpINode(a, b)); // two cases: shiftcount > 32 and shiftcount <= 32
 222   Node   *tst = _gvn.transform(new BoolNode(cmp, mask));
 223   IfNode *iff = create_and_map_if(control(), tst, prob, cnt);
 224   return iff;
 225 }
 226 
 227 // return Region node
 228 Node* Parse::jump_if_join(Node* iffalse, Node* iftrue) {
 229   Node *region  = new RegionNode(3); // 2 results
 230   record_for_igvn(region);
 231   region->init_req(1, iffalse);
 232   region->init_req(2, iftrue );
 233   _gvn.set_type(region, Type::CONTROL);
 234   region = _gvn.transform(region);
 235   set_control (region);
 236   return region;
 237 }
 238 
 239 // sentinel value for the target bci to mark never taken branches
 240 // (according to profiling)
 241 static const int never_reached = INT_MAX;
 242 
 243 //------------------------------helper for tableswitch-------------------------
 244 void Parse::jump_if_true_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
 245   // True branch, use existing map info
 246   { PreserveJVMState pjvms(this);
 247     Node *iftrue  = _gvn.transform( new IfTrueNode (iff) );
 248     set_control( iftrue );
 249     if (unc) {
 250       repush_if_args();
 251       uncommon_trap(Deoptimization::Reason_unstable_if,
 252                     Deoptimization::Action_reinterpret,
 253                     NULL,
 254                     "taken always");
 255     } else {
 256       assert(dest_bci_if_true != never_reached, "inconsistent dest");
 257       profile_switch_case(prof_table_index);
 258       merge_new_path(dest_bci_if_true);
 259     }
 260   }
 261 
 262   // False branch
 263   Node *iffalse = _gvn.transform( new IfFalseNode(iff) );
 264   set_control( iffalse );
 265 }
 266 
 267 void Parse::jump_if_false_fork(IfNode *iff, int dest_bci_if_true, int prof_table_index, bool unc) {
 268   // True branch, use existing map info
 269   { PreserveJVMState pjvms(this);
 270     Node *iffalse  = _gvn.transform( new IfFalseNode (iff) );
 271     set_control( iffalse );
 272     if (unc) {
 273       repush_if_args();
 274       uncommon_trap(Deoptimization::Reason_unstable_if,
 275                     Deoptimization::Action_reinterpret,
 276                     NULL,
 277                     "taken never");
 278     } else {
 279       assert(dest_bci_if_true != never_reached, "inconsistent dest");
 280       profile_switch_case(prof_table_index);
 281       merge_new_path(dest_bci_if_true);
 282     }
 283   }
 284 
 285   // False branch
 286   Node *iftrue = _gvn.transform( new IfTrueNode(iff) );
 287   set_control( iftrue );
 288 }
 289 
 290 void Parse::jump_if_always_fork(int dest_bci, int prof_table_index, bool unc) {
 291   // False branch, use existing map and control()
 292   if (unc) {
 293     repush_if_args();
 294     uncommon_trap(Deoptimization::Reason_unstable_if,
 295                   Deoptimization::Action_reinterpret,
 296                   NULL,
 297                   "taken never");
 298   } else {
 299     assert(dest_bci != never_reached, "inconsistent dest");
 300     profile_switch_case(prof_table_index);
 301     merge_new_path(dest_bci);
 302   }
 303 }
 304 
 305 
 306 extern "C" {
 307   static int jint_cmp(const void *i, const void *j) {
 308     int a = *(jint *)i;
 309     int b = *(jint *)j;
 310     return a > b ? 1 : a < b ? -1 : 0;
 311   }
 312 }
 313 
 314 
 315 // Default value for methodData switch indexing. Must be a negative value to avoid
 316 // conflict with any legal switch index.
 317 #define NullTableIndex -1
 318 
 319 class SwitchRange : public StackObj {
 320   // a range of integers coupled with a bci destination
 321   jint _lo;                     // inclusive lower limit
 322   jint _hi;                     // inclusive upper limit
 323   int _dest;
 324   int _table_index;             // index into method data table
 325   float _cnt;                   // how many times this range was hit according to profiling
 326 
 327 public:
 328   jint lo() const              { return _lo;   }
 329   jint hi() const              { return _hi;   }
 330   int  dest() const            { return _dest; }
 331   int  table_index() const     { return _table_index; }
 332   bool is_singleton() const    { return _lo == _hi; }
 333   float cnt() const            { return _cnt; }
 334 
 335   void setRange(jint lo, jint hi, int dest, int table_index, float cnt) {
 336     assert(lo <= hi, "must be a non-empty range");
 337     _lo = lo, _hi = hi; _dest = dest; _table_index = table_index; _cnt = cnt;
 338     assert(_cnt >= 0, "");
 339   }
 340   bool adjoinRange(jint lo, jint hi, int dest, int table_index, float cnt, bool trim_ranges) {
 341     assert(lo <= hi, "must be a non-empty range");
 342     if (lo == _hi+1 && table_index == _table_index) {
 343       // see merge_ranges() comment below
 344       if (trim_ranges) {
 345         if (cnt == 0) {
 346           if (_cnt != 0) {
 347             return false;
 348           }
 349           if (dest != _dest) {
 350             _dest = never_reached;
 351           }
 352         } else {
 353           if (_cnt == 0) {
 354             return false;
 355           }
 356           if (dest != _dest) {
 357             return false;
 358           }
 359         }
 360       } else {
 361         if (dest != _dest) {
 362           return false;
 363         }
 364       }
 365       _hi = hi;
 366       _cnt += cnt;
 367       return true;
 368     }
 369     return false;
 370   }
 371 
 372   void set (jint value, int dest, int table_index, float cnt) {
 373     setRange(value, value, dest, table_index, cnt);
 374   }
 375   bool adjoin(jint value, int dest, int table_index, float cnt, bool trim_ranges) {
 376     return adjoinRange(value, value, dest, table_index, cnt, trim_ranges);
 377   }
 378   bool adjoin(SwitchRange& other) {
 379     return adjoinRange(other._lo, other._hi, other._dest, other._table_index, other._cnt, false);
 380   }
 381 
 382   void print() {
 383     if (is_singleton())
 384       tty->print(" {%d}=>%d (cnt=%f)", lo(), dest(), cnt());
 385     else if (lo() == min_jint)
 386       tty->print(" {..%d}=>%d (cnt=%f)", hi(), dest(), cnt());
 387     else if (hi() == max_jint)
 388       tty->print(" {%d..}=>%d (cnt=%f)", lo(), dest(), cnt());
 389     else
 390       tty->print(" {%d..%d}=>%d (cnt=%f)", lo(), hi(), dest(), cnt());
 391   }
 392 };
 393 
 394 // We try to minimize the number of ranges and the size of the taken
 395 // ones using profiling data. When ranges are created,
 396 // SwitchRange::adjoinRange() only allows 2 adjoining ranges to merge
 397 // if both were never hit or both were hit to build longer unreached
 398 // ranges. Here, we now merge adjoining ranges with the same
 399 // destination and finally set destination of unreached ranges to the
 400 // special value never_reached because it can help minimize the number
 401 // of tests that are necessary.
 402 //
 403 // For instance:
 404 // [0, 1] to target1 sometimes taken
 405 // [1, 2] to target1 never taken
 406 // [2, 3] to target2 never taken
 407 // would lead to:
 408 // [0, 1] to target1 sometimes taken
 409 // [1, 3] never taken
 410 //
 411 // (first 2 ranges to target1 are not merged)
 412 static void merge_ranges(SwitchRange* ranges, int& rp) {
 413   if (rp == 0) {
 414     return;
 415   }
 416   int shift = 0;
 417   for (int j = 0; j < rp; j++) {
 418     SwitchRange& r1 = ranges[j-shift];
 419     SwitchRange& r2 = ranges[j+1];
 420     if (r1.adjoin(r2)) {
 421       shift++;
 422     } else if (shift > 0) {
 423       ranges[j+1-shift] = r2;
 424     }
 425   }
 426   rp -= shift;
 427   for (int j = 0; j <= rp; j++) {
 428     SwitchRange& r = ranges[j];
 429     if (r.cnt() == 0 && r.dest() != never_reached) {
 430       r.setRange(r.lo(), r.hi(), never_reached, r.table_index(), r.cnt());
 431     }
 432   }
 433 }
 434 
 435 //-------------------------------do_tableswitch--------------------------------
 436 void Parse::do_tableswitch() {
 437   Node* lookup = pop();
 438   // Get information about tableswitch
 439   int default_dest = iter().get_dest_table(0);
 440   int lo_index     = iter().get_int_table(1);
 441   int hi_index     = iter().get_int_table(2);
 442   int len          = hi_index - lo_index + 1;
 443 
 444   if (len < 1) {
 445     // If this is a backward branch, add safepoint
 446     maybe_add_safepoint(default_dest);
 447     merge(default_dest);
 448     return;
 449   }
 450 
 451   ciMethodData* methodData = method()->method_data();
 452   ciMultiBranchData* profile = NULL;
 453   if (methodData->is_mature() && UseSwitchProfiling) {
 454     ciProfileData* data = methodData->bci_to_data(bci());
 455     if (data != NULL && data->is_MultiBranchData()) {
 456       profile = (ciMultiBranchData*)data;
 457     }
 458   }
 459   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 460 
 461   // generate decision tree, using trichotomy when possible
 462   int rnum = len+2;
 463   bool makes_backward_branch = false;
 464   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 465   int rp = -1;
 466   if (lo_index != min_jint) {
 467     uint cnt = 1;
 468     if (profile != NULL) {
 469       cnt = profile->default_count() / (hi_index != max_jint ? 2 : 1);
 470     }
 471     ranges[++rp].setRange(min_jint, lo_index-1, default_dest, NullTableIndex, cnt);
 472   }
 473   for (int j = 0; j < len; j++) {
 474     jint match_int = lo_index+j;
 475     int  dest      = iter().get_dest_table(j+3);
 476     makes_backward_branch |= (dest <= bci());
 477     int  table_index = method_data_update() ? j : NullTableIndex;
 478     uint cnt = 1;
 479     if (profile != NULL) {
 480       cnt = profile->count_at(j);
 481     }
 482     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
 483       ranges[++rp].set(match_int, dest, table_index, cnt);
 484     }
 485   }
 486   jint highest = lo_index+(len-1);
 487   assert(ranges[rp].hi() == highest, "");
 488   if (highest != max_jint) {
 489     uint cnt = 1;
 490     if (profile != NULL) {
 491       cnt = profile->default_count() / (lo_index != min_jint ? 2 : 1);
 492     }
 493     if (!ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, cnt, trim_ranges)) {
 494       ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, cnt);
 495     }
 496   }
 497   assert(rp < len+2, "not too many ranges");
 498 
 499   if (trim_ranges) {
 500     merge_ranges(ranges, rp);
 501   }
 502 
 503   // Safepoint in case if backward branch observed
 504   if( makes_backward_branch && UseLoopSafepoints )
 505     add_safepoint();
 506 
 507   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 508 }
 509 
 510 
 511 //------------------------------do_lookupswitch--------------------------------
 512 void Parse::do_lookupswitch() {
 513   Node *lookup = pop();         // lookup value
 514   // Get information about lookupswitch
 515   int default_dest = iter().get_dest_table(0);
 516   int len          = iter().get_int_table(1);
 517 
 518   if (len < 1) {    // If this is a backward branch, add safepoint
 519     maybe_add_safepoint(default_dest);
 520     merge(default_dest);
 521     return;
 522   }
 523 
 524   ciMethodData* methodData = method()->method_data();
 525   ciMultiBranchData* profile = NULL;
 526   if (methodData->is_mature() && UseSwitchProfiling) {
 527     ciProfileData* data = methodData->bci_to_data(bci());
 528     if (data != NULL && data->is_MultiBranchData()) {
 529       profile = (ciMultiBranchData*)data;
 530     }
 531   }
 532   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 533 
 534   // generate decision tree, using trichotomy when possible
 535   jint* table = NEW_RESOURCE_ARRAY(jint, len*3);
 536   {
 537     for (int j = 0; j < len; j++) {
 538       table[3*j+0] = iter().get_int_table(2+2*j);
 539       table[3*j+1] = iter().get_dest_table(2+2*j+1);
 540       table[3*j+2] = profile == NULL ? 1 : profile->count_at(j);
 541     }
 542     qsort(table, len, 3*sizeof(table[0]), jint_cmp);
 543   }
 544 
