1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/cardTableBarrierSet.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/interfaceSupport.inline.hpp"
  40 #include "runtime/jniHandles.inline.hpp"
  41 #include "runtime/safepointMechanism.inline.hpp"
  42 #include "runtime/sharedRuntime.hpp"
  43 
  44 #define __ _masm->
  45 
  46 
  47 //------------------------------------------------------------
  48 
  49 
  50 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  51   if (opr->is_constant()) {
  52     LIR_Const* constant = opr->as_constant_ptr();
  53     switch (constant->type()) {
  54       case T_INT: {
  55         jint value = constant->as_jint();
  56         return Assembler::is_simm13(value);
  57       }
  58 
  59       default:
  60         return false;
  61     }
  62   }
  63   return false;
  64 }
  65 
  66 
  67 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  68   switch (op->code()) {
  69     case lir_null_check:
  70     return true;
  71 
  72 
  73     case lir_add:
  74     case lir_ushr:
  75     case lir_shr:
  76     case lir_shl:
  77       // integer shifts and adds are always one instruction
  78       return op->result_opr()->is_single_cpu();
  79 
  80 
  81     case lir_move: {
  82       LIR_Op1* op1 = op->as_Op1();
  83       LIR_Opr src = op1->in_opr();
  84       LIR_Opr dst = op1->result_opr();
  85 
  86       if (src == dst) {
  87         NEEDS_CLEANUP;
  88         // this works around a problem where moves with the same src and dst
  89         // end up in the delay slot and then the assembler swallows the mov
  90         // since it has no effect and then it complains because the delay slot
  91         // is empty.  returning false stops the optimizer from putting this in
  92         // the delay slot
  93         return false;
  94       }
  95 
  96       // don't put moves involving oops into the delay slot since the VerifyOops code
  97       // will make it much larger than a single instruction.
  98       if (VerifyOops) {
  99         return false;
 100       }
 101 
 102       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
 103           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 104         return false;
 105       }
 106 
 107       if (UseCompressedOops) {
 108         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 109         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 110       }
 111 
 112       if (UseCompressedClassPointers) {
 113         if (src->is_address() && !src->is_stack() && src->type() == T_ADDRESS &&
 114             src->as_address_ptr()->disp() == oopDesc::klass_offset_in_bytes()) return false;
 115       }
 116 
 117       if (dst->is_register()) {
 118         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 119           return !PatchALot;
 120         } else if (src->is_single_stack()) {
 121           return true;
 122         }
 123       }
 124 
 125       if (src->is_register()) {
 126         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 127           return !PatchALot;
 128         } else if (dst->is_single_stack()) {
 129           return true;
 130         }
 131       }
 132 
 133       if (dst->is_register() &&
 134           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 135            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 136         return true;
 137       }
 138 
 139       return false;
 140     }
 141 
 142     default:
 143       return false;
 144   }
 145   ShouldNotReachHere();
 146 }
 147 
 148 
 149 LIR_Opr LIR_Assembler::receiverOpr() {
 150   return FrameMap::O0_oop_opr;
 151 }
 152 
 153 
 154 LIR_Opr LIR_Assembler::osrBufferPointer() {
 155   return FrameMap::I0_opr;
 156 }
 157 
 158 
 159 int LIR_Assembler::initial_frame_size_in_bytes() const {
 160   return in_bytes(frame_map()->framesize_in_bytes());
 161 }
 162 
 163 
 164 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 165 // we fetch the class of the receiver (O0) and compare it with the cached class.
 166 // If they do not match we jump to slow case.
 167 int LIR_Assembler::check_icache() {
 168   int offset = __ offset();
 169   __ inline_cache_check(O0, G5_inline_cache_reg);
 170   return offset;
 171 }
 172 
 173 
 174 void LIR_Assembler::osr_entry() {
 175   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 176   //
 177   //   1. Create a new compiled activation.
 178   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 179   //      at the osr_bci; it is not initialized.
 180   //   3. Jump to the continuation address in compiled code to resume execution.
 181 
 182   // OSR entry point
 183   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 184   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 185   ValueStack* entry_state = osr_entry->end()->state();
 186   int number_of_locks = entry_state->locks_size();
 187 
 188   // Create a frame for the compiled activation.
 189   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 190 
 191   // OSR buffer is
 192   //
 193   // locals[nlocals-1..0]
 194   // monitors[number_of_locks-1..0]
 195   //
 196   // locals is a direct copy of the interpreter frame so in the osr buffer
 197   // so first slot in the local array is the last local from the interpreter
 198   // and last slot is local[0] (receiver) from the interpreter
 199   //
 200   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 201   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 202   // in the interpreter frame (the method lock if a sync method)
 203 
 204   // Initialize monitors in the compiled activation.
 205   //   I0: pointer to osr buffer
 206   //
 207   // All other registers are dead at this point and the locals will be
 208   // copied into place by code emitted in the IR.
 209 
 210   Register OSR_buf = osrBufferPointer()->as_register();
 211   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 212     int monitor_offset = BytesPerWord * method()->max_locals() +
 213       (2 * BytesPerWord) * (number_of_locks - 1);
 214     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 215     // the OSR buffer using 2 word entries: first the lock and then
 216     // the oop.
 217     for (int i = 0; i < number_of_locks; i++) {
 218       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 219 #ifdef ASSERT
 220       // verify the interpreter's monitor has a non-null object
 221       {
 222         Label L;
 223         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 224         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 225         __ stop("locked object is NULL");
 226         __ bind(L);
 227       }
 228 #endif // ASSERT
 229       // Copy the lock field into the compiled activation.
 230       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 231       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 232       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 233       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 234     }
 235   }
 236 }
 237 
 238 
 239 // --------------------------------------------------------------------------------------------
 240 
 241 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 242   if (!GenerateSynchronizationCode) return;
 243 
 244   Register obj_reg = obj_opr->as_register();
 245   Register lock_reg = lock_opr->as_register();
 246 
 247   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 248   Register reg = mon_addr.base();
 249   int offset = mon_addr.disp();
 250   // compute pointer to BasicLock
 251   if (mon_addr.is_simm13()) {
 252     __ add(reg, offset, lock_reg);
 253   }
 254   else {
 255     __ set(offset, lock_reg);
 256     __ add(reg, lock_reg, lock_reg);
 257   }
 258   // unlock object
 259   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 260   // _slow_case_stubs->append(slow_case);
 261   // temporary fix: must be created after exceptionhandler, therefore as call stub
 262   _slow_case_stubs->append(slow_case);
 263   if (UseFastLocking) {
 264     // try inlined fast unlocking first, revert to slow locking if it fails
 265     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 266     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 267     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 268   } else {
 269     // always do slow unlocking
 270     // note: the slow unlocking code could be inlined here, however if we use
 271     //       slow unlocking, speed doesn't matter anyway and this solution is
 272     //       simpler and requires less duplicated code - additionally, the
 273     //       slow unlocking code is the same in either case which simplifies
 274     //       debugging
 275     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 276     __ delayed()->nop();
 277   }
 278   // done
 279   __ bind(*slow_case->continuation());
 280 }
 281 
 282 
 283 int LIR_Assembler::emit_exception_handler() {
 284   // if the last instruction is a call (typically to do a throw which
 285   // is coming at the end after block reordering) the return address
 286   // must still point into the code area in order to avoid assertion
 287   // failures when searching for the corresponding bci => add a nop
 288   // (was bug 5/14/1999 - gri)
 289   __ nop();
 290 
 291   // generate code for exception handler
 292   ciMethod* method = compilation()->method();
 293 
 294   address handler_base = __ start_a_stub(exception_handler_size());
 295 
 296   if (handler_base == NULL) {
 297     // not enough space left for the handler
 298     bailout("exception handler overflow");
 299     return -1;
 300   }
 301 
 302   int offset = code_offset();
 303 
 304   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 305   __ delayed()->nop();
 306   __ should_not_reach_here();
 307   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 308   __ end_a_stub();
 309 
 310   return offset;
 311 }
 312 
 313 
 314 // Emit the code to remove the frame from the stack in the exception
 315 // unwind path.
