1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "opto/ad.hpp"
  53 #include "opto/addnode.hpp"
  54 #include "opto/callnode.hpp"
  55 #include "opto/cfgnode.hpp"
  56 #include "opto/graphKit.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/matcher.hpp"
  59 #include "opto/memnode.hpp"
  60 #include "opto/mulnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "runtime/atomic.hpp"
  64 #include "runtime/frame.inline.hpp"
  65 #include "runtime/handles.inline.hpp"
  66 #include "runtime/interfaceSupport.inline.hpp"
  67 #include "runtime/javaCalls.hpp"
  68 #include "runtime/sharedRuntime.hpp"
  69 #include "runtime/signature.hpp"
  70 #include "runtime/threadCritical.hpp"
  71 #include "runtime/vframe.hpp"
  72 #include "runtime/vframeArray.hpp"
  73 #include "runtime/vframe_hp.hpp"
  74 #include "utilities/copy.hpp"
  75 #include "utilities/preserveException.hpp"
  76 
  77 
  78 // For debugging purposes:
  79 //  To force FullGCALot inside a runtime function, add the following two lines
  80 //
  81 //  Universe::release_fullgc_alot_dummy();
  82 //  MarkSweep::invoke(0, "Debugging");
  83 //
  84 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  85 
  86 
  87 
  88 
  89 // Compiled code entry points
  90 address OptoRuntime::_new_instance_Java                           = NULL;
  91 address OptoRuntime::_new_array_Java                              = NULL;
  92 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  93 address OptoRuntime::_multianewarray2_Java                        = NULL;
  94 address OptoRuntime::_multianewarray3_Java                        = NULL;
  95 address OptoRuntime::_multianewarray4_Java                        = NULL;
  96 address OptoRuntime::_multianewarray5_Java                        = NULL;
  97 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  98 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
  99 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 100 address OptoRuntime::_monitor_notify_Java                         = NULL;
 101 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 102 address OptoRuntime::_rethrow_Java                                = NULL;
 103 
 104 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 105 address OptoRuntime::_register_finalizer_Java                     = NULL;
 106 
 107 ExceptionBlob* OptoRuntime::_exception_blob;
 108 
 109 // This should be called in an assertion at the start of OptoRuntime routines
 110 // which are entered from compiled code (all of them)
 111 #ifdef ASSERT
 112 static bool check_compiled_frame(JavaThread* thread) {
 113   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 114   RegisterMap map(thread, false);
 115   frame caller = thread->last_frame().sender(&map);
 116   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 117   return true;
 118 }
 119 #endif // ASSERT
 120 
 121 
 122 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 123   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 124   if (var == NULL) { return false; }
 125 
 126 bool OptoRuntime::generate(ciEnv* env) {
 127 
 128   generate_exception_blob();
 129 
 130   // Note: tls: Means fetching the return oop out of the thread-local storage
 131   //
 132   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 133   // -------------------------------------------------------------------------------------------------------------------------------
 134   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 135   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 136   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 137   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 138   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 141   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 142   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 143   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 144   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 145   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 146 
 147   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 148   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 149 
 150   return true;
 151 }
 152 
 153 #undef gen
 154 
 155 
 156 // Helper method to do generation of RunTimeStub's
 157 address OptoRuntime::generate_stub( ciEnv* env,
 158                                     TypeFunc_generator gen, address C_function,
 159                                     const char *name, int is_fancy_jump,
 160                                     bool pass_tls,
 161                                     bool save_argument_registers,
 162                                     bool return_pc) {
 163 
 164   // Matching the default directive, we currently have no method to match.
 165   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 166   ResourceMark rm;
 167   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 168   DirectivesStack::release(directive);
 169   return  C.stub_entry_point();
 170 }
 171 
 172 const char* OptoRuntime::stub_name(address entry) {
 173 #ifndef PRODUCT
 174   CodeBlob* cb = CodeCache::find_blob(entry);
 175   RuntimeStub* rs =(RuntimeStub *)cb;
 176   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 177   return rs->name();
 178 #else
 179   // Fast implementation for product mode (maybe it should be inlined too)
 180   return "runtime stub";
 181 #endif
 182 }
 183 
 184 
 185 //=============================================================================
 186 // Opto compiler runtime routines
 187 //=============================================================================
 188 
 189 
 190 //=============================allocation======================================
 191 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 192 // and try allocation again.
 193 
 194 // object allocation
 195 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 196   JRT_BLOCK;
 197 #ifndef PRODUCT
 198   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 199 #endif
 200   assert(check_compiled_frame(thread), "incorrect caller");
 201 
 202   // These checks are cheap to make and support reflective allocation.
 203   int lh = klass->layout_helper();
 204   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 205     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 206     klass->check_valid_for_instantiation(false, THREAD);
 207     if (!HAS_PENDING_EXCEPTION) {
 208       InstanceKlass::cast(klass)->initialize(THREAD);
 209     }
 210   }
 211 
 212   if (!HAS_PENDING_EXCEPTION) {
 213     // Scavenge and allocate an instance.
 214     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 215     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 216     thread->set_vm_result(result);
 217 
 218     // Pass oops back through thread local storage.  Our apparent type to Java
 219     // is that we return an oop, but we can block on exit from this routine and
 220     // a GC can trash the oop in C's return register.  The generated stub will
 221     // fetch the oop from TLS after any possible GC.
 222   }
 223 
 224   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 225   JRT_BLOCK_END;
 226 
 227   // inform GC that we won't do card marks for initializing writes.
 228   SharedRuntime::on_slowpath_allocation_exit(thread);
 229 JRT_END
 230 
 231 
 232 // array allocation
 233 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 234   JRT_BLOCK;
 235 #ifndef PRODUCT
 236   SharedRuntime::_new_array_ctr++;            // new array requires GC
 237 #endif
 238   assert(check_compiled_frame(thread), "incorrect caller");
 239 
 240   // Scavenge and allocate an instance.
 241   oop result;
 242 
 243   if (array_type->is_typeArray_klass()) {
 244     // The oopFactory likes to work with the element type.