 545   float defaults = 0;
 546   jint prev = min_jint;
 547   for (int j = 0; j < len; j++) {
 548     jint match_int = table[3*j+0];
 549     if (match_int != prev) {
 550       defaults += (float)match_int - prev;
 551     }
 552     prev = match_int+1;
 553   }
 554   if (prev-1 != max_jint) {
 555     defaults += (float)max_jint - prev + 1;
 556   }
 557   float default_cnt = 1;
 558   if (profile != NULL) {
 559     default_cnt = profile->default_count()/defaults;
 560   }
 561 
 562   int rnum = len*2+1;
 563   bool makes_backward_branch = false;
 564   SwitchRange* ranges = NEW_RESOURCE_ARRAY(SwitchRange, rnum);
 565   int rp = -1;
 566   for (int j = 0; j < len; j++) {
 567     jint match_int   = table[3*j+0];
 568     int  dest        = table[3*j+1];
 569     int  cnt         = table[3*j+2];
 570     int  next_lo     = rp < 0 ? min_jint : ranges[rp].hi()+1;
 571     int  table_index = method_data_update() ? j : NullTableIndex;
 572     makes_backward_branch |= (dest <= bci());
 573     float c = default_cnt * ((float)match_int - next_lo);
 574     if (match_int != next_lo && (rp < 0 || !ranges[rp].adjoinRange(next_lo, match_int-1, default_dest, NullTableIndex, c, trim_ranges))) {
 575       assert(default_dest != never_reached, "sentinel value for dead destinations");
 576       ranges[++rp].setRange(next_lo, match_int-1, default_dest, NullTableIndex, c);
 577     }
 578     if (rp < 0 || !ranges[rp].adjoin(match_int, dest, table_index, cnt, trim_ranges)) {
 579       assert(dest != never_reached, "sentinel value for dead destinations");
 580       ranges[++rp].set(match_int, dest, table_index, cnt);
 581     }
 582   }
 583   jint highest = table[3*(len-1)];
 584   assert(ranges[rp].hi() == highest, "");
 585   if (highest != max_jint &&
 586       !ranges[rp].adjoinRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest), trim_ranges)) {
 587     ranges[++rp].setRange(highest+1, max_jint, default_dest, NullTableIndex, default_cnt * ((float)max_jint - highest));
 588   }
 589   assert(rp < rnum, "not too many ranges");
 590 
 591   if (trim_ranges) {
 592     merge_ranges(ranges, rp);
 593   }
 594 
 595   // Safepoint in case backward branch observed
 596   if (makes_backward_branch && UseLoopSafepoints)
 597     add_safepoint();
 598 
 599   jump_switch_ranges(lookup, &ranges[0], &ranges[rp]);
 600 }
 601 
 602 static float if_prob(float taken_cnt, float total_cnt) {
 603   assert(taken_cnt <= total_cnt, "");
 604   if (total_cnt == 0) {
 605     return PROB_FAIR;
 606   }
 607   float p = taken_cnt / total_cnt;
 608   return MIN2(MAX2(p, PROB_MIN), PROB_MAX);
 609 }
 610 
 611 static float if_cnt(float cnt) {
 612   if (cnt == 0) {
 613     return COUNT_UNKNOWN;
 614   }
 615   return cnt;
 616 }
 617 
 618 static float sum_of_cnts(SwitchRange *lo, SwitchRange *hi) {
 619   float total_cnt = 0;
 620   for (SwitchRange* sr = lo; sr <= hi; sr++) {
 621     total_cnt += sr->cnt();
 622   }
 623   return total_cnt;
 624 }
 625 
 626 class SwitchRanges : public ResourceObj {
 627 public:
 628   SwitchRange* _lo;
 629   SwitchRange* _hi;
 630   SwitchRange* _mid;
 631   float _cost;
 632 
 633   enum {
 634     Start,
 635     LeftDone,
 636     RightDone,
 637     Done
 638   } _state;
 639 
 640   SwitchRanges(SwitchRange *lo, SwitchRange *hi)
 641     : _lo(lo), _hi(hi), _mid(NULL),
 642       _cost(0), _state(Start) {
 643   }
 644 
 645   SwitchRanges()
 646     : _lo(NULL), _hi(NULL), _mid(NULL),
 647       _cost(0), _state(Start) {}
 648 };
 649 
 650 // Estimate cost of performing a binary search on lo..hi
 651 static float compute_tree_cost(SwitchRange *lo, SwitchRange *hi, float total_cnt) {
 652   GrowableArray<SwitchRanges> tree;
 653   SwitchRanges root(lo, hi);
 654   tree.push(root);
 655 
 656   float cost = 0;
 657   do {
 658     SwitchRanges& r = *tree.adr_at(tree.length()-1);
 659     if (r._hi != r._lo) {
 660       if (r._mid == NULL) {
 661         float r_cnt = sum_of_cnts(r._lo, r._hi);
 662 
 663         if (r_cnt == 0) {
 664           tree.pop();
 665           cost = 0;
 666           continue;
 667         }
 668 
 669         SwitchRange* mid = NULL;
 670         mid = r._lo;
 671         for (float cnt = 0; ; ) {
 672           assert(mid <= r._hi, "out of bounds");
 673           cnt += mid->cnt();
 674           if (cnt > r_cnt / 2) {
 675             break;
 676           }
 677           mid++;
 678         }
 679         assert(mid <= r._hi, "out of bounds");
 680         r._mid = mid;
 681         r._cost = r_cnt / total_cnt;
 682       }
 683       r._cost += cost;
 684       if (r._state < SwitchRanges::LeftDone && r._mid > r._lo) {
 685         cost = 0;
 686         r._state = SwitchRanges::LeftDone;
 687         tree.push(SwitchRanges(r._lo, r._mid-1));
 688       } else if (r._state < SwitchRanges::RightDone) {
 689         cost = 0;
 690         r._state = SwitchRanges::RightDone;
 691         tree.push(SwitchRanges(r._mid == r._lo ? r._mid+1 : r._mid, r._hi));
 692       } else {
 693         tree.pop();
 694         cost = r._cost;
 695       }
 696     } else {
 697       tree.pop();
 698       cost = r._cost;
 699     }
 700   } while (tree.length() > 0);
 701 
 702 
 703   return cost;
 704 }
 705 
 706 // It sometimes pays off to test most common ranges before the binary search
 707 void Parse::linear_search_switch_ranges(Node* key_val, SwitchRange*& lo, SwitchRange*& hi) {
 708   uint nr = hi - lo + 1;
 709   float total_cnt = sum_of_cnts(lo, hi);
 710 
 711   float min = compute_tree_cost(lo, hi, total_cnt);
 712   float extra = 1;
 713   float sub = 0;
 714 
 715   SwitchRange* array1 = lo;
 716   SwitchRange* array2 = NEW_RESOURCE_ARRAY(SwitchRange, nr);
 717 
 718   SwitchRange* ranges = NULL;
 719 
 720   while (nr >= 2) {
 721     assert(lo == array1 || lo == array2, "one the 2 already allocated arrays");
 722     ranges = (lo == array1) ? array2 : array1;
 723 
 724     // Find highest frequency range
 725     SwitchRange* candidate = lo;
 726     for (SwitchRange* sr = lo+1; sr <= hi; sr++) {
 727       if (sr->cnt() > candidate->cnt()) {
 728         candidate = sr;
 729       }
 730     }
 731     SwitchRange most_freq = *candidate;
 732     if (most_freq.cnt() == 0) {
 733       break;
 734     }
 735 
 736     // Copy remaining ranges into another array
 737     int shift = 0;
 738     for (uint i = 0; i < nr; i++) {
 739       SwitchRange* sr = &lo[i];
 740       if (sr != candidate) {
 741         ranges[i-shift] = *sr;
 742       } else {
 743         shift++;
 744         if (i > 0 && i < nr-1) {
 745           SwitchRange prev = lo[i-1];
 746           prev.setRange(prev.lo(), sr->hi(), prev.dest(), prev.table_index(), prev.cnt());
 747           if (prev.adjoin(lo[i+1])) {
 748             shift++;
 749             i++;
 750           }
 751           ranges[i-shift] = prev;
 752         }
 753       }
 754     }
 755     nr -= shift;
 756 
 757     // Evaluate cost of testing the most common range and performing a
 758     // binary search on the other ranges
 759     float cost = extra + compute_tree_cost(&ranges[0], &ranges[nr-1], total_cnt);
 760     if (cost >= min) {
 761       break;
 762     }
 763     // swap arrays
 764     lo = &ranges[0];
 765     hi = &ranges[nr-1];
 766 
 767     // It pays off: emit the test for the most common range
 768     assert(most_freq.cnt() > 0, "must be taken");
 769     Node* val = _gvn.transform(new SubINode(key_val, _gvn.intcon(most_freq.lo())));
 770     Node* cmp = _gvn.transform(new CmpUNode(val, _gvn.intcon(most_freq.hi() - most_freq.lo())));
 771     Node* tst = _gvn.transform(new BoolNode(cmp, BoolTest::le));
 772     IfNode* iff = create_and_map_if(control(), tst, if_prob(most_freq.cnt(), total_cnt), if_cnt(most_freq.cnt()));
 773     jump_if_true_fork(iff, most_freq.dest(), most_freq.table_index(), false);
 774 
 775     sub += most_freq.cnt() / total_cnt;
 776     extra += 1 - sub;
 777     min = cost;
 778   }
 779 }
 780 
 781 //----------------------------create_jump_tables-------------------------------
 782 bool Parse::create_jump_tables(Node* key_val, SwitchRange* lo, SwitchRange* hi) {
 783   // Are jumptables enabled
 784   if (!UseJumpTables)  return false;
 785 
 786   // Are jumptables supported
 787   if (!Matcher::has_match_rule(Op_Jump))  return false;
 788 
 789   // Don't make jump table if profiling
 790   if (method_data_update())  return false;
 791 
 792   bool trim_ranges = !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 793 
 794   // Decide if a guard is needed to lop off big ranges at either (or
 795   // both) end(s) of the input set. We'll call this the default target
 796   // even though we can't be sure that it is the true "default".
 797 
 798   bool needs_guard = false;
 799   int default_dest;
 800   int64_t total_outlier_size = 0;
 801   int64_t hi_size = ((int64_t)hi->hi()) - ((int64_t)hi->lo()) + 1;
 802   int64_t lo_size = ((int64_t)lo->hi()) - ((int64_t)lo->lo()) + 1;
 803 
 804   if (lo->dest() == hi->dest()) {
 805     total_outlier_size = hi_size + lo_size;
 806     default_dest = lo->dest();
 807   } else if (lo_size > hi_size) {
 808     total_outlier_size = lo_size;
 809     default_dest = lo->dest();
 810   } else {
 811     total_outlier_size = hi_size;
 812     default_dest = hi->dest();
 813   }
 814 
 815   float total = sum_of_cnts(lo, hi);
 816   float cost = compute_tree_cost(lo, hi, total);
 817 
 818   // If a guard test will eliminate very sparse end ranges, then
 819   // it is worth the cost of an extra jump.
 820   float trimmed_cnt = 0;
 821   if (total_outlier_size > (MaxJumpTableSparseness * 4)) {
 822     needs_guard = true;
 823     if (default_dest == lo->dest()) {
 824       trimmed_cnt += lo->cnt();
 825       lo++;
 826     }
 827     if (default_dest == hi->dest()) {
 828       trimmed_cnt += hi->cnt();
 829       hi--;
 830     }
 831   }
 832 
 833   // Find the total number of cases and ranges
 834   int64_t num_cases = ((int64_t)hi->hi()) - ((int64_t)lo->lo()) + 1;
 835   int num_range = hi - lo + 1;
 836 
 837   // Don't create table if: too large, too small, or too sparse.
 838   if (num_cases > MaxJumpTableSize)
 839     return false;
 840   if (UseSwitchProfiling) {
 841     // MinJumpTableSize is set so with a well balanced binary tree,
 842     // when the number of ranges is MinJumpTableSize, it's cheaper to
 843     // go through a JumpNode that a tree of IfNodes. Average cost of a
 844     // tree of IfNodes with MinJumpTableSize is
 845     // log2f(MinJumpTableSize) comparisons. So if the cost computed
 846     // from profile data is less than log2f(MinJumpTableSize) then
 847     // going with the binary search is cheaper.
 848     if (cost < log2f(MinJumpTableSize)) {
 849       return false;
 850     }
 851   } else {
 852     if (num_cases < MinJumpTableSize)
 853       return false;
 854   }
 855   if (num_cases > (MaxJumpTableSparseness * num_range))
 856     return false;
 857 
 858   // Normalize table lookups to zero
 859   int lowval = lo->lo();
 860   key_val = _gvn.transform( new SubINode(key_val, _gvn.intcon(lowval)) );
 861 
 862   // Generate a guard to protect against input keyvals that aren't
 863   // in the switch domain.
 864   if (needs_guard) {
 865     Node*   size = _gvn.intcon(num_cases);
 866     Node*   cmp = _gvn.transform(new CmpUNode(key_val, size));
 867     Node*   tst = _gvn.transform(new BoolNode(cmp, BoolTest::ge));
 868     IfNode* iff = create_and_map_if(control(), tst, if_prob(trimmed_cnt, total), if_cnt(trimmed_cnt));
 869     jump_if_true_fork(iff, default_dest, NullTableIndex, trim_ranges && trimmed_cnt == 0);
 870 
 871     total -= trimmed_cnt;
 872   }
 873 
 874   // Create an ideal node JumpTable that has projections
 875   // of all possible ranges for a switch statement
 876   // The key_val input must be converted to a pointer offset and scaled.
 877   // Compare Parse::array_addressing above.
 878 
 879   // Clean the 32-bit int into a real 64-bit offset.