 316 int LIR_Assembler::emit_unwind_handler() {
 317 #ifndef PRODUCT
 318   if (CommentedAssembly) {
 319     _masm->block_comment("Unwind handler");
 320   }
 321 #endif
 322 
 323   int offset = code_offset();
 324 
 325   // Fetch the exception from TLS and clear out exception related thread state
 326   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 327   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 328   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 329 
 330   __ bind(_unwind_handler_entry);
 331   __ verify_not_null_oop(O0);
 332   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 333     __ mov(O0, I0);  // Preserve the exception
 334   }
 335 
 336   // Preform needed unlocking
 337   MonitorExitStub* stub = NULL;
 338   if (method()->is_synchronized()) {
 339     monitor_address(0, FrameMap::I1_opr);
 340     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 341     __ unlock_object(I3, I2, I1, *stub->entry());
 342     __ bind(*stub->continuation());
 343   }
 344 
 345   if (compilation()->env()->dtrace_method_probes()) {
 346     __ mov(G2_thread, O0);
 347     __ save_thread(I1); // need to preserve thread in G2 across
 348                         // runtime call
 349     metadata2reg(method()->constant_encoding(), O1);
 350     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 351     __ delayed()->nop();
 352     __ restore_thread(I1);
 353   }
 354 
 355   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 356     __ mov(I0, O0);  // Restore the exception
 357   }
 358 
 359   // dispatch to the unwind logic
 360   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 361   __ delayed()->nop();
 362 
 363   // Emit the slow path assembly
 364   if (stub != NULL) {
 365     stub->emit_code(this);
 366   }
 367 
 368   return offset;
 369 }
 370 
 371 
 372 int LIR_Assembler::emit_deopt_handler() {
 373   // if the last instruction is a call (typically to do a throw which
 374   // is coming at the end after block reordering) the return address
 375   // must still point into the code area in order to avoid assertion
 376   // failures when searching for the corresponding bci => add a nop
 377   // (was bug 5/14/1999 - gri)
 378   __ nop();
 379 
 380   // generate code for deopt handler
 381   ciMethod* method = compilation()->method();
 382   address handler_base = __ start_a_stub(deopt_handler_size());
 383   if (handler_base == NULL) {
 384     // not enough space left for the handler
 385     bailout("deopt handler overflow");
 386     return -1;
 387   }
 388 
 389   int offset = code_offset();
 390   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 391   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 392   __ delayed()->nop();
 393   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 394   __ end_a_stub();
 395 
 396   return offset;
 397 }
 398 
 399 
 400 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 401   if (o == NULL) {
 402     __ set(NULL_WORD, reg);
 403   } else {
 404 #ifdef ASSERT
 405     {
 406       ThreadInVMfromNative tiv(JavaThread::current());
 407       assert(Universe::heap()->is_in_reserved(JNIHandles::resolve(o)), "should be real oop");
 408     }
 409 #endif
 410     int oop_index = __ oop_recorder()->find_index(o);
 411     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 412     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 413   }
 414 }
 415 
 416 
 417 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 418   // Allocate a new index in table to hold the object once it's been patched
 419   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 420   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 421 
 422   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 423   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 424   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 425   // NULL will be dynamically patched later and the patched value may be large.  We must
 426   // therefore generate the sethi/add as a placeholders
 427   __ patchable_set(addrlit, reg);
 428 
 429   patching_epilog(patch, lir_patch_normal, reg, info);
 430 }
 431 
 432 
 433 void LIR_Assembler::metadata2reg(Metadata* o, Register reg) {
 434   __ set_metadata_constant(o, reg);
 435 }
 436 
 437 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 438   // Allocate a new index in table to hold the klass once it's been patched
 439   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 440   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 441   AddressLiteral addrlit(NULL, metadata_Relocation::spec(index));
 442   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 443   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 444   // NULL will be dynamically patched later and the patched value may be large.  We must
 445   // therefore generate the sethi/add as a placeholders
 446   __ patchable_set(addrlit, reg);
 447 
 448   patching_epilog(patch, lir_patch_normal, reg, info);
 449 }
 450 
 451 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 452   switch (op->code()) {
 453     case lir_idiv:
 454     case lir_irem:  // Both idiv & irem are handled after the switch (below).
 455       break;
 456     case lir_fmaf:
 457       __ fmadd(FloatRegisterImpl::S,
 458                op->in_opr1()->as_float_reg(),
 459                op->in_opr2()->as_float_reg(),
 460                op->in_opr3()->as_float_reg(),
 461                op->result_opr()->as_float_reg());
 462       return;
 463     case lir_fmad:
 464       __ fmadd(FloatRegisterImpl::D,
 465                op->in_opr1()->as_double_reg(),
 466                op->in_opr2()->as_double_reg(),
 467                op->in_opr3()->as_double_reg(),
 468                op->result_opr()->as_double_reg());
 469       return;
 470     default:
 471       ShouldNotReachHere();
 472       break;
 473   }
 474 
 475   // Handle idiv & irem:
 476 
 477   Register Rdividend = op->in_opr1()->as_register();
 478   Register Rdivisor  = noreg;
 479   Register Rscratch  = op->in_opr3()->as_register();
 480   Register Rresult   = op->result_opr()->as_register();
 481   int divisor = -1;
 482 
 483   if (op->in_opr2()->is_register()) {
 484     Rdivisor = op->in_opr2()->as_register();
 485   } else {
 486     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 487     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 488   }
 489 
 490   assert(Rdividend != Rscratch, "");
 491   assert(Rdivisor  != Rscratch, "");
 492   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 493 
 494   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 495     // convert division by a power of two into some shifts and logical operations
 496     if (op->code() == lir_idiv) {
 497       if (divisor == 2) {
 498         __ srl(Rdividend, 31, Rscratch);
 499       } else {
 500         __ sra(Rdividend, 31, Rscratch);
 501         __ and3(Rscratch, divisor - 1, Rscratch);
 502       }
 503       __ add(Rdividend, Rscratch, Rscratch);
 504       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 505       return;
 506     } else {
 507       if (divisor == 2) {
 508         __ srl(Rdividend, 31, Rscratch);
 509       } else {
 510         __ sra(Rdividend, 31, Rscratch);
 511         __ and3(Rscratch, divisor - 1,Rscratch);
 512       }
 513       __ add(Rdividend, Rscratch, Rscratch);
 514       __ andn(Rscratch, divisor - 1,Rscratch);
 515       __ sub(Rdividend, Rscratch, Rresult);
 516       return;
 517     }
 518   }
 519 
 520   __ sra(Rdividend, 31, Rscratch);
 521   __ wry(Rscratch);
 522 
 523   add_debug_info_for_div0_here(op->info());
 524 
 525   if (Rdivisor != noreg) {
 526     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 527   } else {
 528     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 529     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 530   }
 531 
 532   Label skip;
 533   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 534   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 535   __ bind(skip);
 536 
 537   if (op->code() == lir_irem) {
 538     if (Rdivisor != noreg) {
 539       __ smul(Rscratch, Rdivisor, Rscratch);
 540     } else {
 541       __ smul(Rscratch, divisor, Rscratch);
 542     }
 543     __ sub(Rdividend, Rscratch, Rresult);
 544   }
 545 }
 546 
 547 
 548 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 549 #ifdef ASSERT
 550   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 551   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 552   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 553 #endif
 554   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 555 
 556   if (op->cond() == lir_cond_always) {
 557     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 558   } else if (op->code() == lir_cond_float_branch) {
 559     assert(op->ublock() != NULL, "must have unordered successor");
 560     bool is_unordered = (op->ublock() == op->block());
 561     Assembler::Condition acond;
 562     switch (op->cond()) {
 563       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 564       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 565       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 566       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 567       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 568       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 569       default :                         ShouldNotReachHere();
 570     }
 571     __ fb( acond, false, Assembler::pn, *(op->label()));
 572   } else {
 573     assert (op->code() == lir_branch, "just checking");
 574 
 575     Assembler::Condition acond;
 576     switch (op->cond()) {
 577       case lir_cond_equal:        acond = Assembler::equal;                break;
 578       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 579       case lir_cond_less:         acond = Assembler::less;                 break;
 580       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 581       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 582       case lir_cond_greater:      acond = Assembler::greater;              break;
 583       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 584       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 585       default:                         ShouldNotReachHere();
 586     };
 587 
 588     // sparc has different condition codes for testing 32-bit
 589     // vs. 64-bit values.  We could always test xcc is we could
 590     // guarantee that 32-bit loads always sign extended but that isn't
 591     // true and since sign extension isn't free, it would impose a
 592     // slight cost.