 245     // (We could bypass the oopFactory, since it doesn't add much value.)
 246     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 247     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 248   } else {
 249     // Although the oopFactory likes to work with the elem_type,
 250     // the compiler prefers the array_type, since it must already have
 251     // that latter value in hand for the fast path.
 252     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 253     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 254     result = oopFactory::new_objArray(elem_type, len, THREAD);
 255   }
 256 
 257   // Pass oops back through thread local storage.  Our apparent type to Java
 258   // is that we return an oop, but we can block on exit from this routine and
 259   // a GC can trash the oop in C's return register.  The generated stub will
 260   // fetch the oop from TLS after any possible GC.
 261   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 262   thread->set_vm_result(result);
 263   JRT_BLOCK_END;
 264 
 265   // inform GC that we won't do card marks for initializing writes.
 266   SharedRuntime::on_slowpath_allocation_exit(thread);
 267 JRT_END
 268 
 269 // array allocation without zeroing
 270 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 271   JRT_BLOCK;
 272 #ifndef PRODUCT
 273   SharedRuntime::_new_array_ctr++;            // new array requires GC
 274 #endif
 275   assert(check_compiled_frame(thread), "incorrect caller");
 276 
 277   // Scavenge and allocate an instance.
 278   oop result;
 279 
 280   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 281   // The oopFactory likes to work with the element type.
 282   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 283   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 284 
 285   // Pass oops back through thread local storage.  Our apparent type to Java
 286   // is that we return an oop, but we can block on exit from this routine and
 287   // a GC can trash the oop in C's return register.  The generated stub will
 288   // fetch the oop from TLS after any possible GC.
 289   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 290   thread->set_vm_result(result);
 291   JRT_BLOCK_END;
 292 
 293 
 294   // inform GC that we won't do card marks for initializing writes.
 295   SharedRuntime::on_slowpath_allocation_exit(thread);
 296 
 297   oop result = thread->vm_result();
 298   if ((len > 0) && (result != NULL) &&
 299       is_deoptimized_caller_frame(thread)) {
 300     // Zero array here if the caller is deoptimized.
 301     int size = ((typeArrayOop)result)->object_size();
 302     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 303     const size_t hs = arrayOopDesc::header_size(elem_type);
 304     // Align to next 8 bytes to avoid trashing arrays's length.
 305     const size_t aligned_hs = align_object_offset(hs);
 306     HeapWord* obj = (HeapWord*)result;
 307     if (aligned_hs > hs) {
 308       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 309     }
 310     // Optimized zeroing.
 311     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 312   }
 313 
 314 JRT_END
 315 
 316 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 317 
 318 // multianewarray for 2 dimensions
 319 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 320 #ifndef PRODUCT
 321   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 322 #endif
 323   assert(check_compiled_frame(thread), "incorrect caller");
 324   assert(elem_type->is_klass(), "not a class");
 325   jint dims[2];
 326   dims[0] = len1;
 327   dims[1] = len2;
 328   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 329   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 330   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 331   thread->set_vm_result(obj);
 332 JRT_END
 333 
 334 // multianewarray for 3 dimensions
 335 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 336 #ifndef PRODUCT
 337   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 338 #endif
 339   assert(check_compiled_frame(thread), "incorrect caller");
 340   assert(elem_type->is_klass(), "not a class");
 341   jint dims[3];
 342   dims[0] = len1;
 343   dims[1] = len2;
 344   dims[2] = len3;
 345   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 346   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 347   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 348   thread->set_vm_result(obj);
 349 JRT_END
 350 
 351 // multianewarray for 4 dimensions
 352 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 353 #ifndef PRODUCT
 354   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 355 #endif
 356   assert(check_compiled_frame(thread), "incorrect caller");
 357   assert(elem_type->is_klass(), "not a class");
 358   jint dims[4];
 359   dims[0] = len1;
 360   dims[1] = len2;
 361   dims[2] = len3;
 362   dims[3] = len4;
 363   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 364   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 365   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 366   thread->set_vm_result(obj);
 367 JRT_END
 368 
 369 // multianewarray for 5 dimensions
 370 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 371 #ifndef PRODUCT
 372   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 373 #endif
 374   assert(check_compiled_frame(thread), "incorrect caller");
 375   assert(elem_type->is_klass(), "not a class");
 376   jint dims[5];
 377   dims[0] = len1;
 378   dims[1] = len2;
 379   dims[2] = len3;
 380   dims[3] = len4;
 381   dims[4] = len5;
 382   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 383   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 384   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 385   thread->set_vm_result(obj);
 386 JRT_END
 387 
 388 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 389   assert(check_compiled_frame(thread), "incorrect caller");
 390   assert(elem_type->is_klass(), "not a class");
 391   assert(oop(dims)->is_typeArray(), "not an array");
 392 
 393   ResourceMark rm;
 394   jint len = dims->length();
 395   assert(len > 0, "Dimensions array should contain data");
 396   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 397   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 398   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 399 
 400   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 401   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 402   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 403   thread->set_vm_result(obj);
 404 JRT_END
 405 
 406 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 407 
 408   // Very few notify/notifyAll operations find any threads on the waitset, so
 409   // the dominant fast-path is to simply return.
 410   // Relatedly, it's critical that notify/notifyAll be fast in order to
 411   // reduce lock hold times.
 412   if (!SafepointSynchronize::is_synchronizing()) {
 413     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 414       return;
 415     }
 416   }
 417 
 418   // This is the case the fast-path above isn't provisioned to handle.
 419   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 420   // (The fast-path is just a degenerate variant of the slow-path).
 421   // Perform the dreaded state transition and pass control into the slow-path.
 422   JRT_BLOCK;
 423   Handle h_obj(THREAD, obj);
 424   ObjectSynchronizer::notify(h_obj, CHECK);
 425   JRT_BLOCK_END;
 426 JRT_END
 427 
 428 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 429 
 430   if (!SafepointSynchronize::is_synchronizing() ) {
 431     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 432       return;
 433     }
 434   }
 435 
 436   // This is the case the fast-path above isn't provisioned to handle.
 437   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 438   // (The fast-path is just a degenerate variant of the slow-path).