 880   // Otherwise, the jint value 0 might turn into an offset of 0x0800000000.
 881   const TypeInt* ikeytype = TypeInt::make(0, num_cases, Type::WidenMin);
 882   // Make I2L conversion control dependent to prevent it from
 883   // floating above the range check during loop optimizations.
 884   key_val = C->conv_I2X_index(&_gvn, key_val, ikeytype, control());
 885 
 886   // Shift the value by wordsize so we have an index into the table, rather
 887   // than a switch value
 888   Node *shiftWord = _gvn.MakeConX(wordSize);
 889   key_val = _gvn.transform( new MulXNode( key_val, shiftWord));
 890 
 891   // Create the JumpNode
 892   Arena* arena = C->comp_arena();
 893   float* probs = (float*)arena->Amalloc(sizeof(float)*num_cases);
 894   int i = 0;
 895   if (total == 0) {
 896     for (SwitchRange* r = lo; r <= hi; r++) {
 897       for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 898         probs[i] = 1.0F / num_cases;
 899       }
 900     }
 901   } else {
 902     for (SwitchRange* r = lo; r <= hi; r++) {
 903       float prob = r->cnt()/total;
 904       for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 905         probs[i] = prob / (r->hi() - r->lo() + 1);
 906       }
 907     }
 908   }
 909 
 910   ciMethodData* methodData = method()->method_data();
 911   ciMultiBranchData* profile = NULL;
 912   if (methodData->is_mature()) {
 913     ciProfileData* data = methodData->bci_to_data(bci());
 914     if (data != NULL && data->is_MultiBranchData()) {
 915       profile = (ciMultiBranchData*)data;
 916     }
 917   }
 918 
 919   Node* jtn = _gvn.transform(new JumpNode(control(), key_val, num_cases, probs, profile == NULL ? COUNT_UNKNOWN : total));
 920 
 921   // These are the switch destinations hanging off the jumpnode
 922   i = 0;
 923   for (SwitchRange* r = lo; r <= hi; r++) {
 924     for (int64_t j = r->lo(); j <= r->hi(); j++, i++) {
 925       Node* input = _gvn.transform(new JumpProjNode(jtn, i, r->dest(), (int)(j - lowval)));
 926       {
 927         PreserveJVMState pjvms(this);
 928         set_control(input);
 929         jump_if_always_fork(r->dest(), r->table_index(), trim_ranges && r->cnt() == 0);
 930       }
 931     }
 932   }
 933   assert(i == num_cases, "miscount of cases");
 934   stop_and_kill_map();  // no more uses for this JVMS
 935   return true;
 936 }
 937 
 938 //----------------------------jump_switch_ranges-------------------------------
 939 void Parse::jump_switch_ranges(Node* key_val, SwitchRange *lo, SwitchRange *hi, int switch_depth) {
 940   Block* switch_block = block();
 941   bool trim_ranges = !method_data_update() && !C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if);
 942 
 943   if (switch_depth == 0) {
 944     // Do special processing for the top-level call.
 945     assert(lo->lo() == min_jint, "initial range must exhaust Type::INT");
 946     assert(hi->hi() == max_jint, "initial range must exhaust Type::INT");
 947 
 948     // Decrement pred-numbers for the unique set of nodes.
 949 #ifdef ASSERT
 950     if (!trim_ranges) {
 951       // Ensure that the block's successors are a (duplicate-free) set.
 952       int successors_counted = 0;  // block occurrences in [hi..lo]
 953       int unique_successors = switch_block->num_successors();
 954       for (int i = 0; i < unique_successors; i++) {
 955         Block* target = switch_block->successor_at(i);
 956 
 957         // Check that the set of successors is the same in both places.
 958         int successors_found = 0;
 959         for (SwitchRange* p = lo; p <= hi; p++) {
 960           if (p->dest() == target->start())  successors_found++;
 961         }
 962         assert(successors_found > 0, "successor must be known");
 963         successors_counted += successors_found;
 964       }
 965       assert(successors_counted == (hi-lo)+1, "no unexpected successors");
 966     }
 967 #endif
 968 
 969     // Maybe prune the inputs, based on the type of key_val.
 970     jint min_val = min_jint;
 971     jint max_val = max_jint;
 972     const TypeInt* ti = key_val->bottom_type()->isa_int();
 973     if (ti != NULL) {
 974       min_val = ti->_lo;
 975       max_val = ti->_hi;
 976       assert(min_val <= max_val, "invalid int type");
 977     }
 978     while (lo->hi() < min_val) {
 979       lo++;
 980     }
 981     if (lo->lo() < min_val)  {
 982       lo->setRange(min_val, lo->hi(), lo->dest(), lo->table_index(), lo->cnt());
 983     }
 984     while (hi->lo() > max_val) {
 985       hi--;
 986     }
 987     if (hi->hi() > max_val) {
 988       hi->setRange(hi->lo(), max_val, hi->dest(), hi->table_index(), hi->cnt());
 989     }
 990 
 991     linear_search_switch_ranges(key_val, lo, hi);
 992   }
 993 
 994 #ifndef PRODUCT
 995   if (switch_depth == 0) {
 996     _max_switch_depth = 0;
 997     _est_switch_depth = log2_intptr((hi-lo+1)-1)+1;
 998   }
 999 #endif
1000 
1001   assert(lo <= hi, "must be a non-empty set of ranges");
1002   if (lo == hi) {
1003     jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
1004   } else {
1005     assert(lo->hi() == (lo+1)->lo()-1, "contiguous ranges");
1006     assert(hi->lo() == (hi-1)->hi()+1, "contiguous ranges");
1007 
1008     if (create_jump_tables(key_val, lo, hi)) return;
1009 
1010     SwitchRange* mid = NULL;
1011     float total_cnt = sum_of_cnts(lo, hi);
1012 
1013     int nr = hi - lo + 1;
1014     if (UseSwitchProfiling) {
1015       // Don't keep the binary search tree balanced: pick up mid point
1016       // that split frequencies in half.
1017       float cnt = 0;
1018       for (SwitchRange* sr = lo; sr <= hi; sr++) {
1019         cnt += sr->cnt();
1020         if (cnt >= total_cnt / 2) {
1021           mid = sr;
1022           break;
1023         }
1024       }
1025     } else {
1026       mid = lo + nr/2;
1027 
1028       // if there is an easy choice, pivot at a singleton:
1029       if (nr > 3 && !mid->is_singleton() && (mid-1)->is_singleton())  mid--;
1030 
1031       assert(lo < mid && mid <= hi, "good pivot choice");
1032       assert(nr != 2 || mid == hi,   "should pick higher of 2");
1033       assert(nr != 3 || mid == hi-1, "should pick middle of 3");
1034     }
1035 
1036 
1037     Node *test_val = _gvn.intcon(mid == lo ? mid->hi() : mid->lo());
1038 
1039     if (mid->is_singleton()) {
1040       IfNode *iff_ne = jump_if_fork_int(key_val, test_val, BoolTest::ne, 1-if_prob(mid->cnt(), total_cnt), if_cnt(mid->cnt()));
1041       jump_if_false_fork(iff_ne, mid->dest(), mid->table_index(), trim_ranges && mid->cnt() == 0);
1042 
1043       // Special Case:  If there are exactly three ranges, and the high
1044       // and low range each go to the same place, omit the "gt" test,
1045       // since it will not discriminate anything.
1046       bool eq_test_only = (hi == lo+2 && hi->dest() == lo->dest() && mid == hi-1) || mid == lo;
1047 
1048       // if there is a higher range, test for it and process it:
1049       if (mid < hi && !eq_test_only) {
1050         // two comparisons of same values--should enable 1 test for 2 branches
1051         // Use BoolTest::le instead of BoolTest::gt
1052         float cnt = sum_of_cnts(lo, mid-1);
1053         IfNode *iff_le  = jump_if_fork_int(key_val, test_val, BoolTest::le, if_prob(cnt, total_cnt), if_cnt(cnt));
1054         Node   *iftrue  = _gvn.transform( new IfTrueNode(iff_le) );
1055         Node   *iffalse = _gvn.transform( new IfFalseNode(iff_le) );
1056         { PreserveJVMState pjvms(this);
1057           set_control(iffalse);
1058           jump_switch_ranges(key_val, mid+1, hi, switch_depth+1);
1059         }
1060         set_control(iftrue);
1061       }
1062 
1063     } else {
1064       // mid is a range, not a singleton, so treat mid..hi as a unit
1065       float cnt = sum_of_cnts(mid == lo ? mid+1 : mid, hi);
1066       IfNode *iff_ge = jump_if_fork_int(key_val, test_val, mid == lo ? BoolTest::gt : BoolTest::ge, if_prob(cnt, total_cnt), if_cnt(cnt));
1067 
1068       // if there is a higher range, test for it and process it:
1069       if (mid == hi) {
1070         jump_if_true_fork(iff_ge, mid->dest(), mid->table_index(), trim_ranges && cnt == 0);
1071       } else {
1072         Node *iftrue  = _gvn.transform( new IfTrueNode(iff_ge) );
1073         Node *iffalse = _gvn.transform( new IfFalseNode(iff_ge) );
1074         { PreserveJVMState pjvms(this);
1075           set_control(iftrue);
1076           jump_switch_ranges(key_val, mid == lo ? mid+1 : mid, hi, switch_depth+1);
1077         }
1078         set_control(iffalse);
1079       }
1080     }
1081 
1082     // in any case, process the lower range
1083     if (mid == lo) {
1084       if (mid->is_singleton()) {
1085         jump_switch_ranges(key_val, lo+1, hi, switch_depth+1);
1086       } else {
1087         jump_if_always_fork(lo->dest(), lo->table_index(), trim_ranges && lo->cnt() == 0);
1088       }
1089     } else {
1090       jump_switch_ranges(key_val, lo, mid-1, switch_depth+1);
1091     }
1092   }
1093 
1094   // Decrease pred_count for each successor after all is done.
1095   if (switch_depth == 0) {
1096     int unique_successors = switch_block->num_successors();
1097     for (int i = 0; i < unique_successors; i++) {
1098       Block* target = switch_block->successor_at(i);
1099       // Throw away the pre-allocated path for each unique successor.
1100       target->next_path_num();
1101     }
1102   }
1103 
1104 #ifndef PRODUCT
1105   _max_switch_depth = MAX2(switch_depth, _max_switch_depth);
1106   if (TraceOptoParse && Verbose && WizardMode && switch_depth == 0) {
1107     SwitchRange* r;
1108     int nsing = 0;
1109     for( r = lo; r <= hi; r++ ) {
1110       if( r->is_singleton() )  nsing++;
1111     }
1112     tty->print(">>> ");
1113     _method->print_short_name();
1114     tty->print_cr(" switch decision tree");
1115     tty->print_cr("    %d ranges (%d singletons), max_depth=%d, est_depth=%d",
1116                   (int) (hi-lo+1), nsing, _max_switch_depth, _est_switch_depth);
1117     if (_max_switch_depth > _est_switch_depth) {
1118       tty->print_cr("******** BAD SWITCH DEPTH ********");
1119     }
1120     tty->print("   ");
1121     for( r = lo; r <= hi; r++ ) {
1122       r->print();
1123     }
1124     tty->cr();
1125   }
1126 #endif
1127 }
1128 
1129 void Parse::modf() {
1130   Node *f2 = pop();
1131   Node *f1 = pop();
1132   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::modf_Type(),
1133                               CAST_FROM_FN_PTR(address, SharedRuntime::frem),
1134                               "frem", NULL, //no memory effects
1135                               f1, f2);
1136   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1137 
1138   push(res);
1139 }
1140 
1141 void Parse::modd() {
1142   Node *d2 = pop_pair();
1143   Node *d1 = pop_pair();
1144   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(),
1145                               CAST_FROM_FN_PTR(address, SharedRuntime::drem),
1146                               "drem", NULL, //no memory effects
1147                               d1, top(), d2, top());
1148   Node* res_d   = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1149 
1150 #ifdef ASSERT
1151   Node* res_top = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 1));
1152   assert(res_top == top(), "second value must be top");
1153 #endif
1154 
1155   push_pair(res_d);
1156 }
1157 
1158 void Parse::l2f() {
1159   Node* f2 = pop();
1160   Node* f1 = pop();
1161   Node* c = make_runtime_call(RC_LEAF, OptoRuntime::l2f_Type(),
1162                               CAST_FROM_FN_PTR(address, SharedRuntime::l2f),
1163                               "l2f", NULL, //no memory effects
1164                               f1, f2);
1165   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms + 0));
1166 
1167   push(res);
1168 }
1169 
1170 void Parse::do_irem() {
1171   // Must keep both values on the expression-stack during null-check
1172   zero_check_int(peek());
1173   // Compile-time detect of null-exception?
1174   if (stopped())  return;
1175 
1176   Node* b = pop();
1177   Node* a = pop();
1178 
1179   const Type *t = _gvn.type(b);
1180   if (t != Type::TOP) {
1181     const TypeInt *ti = t->is_int();
1182     if (ti->is_con()) {
1183       int divisor = ti->get_con();
1184       // check for positive power of 2
1185       if (divisor > 0 &&
1186           (divisor & ~(divisor-1)) == divisor) {
1187         // yes !