 593     if  (op->type() == T_INT) {
 594       __ br(acond, false, Assembler::pn, *(op->label()));
 595     } else
 596       __ brx(acond, false, Assembler::pn, *(op->label()));
 597   }
 598   // The peephole pass fills the delay slot
 599 }
 600 
 601 
 602 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 603   Bytecodes::Code code = op->bytecode();
 604   LIR_Opr dst = op->result_opr();
 605 
 606   switch(code) {
 607     case Bytecodes::_i2l: {
 608       Register rlo  = dst->as_register_lo();
 609       Register rhi  = dst->as_register_hi();
 610       Register rval = op->in_opr()->as_register();
 611       __ sra(rval, 0, rlo);
 612       break;
 613     }
 614     case Bytecodes::_i2d:
 615     case Bytecodes::_i2f: {
 616       bool is_double = (code == Bytecodes::_i2d);
 617       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 618       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 619       FloatRegister rsrc = op->in_opr()->as_float_reg();
 620       if (rsrc != rdst) {
 621         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 622       }
 623       __ fitof(w, rdst, rdst);
 624       break;
 625     }
 626     case Bytecodes::_f2i:{
 627       FloatRegister rsrc = op->in_opr()->as_float_reg();
 628       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 629       Label L;
 630       // result must be 0 if value is NaN; test by comparing value to itself
 631       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 632       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 633       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 634       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 635       // move integer result from float register to int register
 636       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 637       __ bind (L);
 638       break;
 639     }
 640     case Bytecodes::_l2i: {
 641       Register rlo  = op->in_opr()->as_register_lo();
 642       Register rhi  = op->in_opr()->as_register_hi();
 643       Register rdst = dst->as_register();
 644       __ sra(rlo, 0, rdst);
 645       break;
 646     }
 647     case Bytecodes::_d2f:
 648     case Bytecodes::_f2d: {
 649       bool is_double = (code == Bytecodes::_f2d);
 650       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 651       LIR_Opr val = op->in_opr();
 652       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 653       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 654       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 655       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 656       __ ftof(vw, dw, rval, rdst);
 657       break;
 658     }
 659     case Bytecodes::_i2s:
 660     case Bytecodes::_i2b: {
 661       Register rval = op->in_opr()->as_register();
 662       Register rdst = dst->as_register();
 663       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 664       __ sll (rval, shift, rdst);
 665       __ sra (rdst, shift, rdst);
 666       break;
 667     }
 668     case Bytecodes::_i2c: {
 669       Register rval = op->in_opr()->as_register();
 670       Register rdst = dst->as_register();
 671       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 672       __ sll (rval, shift, rdst);
 673       __ srl (rdst, shift, rdst);
 674       break;
 675     }
 676 
 677     default: ShouldNotReachHere();
 678   }
 679 }
 680 
 681 
 682 void LIR_Assembler::align_call(LIR_Code) {
 683   // do nothing since all instructions are word aligned on sparc
 684 }
 685 
 686 
 687 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 688   __ call(op->addr(), rtype);
 689   // The peephole pass fills the delay slot, add_call_info is done in
 690   // LIR_Assembler::emit_delay.
 691 }
 692 
 693 
 694 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 695   __ ic_call(op->addr(), false);
 696   // The peephole pass fills the delay slot, add_call_info is done in
 697   // LIR_Assembler::emit_delay.
 698 }
 699 
 700 
 701 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 702   add_debug_info_for_null_check_here(op->info());
 703   __ load_klass(O0, G3_scratch);
 704   if (Assembler::is_simm13(op->vtable_offset())) {
 705     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 706   } else {
 707     // This will generate 2 instructions
 708     __ set(op->vtable_offset(), G5_method);
 709     // ld_ptr, set_hi, set
 710     __ ld_ptr(G3_scratch, G5_method, G5_method);
 711   }
 712   __ ld_ptr(G5_method, Method::from_compiled_offset(), G3_scratch);
 713   __ callr(G3_scratch, G0);
 714   // the peephole pass fills the delay slot
 715 }
 716 
 717 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 718   int store_offset;
 719   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 720     assert(base != O7, "destroying register");
 721     assert(!unaligned, "can't handle this");
 722     // for offsets larger than a simm13 we setup the offset in O7
 723     __ set(offset, O7);
 724     store_offset = store(from_reg, base, O7, type, wide);
 725   } else {
 726     if (type == T_ARRAY || type == T_OBJECT) {
 727       __ verify_oop(from_reg->as_register());
 728     }
 729     store_offset = code_offset();
 730     switch (type) {
 731       case T_BOOLEAN: // fall through
 732       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 733       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 734       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 735       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 736       case T_LONG  :
 737         if (unaligned || PatchALot) {
 738           // Don't use O7 here because it may be equal to 'base' (see LIR_Assembler::reg2mem)
 739           assert(G3_scratch != base, "can't handle this");
 740           assert(G3_scratch != from_reg->as_register_lo(), "can't handle this");
 741           __ srax(from_reg->as_register_lo(), 32, G3_scratch);
 742           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 743           __ stw(G3_scratch,                 base, offset + hi_word_offset_in_bytes);
 744         } else {
 745           __ stx(from_reg->as_register_lo(), base, offset);
 746         }
 747         break;
 748       case T_ADDRESS:
 749       case T_METADATA:
 750         __ st_ptr(from_reg->as_register(), base, offset);
 751         break;
 752       case T_ARRAY : // fall through
 753       case T_OBJECT:
 754         {
 755           if (UseCompressedOops && !wide) {
 756             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 757             store_offset = code_offset();
 758             __ stw(G3_scratch, base, offset);
 759           } else {
 760             __ st_ptr(from_reg->as_register(), base, offset);
 761           }
 762           break;
 763         }
 764 
 765       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 766       case T_DOUBLE:
 767         {
 768           FloatRegister reg = from_reg->as_double_reg();
 769           // split unaligned stores
 770           if (unaligned || PatchALot) {
 771             assert(Assembler::is_simm13(offset + 4), "must be");
 772             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 773             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 774           } else {
 775             __ stf(FloatRegisterImpl::D, reg, base, offset);
 776           }
 777           break;
 778         }
 779       default      : ShouldNotReachHere();
 780     }
 781   }
 782   return store_offset;
 783 }
 784 
 785 
 786 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 787   if (type == T_ARRAY || type == T_OBJECT) {
 788     __ verify_oop(from_reg->as_register());
 789   }
 790   int store_offset = code_offset();
 791   switch (type) {
 792     case T_BOOLEAN: // fall through
 793     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 794     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 795     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 796     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 797     case T_LONG  :
 798       __ stx(from_reg->as_register_lo(), base, disp);
 799       break;
 800     case T_ADDRESS:
 801       __ st_ptr(from_reg->as_register(), base, disp);
 802       break;
 803     case T_ARRAY : // fall through
 804     case T_OBJECT:
 805       {
 806         if (UseCompressedOops && !wide) {
 807           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 808           store_offset = code_offset();
 809           __ stw(G3_scratch, base, disp);
 810         } else {
 811           __ st_ptr(from_reg->as_register(), base, disp);
 812         }
 813         break;
 814       }
 815     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 816     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 817     default      : ShouldNotReachHere();
 818   }
 819   return store_offset;
 820 }
 821 
 822 
 823 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 824   int load_offset;
 825   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 826     assert(base != O7, "destroying register");
 827     assert(!unaligned, "can't handle this");
 828     // for offsets larger than a simm13 we setup the offset in O7
 829     __ set(offset, O7);
 830     load_offset = load(base, O7, to_reg, type, wide);
 831   } else {
 832     load_offset = code_offset();
 833     switch(type) {
 834       case T_BOOLEAN: // fall through
 835       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 836       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 837       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 838       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 839       case T_LONG  :
 840         if (!unaligned && !PatchALot) {
 841           __ ldx(base, offset, to_reg->as_register_lo());
 842         } else {
 843           assert(base != to_reg->as_register_lo(), "can't handle this");