 439   // Perform the dreaded state transition and pass control into the slow-path.
 440   JRT_BLOCK;
 441   Handle h_obj(THREAD, obj);
 442   ObjectSynchronizer::notifyall(h_obj, CHECK);
 443   JRT_BLOCK_END;
 444 JRT_END
 445 
 446 const TypeFunc *OptoRuntime::new_instance_Type() {
 447   // create input type (domain)
 448   const Type **fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 451 
 452   // create result type (range)
 453   fields = TypeTuple::fields(1);
 454   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 455 
 456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 457 
 458   return TypeFunc::make(domain, range);
 459 }
 460 
 461 
 462 const TypeFunc *OptoRuntime::athrow_Type() {
 463   // create input type (domain)
 464   const Type **fields = TypeTuple::fields(1);
 465   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 467 
 468   // create result type (range)
 469   fields = TypeTuple::fields(0);
 470 
 471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 472 
 473   return TypeFunc::make(domain, range);
 474 }
 475 
 476 
 477 const TypeFunc *OptoRuntime::new_array_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(2);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 481   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 483 
 484   // create result type (range)
 485   fields = TypeTuple::fields(1);
 486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 487 
 488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 489 
 490   return TypeFunc::make(domain, range);
 491 }
 492 
 493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 494   // create input type (domain)
 495   const int nargs = ndim + 1;
 496   const Type **fields = TypeTuple::fields(nargs);
 497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 498   for( int i = 1; i < nargs; i++ )
 499     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 500   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 501 
 502   // create result type (range)
 503   fields = TypeTuple::fields(1);
 504   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   return TypeFunc::make(domain, range);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 511   return multianewarray_Type(2);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 515   return multianewarray_Type(3);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 519   return multianewarray_Type(4);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 523   return multianewarray_Type(5);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 527   // create input type (domain)
 528   const Type **fields = TypeTuple::fields(2);
 529   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 530   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 532 
 533   // create result type (range)
 534   fields = TypeTuple::fields(1);
 535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 542   // create input type (domain)
 543   const Type **fields = TypeTuple::fields(1);
 544   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 546 
 547   // create result type (range)
 548   fields = TypeTuple::fields(0);
 549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 550 
 551   return TypeFunc::make(domain, range);
 552 }
 553 
 554 //-----------------------------------------------------------------------------
 555 // Monitor Handling
 556 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 557   // create input type (domain)
 558   const Type **fields = TypeTuple::fields(2);
 559   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 560   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 561   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 562 
 563   // create result type (range)
 564   fields = TypeTuple::fields(0);
 565 
 566   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 567 
 568   return TypeFunc::make(domain,range);
 569 }
 570 
 571 
 572 //-----------------------------------------------------------------------------
 573 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 574   // create input type (domain)
 575   const Type **fields = TypeTuple::fields(3);
 576   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 577   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 578   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 579   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 580 
 581   // create result type (range)
 582   fields = TypeTuple::fields(0);
 583 
 584   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 585 
 586   return TypeFunc::make(domain, range);
 587 }
 588 
 589 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 590   // create input type (domain)
 591   const Type **fields = TypeTuple::fields(1);
 592   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 593   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 594 
 595   // create result type (range)
 596   fields = TypeTuple::fields(0);
 597   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 598   return TypeFunc::make(domain, range);
 599 }
 600 
 601 const TypeFunc* OptoRuntime::flush_windows_Type() {
 602   // create input type (domain)
 603   const Type** fields = TypeTuple::fields(1);
 604   fields[TypeFunc::Parms+0] = NULL; // void
 605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 606 
 607   // create result type
 608   fields = TypeTuple::fields(1);
 609   fields[TypeFunc::Parms+0] = NULL; // void
 610   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 611 
 612   return TypeFunc::make(domain, range);
 613 }
 614 
 615 const TypeFunc* OptoRuntime::l2f_Type() {
 616   // create input type (domain)
 617   const Type **fields = TypeTuple::fields(2);
 618   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 619   fields[TypeFunc::Parms+1] = Type::HALF;
 620   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 621 
 622   // create result type (range)
 623   fields = TypeTuple::fields(1);
 624   fields[TypeFunc::Parms+0] = Type::FLOAT;
 625   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 626 
 627   return TypeFunc::make(domain, range);
 628 }
 629 
 630 const TypeFunc* OptoRuntime::modf_Type() {
 631   const Type **fields = TypeTuple::fields(2);
 632   fields[TypeFunc::Parms+0] = Type::FLOAT;
 633   fields[TypeFunc::Parms+1] = Type::FLOAT;
 634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 635 
 636   // create result type (range)
 637   fields = TypeTuple::fields(1);
 638   fields[TypeFunc::Parms+0] = Type::FLOAT;
 639 
 640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 641 
 642   return TypeFunc::make(domain, range);
 643 }
 644 
 645 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 646   // create input type (domain)
 647   const Type **fields = TypeTuple::fields(2);
 648   // Symbol* name of class to be loaded
 649   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 650   fields[TypeFunc::Parms+1] = Type::HALF;
 651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 652 
 653   // create result type (range)
 654   fields = TypeTuple::fields(2);
 655   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 656   fields[TypeFunc::Parms+1] = Type::HALF;
 657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 658 
 659   return TypeFunc::make(domain, range);
 660 }
 661 
 662 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 663   const Type **fields = TypeTuple::fields(4);
 664   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 665   fields[TypeFunc::Parms+1] = Type::HALF;
 666   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 667   fields[TypeFunc::Parms+3] = Type::HALF;
 668   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 669 
 670   // create result type (range)
 671   fields = TypeTuple::fields(2);
 672   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 673   fields[TypeFunc::Parms+1] = Type::HALF;
 674   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 675 
 676   return TypeFunc::make(domain, range);
 677 }
 678 
 679 //-------------- currentTimeMillis, currentTimeNanos, etc
 680 
 681 const TypeFunc* OptoRuntime::void_long_Type() {
 682   // create input type (domain)
 683   const Type **fields = TypeTuple::fields(0);
 684   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 685 
 686   // create result type (range)
 687   fields = TypeTuple::fields(2);
 688   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   return TypeFunc::make(domain, range);
 693 }
 694 
 695 // arraycopy stub variations:
 696 enum ArrayCopyType {
 697   ac_fast,                      // void(ptr, ptr, size_t)
 698   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 699   ac_slow,                      // void(ptr, int, ptr, int, int)
 700   ac_generic                    //  int(ptr, int, ptr, int, int)
 701 };
 702 
 703 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 704   // create input type (domain)
 705   int num_args      = (act == ac_fast ? 3 : 5);
 706   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 707   int argcnt = num_args;
 708   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 709   const Type** fields = TypeTuple::fields(argcnt);
 710   int argp = TypeFunc::Parms;
 711   fields[argp++] = TypePtr::NOTNULL;    // src
 712   if (num_size_args == 0) {
 713     fields[argp++] = TypeInt::INT;      // src_pos
 714   }
 715   fields[argp++] = TypePtr::NOTNULL;    // dest
 716   if (num_size_args == 0) {
 717     fields[argp++] = TypeInt::INT;      // dest_pos
 718     fields[argp++] = TypeInt::INT;      // length
 719   }
 720   while (num_size_args-- > 0) {
 721     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 722     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 723   }
 724   if (act == ac_checkcast) {
 725     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 726   }
 727   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 728   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 729 
 730   // create result type if needed
 731   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 732   fields = TypeTuple::fields(1);
 733   if (retcnt == 0)
 734     fields[TypeFunc::Parms+0] = NULL; // void
 735   else
 736     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 737   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 738   return TypeFunc::make(domain, range);
 739 }
 740 
 741 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 742   // This signature is simple:  Two base pointers and a size_t.