1188         Node *mask = _gvn.intcon((divisor - 1));
1189         // Sigh, must handle negative dividends
1190         Node *zero = _gvn.intcon(0);
1191         IfNode *ifff = jump_if_fork_int(a, zero, BoolTest::lt, PROB_FAIR, COUNT_UNKNOWN);
1192         Node *iff = _gvn.transform( new IfFalseNode(ifff) );
1193         Node *ift = _gvn.transform( new IfTrueNode (ifff) );
1194         Node *reg = jump_if_join(ift, iff);
1195         Node *phi = PhiNode::make(reg, NULL, TypeInt::INT);
1196         // Negative path; negate/and/negate
1197         Node *neg = _gvn.transform( new SubINode(zero, a) );
1198         Node *andn= _gvn.transform( new AndINode(neg, mask) );
1199         Node *negn= _gvn.transform( new SubINode(zero, andn) );
1200         phi->init_req(1, negn);
1201         // Fast positive case
1202         Node *andx = _gvn.transform( new AndINode(a, mask) );
1203         phi->init_req(2, andx);
1204         // Push the merge
1205         push( _gvn.transform(phi) );
1206         return;
1207       }
1208     }
1209   }
1210   // Default case
1211   push( _gvn.transform( new ModINode(control(),a,b) ) );
1212 }
1213 
1214 // Handle jsr and jsr_w bytecode
1215 void Parse::do_jsr() {
1216   assert(bc() == Bytecodes::_jsr || bc() == Bytecodes::_jsr_w, "wrong bytecode");
1217 
1218   // Store information about current state, tagged with new _jsr_bci
1219   int return_bci = iter().next_bci();
1220   int jsr_bci    = (bc() == Bytecodes::_jsr) ? iter().get_dest() : iter().get_far_dest();
1221 
1222   // Update method data
1223   profile_taken_branch(jsr_bci);
1224 
1225   // The way we do things now, there is only one successor block
1226   // for the jsr, because the target code is cloned by ciTypeFlow.
1227   Block* target = successor_for_bci(jsr_bci);
1228 
1229   // What got pushed?
1230   const Type* ret_addr = target->peek();
1231   assert(ret_addr->singleton(), "must be a constant (cloned jsr body)");
1232 
1233   // Effect on jsr on stack
1234   push(_gvn.makecon(ret_addr));
1235 
1236   // Flow to the jsr.
1237   merge(jsr_bci);
1238 }
1239 
1240 // Handle ret bytecode
1241 void Parse::do_ret() {
1242   // Find to whom we return.
1243   assert(block()->num_successors() == 1, "a ret can only go one place now");
1244   Block* target = block()->successor_at(0);
1245   assert(!target->is_ready(), "our arrival must be expected");
1246   profile_ret(target->flow()->start());
1247   int pnum = target->next_path_num();
1248   merge_common(target, pnum);
1249 }
1250 
1251 static bool has_injected_profile(BoolTest::mask btest, Node* test, int& taken, int& not_taken) {
1252   if (btest != BoolTest::eq && btest != BoolTest::ne) {
1253     // Only ::eq and ::ne are supported for profile injection.
1254     return false;
1255   }
1256   if (test->is_Cmp() &&
1257       test->in(1)->Opcode() == Op_ProfileBoolean) {
1258     ProfileBooleanNode* profile = (ProfileBooleanNode*)test->in(1);
1259     int false_cnt = profile->false_count();
1260     int  true_cnt = profile->true_count();
1261 
1262     // Counts matching depends on the actual test operation (::eq or ::ne).
1263     // No need to scale the counts because profile injection was designed
1264     // to feed exact counts into VM.
1265     taken     = (btest == BoolTest::eq) ? false_cnt :  true_cnt;
1266     not_taken = (btest == BoolTest::eq) ?  true_cnt : false_cnt;
1267 
1268     profile->consume();
1269     return true;
1270   }
1271   return false;
1272 }
1273 //--------------------------dynamic_branch_prediction--------------------------
1274 // Try to gather dynamic branch prediction behavior.  Return a probability
1275 // of the branch being taken and set the "cnt" field.  Returns a -1.0
1276 // if we need to use static prediction for some reason.
1277 float Parse::dynamic_branch_prediction(float &cnt, BoolTest::mask btest, Node* test) {
1278   ResourceMark rm;
1279 
1280   cnt  = COUNT_UNKNOWN;
1281 
1282   int     taken = 0;
1283   int not_taken = 0;
1284 
1285   bool use_mdo = !has_injected_profile(btest, test, taken, not_taken);
1286 
1287   if (use_mdo) {
1288     // Use MethodData information if it is available
1289     // FIXME: free the ProfileData structure
1290     ciMethodData* methodData = method()->method_data();
1291     if (!methodData->is_mature())  return PROB_UNKNOWN;
1292     ciProfileData* data = methodData->bci_to_data(bci());
1293     if (data == NULL) {
1294       return PROB_UNKNOWN;
1295     }
1296     if (!data->is_JumpData())  return PROB_UNKNOWN;
1297 
1298     // get taken and not taken values
1299     taken = data->as_JumpData()->taken();
1300     not_taken = 0;
1301     if (data->is_BranchData()) {
1302       not_taken = data->as_BranchData()->not_taken();
1303     }
1304 
1305     // scale the counts to be commensurate with invocation counts:
1306     taken = method()->scale_count(taken);
1307     not_taken = method()->scale_count(not_taken);
1308   }
1309 
1310   // Give up if too few (or too many, in which case the sum will overflow) counts to be meaningful.
1311   // We also check that individual counters are positive first, otherwise the sum can become positive.
1312   if (taken < 0 || not_taken < 0 || taken + not_taken < 40) {
1313     if (C->log() != NULL) {
1314       C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d'", iter().get_dest(), taken, not_taken);
1315     }
1316     return PROB_UNKNOWN;
1317   }
1318 
1319   // Compute frequency that we arrive here
1320   float sum = taken + not_taken;
1321   // Adjust, if this block is a cloned private block but the
1322   // Jump counts are shared.  Taken the private counts for
1323   // just this path instead of the shared counts.
1324   if( block()->count() > 0 )
1325     sum = block()->count();
1326   cnt = sum / FreqCountInvocations;
1327 
1328   // Pin probability to sane limits
1329   float prob;
1330   if( !taken )
1331     prob = (0+PROB_MIN) / 2;
1332   else if( !not_taken )
1333     prob = (1+PROB_MAX) / 2;
1334   else {                         // Compute probability of true path
1335     prob = (float)taken / (float)(taken + not_taken);
1336     if (prob > PROB_MAX)  prob = PROB_MAX;
1337     if (prob < PROB_MIN)   prob = PROB_MIN;
1338   }
1339 
1340   assert((cnt > 0.0f) && (prob > 0.0f),
1341          "Bad frequency assignment in if");
1342 
1343   if (C->log() != NULL) {
1344     const char* prob_str = NULL;
1345     if (prob >= PROB_MAX)  prob_str = (prob == PROB_MAX) ? "max" : "always";
1346     if (prob <= PROB_MIN)  prob_str = (prob == PROB_MIN) ? "min" : "never";
1347     char prob_str_buf[30];
1348     if (prob_str == NULL) {
1349       sprintf(prob_str_buf, "%g", prob);
1350       prob_str = prob_str_buf;
1351     }
1352     C->log()->elem("branch target_bci='%d' taken='%d' not_taken='%d' cnt='%f' prob='%s'",
1353                    iter().get_dest(), taken, not_taken, cnt, prob_str);
1354   }
1355   return prob;
1356 }
1357 
1358 //-----------------------------branch_prediction-------------------------------
1359 float Parse::branch_prediction(float& cnt,
1360                                BoolTest::mask btest,
1361                                int target_bci,
1362                                Node* test) {
1363   float prob = dynamic_branch_prediction(cnt, btest, test);
1364   // If prob is unknown, switch to static prediction
1365   if (prob != PROB_UNKNOWN)  return prob;
1366 
1367   prob = PROB_FAIR;                   // Set default value
1368   if (btest == BoolTest::eq)          // Exactly equal test?
1369     prob = PROB_STATIC_INFREQUENT;    // Assume its relatively infrequent
1370   else if (btest == BoolTest::ne)
1371     prob = PROB_STATIC_FREQUENT;      // Assume its relatively frequent
1372 
1373   // If this is a conditional test guarding a backwards branch,
1374   // assume its a loop-back edge.  Make it a likely taken branch.
1375   if (target_bci < bci()) {
1376     if (is_osr_parse()) {    // Could be a hot OSR'd loop; force deopt
1377       // Since it's an OSR, we probably have profile data, but since
1378       // branch_prediction returned PROB_UNKNOWN, the counts are too small.
1379       // Let's make a special check here for completely zero counts.
1380       ciMethodData* methodData = method()->method_data();
1381       if (!methodData->is_empty()) {
1382         ciProfileData* data = methodData->bci_to_data(bci());
1383         // Only stop for truly zero counts, which mean an unknown part
1384         // of the OSR-ed method, and we want to deopt to gather more stats.
1385         // If you have ANY counts, then this loop is simply 'cold' relative
1386         // to the OSR loop.
1387         if (data == NULL ||
1388             (data->as_BranchData()->taken() +  data->as_BranchData()->not_taken() == 0)) {
1389           // This is the only way to return PROB_UNKNOWN:
1390           return PROB_UNKNOWN;
1391         }
1392       }
1393     }
1394     prob = PROB_STATIC_FREQUENT;     // Likely to take backwards branch
1395   }
1396 
1397   assert(prob != PROB_UNKNOWN, "must have some guess at this point");
1398   return prob;
1399 }
1400 
1401 // The magic constants are chosen so as to match the output of
1402 // branch_prediction() when the profile reports a zero taken count.
1403 // It is important to distinguish zero counts unambiguously, because
1404 // some branches (e.g., _213_javac.Assembler.eliminate) validly produce
1405 // very small but nonzero probabilities, which if confused with zero
1406 // counts would keep the program recompiling indefinitely.
1407 bool Parse::seems_never_taken(float prob) const {
1408   return prob < PROB_MIN;
1409 }
1410 
1411 // True if the comparison seems to be the kind that will not change its
1412 // statistics from true to false.  See comments in adjust_map_after_if.
1413 // This question is only asked along paths which are already
1414 // classifed as untaken (by seems_never_taken), so really,
1415 // if a path is never taken, its controlling comparison is
1416 // already acting in a stable fashion.  If the comparison
1417 // seems stable, we will put an expensive uncommon trap
1418 // on the untaken path.
1419 bool Parse::seems_stable_comparison() const {
1420   if (C->too_many_traps(method(), bci(), Deoptimization::Reason_unstable_if)) {
1421     return false;
1422   }
1423   return true;
1424 }
1425 
1426 //-------------------------------repush_if_args--------------------------------
1427 // Push arguments of an "if" bytecode back onto the stack by adjusting _sp.
1428 inline int Parse::repush_if_args() {
1429   if (PrintOpto && WizardMode) {
1430     tty->print("defending against excessive implicit null exceptions on %s @%d in ",
1431                Bytecodes::name(iter().cur_bc()), iter().cur_bci());
1432     method()->print_name(); tty->cr();
1433   }
1434   int bc_depth = - Bytecodes::depth(iter().cur_bc());
1435   assert(bc_depth == 1 || bc_depth == 2, "only two kinds of branches");
1436   DEBUG_ONLY(sync_jvms());   // argument(n) requires a synced jvms
1437   assert(argument(0) != NULL, "must exist");
1438   assert(bc_depth == 1 || argument(1) != NULL, "two must exist");
1439   inc_sp(bc_depth);
1440   return bc_depth;
1441 }
1442 
1443 //----------------------------------do_ifnull----------------------------------
1444 void Parse::do_ifnull(BoolTest::mask btest, Node *c) {
1445   int target_bci = iter().get_dest();
1446 
1447   Block* branch_block = successor_for_bci(target_bci);
1448   Block* next_block   = successor_for_bci(iter().next_bci());
1449 
1450   float cnt;
1451   float prob = branch_prediction(cnt, btest, target_bci, c);
1452   if (prob == PROB_UNKNOWN) {
1453     // (An earlier version of do_ifnull omitted this trap for OSR methods.)
1454     if (PrintOpto && Verbose) {
1455       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1456     }
1457     repush_if_args(); // to gather stats on loop
1458     // We need to mark this branch as taken so that if we recompile we will
1459     // see that it is possible. In the tiered system the interpreter doesn't
1460     // do profiling and by the time we get to the lower tier from the interpreter
1461     // the path may be cold again. Make sure it doesn't look untaken
1462     profile_taken_branch(target_bci, !ProfileInterpreter);
1463     uncommon_trap(Deoptimization::Reason_unreached,
1464                   Deoptimization::Action_reinterpret,
1465                   NULL, "cold");
1466     if (C->eliminate_boxing()) {
1467       // Mark the successor blocks as parsed
1468       branch_block->next_path_num();
1469       next_block->next_path_num();
1470     }
1471     return;
1472   }
1473 
1474   NOT_PRODUCT(explicit_null_checks_inserted++);
1475 
1476   // Generate real control flow
1477   Node   *tst = _gvn.transform( new BoolNode( c, btest ) );
1478 
1479   // Sanity check the probability value
1480   assert(prob > 0.0f,"Bad probability in Parser");
1481  // Need xform to put node in hash table
1482   IfNode *iff = create_and_xform_if( control(), tst, prob, cnt );
1483   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1484   // True branch
1485   { PreserveJVMState pjvms(this);
1486     Node* iftrue  = _gvn.transform( new IfTrueNode (iff) );
1487     set_control(iftrue);
1488 
1489     if (stopped()) {            // Path is dead?