 844           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 845           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 846           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 847           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 848           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 849         }
 850         break;
 851       case T_METADATA:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 852       case T_ADDRESS:
 853         if (offset == oopDesc::klass_offset_in_bytes() && UseCompressedClassPointers) {
 854           __ lduw(base, offset, to_reg->as_register());
 855           __ decode_klass_not_null(to_reg->as_register());
 856         } else
 857         {
 858           __ ld_ptr(base, offset, to_reg->as_register());
 859         }
 860         break;
 861       case T_ARRAY : // fall through
 862       case T_OBJECT:
 863         {
 864           if (UseCompressedOops && !wide) {
 865             __ lduw(base, offset, to_reg->as_register());
 866             __ decode_heap_oop(to_reg->as_register());
 867           } else {
 868             __ ld_ptr(base, offset, to_reg->as_register());
 869           }
 870           break;
 871         }
 872       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 873       case T_DOUBLE:
 874         {
 875           FloatRegister reg = to_reg->as_double_reg();
 876           // split unaligned loads
 877           if (unaligned || PatchALot) {
 878             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 879             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 880           } else {
 881             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 882           }
 883           break;
 884         }
 885       default      : ShouldNotReachHere();
 886     }
 887     if (type == T_ARRAY || type == T_OBJECT) {
 888       __ verify_oop(to_reg->as_register());
 889     }
 890   }
 891   return load_offset;
 892 }
 893 
 894 
 895 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 896   int load_offset = code_offset();
 897   switch(type) {
 898     case T_BOOLEAN: // fall through
 899     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 900     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 901     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 902     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 903     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 904     case T_ARRAY : // fall through
 905     case T_OBJECT:
 906       {
 907           if (UseCompressedOops && !wide) {
 908             __ lduw(base, disp, to_reg->as_register());
 909             __ decode_heap_oop(to_reg->as_register());
 910           } else {
 911             __ ld_ptr(base, disp, to_reg->as_register());
 912           }
 913           break;
 914       }
 915     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
 916     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
 917     case T_LONG  :
 918       __ ldx(base, disp, to_reg->as_register_lo());
 919       break;
 920     default      : ShouldNotReachHere();
 921   }
 922   if (type == T_ARRAY || type == T_OBJECT) {
 923     __ verify_oop(to_reg->as_register());
 924   }
 925   return load_offset;
 926 }
 927 
 928 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 929   LIR_Const* c = src->as_constant_ptr();
 930   switch (c->type()) {
 931     case T_INT:
 932     case T_FLOAT: {
 933       Register src_reg = O7;
 934       int value = c->as_jint_bits();
 935       if (value == 0) {
 936         src_reg = G0;
 937       } else {
 938         __ set(value, O7);
 939       }
 940       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 941       __ stw(src_reg, addr.base(), addr.disp());
 942       break;
 943     }
 944     case T_ADDRESS: {
 945       Register src_reg = O7;
 946       int value = c->as_jint_bits();
 947       if (value == 0) {
 948         src_reg = G0;
 949       } else {
 950         __ set(value, O7);
 951       }
 952       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 953       __ st_ptr(src_reg, addr.base(), addr.disp());
 954       break;
 955     }
 956     case T_OBJECT: {
 957       Register src_reg = O7;
 958       jobject2reg(c->as_jobject(), src_reg);
 959       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
 960       __ st_ptr(src_reg, addr.base(), addr.disp());
 961       break;
 962     }
 963     case T_LONG:
 964     case T_DOUBLE: {
 965       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
 966 
 967       Register tmp = O7;
 968       int value_lo = c->as_jint_lo_bits();
 969       if (value_lo == 0) {
 970         tmp = G0;
 971       } else {
 972         __ set(value_lo, O7);
 973       }
 974       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
 975       int value_hi = c->as_jint_hi_bits();
 976       if (value_hi == 0) {
 977         tmp = G0;
 978       } else {
 979         __ set(value_hi, O7);
 980       }
 981       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
 982       break;
 983     }
 984     default:
 985       Unimplemented();
 986   }
 987 }
 988 
 989 
 990 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 991   LIR_Const* c = src->as_constant_ptr();
 992   LIR_Address* addr     = dest->as_address_ptr();
 993   Register base = addr->base()->as_pointer_register();
 994   int offset = -1;
 995 
 996   switch (c->type()) {
 997     case T_FLOAT: type = T_INT; // Float constants are stored by int store instructions.
 998     case T_INT:
 999     case T_ADDRESS: {
1000       LIR_Opr tmp = FrameMap::O7_opr;
1001       int value = c->as_jint_bits();
1002       if (value == 0) {
1003         tmp = FrameMap::G0_opr;
1004       } else if (Assembler::is_simm13(value)) {
1005         __ set(value, O7);
1006       }
1007       if (addr->index()->is_valid()) {
1008         assert(addr->disp() == 0, "must be zero");
1009         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1010       } else {
1011         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1012         offset = store(tmp, base, addr->disp(), type, wide, false);
1013       }
1014       break;
1015     }
1016     case T_LONG:
1017     case T_DOUBLE: {
1018       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1019       assert(Assembler::is_simm13(addr->disp()) &&
1020              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1021 
1022       LIR_Opr tmp = FrameMap::O7_opr;
1023       int value_lo = c->as_jint_lo_bits();
1024       if (value_lo == 0) {
1025         tmp = FrameMap::G0_opr;
1026       } else {
1027         __ set(value_lo, O7);
1028       }
1029       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1030       int value_hi = c->as_jint_hi_bits();
1031       if (value_hi == 0) {
1032         tmp = FrameMap::G0_opr;
1033       } else {
1034         __ set(value_hi, O7);
1035       }
1036       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1037       break;
1038     }
1039     case T_OBJECT: {
1040       jobject obj = c->as_jobject();
1041       LIR_Opr tmp;
1042       if (obj == NULL) {
1043         tmp = FrameMap::G0_opr;
1044       } else {
1045         tmp = FrameMap::O7_opr;
1046         jobject2reg(c->as_jobject(), O7);
1047       }
1048       // handle either reg+reg or reg+disp address
1049       if (addr->index()->is_valid()) {
1050         assert(addr->disp() == 0, "must be zero");
1051         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1052       } else {
1053         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1054         offset = store(tmp, base, addr->disp(), type, wide, false);
1055       }
1056 
1057       break;
1058     }
1059     default:
1060       Unimplemented();
1061   }
1062   if (info != NULL) {
1063     assert(offset != -1, "offset should've been set");
1064     add_debug_info_for_null_check(offset, info);
1065   }
1066 }
1067 
1068 
1069 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1070   LIR_Const* c = src->as_constant_ptr();
1071   LIR_Opr to_reg = dest;
1072 
1073   switch (c->type()) {
1074     case T_INT:
1075     case T_ADDRESS:
1076       {
1077         jint con = c->as_jint();
1078         if (to_reg->is_single_cpu()) {
1079           assert(patch_code == lir_patch_none, "no patching handled here");
1080           __ set(con, to_reg->as_register());
1081         } else {
1082           ShouldNotReachHere();
1083           assert(to_reg->is_single_fpu(), "wrong register kind");
1084 
1085           __ set(con, O7);
1086           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1087           __ st(O7, temp_slot);
1088           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1089         }
1090       }
1091       break;
1092 
1093     case T_LONG:
1094       {
1095         jlong con = c->as_jlong();
1096 
1097         if (to_reg->is_double_cpu()) {
1098           __ set(con,  to_reg->as_register_lo());
1099         } else if (to_reg->is_single_cpu()) {
1100           __ set(con, to_reg->as_register());
1101         } else {
1102           ShouldNotReachHere();
1103           assert(to_reg->is_double_fpu(), "wrong register kind");
1104           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1105           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1106           __ set(low(con),  O7);
1107           __ st(O7, temp_slot_lo);
1108           __ set(high(con), O7);
1109           __ st(O7, temp_slot_hi);
1110           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1111         }
1112       }
1113       break;
1114 
1115     case T_OBJECT:
1116       {
1117         if (patch_code == lir_patch_none) {
1118           jobject2reg(c->as_jobject(), to_reg->as_register());
1119         } else {
1120           jobject2reg_with_patching(to_reg->as_register(), info);
1121         }
1122       }
1123       break;