 743   return make_arraycopy_Type(ac_fast);
 744 }
 745 
 746 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 747   // An extension of fast_arraycopy_Type which adds type checking.
 748   return make_arraycopy_Type(ac_checkcast);
 749 }
 750 
 751 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 752   // This signature is exactly the same as System.arraycopy.
 753   // There are no intptr_t (int/long) arguments.
 754   return make_arraycopy_Type(ac_slow);
 755 }
 756 
 757 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 758   // This signature is like System.arraycopy, except that it returns status.
 759   return make_arraycopy_Type(ac_generic);
 760 }
 761 
 762 
 763 const TypeFunc* OptoRuntime::array_fill_Type() {
 764   const Type** fields;
 765   int argp = TypeFunc::Parms;
 766   // create input type (domain): pointer, int, size_t
 767   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 768   fields[argp++] = TypePtr::NOTNULL;
 769   fields[argp++] = TypeInt::INT;
 770   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 771   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 772   const TypeTuple *domain = TypeTuple::make(argp, fields);
 773 
 774   // create result type
 775   fields = TypeTuple::fields(1);
 776   fields[TypeFunc::Parms+0] = NULL; // void
 777   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 778 
 779   return TypeFunc::make(domain, range);
 780 }
 781 
 782 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 783 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 784   // create input type (domain)
 785   int num_args      = 3;
 786   if (Matcher::pass_original_key_for_aes()) {
 787     num_args = 4;
 788   }
 789   int argcnt = num_args;
 790   const Type** fields = TypeTuple::fields(argcnt);
 791   int argp = TypeFunc::Parms;
 792   fields[argp++] = TypePtr::NOTNULL;    // src
 793   fields[argp++] = TypePtr::NOTNULL;    // dest
 794   fields[argp++] = TypePtr::NOTNULL;    // k array
 795   if (Matcher::pass_original_key_for_aes()) {
 796     fields[argp++] = TypePtr::NOTNULL;    // original k array
 797   }
 798   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 799   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 800 
 801   // no result type needed
 802   fields = TypeTuple::fields(1);
 803   fields[TypeFunc::Parms+0] = NULL; // void
 804   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 805   return TypeFunc::make(domain, range);
 806 }
 807 
 808 /**
 809  * int updateBytesCRC32(int crc, byte* b, int len)
 810  */
 811 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 812   // create input type (domain)
 813   int num_args      = 3;
 814   int argcnt = num_args;
 815   const Type** fields = TypeTuple::fields(argcnt);
 816   int argp = TypeFunc::Parms;
 817   fields[argp++] = TypeInt::INT;        // crc
 818   fields[argp++] = TypePtr::NOTNULL;    // src
 819   fields[argp++] = TypeInt::INT;        // len
 820   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 821   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 822 
 823   // result type needed
 824   fields = TypeTuple::fields(1);
 825   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 826   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 827   return TypeFunc::make(domain, range);
 828 }
 829 
 830 /**
 831  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 832  */
 833 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 834   // create input type (domain)
 835   int num_args      = 4;
 836   int argcnt = num_args;
 837   const Type** fields = TypeTuple::fields(argcnt);
 838   int argp = TypeFunc::Parms;
 839   fields[argp++] = TypeInt::INT;        // crc
 840   fields[argp++] = TypePtr::NOTNULL;    // buf
 841   fields[argp++] = TypeInt::INT;        // len
 842   fields[argp++] = TypePtr::NOTNULL;    // table
 843   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 844   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 845 
 846   // result type needed
 847   fields = TypeTuple::fields(1);
 848   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 849   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 850   return TypeFunc::make(domain, range);
 851 }
 852 
 853 /**
 854 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 855 */
 856 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 857   // create input type (domain)
 858   int num_args      = 3;
 859   int argcnt = num_args;
 860   const Type** fields = TypeTuple::fields(argcnt);
 861   int argp = TypeFunc::Parms;
 862   fields[argp++] = TypeInt::INT;        // crc
 863   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 864   fields[argp++] = TypeInt::INT;        // len
 865   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 866   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 867 
 868   // result type needed
 869   fields = TypeTuple::fields(1);
 870   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 871   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 872   return TypeFunc::make(domain, range);
 873 }
 874 
 875 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 876 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 877   // create input type (domain)
 878   int num_args      = 5;
 879   if (Matcher::pass_original_key_for_aes()) {
 880     num_args = 6;
 881   }
 882   int argcnt = num_args;
 883   const Type** fields = TypeTuple::fields(argcnt);
 884   int argp = TypeFunc::Parms;
 885   fields[argp++] = TypePtr::NOTNULL;    // src
 886   fields[argp++] = TypePtr::NOTNULL;    // dest
 887   fields[argp++] = TypePtr::NOTNULL;    // k array
 888   fields[argp++] = TypePtr::NOTNULL;    // r array
 889   fields[argp++] = TypeInt::INT;        // src len
 890   if (Matcher::pass_original_key_for_aes()) {
 891     fields[argp++] = TypePtr::NOTNULL;    // original k array
 892   }
 893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 895 
 896   // returning cipher len (int)
 897   fields = TypeTuple::fields(1);
 898   fields[TypeFunc::Parms+0] = TypeInt::INT;
 899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 900   return TypeFunc::make(domain, range);
 901 }
 902 
 903 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 904 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 905   // create input type (domain)
 906   int num_args = 7;
 907   if (Matcher::pass_original_key_for_aes()) {
 908     num_args = 8;
 909   }
 910   int argcnt = num_args;
 911   const Type** fields = TypeTuple::fields(argcnt);
 912   int argp = TypeFunc::Parms;
 913   fields[argp++] = TypePtr::NOTNULL; // src
 914   fields[argp++] = TypePtr::NOTNULL; // dest