1490       NOT_PRODUCT(explicit_null_checks_elided++);
1491       if (C->eliminate_boxing()) {
1492         // Mark the successor block as parsed
1493         branch_block->next_path_num();
1494       }
1495     } else {                    // Path is live.
1496       // Update method data
1497       profile_taken_branch(target_bci);
1498       adjust_map_after_if(btest, c, prob, branch_block, next_block);
1499       if (!stopped()) {
1500         merge(target_bci);
1501       }
1502     }
1503   }
1504 
1505   // False branch
1506   Node* iffalse = _gvn.transform( new IfFalseNode(iff) );
1507   set_control(iffalse);
1508 
1509   if (stopped()) {              // Path is dead?
1510     NOT_PRODUCT(explicit_null_checks_elided++);
1511     if (C->eliminate_boxing()) {
1512       // Mark the successor block as parsed
1513       next_block->next_path_num();
1514     }
1515   } else  {                     // Path is live.
1516     // Update method data
1517     profile_not_taken_branch();
1518     adjust_map_after_if(BoolTest(btest).negate(), c, 1.0-prob,
1519                         next_block, branch_block);
1520   }
1521 }
1522 
1523 //------------------------------------do_if------------------------------------
1524 void Parse::do_if(BoolTest::mask btest, Node* c) {
1525   int target_bci = iter().get_dest();
1526 
1527   Block* branch_block = successor_for_bci(target_bci);
1528   Block* next_block   = successor_for_bci(iter().next_bci());
1529 
1530   float cnt;
1531   float prob = branch_prediction(cnt, btest, target_bci, c);
1532   float untaken_prob = 1.0 - prob;
1533 
1534   if (prob == PROB_UNKNOWN) {
1535     if (PrintOpto && Verbose) {
1536       tty->print_cr("Never-taken edge stops compilation at bci %d", bci());
1537     }
1538     repush_if_args(); // to gather stats on loop
1539     // We need to mark this branch as taken so that if we recompile we will
1540     // see that it is possible. In the tiered system the interpreter doesn't
1541     // do profiling and by the time we get to the lower tier from the interpreter
1542     // the path may be cold again. Make sure it doesn't look untaken
1543     profile_taken_branch(target_bci, !ProfileInterpreter);
1544     uncommon_trap(Deoptimization::Reason_unreached,
1545                   Deoptimization::Action_reinterpret,
1546                   NULL, "cold");
1547     if (C->eliminate_boxing()) {
1548       // Mark the successor blocks as parsed
1549       branch_block->next_path_num();
1550       next_block->next_path_num();
1551     }
1552     return;
1553   }
1554 
1555   // Sanity check the probability value
1556   assert(0.0f < prob && prob < 1.0f,"Bad probability in Parser");
1557 
1558   bool taken_if_true = true;
1559   // Convert BoolTest to canonical form:
1560   if (!BoolTest(btest).is_canonical()) {
1561     btest         = BoolTest(btest).negate();
1562     taken_if_true = false;
1563     // prob is NOT updated here; it remains the probability of the taken
1564     // path (as opposed to the prob of the path guarded by an 'IfTrueNode').
1565   }
1566   assert(btest != BoolTest::eq, "!= is the only canonical exact test");
1567 
1568   Node* tst0 = new BoolNode(c, btest);
1569   Node* tst = _gvn.transform(tst0);
1570   BoolTest::mask taken_btest   = BoolTest::illegal;
1571   BoolTest::mask untaken_btest = BoolTest::illegal;
1572 
1573   if (tst->is_Bool()) {
1574     // Refresh c from the transformed bool node, since it may be
1575     // simpler than the original c.  Also re-canonicalize btest.
1576     // This wins when (Bool ne (Conv2B p) 0) => (Bool ne (CmpP p NULL)).
1577     // That can arise from statements like: if (x instanceof C) ...
1578     if (tst != tst0) {
1579       // Canonicalize one more time since transform can change it.
1580       btest = tst->as_Bool()->_test._test;
1581       if (!BoolTest(btest).is_canonical()) {
1582         // Reverse edges one more time...
1583         tst   = _gvn.transform( tst->as_Bool()->negate(&_gvn) );
1584         btest = tst->as_Bool()->_test._test;
1585         assert(BoolTest(btest).is_canonical(), "sanity");
1586         taken_if_true = !taken_if_true;
1587       }
1588       c = tst->in(1);
1589     }
1590     BoolTest::mask neg_btest = BoolTest(btest).negate();
1591     taken_btest   = taken_if_true ?     btest : neg_btest;
1592     untaken_btest = taken_if_true ? neg_btest :     btest;
1593   }
1594 
1595   // Generate real control flow
1596   float true_prob = (taken_if_true ? prob : untaken_prob);
1597   IfNode* iff = create_and_map_if(control(), tst, true_prob, cnt);
1598   assert(iff->_prob > 0.0f,"Optimizer made bad probability in parser");
1599   Node* taken_branch   = new IfTrueNode(iff);
1600   Node* untaken_branch = new IfFalseNode(iff);
1601   if (!taken_if_true) {  // Finish conversion to canonical form
1602     Node* tmp      = taken_branch;
1603     taken_branch   = untaken_branch;
1604     untaken_branch = tmp;
1605   }
1606 
1607   // Branch is taken:
1608   { PreserveJVMState pjvms(this);
1609     taken_branch = _gvn.transform(taken_branch);
1610     set_control(taken_branch);
1611 
1612     if (stopped()) {
1613       if (C->eliminate_boxing()) {
1614         // Mark the successor block as parsed
1615         branch_block->next_path_num();
1616       }
1617     } else {
1618       // Update method data
1619       profile_taken_branch(target_bci);
1620       adjust_map_after_if(taken_btest, c, prob, branch_block, next_block);
1621       if (!stopped()) {
1622         merge(target_bci);
1623       }
1624     }
1625   }
1626 
1627   untaken_branch = _gvn.transform(untaken_branch);
1628   set_control(untaken_branch);
1629 
1630   // Branch not taken.
1631   if (stopped()) {
1632     if (C->eliminate_boxing()) {
1633       // Mark the successor block as parsed
1634       next_block->next_path_num();
1635     }
1636   } else {
1637     // Update method data
1638     profile_not_taken_branch();
1639     adjust_map_after_if(untaken_btest, c, untaken_prob,
1640                         next_block, branch_block);
1641   }
1642 }
1643 
1644 bool Parse::path_is_suitable_for_uncommon_trap(float prob) const {
1645   // Don't want to speculate on uncommon traps when running with -Xcomp
1646   if (!UseInterpreter) {
1647     return false;
1648   }
1649   return (seems_never_taken(prob) && seems_stable_comparison());
1650 }
1651 
1652 //----------------------------adjust_map_after_if------------------------------
1653 // Adjust the JVM state to reflect the result of taking this path.
1654 // Basically, it means inspecting the CmpNode controlling this
1655 // branch, seeing how it constrains a tested value, and then
1656 // deciding if it's worth our while to encode this constraint
1657 // as graph nodes in the current abstract interpretation map.
1658 void Parse::adjust_map_after_if(BoolTest::mask btest, Node* c, float prob,
1659                                 Block* path, Block* other_path) {
1660   if (stopped() || !c->is_Cmp() || btest == BoolTest::illegal)
1661     return;                             // nothing to do
1662 
1663   bool is_fallthrough = (path == successor_for_bci(iter().next_bci()));
1664 
1665   if (path_is_suitable_for_uncommon_trap(prob)) {
1666     repush_if_args();
1667     uncommon_trap(Deoptimization::Reason_unstable_if,
1668                   Deoptimization::Action_reinterpret,
1669                   NULL,
1670                   (is_fallthrough ? "taken always" : "taken never"));
1671     return;
1672   }
1673 
1674   Node* val = c->in(1);
1675   Node* con = c->in(2);
1676   const Type* tcon = _gvn.type(con);
1677   const Type* tval = _gvn.type(val);
1678   bool have_con = tcon->singleton();
1679   if (tval->singleton()) {
1680     if (!have_con) {
1681       // Swap, so constant is in con.
1682       con  = val;
1683       tcon = tval;
1684       val  = c->in(2);
1685       tval = _gvn.type(val);
1686       btest = BoolTest(btest).commute();
1687       have_con = true;
1688     } else {
1689       // Do we have two constants?  Then leave well enough alone.
1690       have_con = false;
1691     }
1692   }
1693   if (!have_con)                        // remaining adjustments need a con
1694     return;
1695 
1696   sharpen_type_after_if(btest, con, tcon, val, tval);
1697 }
1698 
1699 
1700 static Node* extract_obj_from_klass_load(PhaseGVN* gvn, Node* n) {
1701   Node* ldk;
1702   if (n->is_DecodeNKlass()) {
1703     if (n->in(1)->Opcode() != Op_LoadNKlass) {
1704       return NULL;
1705     } else {
1706       ldk = n->in(1);
1707     }
1708   } else if (n->Opcode() != Op_LoadKlass) {
1709     return NULL;
1710   } else {
1711     ldk = n;
1712   }
1713   assert(ldk != NULL && ldk->is_Load(), "should have found a LoadKlass or LoadNKlass node");
1714 
1715   Node* adr = ldk->in(MemNode::Address);
1716   intptr_t off = 0;
1717   Node* obj = AddPNode::Ideal_base_and_offset(adr, gvn, off);
1718   if (obj == NULL || off != oopDesc::klass_offset_in_bytes()) // loading oopDesc::_klass?
1719     return NULL;
1720   const TypePtr* tp = gvn->type(obj)->is_ptr();
1721   if (tp == NULL || !(tp->isa_instptr() || tp->isa_aryptr())) // is obj a Java object ptr?
1722     return NULL;
1723 
1724   return obj;
1725 }
1726 
1727 void Parse::sharpen_type_after_if(BoolTest::mask btest,
1728                                   Node* con, const Type* tcon,
1729                                   Node* val, const Type* tval) {
1730   // Look for opportunities to sharpen the type of a node
1731   // whose klass is compared with a constant klass.
1732   if (btest == BoolTest::eq && tcon->isa_klassptr()) {
1733     Node* obj = extract_obj_from_klass_load(&_gvn, val);
1734     const TypeOopPtr* con_type = tcon->isa_klassptr()->as_instance_type();
1735     if (obj != NULL && (con_type->isa_instptr() || con_type->isa_aryptr())) {
1736        // Found:
1737        //   Bool(CmpP(LoadKlass(obj._klass), ConP(Foo.klass)), [eq])
1738        // or the narrowOop equivalent.
1739        const Type* obj_type = _gvn.type(obj);
1740        const TypeOopPtr* tboth = obj_type->join_speculative(con_type)->isa_oopptr();
1741        if (tboth != NULL && tboth->klass_is_exact() && tboth != obj_type &&
1742            tboth->higher_equal(obj_type)) {
1743           // obj has to be of the exact type Foo if the CmpP succeeds.
1744           int obj_in_map = map()->find_edge(obj);
1745           JVMState* jvms = this->jvms();
1746           if (obj_in_map >= 0 &&
1747               (jvms->is_loc(obj_in_map) || jvms->is_stk(obj_in_map))) {
1748             TypeNode* ccast = new CheckCastPPNode(control(), obj, tboth);
1749             const Type* tcc = ccast->as_Type()->type();
1750             assert(tcc != obj_type && tcc->higher_equal(obj_type), "must improve");
1751             // Delay transform() call to allow recovery of pre-cast value
1752             // at the control merge.
1753             _gvn.set_type_bottom(ccast);
1754             record_for_igvn(ccast);
1755             // Here's the payoff.
1756             replace_in_map(obj, ccast);
1757           }
1758        }
1759     }
1760   }
1761 
1762   int val_in_map = map()->find_edge(val);
1763   if (val_in_map < 0)  return;          // replace_in_map would be useless
1764   {
1765     JVMState* jvms = this->jvms();
1766     if (!(jvms->is_loc(val_in_map) ||
1767           jvms->is_stk(val_in_map)))
1768       return;                           // again, it would be useless
1769   }
1770 
1771   // Check for a comparison to a constant, and "know" that the compared
1772   // value is constrained on this path.
1773   assert(tcon->singleton(), "");
1774   ConstraintCastNode* ccast = NULL;
1775   Node* cast = NULL;
1776 
1777   switch (btest) {
1778   case BoolTest::eq:                    // Constant test?