1124 
1125     case T_METADATA:
1126       {
1127         if (patch_code == lir_patch_none) {
1128           metadata2reg(c->as_metadata(), to_reg->as_register());
1129         } else {
1130           klass2reg_with_patching(to_reg->as_register(), info);
1131         }
1132       }
1133       break;
1134 
1135     case T_FLOAT:
1136       {
1137         address const_addr = __ float_constant(c->as_jfloat());
1138         if (const_addr == NULL) {
1139           bailout("const section overflow");
1140           break;
1141         }
1142         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1143         AddressLiteral const_addrlit(const_addr, rspec);
1144         if (to_reg->is_single_fpu()) {
1145           __ patchable_sethi(const_addrlit, O7);
1146           __ relocate(rspec);
1147           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1148 
1149         } else {
1150           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1151 
1152           __ set(const_addrlit, O7);
1153           __ ld(O7, 0, to_reg->as_register());
1154         }
1155       }
1156       break;
1157 
1158     case T_DOUBLE:
1159       {
1160         address const_addr = __ double_constant(c->as_jdouble());
1161         if (const_addr == NULL) {
1162           bailout("const section overflow");
1163           break;
1164         }
1165         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1166 
1167         if (to_reg->is_double_fpu()) {
1168           AddressLiteral const_addrlit(const_addr, rspec);
1169           __ patchable_sethi(const_addrlit, O7);
1170           __ relocate(rspec);
1171           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1172         } else {
1173           assert(to_reg->is_double_cpu(), "Must be a long register.");
1174           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1175         }
1176 
1177       }
1178       break;
1179 
1180     default:
1181       ShouldNotReachHere();
1182   }
1183 }
1184 
1185 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1186   Register reg = addr->base()->as_pointer_register();
1187   LIR_Opr index = addr->index();
1188   if (index->is_illegal()) {
1189     return Address(reg, addr->disp());
1190   } else {
1191     assert (addr->disp() == 0, "unsupported address mode");
1192     return Address(reg, index->as_pointer_register());
1193   }
1194 }
1195 
1196 
1197 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1198   switch (type) {
1199     case T_INT:
1200     case T_FLOAT: {
1201       Register tmp = O7;
1202       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1203       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1204       __ lduw(from.base(), from.disp(), tmp);
1205       __ stw(tmp, to.base(), to.disp());
1206       break;
1207     }
1208     case T_ADDRESS:
1209     case T_OBJECT: {
1210       Register tmp = O7;
1211       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1212       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1213       __ ld_ptr(from.base(), from.disp(), tmp);
1214       __ st_ptr(tmp, to.base(), to.disp());
1215       break;
1216     }
1217     case T_LONG:
1218     case T_DOUBLE: {
1219       Register tmp = O7;
1220       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1221       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1222       __ lduw(from.base(), from.disp(), tmp);
1223       __ stw(tmp, to.base(), to.disp());
1224       __ lduw(from.base(), from.disp() + 4, tmp);
1225       __ stw(tmp, to.base(), to.disp() + 4);
1226       break;
1227     }
1228 
1229     default:
1230       ShouldNotReachHere();
1231   }
1232 }
1233 
1234 
1235 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1236   Address base = as_Address(addr);
1237   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1238 }
1239 
1240 
1241 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1242   Address base = as_Address(addr);
1243   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1244 }
1245 
1246 
1247 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1248                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1249 
1250   assert(type != T_METADATA, "load of metadata ptr not supported");
1251   LIR_Address* addr = src_opr->as_address_ptr();
1252   LIR_Opr to_reg = dest;
1253 
1254   Register src = addr->base()->as_pointer_register();
1255   Register disp_reg = noreg;
1256   int disp_value = addr->disp();
1257   bool needs_patching = (patch_code != lir_patch_none);
1258 
1259   if (addr->base()->type() == T_OBJECT) {
1260     __ verify_oop(src);
1261   }
1262 
1263   PatchingStub* patch = NULL;
1264   if (needs_patching) {
1265     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1266     assert(!to_reg->is_double_cpu() ||
1267            patch_code == lir_patch_none ||
1268            patch_code == lir_patch_normal, "patching doesn't match register");
1269   }
1270 
1271   if (addr->index()->is_illegal()) {
1272     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1273       if (needs_patching) {
1274         __ patchable_set(0, O7);
1275       } else {
1276         __ set(disp_value, O7);
1277       }
1278       disp_reg = O7;
1279     }
1280   } else if (unaligned || PatchALot) {
1281     __ add(src, addr->index()->as_pointer_register(), O7);
1282     src = O7;
1283   } else {
1284     disp_reg = addr->index()->as_pointer_register();
1285     assert(disp_value == 0, "can't handle 3 operand addresses");
1286   }
1287 
1288   // remember the offset of the load.  The patching_epilog must be done
1289   // before the call to add_debug_info, otherwise the PcDescs don't get
1290   // entered in increasing order.
1291   int offset = code_offset();
1292 
1293   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1294   if (disp_reg == noreg) {
1295     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1296   } else {
1297     assert(!unaligned, "can't handle this");
1298     offset = load(src, disp_reg, to_reg, type, wide);
1299   }
1300 
1301   if (patch != NULL) {
1302     patching_epilog(patch, patch_code, src, info);
1303   }
1304   if (info != NULL) add_debug_info_for_null_check(offset, info);
1305 }
1306 
1307 
1308 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1309   Address addr;
1310   if (src->is_single_word()) {
1311     addr = frame_map()->address_for_slot(src->single_stack_ix());
1312   } else if (src->is_double_word())  {
1313     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1314   }
1315 
1316   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1317   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1318 }
1319 
1320 
1321 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1322   Address addr;
1323   if (dest->is_single_word()) {
1324     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1325   } else if (dest->is_double_word())  {
1326     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1327   }
1328   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1329   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1330 }
1331 
1332 
1333 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1334   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1335     if (from_reg->is_double_fpu()) {
1336       // double to double moves
1337       assert(to_reg->is_double_fpu(), "should match");
1338       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1339     } else {
1340       // float to float moves
1341       assert(to_reg->is_single_fpu(), "should match");
1342       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1343     }
1344   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1345     if (from_reg->is_double_cpu()) {
1346       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1347     } else if (to_reg->is_double_cpu()) {
1348       // int to int moves
1349       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1350     } else {
1351       // int to int moves
1352       __ mov(from_reg->as_register(), to_reg->as_register());
1353     }
1354   } else {
1355     ShouldNotReachHere();
1356   }
1357   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1358     __ verify_oop(to_reg->as_register());
1359   }
1360 }
1361 
1362 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1363                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1364                             bool wide, bool unaligned) {
1365   assert(type != T_METADATA, "store of metadata ptr not supported");
1366   LIR_Address* addr = dest->as_address_ptr();
1367 
1368   Register src = addr->base()->as_pointer_register();
1369   Register disp_reg = noreg;
1370   int disp_value = addr->disp();
1371   bool needs_patching = (patch_code != lir_patch_none);
1372 
1373   if (addr->base()->is_oop_register()) {
1374     __ verify_oop(src);
1375   }
1376 
1377   PatchingStub* patch = NULL;
1378   if (needs_patching) {
1379     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1380     assert(!from_reg->is_double_cpu() ||
1381            patch_code == lir_patch_none ||
1382            patch_code == lir_patch_normal, "patching doesn't match register");
1383   }
1384 
1385   if (addr->index()->is_illegal()) {
1386     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1387       if (needs_patching) {
1388         __ patchable_set(0, O7);
1389       } else {
1390         __ set(disp_value, O7);
1391       }
1392       disp_reg = O7;
1393     }
1394   } else if (unaligned || PatchALot) {
1395     __ add(src, addr->index()->as_pointer_register(), O7);
1396     src = O7;
1397   } else {
1398     disp_reg = addr->index()->as_pointer_register();
1399     assert(disp_value == 0, "can't handle 3 operand addresses");
1400   }
1401 
1402   // remember the offset of the store.  The patching_epilog must be done
1403   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1404   // entered in increasing order.