 915   fields[argp++] = TypePtr::NOTNULL; // k array
 916   fields[argp++] = TypePtr::NOTNULL; // counter array
 917   fields[argp++] = TypeInt::INT; // src len
 918   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 919   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 920   if (Matcher::pass_original_key_for_aes()) {
 921     fields[argp++] = TypePtr::NOTNULL; // original k array
 922   }
 923   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 924   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 925   // returning cipher len (int)
 926   fields = TypeTuple::fields(1);
 927   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 928   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 929   return TypeFunc::make(domain, range);
 930 }
 931 
 932 /*
 933  * void implCompress(byte[] buf, int ofs)
 934  */
 935 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 936   // create input type (domain)
 937   int num_args = 2;
 938   int argcnt = num_args;
 939   const Type** fields = TypeTuple::fields(argcnt);
 940   int argp = TypeFunc::Parms;
 941   fields[argp++] = TypePtr::NOTNULL; // buf
 942   fields[argp++] = TypePtr::NOTNULL; // state
 943   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 944   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 945 
 946   // no result type needed
 947   fields = TypeTuple::fields(1);
 948   fields[TypeFunc::Parms+0] = NULL; // void
 949   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 950   return TypeFunc::make(domain, range);
 951 }
 952 
 953 /*
 954  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 955  */
 956 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 957   // create input type (domain)
 958   int num_args = 4;
 959   int argcnt = num_args;
 960   const Type** fields = TypeTuple::fields(argcnt);
 961   int argp = TypeFunc::Parms;
 962   fields[argp++] = TypePtr::NOTNULL; // buf
 963   fields[argp++] = TypePtr::NOTNULL; // state
 964   fields[argp++] = TypeInt::INT;     // ofs
 965   fields[argp++] = TypeInt::INT;     // limit
 966   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 967   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 968 
 969   // returning ofs (int)
 970   fields = TypeTuple::fields(1);
 971   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
 972   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 973   return TypeFunc::make(domain, range);
 974 }
 975 
 976 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
 977   // create input type (domain)
 978   int num_args      = 6;
 979   int argcnt = num_args;
 980   const Type** fields = TypeTuple::fields(argcnt);
 981   int argp = TypeFunc::Parms;
 982   fields[argp++] = TypePtr::NOTNULL;    // x
 983   fields[argp++] = TypeInt::INT;        // xlen
 984   fields[argp++] = TypePtr::NOTNULL;    // y
 985   fields[argp++] = TypeInt::INT;        // ylen
 986   fields[argp++] = TypePtr::NOTNULL;    // z
 987   fields[argp++] = TypeInt::INT;        // zlen
 988   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 989   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 990 
 991   // no result type needed
 992   fields = TypeTuple::fields(1);
 993   fields[TypeFunc::Parms+0] = NULL;
 994   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 995   return TypeFunc::make(domain, range);
 996 }
 997 
 998 const TypeFunc* OptoRuntime::squareToLen_Type() {
 999   // create input type (domain)
1000   int num_args      = 4;
1001   int argcnt = num_args;
1002   const Type** fields = TypeTuple::fields(argcnt);
1003   int argp = TypeFunc::Parms;
1004   fields[argp++] = TypePtr::NOTNULL;    // x
1005   fields[argp++] = TypeInt::INT;        // len
1006   fields[argp++] = TypePtr::NOTNULL;    // z
1007   fields[argp++] = TypeInt::INT;        // zlen
1008   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1009   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1010 
1011   // no result type needed
1012   fields = TypeTuple::fields(1);
1013   fields[TypeFunc::Parms+0] = NULL;
1014   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1015   return TypeFunc::make(domain, range);
1016 }
1017 
1018 // for mulAdd calls, 2 pointers and 3 ints, returning int
1019 const TypeFunc* OptoRuntime::mulAdd_Type() {
1020   // create input type (domain)
1021   int num_args      = 5;
1022   int argcnt = num_args;
1023   const Type** fields = TypeTuple::fields(argcnt);
1024   int argp = TypeFunc::Parms;
1025   fields[argp++] = TypePtr::NOTNULL;    // out
1026   fields[argp++] = TypePtr::NOTNULL;    // in
1027   fields[argp++] = TypeInt::INT;        // offset
1028   fields[argp++] = TypeInt::INT;        // len
1029   fields[argp++] = TypeInt::INT;        // k
1030   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1031   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1032 
1033   // returning carry (int)
1034   fields = TypeTuple::fields(1);
1035   fields[TypeFunc::Parms+0] = TypeInt::INT;
1036   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1037   return TypeFunc::make(domain, range);
1038 }
1039 
1040 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1041   // create input type (domain)
1042   int num_args      = 7;
1043   int argcnt = num_args;
1044   const Type** fields = TypeTuple::fields(argcnt);
1045   int argp = TypeFunc::Parms;
1046   fields[argp++] = TypePtr::NOTNULL;    // a
1047   fields[argp++] = TypePtr::NOTNULL;    // b
1048   fields[argp++] = TypePtr::NOTNULL;    // n
1049   fields[argp++] = TypeInt::INT;        // len
1050   fields[argp++] = TypeLong::LONG;      // inv
1051   fields[argp++] = Type::HALF;
1052   fields[argp++] = TypePtr::NOTNULL;    // result
1053   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1054   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1055 
1056   // result type needed
1057   fields = TypeTuple::fields(1);
1058   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1059 
1060   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1061   return TypeFunc::make(domain, range);
1062 }
1063 
1064 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1065   // create input type (domain)
1066   int num_args      = 6;
1067   int argcnt = num_args;
1068   const Type** fields = TypeTuple::fields(argcnt);
1069   int argp = TypeFunc::Parms;
1070   fields[argp++] = TypePtr::NOTNULL;    // a
1071   fields[argp++] = TypePtr::NOTNULL;    // n
1072   fields[argp++] = TypeInt::INT;        // len
1073   fields[argp++] = TypeLong::LONG;      // inv
1074   fields[argp++] = Type::HALF;
1075   fields[argp++] = TypePtr::NOTNULL;    // result
1076   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1077   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1078 