1779     {
1780       const Type* tboth = tcon->join_speculative(tval);
1781       if (tboth == tval)  break;        // Nothing to gain.
1782       if (tcon->isa_int()) {
1783         ccast = new CastIINode(val, tboth);
1784       } else if (tcon == TypePtr::NULL_PTR) {
1785         // Cast to null, but keep the pointer identity temporarily live.
1786         ccast = new CastPPNode(val, tboth);
1787       } else {
1788         const TypeF* tf = tcon->isa_float_constant();
1789         const TypeD* td = tcon->isa_double_constant();
1790         // Exclude tests vs float/double 0 as these could be
1791         // either +0 or -0.  Just because you are equal to +0
1792         // doesn't mean you ARE +0!
1793         // Note, following code also replaces Long and Oop values.
1794         if ((!tf || tf->_f != 0.0) &&
1795             (!td || td->_d != 0.0))
1796           cast = con;                   // Replace non-constant val by con.
1797       }
1798     }
1799     break;
1800 
1801   case BoolTest::ne:
1802     if (tcon == TypePtr::NULL_PTR) {
1803       cast = cast_not_null(val, false);
1804     }
1805     break;
1806 
1807   default:
1808     // (At this point we could record int range types with CastII.)
1809     break;
1810   }
1811 
1812   if (ccast != NULL) {
1813     const Type* tcc = ccast->as_Type()->type();
1814     assert(tcc != tval && tcc->higher_equal(tval), "must improve");
1815     // Delay transform() call to allow recovery of pre-cast value
1816     // at the control merge.
1817     ccast->set_req(0, control());
1818     _gvn.set_type_bottom(ccast);
1819     record_for_igvn(ccast);
1820     cast = ccast;
1821   }
1822 
1823   if (cast != NULL) {                   // Here's the payoff.
1824     replace_in_map(val, cast);
1825   }
1826 }
1827 
1828 /**
1829  * Use speculative type to optimize CmpP node: if comparison is
1830  * against the low level class, cast the object to the speculative
1831  * type if any. CmpP should then go away.
1832  *
1833  * @param c  expected CmpP node
1834  * @return   result of CmpP on object casted to speculative type
1835  *
1836  */
1837 Node* Parse::optimize_cmp_with_klass(Node* c) {
1838   // If this is transformed by the _gvn to a comparison with the low
1839   // level klass then we may be able to use speculation
1840   if (c->Opcode() == Op_CmpP &&
1841       (c->in(1)->Opcode() == Op_LoadKlass || c->in(1)->Opcode() == Op_DecodeNKlass) &&
1842       c->in(2)->is_Con()) {
1843     Node* load_klass = NULL;
1844     Node* decode = NULL;
1845     if (c->in(1)->Opcode() == Op_DecodeNKlass) {
1846       decode = c->in(1);
1847       load_klass = c->in(1)->in(1);
1848     } else {
1849       load_klass = c->in(1);
1850     }
1851     if (load_klass->in(2)->is_AddP()) {
1852       Node* addp = load_klass->in(2);
1853       Node* obj = addp->in(AddPNode::Address);
1854       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
1855       if (obj_type->speculative_type_not_null() != NULL) {
1856         ciKlass* k = obj_type->speculative_type();
1857         inc_sp(2);
1858         obj = maybe_cast_profiled_obj(obj, k);
1859         dec_sp(2);
1860         // Make the CmpP use the casted obj
1861         addp = basic_plus_adr(obj, addp->in(AddPNode::Offset));
1862         load_klass = load_klass->clone();
1863         load_klass->set_req(2, addp);
1864         load_klass = _gvn.transform(load_klass);
1865         if (decode != NULL) {
1866           decode = decode->clone();
1867           decode->set_req(1, load_klass);
1868           load_klass = _gvn.transform(decode);
1869         }
1870         c = c->clone();
1871         c->set_req(1, load_klass);
1872         c = _gvn.transform(c);
1873       }
1874     }
1875   }
1876   return c;
1877 }
1878 
1879 //------------------------------do_one_bytecode--------------------------------
1880 // Parse this bytecode, and alter the Parsers JVM->Node mapping
1881 void Parse::do_one_bytecode() {
1882   Node *a, *b, *c, *d;          // Handy temps
1883   BoolTest::mask btest;
1884   int i;
1885 
1886   assert(!has_exceptions(), "bytecode entry state must be clear of throws");
1887 
1888   if (C->check_node_count(NodeLimitFudgeFactor * 5,
1889                           "out of nodes parsing method")) {
1890     return;
1891   }
1892 
1893 #ifdef ASSERT
1894   // for setting breakpoints
1895   if (TraceOptoParse) {
1896     tty->print(" @");
1897     dump_bci(bci());
1898     tty->cr();
1899   }
1900 #endif
1901 
1902   switch (bc()) {
1903   case Bytecodes::_nop:
1904     // do nothing
1905     break;
1906   case Bytecodes::_lconst_0:
1907     push_pair(longcon(0));
1908     break;
1909 
1910   case Bytecodes::_lconst_1:
1911     push_pair(longcon(1));
1912     break;
1913 
1914   case Bytecodes::_fconst_0:
1915     push(zerocon(T_FLOAT));
1916     break;
1917 
1918   case Bytecodes::_fconst_1:
1919     push(makecon(TypeF::ONE));
1920     break;
1921 
1922   case Bytecodes::_fconst_2:
1923     push(makecon(TypeF::make(2.0f)));
1924     break;
1925 
1926   case Bytecodes::_dconst_0:
1927     push_pair(zerocon(T_DOUBLE));
1928     break;
1929 
1930   case Bytecodes::_dconst_1:
1931     push_pair(makecon(TypeD::ONE));
1932     break;
1933 
1934   case Bytecodes::_iconst_m1:push(intcon(-1)); break;
1935   case Bytecodes::_iconst_0: push(intcon( 0)); break;
1936   case Bytecodes::_iconst_1: push(intcon( 1)); break;
1937   case Bytecodes::_iconst_2: push(intcon( 2)); break;
1938   case Bytecodes::_iconst_3: push(intcon( 3)); break;
1939   case Bytecodes::_iconst_4: push(intcon( 4)); break;
1940   case Bytecodes::_iconst_5: push(intcon( 5)); break;
1941   case Bytecodes::_bipush:   push(intcon(iter().get_constant_u1())); break;
1942   case Bytecodes::_sipush:   push(intcon(iter().get_constant_u2())); break;
1943   case Bytecodes::_aconst_null: push(null());  break;
1944   case Bytecodes::_ldc:
1945   case Bytecodes::_ldc_w:
1946   case Bytecodes::_ldc2_w:
1947     // If the constant is unresolved, run this BC once in the interpreter.
1948     {
1949       ciConstant constant = iter().get_constant();
1950       if (!constant.is_valid() ||
1951           (constant.basic_type() == T_OBJECT &&
1952            !constant.as_object()->is_loaded())) {
1953         int index = iter().get_constant_pool_index();
1954         constantTag tag = iter().get_constant_pool_tag(index);
1955         uncommon_trap(Deoptimization::make_trap_request
1956                       (Deoptimization::Reason_unloaded,
1957                        Deoptimization::Action_reinterpret,
1958                        index),
1959                       NULL, tag.internal_name());
1960         break;
1961       }
1962       assert(constant.basic_type() != T_OBJECT || constant.as_object()->is_instance(),
1963              "must be java_mirror of klass");
1964       const Type* con_type = Type::make_from_constant(constant);
1965       if (con_type != NULL) {
1966         push_node(con_type->basic_type(), makecon(con_type));
1967       }
1968     }
1969 
1970     break;
1971 
1972   case Bytecodes::_aload_0:
1973     push( local(0) );
1974     break;
1975   case Bytecodes::_aload_1:
1976     push( local(1) );
1977     break;
1978   case Bytecodes::_aload_2:
1979     push( local(2) );
1980     break;
1981   case Bytecodes::_aload_3:
1982     push( local(3) );
1983     break;
1984   case Bytecodes::_aload:
1985     push( local(iter().get_index()) );
1986     break;
1987 
1988   case Bytecodes::_fload_0:
1989   case Bytecodes::_iload_0:
1990     push( local(0) );
1991     break;
1992   case Bytecodes::_fload_1:
1993   case Bytecodes::_iload_1:
1994     push( local(1) );
1995     break;
1996   case Bytecodes::_fload_2:
1997   case Bytecodes::_iload_2:
1998     push( local(2) );
1999     break;
2000   case Bytecodes::_fload_3:
2001   case Bytecodes::_iload_3:
2002     push( local(3) );
2003     break;
2004   case Bytecodes::_fload:
2005   case Bytecodes::_iload:
2006     push( local(iter().get_index()) );
2007     break;
2008   case Bytecodes::_lload_0:
2009     push_pair_local( 0 );
2010     break;
2011   case Bytecodes::_lload_1:
2012     push_pair_local( 1 );
2013     break;
2014   case Bytecodes::_lload_2:
2015     push_pair_local( 2 );
2016     break;
2017   case Bytecodes::_lload_3:
2018     push_pair_local( 3 );
2019     break;
2020   case Bytecodes::_lload:
2021     push_pair_local( iter().get_index() );
2022     break;
2023 
2024   case Bytecodes::_dload_0:
2025     push_pair_local(0);
2026     break;
2027   case Bytecodes::_dload_1:
2028     push_pair_local(1);
2029     break;
2030   case Bytecodes::_dload_2:
2031     push_pair_local(2);
2032     break;
2033   case Bytecodes::_dload_3:
2034     push_pair_local(3);
2035     break;
2036   case Bytecodes::_dload:
2037     push_pair_local(iter().get_index());
2038     break;
2039   case Bytecodes::_fstore_0:
2040   case Bytecodes::_istore_0:
2041   case Bytecodes::_astore_0:
2042     set_local( 0, pop() );
2043     break;
2044   case Bytecodes::_fstore_1:
2045   case Bytecodes::_istore_1:
2046   case Bytecodes::_astore_1:
2047     set_local( 1, pop() );
2048     break;
2049   case Bytecodes::_fstore_2:
2050   case Bytecodes::_istore_2:
2051   case Bytecodes::_astore_2:
2052     set_local( 2, pop() );
2053     break;
2054   case Bytecodes::_fstore_3:
2055   case Bytecodes::_istore_3:
2056   case Bytecodes::_astore_3:
2057     set_local( 3, pop() );
2058     break;
2059   case Bytecodes::_fstore:
2060   case Bytecodes::_istore:
2061   case Bytecodes::_astore:
2062     set_local( iter().get_index(), pop() );
2063     break;
2064   // long stores
2065   case Bytecodes::_lstore_0:
2066     set_pair_local( 0, pop_pair() );
2067     break;
2068   case Bytecodes::_lstore_1:
2069     set_pair_local( 1, pop_pair() );
2070     break;
2071   case Bytecodes::_lstore_2:
2072     set_pair_local( 2, pop_pair() );
2073     break;
2074   case Bytecodes::_lstore_3:
2075     set_pair_local( 3, pop_pair() );
2076     break;
2077   case Bytecodes::_lstore:
2078     set_pair_local( iter().get_index(), pop_pair() );
2079     break;
2080 
2081   // double stores
2082   case Bytecodes::_dstore_0:
2083     set_pair_local( 0, dstore_rounding(pop_pair()) );
2084     break;
2085   case Bytecodes::_dstore_1:
2086     set_pair_local( 1, dstore_rounding(pop_pair()) );
2087     break;
2088   case Bytecodes::_dstore_2:
2089     set_pair_local( 2, dstore_rounding(pop_pair()) );
2090     break;
2091   case Bytecodes::_dstore_3:
2092     set_pair_local( 3, dstore_rounding(pop_pair()) );
2093     break;
2094   case Bytecodes::_dstore:
2095     set_pair_local( iter().get_index(), dstore_rounding(pop_pair()) );
2096     break;
2097 
2098   case Bytecodes::_pop:  dec_sp(1);   break;
2099   case Bytecodes::_pop2: dec_sp(2);   break;
2100   case Bytecodes::_swap:
2101     a = pop();
2102     b = pop();
2103     push(a);
2104     push(b);
2105     break;
2106   case Bytecodes::_dup:
2107     a = pop();
2108     push(a);
2109     push(a);
2110     break;
2111   case Bytecodes::_dup_x1:
2112     a = pop();
2113     b = pop();
2114     push( a );
2115     push( b );
2116     push( a );
2117     break;
2118   case Bytecodes::_dup_x2:
2119     a = pop();
2120     b = pop();
2121     c = pop();
2122     push( a );
2123     push( c );
2124     push( b );
2125     push( a );
2126     break;
2127   case Bytecodes::_dup2:
2128     a = pop();
2129     b = pop();
2130     push( b );
2131     push( a );
2132     push( b );
2133     push( a );
2134     break;
2135 
2136   case Bytecodes::_dup2_x1:
2137     // before: .. c, b, a
2138     // after:  .. b, a, c, b, a
2139     // not tested
2140     a = pop();
2141     b = pop();
2142     c = pop();
2143     push( b );
2144     push( a );
2145     push( c );
2146     push( b );
2147     push( a );
2148     break;
2149   case Bytecodes::_dup2_x2:
2150     // before: .. d, c, b, a
2151     // after:  .. b, a, d, c, b, a
2152     // not tested
2153     a = pop();
2154     b = pop();
2155     c = pop();
2156     d = pop();
2157     push( b );
2158     push( a );
2159     push( d );
2160     push( c );
2161     push( b );
2162     push( a );
2163     break;
2164 
2165   case Bytecodes::_arraylength: {
2166     // Must do null-check with value on expression stack
2167     Node *ary = null_check(peek(), T_ARRAY);
2168     // Compile-time detect of null-exception?