1405   int offset;
1406 
1407   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1408   if (disp_reg == noreg) {
1409     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1410   } else {
1411     assert(!unaligned, "can't handle this");
1412     offset = store(from_reg, src, disp_reg, type, wide);
1413   }
1414 
1415   if (patch != NULL) {
1416     patching_epilog(patch, patch_code, src, info);
1417   }
1418 
1419   if (info != NULL) add_debug_info_for_null_check(offset, info);
1420 }
1421 
1422 
1423 void LIR_Assembler::return_op(LIR_Opr result) {
1424   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1425     __ reserved_stack_check();
1426   }
1427   if (SafepointMechanism::uses_thread_local_poll()) {
1428     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), L0);
1429   } else {
1430     __ set((intptr_t)os::get_polling_page(), L0);
1431   }
1432   __ relocate(relocInfo::poll_return_type);
1433   __ ld_ptr(L0, 0, G0);
1434   __ ret();
1435   __ delayed()->restore();
1436 }
1437 
1438 
1439 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1440   if (SafepointMechanism::uses_thread_local_poll()) {
1441     __ ld_ptr(Address(G2_thread, Thread::polling_page_offset()), tmp->as_register());
1442   } else {
1443     __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1444   }
1445   if (info != NULL) {
1446     add_debug_info_for_branch(info);
1447   }
1448   int offset = __ offset();
1449 
1450   __ relocate(relocInfo::poll_type);
1451   __ ld_ptr(tmp->as_register(), 0, G0);
1452   return offset;
1453 }
1454 
1455 
1456 void LIR_Assembler::emit_static_call_stub() {
1457   address call_pc = __ pc();
1458   address stub = __ start_a_stub(call_stub_size());
1459   if (stub == NULL) {
1460     bailout("static call stub overflow");
1461     return;
1462   }
1463 
1464   int start = __ offset();
1465   __ relocate(static_stub_Relocation::spec(call_pc));
1466 
1467   __ set_metadata(NULL, G5);
1468   // must be set to -1 at code generation time
1469   AddressLiteral addrlit(-1);
1470   __ jump_to(addrlit, G3);
1471   __ delayed()->nop();
1472 
1473   assert(__ offset() - start <= call_stub_size(), "stub too big");
1474   __ end_a_stub();
1475 }
1476 
1477 
1478 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1479   if (opr1->is_single_fpu()) {
1480     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1481   } else if (opr1->is_double_fpu()) {
1482     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1483   } else if (opr1->is_single_cpu()) {
1484     if (opr2->is_constant()) {
1485       switch (opr2->as_constant_ptr()->type()) {
1486         case T_INT:
1487           { jint con = opr2->as_constant_ptr()->as_jint();
1488             if (Assembler::is_simm13(con)) {
1489               __ cmp(opr1->as_register(), con);
1490             } else {
1491               __ set(con, O7);
1492               __ cmp(opr1->as_register(), O7);
1493             }
1494           }
1495           break;
1496 
1497         case T_OBJECT:
1498           // there are only equal/notequal comparisions on objects
1499           { jobject con = opr2->as_constant_ptr()->as_jobject();
1500             if (con == NULL) {
1501               __ cmp(opr1->as_register(), 0);
1502             } else {
1503               jobject2reg(con, O7);
1504               __ cmp(opr1->as_register(), O7);
1505             }
1506           }
1507           break;
1508 
1509         default:
1510           ShouldNotReachHere();
1511           break;
1512       }
1513     } else {
1514       if (opr2->is_address()) {
1515         LIR_Address * addr = opr2->as_address_ptr();
1516         BasicType type = addr->type();
1517         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1518         else                    __ ld(as_Address(addr), O7);
1519         __ cmp(opr1->as_register(), O7);
1520       } else {
1521         __ cmp(opr1->as_register(), opr2->as_register());
1522       }
1523     }
1524   } else if (opr1->is_double_cpu()) {
1525     Register xlo = opr1->as_register_lo();
1526     Register xhi = opr1->as_register_hi();
1527     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1528       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1529       __ orcc(xhi, G0, G0);
1530     } else if (opr2->is_register()) {
1531       Register ylo = opr2->as_register_lo();
1532       Register yhi = opr2->as_register_hi();
1533       __ cmp(xlo, ylo);
1534     } else {
1535       ShouldNotReachHere();
1536     }
1537   } else if (opr1->is_address()) {
1538     LIR_Address * addr = opr1->as_address_ptr();
1539     BasicType type = addr->type();
1540     assert (opr2->is_constant(), "Checking");
1541     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1542     else                    __ ld(as_Address(addr), O7);
1543     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1544   } else {
1545     ShouldNotReachHere();
1546   }
1547 }
1548 
1549 
1550 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1551   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1552     bool is_unordered_less = (code == lir_ucmp_fd2i);
1553     if (left->is_single_fpu()) {
1554       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1555     } else if (left->is_double_fpu()) {
1556       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1557     } else {
1558       ShouldNotReachHere();
1559     }
1560   } else if (code == lir_cmp_l2i) {
1561     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1562   } else {
1563     ShouldNotReachHere();
1564   }
1565 }
1566 
1567 
1568 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1569   Assembler::Condition acond;
1570   switch (condition) {
1571     case lir_cond_equal:        acond = Assembler::equal;        break;
1572     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1573     case lir_cond_less:         acond = Assembler::less;         break;
1574     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1575     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1576     case lir_cond_greater:      acond = Assembler::greater;      break;
1577     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1578     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1579     default:                         ShouldNotReachHere();
1580   };
1581 
1582   if (opr1->is_constant() && opr1->type() == T_INT) {
1583     Register dest = result->as_register();
1584     // load up first part of constant before branch
1585     // and do the rest in the delay slot.
1586     if (!Assembler::is_simm13(opr1->as_jint())) {
1587       __ sethi(opr1->as_jint(), dest);
1588     }
1589   } else if (opr1->is_constant()) {
1590     const2reg(opr1, result, lir_patch_none, NULL);
1591   } else if (opr1->is_register()) {
1592     reg2reg(opr1, result);
1593   } else if (opr1->is_stack()) {
1594     stack2reg(opr1, result, result->type());
1595   } else {
1596     ShouldNotReachHere();
1597   }
1598   Label skip;
1599     if  (type == T_INT) {
1600       __ br(acond, false, Assembler::pt, skip);
1601     } else {
1602       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1603     }
1604   if (opr1->is_constant() && opr1->type() == T_INT) {
1605     Register dest = result->as_register();
1606     if (Assembler::is_simm13(opr1->as_jint())) {
1607       __ delayed()->or3(G0, opr1->as_jint(), dest);
1608     } else {
1609       // the sethi has been done above, so just put in the low 10 bits
1610       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1611     }
1612   } else {
1613     // can't do anything useful in the delay slot
1614     __ delayed()->nop();
1615   }
1616   if (opr2->is_constant()) {
1617     const2reg(opr2, result, lir_patch_none, NULL);
1618   } else if (opr2->is_register()) {
1619     reg2reg(opr2, result);
1620   } else if (opr2->is_stack()) {
1621     stack2reg(opr2, result, result->type());
1622   } else {
1623     ShouldNotReachHere();
1624   }
1625   __ bind(skip);
1626 }
1627 
1628 
1629 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1630   assert(info == NULL, "unused on this code path");
1631   assert(left->is_register(), "wrong items state");
1632   assert(dest->is_register(), "wrong items state");
1633 
1634   if (right->is_register()) {
1635     if (dest->is_float_kind()) {
1636 
1637       FloatRegister lreg, rreg, res;
1638       FloatRegisterImpl::Width w;
1639       if (right->is_single_fpu()) {
1640         w = FloatRegisterImpl::S;
1641         lreg = left->as_float_reg();
1642         rreg = right->as_float_reg();
1643         res  = dest->as_float_reg();
1644       } else {
1645         w = FloatRegisterImpl::D;
1646         lreg = left->as_double_reg();
1647         rreg = right->as_double_reg();
1648         res  = dest->as_double_reg();
1649       }
1650 
1651       switch (code) {
1652         case lir_add: __ fadd(w, lreg, rreg, res); break;
1653         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1654         case lir_mul: // fall through
1655         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1656         case lir_div: // fall through
1657         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1658         default: ShouldNotReachHere();
1659       }
1660 
1661     } else if (dest->is_double_cpu()) {
1662       Register dst_lo = dest->as_register_lo();
1663       Register op1_lo = left->as_pointer_register();
1664       Register op2_lo = right->as_pointer_register();
1665 
1666       switch (code) {
1667         case lir_add:
1668           __ add(op1_lo, op2_lo, dst_lo);
1669           break;
1670 
1671         case lir_sub:
1672           __ sub(op1_lo, op2_lo, dst_lo);
1673           break;
1674 
1675         default: ShouldNotReachHere();
1676       }
1677     } else {
1678       assert (right->is_single_cpu(), "Just Checking");
1679 
1680       Register lreg = left->as_register();
1681       Register res  = dest->as_register();
1682       Register rreg = right->as_register();
1683       switch (code) {
1684         case lir_add:  __ add  (lreg, rreg, res); break;
1685         case lir_sub:  __ sub  (lreg, rreg, res); break;
1686         case lir_mul:  __ mulx (lreg, rreg, res); break;
1687         default: ShouldNotReachHere();
1688       }
1689     }
1690   } else {
1691     assert (right->is_constant(), "must be constant");
1692 
1693     if (dest->is_single_cpu()) {
1694       Register lreg = left->as_register();
1695       Register res  = dest->as_register();
1696       int    simm13 = right->as_constant_ptr()->as_jint();
1697 
1698       switch (code) {
1699         case lir_add:  __ add  (lreg, simm13, res); break;
1700         case lir_sub:  __ sub  (lreg, simm13, res); break;
1701         case lir_mul:  __ mulx (lreg, simm13, res); break;
1702         default: ShouldNotReachHere();