1079   // result type needed
1080   fields = TypeTuple::fields(1);
1081   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1082 
1083   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1084   return TypeFunc::make(domain, range);
1085 }
1086 
1087 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1088   // create input type (domain)
1089   int num_args = 4;
1090   int argcnt = num_args;
1091   const Type** fields = TypeTuple::fields(argcnt);
1092   int argp = TypeFunc::Parms;
1093   fields[argp++] = TypePtr::NOTNULL;    // obja
1094   fields[argp++] = TypePtr::NOTNULL;    // objb
1095   fields[argp++] = TypeInt::INT;        // length, number of elements
1096   fields[argp++] = TypeInt::INT;        // log2scale, element size
1097   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1098   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1099 
1100   //return mismatch index (int)
1101   fields = TypeTuple::fields(1);
1102   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1103   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1104   return TypeFunc::make(domain, range);
1105 }
1106 
1107 // GHASH block processing
1108 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1109     int argcnt = 4;
1110 
1111     const Type** fields = TypeTuple::fields(argcnt);
1112     int argp = TypeFunc::Parms;
1113     fields[argp++] = TypePtr::NOTNULL;    // state
1114     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1115     fields[argp++] = TypePtr::NOTNULL;    // data
1116     fields[argp++] = TypeInt::INT;        // blocks
1117     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1118     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1119 
1120     // result type needed
1121     fields = TypeTuple::fields(1);
1122     fields[TypeFunc::Parms+0] = NULL; // void
1123     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1124     return TypeFunc::make(domain, range);
1125 }
1126 
1127 //------------- Interpreter state access for on stack replacement
1128 const TypeFunc* OptoRuntime::osr_end_Type() {
1129   // create input type (domain)
1130   const Type **fields = TypeTuple::fields(1);
1131   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1132   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1133 
1134   // create result type
1135   fields = TypeTuple::fields(1);
1136   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1137   fields[TypeFunc::Parms+0] = NULL; // void
1138   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1139   return TypeFunc::make(domain, range);
1140 }
1141 
1142 //-------------- methodData update helpers
1143 
1144 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1145   // create input type (domain)
1146   const Type **fields = TypeTuple::fields(2);
1147   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1148   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1149   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1150 
1151   // create result type
1152   fields = TypeTuple::fields(1);
1153   fields[TypeFunc::Parms+0] = NULL; // void
1154   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1155   return TypeFunc::make(domain,range);
1156 }
1157 
1158 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1159   if (receiver == NULL) return;
1160   Klass* receiver_klass = receiver->klass();
1161 
1162   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1163   int empty_row = -1;           // free row, if any is encountered
1164 
1165   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1166   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1167     // if (vc->receiver(row) == receiver_klass)
1168     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1169     intptr_t row_recv = *(mdp + receiver_off);
1170     if (row_recv == (intptr_t) receiver_klass) {
1171       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1172       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1173       *(mdp + count_off) += DataLayout::counter_increment;
1174       return;
1175     } else if (row_recv == 0) {
1176       // else if (vc->receiver(row) == NULL)
1177       empty_row = (int) row;
1178     }
1179   }
1180 
1181   if (empty_row != -1) {
1182     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1183     // vc->set_receiver(empty_row, receiver_klass);
1184     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1185     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1186     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1187     *(mdp + count_off) = DataLayout::counter_increment;
1188   } else {
1189     // Receiver did not match any saved receiver and there is no empty row for it.
1190     // Increment total counter to indicate polymorphic case.
1191     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1192     *count_p += DataLayout::counter_increment;
1193   }
1194 JRT_END
1195 
1196 //-------------------------------------------------------------------------------------
1197 // register policy
1198 
1199 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1200   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1201   switch (register_save_policy[reg]) {
1202     case 'C': return false; //SOC
1203     case 'E': return true ; //SOE
1204     case 'N': return false; //NS
1205     case 'A': return false; //AS
1206   }
1207   ShouldNotReachHere();
1208   return false;
1209 }
1210 
1211 //-----------------------------------------------------------------------
1212 // Exceptions
1213 //
1214 
1215 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1216 
1217 // The method is an entry that is always called by a C++ method not
1218 // directly from compiled code. Compiled code will call the C++ method following.
1219 // We can't allow async exception to be installed during  exception processing.
1220 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1221 
1222   // Do not confuse exception_oop with pending_exception. The exception_oop
1223   // is only used to pass arguments into the method. Not for general
1224   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1225   // the runtime stubs checks this on exit.
1226   assert(thread->exception_oop() != NULL, "exception oop is found");
1227   address handler_address = NULL;
1228 
1229   Handle exception(thread, thread->exception_oop());
1230   address pc = thread->exception_pc();
1231 
1232   // Clear out the exception oop and pc since looking up an
1233   // exception handler can cause class loading, which might throw an
1234   // exception and those fields are expected to be clear during
1235   // normal bytecode execution.