2169     if (stopped())  return;
2170     a = pop();
2171     push(load_array_length(a));
2172     break;
2173   }
2174 
2175   case Bytecodes::_baload:  array_load(T_BYTE);    break;
2176   case Bytecodes::_caload:  array_load(T_CHAR);    break;
2177   case Bytecodes::_iaload:  array_load(T_INT);     break;
2178   case Bytecodes::_saload:  array_load(T_SHORT);   break;
2179   case Bytecodes::_faload:  array_load(T_FLOAT);   break;
2180   case Bytecodes::_aaload:  array_load(T_OBJECT);  break;
2181   case Bytecodes::_laload:  array_load(T_LONG);    break;
2182   case Bytecodes::_daload:  array_load(T_DOUBLE);  break;
2183   case Bytecodes::_bastore: array_store(T_BYTE);   break;
2184   case Bytecodes::_castore: array_store(T_CHAR);   break;
2185   case Bytecodes::_iastore: array_store(T_INT);    break;
2186   case Bytecodes::_sastore: array_store(T_SHORT);  break;
2187   case Bytecodes::_fastore: array_store(T_FLOAT);  break;
2188   case Bytecodes::_aastore: array_store(T_OBJECT); break;
2189   case Bytecodes::_lastore: array_store(T_LONG);   break;
2190   case Bytecodes::_dastore: array_store(T_DOUBLE); break;
2191 
2192   case Bytecodes::_getfield:
2193     do_getfield();
2194     break;
2195 
2196   case Bytecodes::_getstatic:
2197     do_getstatic();
2198     break;
2199 
2200   case Bytecodes::_putfield:
2201     do_putfield();
2202     break;
2203 
2204   case Bytecodes::_putstatic:
2205     do_putstatic();
2206     break;
2207 
2208   case Bytecodes::_irem:
2209     do_irem();
2210     break;
2211   case Bytecodes::_idiv:
2212     // Must keep both values on the expression-stack during null-check
2213     zero_check_int(peek());
2214     // Compile-time detect of null-exception?
2215     if (stopped())  return;
2216     b = pop();
2217     a = pop();
2218     push( _gvn.transform( new DivINode(control(),a,b) ) );
2219     break;
2220   case Bytecodes::_imul:
2221     b = pop(); a = pop();
2222     push( _gvn.transform( new MulINode(a,b) ) );
2223     break;
2224   case Bytecodes::_iadd:
2225     b = pop(); a = pop();
2226     push( _gvn.transform( new AddINode(a,b) ) );
2227     break;
2228   case Bytecodes::_ineg:
2229     a = pop();
2230     push( _gvn.transform( new SubINode(_gvn.intcon(0),a)) );
2231     break;
2232   case Bytecodes::_isub:
2233     b = pop(); a = pop();
2234     push( _gvn.transform( new SubINode(a,b) ) );
2235     break;
2236   case Bytecodes::_iand:
2237     b = pop(); a = pop();
2238     push( _gvn.transform( new AndINode(a,b) ) );
2239     break;
2240   case Bytecodes::_ior:
2241     b = pop(); a = pop();
2242     push( _gvn.transform( new OrINode(a,b) ) );
2243     break;
2244   case Bytecodes::_ixor:
2245     b = pop(); a = pop();
2246     push( _gvn.transform( new XorINode(a,b) ) );
2247     break;
2248   case Bytecodes::_ishl:
2249     b = pop(); a = pop();
2250     push( _gvn.transform( new LShiftINode(a,b) ) );
2251     break;
2252   case Bytecodes::_ishr:
2253     b = pop(); a = pop();
2254     push( _gvn.transform( new RShiftINode(a,b) ) );
2255     break;
2256   case Bytecodes::_iushr:
2257     b = pop(); a = pop();
2258     push( _gvn.transform( new URShiftINode(a,b) ) );
2259     break;
2260 
2261   case Bytecodes::_fneg:
2262     a = pop();
2263     b = _gvn.transform(new NegFNode (a));
2264     push(b);
2265     break;
2266 
2267   case Bytecodes::_fsub:
2268     b = pop();
2269     a = pop();
2270     c = _gvn.transform( new SubFNode(a,b) );
2271     d = precision_rounding(c);
2272     push( d );
2273     break;
2274 
2275   case Bytecodes::_fadd:
2276     b = pop();
2277     a = pop();
2278     c = _gvn.transform( new AddFNode(a,b) );
2279     d = precision_rounding(c);
2280     push( d );
2281     break;
2282 
2283   case Bytecodes::_fmul:
2284     b = pop();
2285     a = pop();
2286     c = _gvn.transform( new MulFNode(a,b) );
2287     d = precision_rounding(c);
2288     push( d );
2289     break;
2290 
2291   case Bytecodes::_fdiv:
2292     b = pop();
2293     a = pop();
2294     c = _gvn.transform( new DivFNode(0,a,b) );
2295     d = precision_rounding(c);
2296     push( d );
2297     break;
2298 
2299   case Bytecodes::_frem:
2300     if (Matcher::has_match_rule(Op_ModF)) {
2301       // Generate a ModF node.
2302       b = pop();
2303       a = pop();
2304       c = _gvn.transform( new ModFNode(0,a,b) );
2305       d = precision_rounding(c);
2306       push( d );
2307     }
2308     else {
2309       // Generate a call.
2310       modf();
2311     }
2312     break;
2313 
2314   case Bytecodes::_fcmpl:
2315     b = pop();
2316     a = pop();
2317     c = _gvn.transform( new CmpF3Node( a, b));
2318     push(c);
2319     break;
2320   case Bytecodes::_fcmpg:
2321     b = pop();
2322     a = pop();
2323 
2324     // Same as fcmpl but need to flip the unordered case.  Swap the inputs,
2325     // which negates the result sign except for unordered.  Flip the unordered
2326     // as well by using CmpF3 which implements unordered-lesser instead of
2327     // unordered-greater semantics.  Finally, commute the result bits.  Result
2328     // is same as using a CmpF3Greater except we did it with CmpF3 alone.
2329     c = _gvn.transform( new CmpF3Node( b, a));
2330     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2331     push(c);
2332     break;
2333 
2334   case Bytecodes::_f2i:
2335     a = pop();
2336     push(_gvn.transform(new ConvF2INode(a)));
2337     break;
2338 
2339   case Bytecodes::_d2i:
2340     a = pop_pair();
2341     b = _gvn.transform(new ConvD2INode(a));
2342     push( b );
2343     break;
2344 
2345   case Bytecodes::_f2d:
2346     a = pop();
2347     b = _gvn.transform( new ConvF2DNode(a));
2348     push_pair( b );
2349     break;
2350 
2351   case Bytecodes::_d2f:
2352     a = pop_pair();
2353     b = _gvn.transform( new ConvD2FNode(a));
2354     // This breaks _227_mtrt (speed & correctness) and _222_mpegaudio (speed)
2355     //b = _gvn.transform(new RoundFloatNode(0, b) );
2356     push( b );
2357     break;
2358 
2359   case Bytecodes::_l2f:
2360     if (Matcher::convL2FSupported()) {
2361       a = pop_pair();
2362       b = _gvn.transform( new ConvL2FNode(a));
2363       // For i486.ad, FILD doesn't restrict precision to 24 or 53 bits.
2364       // Rather than storing the result into an FP register then pushing
2365       // out to memory to round, the machine instruction that implements
2366       // ConvL2D is responsible for rounding.
2367       // c = precision_rounding(b);
2368       c = _gvn.transform(b);
2369       push(c);
2370     } else {
2371       l2f();
2372     }
2373     break;
2374 
2375   case Bytecodes::_l2d:
2376     a = pop_pair();
2377     b = _gvn.transform( new ConvL2DNode(a));
2378     // For i486.ad, rounding is always necessary (see _l2f above).
2379     // c = dprecision_rounding(b);
2380     c = _gvn.transform(b);
2381     push_pair(c);
2382     break;
2383 
2384   case Bytecodes::_f2l:
2385     a = pop();
2386     b = _gvn.transform( new ConvF2LNode(a));
2387     push_pair(b);
2388     break;
2389 
2390   case Bytecodes::_d2l:
2391     a = pop_pair();
2392     b = _gvn.transform( new ConvD2LNode(a));
2393     push_pair(b);
2394     break;
2395 
2396   case Bytecodes::_dsub:
2397     b = pop_pair();
2398     a = pop_pair();
2399     c = _gvn.transform( new SubDNode(a,b) );
2400     d = dprecision_rounding(c);
2401     push_pair( d );
2402     break;
2403 
2404   case Bytecodes::_dadd:
2405     b = pop_pair();
2406     a = pop_pair();
2407     c = _gvn.transform( new AddDNode(a,b) );
2408     d = dprecision_rounding(c);
2409     push_pair( d );
2410     break;
2411 
2412   case Bytecodes::_dmul:
2413     b = pop_pair();
2414     a = pop_pair();
2415     c = _gvn.transform( new MulDNode(a,b) );
2416     d = dprecision_rounding(c);
2417     push_pair( d );
2418     break;
2419 
2420   case Bytecodes::_ddiv:
2421     b = pop_pair();
2422     a = pop_pair();
2423     c = _gvn.transform( new DivDNode(0,a,b) );
2424     d = dprecision_rounding(c);
2425     push_pair( d );
2426     break;
2427 
2428   case Bytecodes::_dneg:
2429     a = pop_pair();
2430     b = _gvn.transform(new NegDNode (a));
2431     push_pair(b);
2432     break;
2433 
2434   case Bytecodes::_drem:
2435     if (Matcher::has_match_rule(Op_ModD)) {
2436       // Generate a ModD node.
2437       b = pop_pair();
2438       a = pop_pair();
2439       // a % b
2440 
2441       c = _gvn.transform( new ModDNode(0,a,b) );
2442       d = dprecision_rounding(c);
2443       push_pair( d );
2444     }
2445     else {
2446       // Generate a call.
2447       modd();
2448     }
2449     break;
2450 
2451   case Bytecodes::_dcmpl:
2452     b = pop_pair();
2453     a = pop_pair();
2454     c = _gvn.transform( new CmpD3Node( a, b));
2455     push(c);
2456     break;
2457 
2458   case Bytecodes::_dcmpg:
2459     b = pop_pair();
2460     a = pop_pair();
2461     // Same as dcmpl but need to flip the unordered case.
2462     // Commute the inputs, which negates the result sign except for unordered.
2463     // Flip the unordered as well by using CmpD3 which implements
2464     // unordered-lesser instead of unordered-greater semantics.
2465     // Finally, negate the result bits.  Result is same as using a
2466     // CmpD3Greater except we did it with CmpD3 alone.
2467     c = _gvn.transform( new CmpD3Node( b, a));
2468     c = _gvn.transform( new SubINode(_gvn.intcon(0),c) );
2469     push(c);
2470     break;
2471 
2472 
2473     // Note for longs -> lo word is on TOS, hi word is on TOS - 1
2474   case Bytecodes::_land:
2475     b = pop_pair();
2476     a = pop_pair();
2477     c = _gvn.transform( new AndLNode(a,b) );
2478     push_pair(c);
2479     break;
2480   case Bytecodes::_lor:
2481     b = pop_pair();
2482     a = pop_pair();
2483     c = _gvn.transform( new OrLNode(a,b) );
2484     push_pair(c);
2485     break;
2486   case Bytecodes::_lxor:
2487     b = pop_pair();
2488     a = pop_pair();
2489     c = _gvn.transform( new XorLNode(a,b) );
2490     push_pair(c);
2491     break;
2492 
2493   case Bytecodes::_lshl:
2494     b = pop();                  // the shift count
2495     a = pop_pair();             // value to be shifted
2496     c = _gvn.transform( new LShiftLNode(a,b) );
2497     push_pair(c);
2498     break;
2499   case Bytecodes::_lshr:
2500     b = pop();                  // the shift count
2501     a = pop_pair();             // value to be shifted
2502     c = _gvn.transform( new RShiftLNode(a,b) );
2503     push_pair(c);
2504     break;
2505   case Bytecodes::_lushr:
2506     b = pop();                  // the shift count
2507     a = pop_pair();             // value to be shifted
2508     c = _gvn.transform( new URShiftLNode(a,b) );
2509     push_pair(c);
2510     break;
2511   case Bytecodes::_lmul:
2512     b = pop_pair();
2513     a = pop_pair();
2514     c = _gvn.transform( new MulLNode(a,b) );
2515     push_pair(c);
2516     break;
2517 
2518   case Bytecodes::_lrem:
2519     // Must keep both values on the expression-stack during null-check
2520     assert(peek(0) == top(), "long word order");
2521     zero_check_long(peek(1));
2522     // Compile-time detect of null-exception?