1703       }
1704     } else {
1705       Register lreg = left->as_pointer_register();
1706       Register res  = dest->as_register_lo();
1707       long con = right->as_constant_ptr()->as_jlong();
1708       assert(Assembler::is_simm13(con), "must be simm13");
1709 
1710       switch (code) {
1711         case lir_add:  __ add  (lreg, (int)con, res); break;
1712         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1713         case lir_mul:  __ mulx (lreg, (int)con, res); break;
1714         default: ShouldNotReachHere();
1715       }
1716     }
1717   }
1718 }
1719 
1720 
1721 void LIR_Assembler::fpop() {
1722   // do nothing
1723 }
1724 
1725 
1726 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1727   switch (code) {
1728     case lir_tan: {
1729       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1730       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1731       break;
1732     }
1733     case lir_sqrt: {
1734       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1735       FloatRegister src_reg = value->as_double_reg();
1736       FloatRegister dst_reg = dest->as_double_reg();
1737       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1738       break;
1739     }
1740     case lir_abs: {
1741       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1742       FloatRegister src_reg = value->as_double_reg();
1743       FloatRegister dst_reg = dest->as_double_reg();
1744       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1745       break;
1746     }
1747     default: {
1748       ShouldNotReachHere();
1749       break;
1750     }
1751   }
1752 }
1753 
1754 
1755 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1756   if (right->is_constant()) {
1757     if (dest->is_single_cpu()) {
1758       int simm13 = right->as_constant_ptr()->as_jint();
1759       switch (code) {
1760         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1761         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1762         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1763         default: ShouldNotReachHere();
1764       }
1765     } else {
1766       long c = right->as_constant_ptr()->as_jlong();
1767       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1768       int simm13 = (int)c;
1769       switch (code) {
1770         case lir_logic_and:
1771           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1772           break;
1773 
1774         case lir_logic_or:
1775           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1776           break;
1777 
1778         case lir_logic_xor:
1779           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1780           break;
1781 
1782         default: ShouldNotReachHere();
1783       }
1784     }
1785   } else {
1786     assert(right->is_register(), "right should be in register");
1787 
1788     if (dest->is_single_cpu()) {
1789       switch (code) {
1790         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1791         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1792         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1793         default: ShouldNotReachHere();
1794       }
1795     } else {
1796       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1797                                                                         left->as_register_lo();
1798       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1799                                                                           right->as_register_lo();
1800 
1801       switch (code) {
1802         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1803         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1804         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1805         default: ShouldNotReachHere();
1806       }
1807     }
1808   }
1809 }
1810 
1811 
1812 int LIR_Assembler::shift_amount(BasicType t) {
1813   int elem_size = type2aelembytes(t);
1814   switch (elem_size) {
1815     case 1 : return 0;
1816     case 2 : return 1;
1817     case 4 : return 2;
1818     case 8 : return 3;
1819   }
1820   ShouldNotReachHere();
1821   return -1;
1822 }
1823 
1824 
1825 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1826   assert(exceptionOop->as_register() == Oexception, "should match");
1827   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
1828 
1829   info->add_register_oop(exceptionOop);
1830 
1831   // reuse the debug info from the safepoint poll for the throw op itself
1832   address pc_for_athrow  = __ pc();
1833   int pc_for_athrow_offset = __ offset();
1834   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
1835   __ set(pc_for_athrow, Oissuing_pc, rspec);
1836   add_call_info(pc_for_athrow_offset, info); // for exception handler
1837 
1838   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
1839   __ delayed()->nop();
1840 }
1841 
1842 
1843 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1844   assert(exceptionOop->as_register() == Oexception, "should match");
1845 
1846   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
1847   __ delayed()->nop();
1848 }
1849 
1850 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1851   Register src = op->src()->as_register();
1852   Register dst = op->dst()->as_register();
1853   Register src_pos = op->src_pos()->as_register();
1854   Register dst_pos = op->dst_pos()->as_register();
1855   Register length  = op->length()->as_register();
1856   Register tmp = op->tmp()->as_register();
1857   Register tmp2 = O7;
1858 
1859   int flags = op->flags();
1860   ciArrayKlass* default_type = op->expected_type();
1861   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1862   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1863 
1864   // higher 32bits must be null
1865   __ sra(dst_pos, 0, dst_pos);
1866   __ sra(src_pos, 0, src_pos);
1867   __ sra(length, 0, length);
1868 
1869   // set up the arraycopy stub information
1870   ArrayCopyStub* stub = op->stub();
1871 
1872   // always do stub if no type information is available.  it's ok if
1873   // the known type isn't loaded since the code sanity checks
1874   // in debug mode and the type isn't required when we know the exact type
1875   // also check that the type is an array type.
1876   if (op->expected_type() == NULL) {
1877     __ mov(src,     O0);
1878     __ mov(src_pos, O1);
1879     __ mov(dst,     O2);
1880     __ mov(dst_pos, O3);
1881     __ mov(length,  O4);
1882     address copyfunc_addr = StubRoutines::generic_arraycopy();
1883     assert(copyfunc_addr != NULL, "generic arraycopy stub required");
1884 
1885 #ifndef PRODUCT
1886     if (PrintC1Statistics) {
1887       address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
1888       __ inc_counter(counter, G1, G3);
1889     }
1890 #endif
1891     __ call_VM_leaf(tmp, copyfunc_addr);
1892 
1893     __ xor3(O0, -1, tmp);
1894     __ sub(length, tmp, length);
1895     __ add(src_pos, tmp, src_pos);
1896     __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
1897     __ delayed()->add(dst_pos, tmp, dst_pos);
1898     __ bind(*stub->continuation());
1899     return;
1900   }
1901 
1902   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
1903 
1904   // make sure src and dst are non-null and load array length
1905   if (flags & LIR_OpArrayCopy::src_null_check) {
1906     __ tst(src);
1907     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1908     __ delayed()->nop();
1909   }
1910 
1911   if (flags & LIR_OpArrayCopy::dst_null_check) {
1912     __ tst(dst);
1913     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
1914     __ delayed()->nop();
1915   }
1916 
1917   // If the compiler was not able to prove that exact type of the source or the destination
1918   // of the arraycopy is an array type, check at runtime if the source or the destination is
1919   // an instance type.
1920   if (flags & LIR_OpArrayCopy::type_check) {
1921     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
1922       __ load_klass(dst, tmp);
1923       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1924       __ cmp(tmp2, Klass::_lh_neutral_value);
1925       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1926       __ delayed()->nop();
1927     }
1928 
1929     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
1930       __ load_klass(src, tmp);
1931       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
1932       __ cmp(tmp2, Klass::_lh_neutral_value);
1933       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
1934       __ delayed()->nop();
1935     }
1936   }
1937 
1938   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
1939     // test src_pos register
1940     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
1941     __ delayed()->nop();
1942   }
1943 
1944   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
1945     // test dst_pos register
1946     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
1947     __ delayed()->nop();
1948   }
1949 
1950   if (flags & LIR_OpArrayCopy::length_positive_check) {
1951     // make sure length isn't negative
1952     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
1953     __ delayed()->nop();
1954   }
1955 
1956   if (flags & LIR_OpArrayCopy::src_range_check) {
1957     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
1958     __ add(length, src_pos, tmp);
1959     __ cmp(tmp2, tmp);
1960     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1961     __ delayed()->nop();
1962   }
1963 
1964   if (flags & LIR_OpArrayCopy::dst_range_check) {
1965     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
1966     __ add(length, dst_pos, tmp);
1967     __ cmp(tmp2, tmp);
1968     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
1969     __ delayed()->nop();
1970   }
1971 
1972   int shift = shift_amount(basic_type);
1973 
1974   if (flags & LIR_OpArrayCopy::type_check) {
1975     // We don't know the array types are compatible
1976     if (basic_type != T_OBJECT) {
1977       // Simple test for basic type arrays
1978       if (UseCompressedClassPointers) {
1979         // We don't need decode because we just need to compare
1980         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
1981         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1982         __ cmp(tmp, tmp2);
1983         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1984       } else {
1985         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
1986         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
1987         __ cmp(tmp, tmp2);
1988         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
1989       }
1990       __ delayed()->nop();
1991     } else {
1992       // For object arrays, if src is a sub class of dst then we can
1993       // safely do the copy.