1236   thread->clear_exception_oop_and_pc();
1237 
1238   LogTarget(Info, exceptions) lt;
1239   if (lt.is_enabled()) {
1240     ResourceMark rm;
1241     LogStream ls(lt);
1242     trace_exception(&ls, exception(), pc, "");
1243   }
1244 
1245   // for AbortVMOnException flag
1246   Exceptions::debug_check_abort(exception);
1247 
1248 #ifdef ASSERT
1249   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1250     // should throw an exception here
1251     ShouldNotReachHere();
1252   }
1253 #endif
1254 
1255   // new exception handling: this method is entered only from adapters
1256   // exceptions from compiled java methods are handled in compiled code
1257   // using rethrow node
1258 
1259   nm = CodeCache::find_nmethod(pc);
1260   assert(nm != NULL, "No NMethod found");
1261   if (nm->is_native_method()) {
1262     fatal("Native method should not have path to exception handling");
1263   } else {
1264     // we are switching to old paradigm: search for exception handler in caller_frame
1265     // instead in exception handler of caller_frame.sender()
1266 
1267     if (JvmtiExport::can_post_on_exceptions()) {
1268       // "Full-speed catching" is not necessary here,
1269       // since we're notifying the VM on every catch.
1270       // Force deoptimization and the rest of the lookup
1271       // will be fine.
1272       deoptimize_caller_frame(thread);
1273     }
1274 
1275     // Check the stack guard pages.  If enabled, look for handler in this frame;
1276     // otherwise, forcibly unwind the frame.
1277     //
1278     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1279     bool force_unwind = !thread->reguard_stack();
1280     bool deopting = false;
1281     if (nm->is_deopt_pc(pc)) {
1282       deopting = true;
1283       RegisterMap map(thread, false);
1284       frame deoptee = thread->last_frame().sender(&map);
1285       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1286       // Adjust the pc back to the original throwing pc
1287       pc = deoptee.pc();
1288     }
1289 
1290     // If we are forcing an unwind because of stack overflow then deopt is
1291     // irrelevant since we are throwing the frame away anyway.
1292 
1293     if (deopting && !force_unwind) {
1294       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1295     } else {
1296 
1297       handler_address =
1298         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1299 
1300       if (handler_address == NULL) {
1301         bool recursive_exception = false;
1302         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1303         assert (handler_address != NULL, "must have compiled handler");
1304         // Update the exception cache only when the unwind was not forced
1305         // and there didn't happen another exception during the computation of the
1306         // compiled exception handler. Checking for exception oop equality is not
1307         // sufficient because some exceptions are pre-allocated and reused.
1308         if (!force_unwind && !recursive_exception) {
1309           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1310         }
1311       } else {
1312 #ifdef ASSERT
1313         bool recursive_exception = false;
1314         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1315         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1316                  p2i(handler_address), p2i(computed_address));
1317 #endif
1318       }
1319     }
1320 
1321     thread->set_exception_pc(pc);
1322     thread->set_exception_handler_pc(handler_address);
1323 
1324     // Check if the exception PC is a MethodHandle call site.
1325     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1326   }
1327 
1328   // Restore correct return pc.  Was saved above.
1329   thread->set_exception_oop(exception());
1330   return handler_address;
1331 
1332 JRT_END
1333 
1334 // We are entering here from exception_blob
1335 // If there is a compiled exception handler in this method, we will continue there;
1336 // otherwise we will unwind the stack and continue at the caller of top frame method
1337 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1338 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1339 // we looked up the handler for has been deoptimized in the meantime. If it has been
1340 // we must not use the handler and instead return the deopt blob.
1341 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1342 //
1343 // We are in Java not VM and in debug mode we have a NoHandleMark
1344 //
1345 #ifndef PRODUCT
1346   SharedRuntime::_find_handler_ctr++;          // find exception handler
1347 #endif
1348   debug_only(NoHandleMark __hm;)
1349   nmethod* nm = NULL;
1350   address handler_address = NULL;
1351   {
1352     // Enter the VM
1353 
1354     ResetNoHandleMark rnhm;
1355     handler_address = handle_exception_C_helper(thread, nm);
1356   }
1357 
1358   // Back in java: Use no oops, DON'T safepoint
1359 
1360   // Now check to see if the handler we are returning is in a now
1361   // deoptimized frame
1362 
1363   if (nm != NULL) {
1364     RegisterMap map(thread, false);
1365     frame caller = thread->last_frame().sender(&map);
1366 #ifdef ASSERT
1367     assert(caller.is_compiled_frame(), "must be");
1368 #endif // ASSERT
1369     if (caller.is_deoptimized_frame()) {
1370       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1371     }
1372   }
1373   return handler_address;
1374 }
1375 
1376 //------------------------------rethrow----------------------------------------
1377 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1378 // is either throwing or rethrowing an exception.  The callee-save registers
1379 // have been restored, synchronized objects have been unlocked and the callee
1380 // stack frame has been removed.  The return address was passed in.
1381 // Exception oop is passed as the 1st argument.  This routine is then called
1382 // from the stub.  On exit, we know where to jump in the caller's code.
1383 // After this C code exits, the stub will pop his frame and end in a jump
1384 // (instead of a return).  We enter the caller's default handler.
1385 //
1386 // This must be JRT_LEAF:
1387 //     - caller will not change its state as we cannot block on exit,
1388 //       therefore raw_exception_handler_for_return_address is all it takes
1389 //       to handle deoptimized blobs
1390 //
1391 // However, there needs to be a safepoint check in the middle!  So compiled
1392 // safepoints are completely watertight.