2523     if (stopped())  return;
2524     b = pop_pair();
2525     a = pop_pair();
2526     c = _gvn.transform( new ModLNode(control(),a,b) );
2527     push_pair(c);
2528     break;
2529 
2530   case Bytecodes::_ldiv:
2531     // Must keep both values on the expression-stack during null-check
2532     assert(peek(0) == top(), "long word order");
2533     zero_check_long(peek(1));
2534     // Compile-time detect of null-exception?
2535     if (stopped())  return;
2536     b = pop_pair();
2537     a = pop_pair();
2538     c = _gvn.transform( new DivLNode(control(),a,b) );
2539     push_pair(c);
2540     break;
2541 
2542   case Bytecodes::_ladd:
2543     b = pop_pair();
2544     a = pop_pair();
2545     c = _gvn.transform( new AddLNode(a,b) );
2546     push_pair(c);
2547     break;
2548   case Bytecodes::_lsub:
2549     b = pop_pair();
2550     a = pop_pair();
2551     c = _gvn.transform( new SubLNode(a,b) );
2552     push_pair(c);
2553     break;
2554   case Bytecodes::_lcmp:
2555     // Safepoints are now inserted _before_ branches.  The long-compare
2556     // bytecode painfully produces a 3-way value (-1,0,+1) which requires a
2557     // slew of control flow.  These are usually followed by a CmpI vs zero and
2558     // a branch; this pattern then optimizes to the obvious long-compare and
2559     // branch.  However, if the branch is backwards there's a Safepoint
2560     // inserted.  The inserted Safepoint captures the JVM state at the
2561     // pre-branch point, i.e. it captures the 3-way value.  Thus if a
2562     // long-compare is used to control a loop the debug info will force
2563     // computation of the 3-way value, even though the generated code uses a
2564     // long-compare and branch.  We try to rectify the situation by inserting
2565     // a SafePoint here and have it dominate and kill the safepoint added at a
2566     // following backwards branch.  At this point the JVM state merely holds 2
2567     // longs but not the 3-way value.
2568     if( UseLoopSafepoints ) {
2569       switch( iter().next_bc() ) {
2570       case Bytecodes::_ifgt:
2571       case Bytecodes::_iflt:
2572       case Bytecodes::_ifge:
2573       case Bytecodes::_ifle:
2574       case Bytecodes::_ifne:
2575       case Bytecodes::_ifeq:
2576         // If this is a backwards branch in the bytecodes, add Safepoint
2577         maybe_add_safepoint(iter().next_get_dest());
2578       default:
2579         break;
2580       }
2581     }
2582     b = pop_pair();
2583     a = pop_pair();
2584     c = _gvn.transform( new CmpL3Node( a, b ));
2585     push(c);
2586     break;
2587 
2588   case Bytecodes::_lneg:
2589     a = pop_pair();
2590     b = _gvn.transform( new SubLNode(longcon(0),a));
2591     push_pair(b);
2592     break;
2593   case Bytecodes::_l2i:
2594     a = pop_pair();
2595     push( _gvn.transform( new ConvL2INode(a)));
2596     break;
2597   case Bytecodes::_i2l:
2598     a = pop();
2599     b = _gvn.transform( new ConvI2LNode(a));
2600     push_pair(b);
2601     break;
2602   case Bytecodes::_i2b:
2603     // Sign extend
2604     a = pop();
2605     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(24)) );
2606     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(24)) );
2607     push( a );
2608     break;
2609   case Bytecodes::_i2s:
2610     a = pop();
2611     a = _gvn.transform( new LShiftINode(a,_gvn.intcon(16)) );
2612     a = _gvn.transform( new RShiftINode(a,_gvn.intcon(16)) );
2613     push( a );
2614     break;
2615   case Bytecodes::_i2c:
2616     a = pop();
2617     push( _gvn.transform( new AndINode(a,_gvn.intcon(0xFFFF)) ) );
2618     break;
2619 
2620   case Bytecodes::_i2f:
2621     a = pop();
2622     b = _gvn.transform( new ConvI2FNode(a) ) ;
2623     c = precision_rounding(b);
2624     push (b);
2625     break;
2626 
2627   case Bytecodes::_i2d:
2628     a = pop();
2629     b = _gvn.transform( new ConvI2DNode(a));
2630     push_pair(b);
2631     break;
2632 
2633   case Bytecodes::_iinc:        // Increment local
2634     i = iter().get_index();     // Get local index
2635     set_local( i, _gvn.transform( new AddINode( _gvn.intcon(iter().get_iinc_con()), local(i) ) ) );
2636     break;
2637 
2638   // Exit points of synchronized methods must have an unlock node
2639   case Bytecodes::_return:
2640     return_current(NULL);
2641     break;
2642 
2643   case Bytecodes::_ireturn:
2644   case Bytecodes::_areturn:
2645   case Bytecodes::_freturn:
2646     return_current(pop());
2647     break;
2648   case Bytecodes::_lreturn:
2649     return_current(pop_pair());
2650     break;
2651   case Bytecodes::_dreturn:
2652     return_current(pop_pair());
2653     break;
2654 
2655   case Bytecodes::_athrow:
2656     // null exception oop throws NULL pointer exception
2657     null_check(peek());
2658     if (stopped())  return;
2659     // Hook the thrown exception directly to subsequent handlers.
2660     if (BailoutToInterpreterForThrows) {
2661       // Keep method interpreted from now on.
2662       uncommon_trap(Deoptimization::Reason_unhandled,
2663                     Deoptimization::Action_make_not_compilable);
2664       return;
2665     }
2666     if (env()->jvmti_can_post_on_exceptions()) {
2667       // check if we must post exception events, take uncommon trap if so (with must_throw = false)
2668       uncommon_trap_if_should_post_on_exceptions(Deoptimization::Reason_unhandled, false);
2669     }
2670     // Here if either can_post_on_exceptions or should_post_on_exceptions is false
2671     add_exception_state(make_exception_state(peek()));
2672     break;
2673 
2674   case Bytecodes::_goto:   // fall through
2675   case Bytecodes::_goto_w: {
2676     int target_bci = (bc() == Bytecodes::_goto) ? iter().get_dest() : iter().get_far_dest();
2677 
2678     // If this is a backwards branch in the bytecodes, add Safepoint
2679     maybe_add_safepoint(target_bci);
2680 
2681     // Update method data
2682     profile_taken_branch(target_bci);
2683 
2684     // Merge the current control into the target basic block
2685     merge(target_bci);
2686 
2687     // See if we can get some profile data and hand it off to the next block
2688     Block *target_block = block()->successor_for_bci(target_bci);
2689     if (target_block->pred_count() != 1)  break;
2690     ciMethodData* methodData = method()->method_data();
2691     if (!methodData->is_mature())  break;
2692     ciProfileData* data = methodData->bci_to_data(bci());
2693     assert(data != NULL && data->is_JumpData(), "need JumpData for taken branch");
2694     int taken = ((ciJumpData*)data)->taken();
2695     taken = method()->scale_count(taken);
2696     target_block->set_count(taken);
2697     break;
2698   }
2699 
2700   case Bytecodes::_ifnull:    btest = BoolTest::eq; goto handle_if_null;
2701   case Bytecodes::_ifnonnull: btest = BoolTest::ne; goto handle_if_null;
2702   handle_if_null:
2703     // If this is a backwards branch in the bytecodes, add Safepoint
2704     maybe_add_safepoint(iter().get_dest());
2705     a = null();
2706     b = pop();
2707     if (!_gvn.type(b)->speculative_maybe_null() &&
2708         !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2709       inc_sp(1);
2710       Node* null_ctl = top();
2711       b = null_check_oop(b, &null_ctl, true, true, true);
2712       assert(null_ctl->is_top(), "no null control here");
2713       dec_sp(1);
2714     } else if (_gvn.type(b)->speculative_always_null() &&
2715                !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2716       inc_sp(1);
2717       b = null_assert(b);
2718       dec_sp(1);
2719     }
2720     c = _gvn.transform( new CmpPNode(b, a) );
2721     do_ifnull(btest, c);
2722     break;
2723 
2724   case Bytecodes::_if_acmpeq: btest = BoolTest::eq; goto handle_if_acmp;
2725   case Bytecodes::_if_acmpne: btest = BoolTest::ne; goto handle_if_acmp;
2726   handle_if_acmp:
2727     // If this is a backwards branch in the bytecodes, add Safepoint
2728     maybe_add_safepoint(iter().get_dest());
2729     a = pop();
2730     b = pop();
2731     c = _gvn.transform( new CmpPNode(b, a) );
2732     c = optimize_cmp_with_klass(c);
2733     do_if(btest, c);
2734     break;
2735 
2736   case Bytecodes::_ifeq: btest = BoolTest::eq; goto handle_ifxx;
2737   case Bytecodes::_ifne: btest = BoolTest::ne; goto handle_ifxx;
2738   case Bytecodes::_iflt: btest = BoolTest::lt; goto handle_ifxx;
2739   case Bytecodes::_ifle: btest = BoolTest::le; goto handle_ifxx;
2740   case Bytecodes::_ifgt: btest = BoolTest::gt; goto handle_ifxx;
2741   case Bytecodes::_ifge: btest = BoolTest::ge; goto handle_ifxx;
2742   handle_ifxx:
2743     // If this is a backwards branch in the bytecodes, add Safepoint
2744     maybe_add_safepoint(iter().get_dest());
2745     a = _gvn.intcon(0);
2746     b = pop();
2747     c = _gvn.transform( new CmpINode(b, a) );
2748     do_if(btest, c);
2749     break;
2750 
2751   case Bytecodes::_if_icmpeq: btest = BoolTest::eq; goto handle_if_icmp;
2752   case Bytecodes::_if_icmpne: btest = BoolTest::ne; goto handle_if_icmp;
2753   case Bytecodes::_if_icmplt: btest = BoolTest::lt; goto handle_if_icmp;
2754   case Bytecodes::_if_icmple: btest = BoolTest::le; goto handle_if_icmp;
2755   case Bytecodes::_if_icmpgt: btest = BoolTest::gt; goto handle_if_icmp;
2756   case Bytecodes::_if_icmpge: btest = BoolTest::ge; goto handle_if_icmp;
2757   handle_if_icmp:
2758     // If this is a backwards branch in the bytecodes, add Safepoint
2759     maybe_add_safepoint(iter().get_dest());
2760     a = pop();
2761     b = pop();
2762     c = _gvn.transform( new CmpINode( b, a ) );
2763     do_if(btest, c);
2764     break;
2765 
2766   case Bytecodes::_tableswitch:
2767     do_tableswitch();
2768     break;
2769 
2770   case Bytecodes::_lookupswitch:
2771     do_lookupswitch();
2772     break;
2773 
2774   case Bytecodes::_invokestatic:
2775   case Bytecodes::_invokedynamic:
2776   case Bytecodes::_invokespecial:
2777   case Bytecodes::_invokevirtual:
2778   case Bytecodes::_invokeinterface:
2779     do_call();
2780     break;
2781   case Bytecodes::_checkcast:
2782     do_checkcast();
2783     break;
2784   case Bytecodes::_instanceof:
2785     do_instanceof();
2786     break;
2787   case Bytecodes::_anewarray:
2788     do_anewarray();
2789     break;
2790   case Bytecodes::_newarray:
2791     do_newarray((BasicType)iter().get_index());
2792     break;
2793   case Bytecodes::_multianewarray:
2794     do_multianewarray();
2795     break;
2796   case Bytecodes::_new:
2797     do_new();
2798     break;
2799 
2800   case Bytecodes::_jsr:
2801   case Bytecodes::_jsr_w:
2802     do_jsr();
2803     break;
2804 
2805   case Bytecodes::_ret:
2806     do_ret();
2807     break;
2808 
2809 
2810   case Bytecodes::_monitorenter:
2811     do_monitor_enter();
2812     break;
2813 
2814   case Bytecodes::_monitorexit:
2815     do_monitor_exit();
2816     break;
2817 
2818   case Bytecodes::_breakpoint:
2819     // Breakpoint set concurrently to compile
2820     // %%% use an uncommon trap?
2821     C->record_failure("breakpoint in method");
2822     return;
2823 
2824   default:
2825 #ifndef PRODUCT
2826     map()->dump(99);
2827 #endif
2828     tty->print("\nUnhandled bytecode %s\n", Bytecodes::name(bc()) );
2829     ShouldNotReachHere();
2830   }
2831 
2832 #ifndef PRODUCT
2833   IdealGraphPrinter *printer = C->printer();
2834   if (printer && printer->should_print(1)) {
2835     char buffer[256];
2836     sprintf(buffer, "Bytecode %d: %s", bci(), Bytecodes::name(bc()));
2837     bool old = printer->traverse_outs();
2838     printer->set_traverse_outs(true);
2839     printer->print_method(buffer, 4);
2840     printer->set_traverse_outs(old);
2841   }
2842 #endif
2843 }