1393 //
1394 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1395 //
1396 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1397 //
1398 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1399 #ifndef PRODUCT
1400   SharedRuntime::_rethrow_ctr++;               // count rethrows
1401 #endif
1402   assert (exception != NULL, "should have thrown a NULLPointerException");
1403 #ifdef ASSERT
1404   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1405     // should throw an exception here
1406     ShouldNotReachHere();
1407   }
1408 #endif
1409 
1410   thread->set_vm_result(exception);
1411   // Frame not compiled (handles deoptimization blob)
1412   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1413 }
1414 
1415 
1416 const TypeFunc *OptoRuntime::rethrow_Type() {
1417   // create input type (domain)
1418   const Type **fields = TypeTuple::fields(1);
1419   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1420   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1421 
1422   // create result type (range)
1423   fields = TypeTuple::fields(1);
1424   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1425   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1426 
1427   return TypeFunc::make(domain, range);
1428 }
1429 
1430 
1431 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1432   // Deoptimize the caller before continuing, as the compiled
1433   // exception handler table may not be valid.
1434   if (!StressCompiledExceptionHandlers && doit) {
1435     deoptimize_caller_frame(thread);
1436   }
1437 }
1438 
1439 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1440   // Called from within the owner thread, so no need for safepoint
1441   RegisterMap reg_map(thread);
1442   frame stub_frame = thread->last_frame();
1443   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1444   frame caller_frame = stub_frame.sender(&reg_map);
1445 
1446   // Deoptimize the caller frame.
1447   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1448 }
1449 
1450 
1451 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1452   // Called from within the owner thread, so no need for safepoint
1453   RegisterMap reg_map(thread);
1454   frame stub_frame = thread->last_frame();
1455   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1456   frame caller_frame = stub_frame.sender(&reg_map);
1457   return caller_frame.is_deoptimized_frame();
1458 }
1459 
1460 
1461 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1462   // create input type (domain)
1463   const Type **fields = TypeTuple::fields(1);
1464   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1465   // // The JavaThread* is passed to each routine as the last argument
1466   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1467   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1468 
1469   // create result type (range)
1470   fields = TypeTuple::fields(0);
1471 
1472   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1473 
1474   return TypeFunc::make(domain,range);
1475 }
1476 
1477 
1478 //-----------------------------------------------------------------------------
1479 // Dtrace support.  entry and exit probes have the same signature
1480 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1481   // create input type (domain)
1482   const Type **fields = TypeTuple::fields(2);
1483   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1484   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1485   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1486 
1487   // create result type (range)
1488   fields = TypeTuple::fields(0);
1489 
1490   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1491 
1492   return TypeFunc::make(domain,range);
1493 }
1494 
1495 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1496   // create input type (domain)
1497   const Type **fields = TypeTuple::fields(2);
1498   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1499   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1500 
1501   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1502 
1503   // create result type (range)
1504   fields = TypeTuple::fields(0);
1505 
1506   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1507 
1508   return TypeFunc::make(domain,range);
1509 }
1510 
1511 
1512 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1513   assert(oopDesc::is_oop(obj), "must be a valid oop");
1514   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1515   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1516 JRT_END
1517 
1518 //-----------------------------------------------------------------------------
1519 
1520 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1521 
1522 //
1523 // dump the collected NamedCounters.
1524 //
1525 void OptoRuntime::print_named_counters() {
1526   int total_lock_count = 0;
1527   int eliminated_lock_count = 0;
1528 
1529   NamedCounter* c = _named_counters;
1530   while (c) {
1531     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1532       int count = c->count();
1533       if (count > 0) {
1534         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1535         if (Verbose) {
1536           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1537         }
1538         total_lock_count += count;
1539         if (eliminated) {
1540           eliminated_lock_count += count;
1541         }
1542       }
1543     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1544       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1545       if (blc->nonzero()) {
1546         tty->print_cr("%s", c->name());
1547         blc->print_on(tty);
1548       }
1549 #if INCLUDE_RTM_OPT
1550     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1551       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1552       if (rlc->nonzero()) {
1553         tty->print_cr("%s", c->name());
1554         rlc->print_on(tty);
1555       }
1556 #endif
1557     }
1558     c = c->next();
1559   }
1560   if (total_lock_count > 0) {
1561     tty->print_cr("dynamic locks: %d", total_lock_count);
1562     if (eliminated_lock_count) {
1563       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1564                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1565     }
1566   }
1567 }
1568 
1569 //
1570 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1571 //  name which consists of method@line for the inlining tree.
1572 //
1573 
1574 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1575   int max_depth = youngest_jvms->depth();
1576 
1577   // Visit scopes from youngest to oldest.
1578   bool first = true;
1579   stringStream st;
1580   for (int depth = max_depth; depth >= 1; depth--) {
1581     JVMState* jvms = youngest_jvms->of_depth(depth);
1582     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1583     if (!first) {
1584       st.print(" ");
1585     } else {
1586       first = false;
1587     }
1588     int bci = jvms->bci();
1589     if (bci < 0) bci = 0;
1590     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1591     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1592   }
1593   NamedCounter* c;
1594   if (tag == NamedCounter::BiasedLockingCounter) {
1595     c = new BiasedLockingNamedCounter(st.as_string());
1596   } else if (tag == NamedCounter::RTMLockingCounter) {
1597     c = new RTMLockingNamedCounter(st.as_string());
1598   } else {
1599     c = new NamedCounter(st.as_string(), tag);
1600   }
1601 
1602   // atomically add the new counter to the head of the list.  We only
1603   // add counters so this is safe.
1604   NamedCounter* head;
1605   do {
1606     c->set_next(NULL);
1607     head = _named_counters;
1608     c->set_next(head);
1609   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1610   return c;
1611 }
1612 
1613 int trace_exception_counter = 0;
1614 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1615   trace_exception_counter++;
1616   stringStream tempst;
1617 
1618   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1619   exception_oop->print_value_on(&tempst);
1620   tempst.print(" in ");
1621   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1622   if (blob->is_compiled()) {
1623     CompiledMethod* cm = blob->as_compiled_method_or_null();
1624     cm->method()->print_value_on(&tempst);
1625   } else if (blob->is_runtime_stub()) {
1626     tempst.print("<runtime-stub>");
1627   } else {
1628     tempst.print("<unknown>");
1629   }
1630   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1631   tempst.print("]");
1632 
1633   st->print_raw_cr(tempst.as_string());
1634 }