1994       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
1995 
1996       Label cont, slow;
1997       assert_different_registers(tmp, tmp2, G3, G1);
1998 
1999       __ load_klass(src, G3);
2000       __ load_klass(dst, G1);
2001 
2002       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2003 
2004       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2005       __ delayed()->nop();
2006 
2007       __ cmp(G3, 0);
2008       if (copyfunc_addr != NULL) { // use stub if available
2009         // src is not a sub class of dst so we have to do a
2010         // per-element check.
2011         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2012         __ delayed()->nop();
2013 
2014         __ bind(slow);
2015 
2016         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2017         if ((flags & mask) != mask) {
2018           // Check that at least both of them object arrays.
2019           assert(flags & mask, "one of the two should be known to be an object array");
2020 
2021           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2022             __ load_klass(src, tmp);
2023           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2024             __ load_klass(dst, tmp);
2025           }
2026           int lh_offset = in_bytes(Klass::layout_helper_offset());
2027 
2028           __ lduw(tmp, lh_offset, tmp2);
2029 
2030           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2031           __ set(objArray_lh, tmp);
2032           __ cmp(tmp, tmp2);
2033           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2034           __ delayed()->nop();
2035         }
2036 
2037         Register src_ptr = O0;
2038         Register dst_ptr = O1;
2039         Register len     = O2;
2040         Register chk_off = O3;
2041         Register super_k = O4;
2042 
2043         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2044         if (shift == 0) {
2045           __ add(src_ptr, src_pos, src_ptr);
2046         } else {
2047           __ sll(src_pos, shift, tmp);
2048           __ add(src_ptr, tmp, src_ptr);
2049         }
2050 
2051         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2052         if (shift == 0) {
2053           __ add(dst_ptr, dst_pos, dst_ptr);
2054         } else {
2055           __ sll(dst_pos, shift, tmp);
2056           __ add(dst_ptr, tmp, dst_ptr);
2057         }
2058         __ mov(length, len);
2059         __ load_klass(dst, tmp);
2060 
2061         int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
2062         __ ld_ptr(tmp, ek_offset, super_k);
2063 
2064         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2065         __ lduw(super_k, sco_offset, chk_off);
2066 
2067         __ call_VM_leaf(tmp, copyfunc_addr);
2068 
2069 #ifndef PRODUCT
2070         if (PrintC1Statistics) {
2071           Label failed;
2072           __ br_notnull_short(O0, Assembler::pn, failed);
2073           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2074           __ bind(failed);
2075         }
2076 #endif
2077 
2078         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2079         __ delayed()->xor3(O0, -1, tmp);
2080 
2081 #ifndef PRODUCT
2082         if (PrintC1Statistics) {
2083           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2084         }
2085 #endif
2086 
2087         __ sub(length, tmp, length);
2088         __ add(src_pos, tmp, src_pos);
2089         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2090         __ delayed()->add(dst_pos, tmp, dst_pos);
2091 
2092         __ bind(cont);
2093       } else {
2094         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2095         __ delayed()->nop();
2096         __ bind(cont);
2097       }
2098     }
2099   }
2100 
2101 #ifdef ASSERT
2102   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2103     // Sanity check the known type with the incoming class.  For the
2104     // primitive case the types must match exactly with src.klass and
2105     // dst.klass each exactly matching the default type.  For the
2106     // object array case, if no type check is needed then either the
2107     // dst type is exactly the expected type and the src type is a
2108     // subtype which we can't check or src is the same array as dst
2109     // but not necessarily exactly of type default_type.
2110     Label known_ok, halt;
2111     metadata2reg(op->expected_type()->constant_encoding(), tmp);
2112     if (UseCompressedClassPointers) {
2113       // tmp holds the default type. It currently comes uncompressed after the
2114       // load of a constant, so encode it.
2115       __ encode_klass_not_null(tmp);
2116       // load the raw value of the dst klass, since we will be comparing
2117       // uncompressed values directly.
2118       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2119       if (basic_type != T_OBJECT) {
2120         __ cmp(tmp, tmp2);
2121         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2122         // load the raw value of the src klass.
2123         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2124         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2125       } else {
2126         __ cmp(tmp, tmp2);
2127         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2128         __ delayed()->cmp(src, dst);
2129         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2130         __ delayed()->nop();
2131       }
2132     } else {
2133       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2134       if (basic_type != T_OBJECT) {
2135         __ cmp(tmp, tmp2);
2136         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2137         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2138         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2139       } else {
2140         __ cmp(tmp, tmp2);
2141         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2142         __ delayed()->cmp(src, dst);
2143         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2144         __ delayed()->nop();
2145       }
2146     }
2147     __ bind(halt);
2148     __ stop("incorrect type information in arraycopy");
2149     __ bind(known_ok);
2150   }
2151 #endif
2152 
2153 #ifndef PRODUCT
2154   if (PrintC1Statistics) {
2155     address counter = Runtime1::arraycopy_count_address(basic_type);
2156     __ inc_counter(counter, G1, G3);
2157   }
2158 #endif
2159 
2160   Register src_ptr = O0;
2161   Register dst_ptr = O1;
2162   Register len     = O2;
2163 
2164   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2165   if (shift == 0) {
2166     __ add(src_ptr, src_pos, src_ptr);
2167   } else {
2168     __ sll(src_pos, shift, tmp);
2169     __ add(src_ptr, tmp, src_ptr);
2170   }
2171 
2172   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2173   if (shift == 0) {
2174     __ add(dst_ptr, dst_pos, dst_ptr);
2175   } else {
2176     __ sll(dst_pos, shift, tmp);
2177     __ add(dst_ptr, tmp, dst_ptr);
2178   }
2179 
2180   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2181   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2182   const char *name;
2183   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2184 
2185   // arraycopy stubs takes a length in number of elements, so don't scale it.
2186   __ mov(length, len);
2187   __ call_VM_leaf(tmp, entry);
2188 
2189   __ bind(*stub->continuation());
2190 }
2191 
2192 
2193 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2194   if (dest->is_single_cpu()) {
2195     if (left->type() == T_OBJECT) {
2196       switch (code) {
2197         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2198         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2199         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2200         default: ShouldNotReachHere();
2201       }
2202     } else
2203       switch (code) {
2204         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2205         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2206         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2207         default: ShouldNotReachHere();
2208       }
2209   } else {
2210     switch (code) {
2211       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2212       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2213       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2214       default: ShouldNotReachHere();
2215     }
2216   }
2217 }
2218 
2219 
2220 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2221   if (left->type() == T_OBJECT) {
2222     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2223     Register l = left->as_register();
2224     Register d = dest->as_register_lo();
2225     switch (code) {
2226       case lir_shl:  __ sllx  (l, count, d); break;
2227       case lir_shr:  __ srax  (l, count, d); break;
2228       case lir_ushr: __ srlx  (l, count, d); break;
2229       default: ShouldNotReachHere();
2230     }
2231     return;
2232   }
2233 
2234   if (dest->is_single_cpu()) {
2235     count = count & 0x1F; // Java spec
2236     switch (code) {
2237       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2238       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2239       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2240       default: ShouldNotReachHere();
2241     }
2242   } else if (dest->is_double_cpu()) {
2243     count = count & 63; // Java spec
2244     switch (code) {
2245       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2246       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2247       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2248       default: ShouldNotReachHere();
2249     }
2250   } else {
2251     ShouldNotReachHere();
2252   }
2253 }
2254 
2255 
2256 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2257   assert(op->tmp1()->as_register()  == G1 &&
2258          op->tmp2()->as_register()  == G3 &&
2259          op->tmp3()->as_register()  == G4 &&
2260          op->obj()->as_register()   == O0 &&
2261          op->klass()->as_register() == G5, "must be");
2262   if (op->init_check()) {
2263     add_debug_info_for_null_check_here(op->stub()->info());
2264     __ ldub(op->klass()->as_register(),
2265           in_bytes(InstanceKlass::init_state_offset()),
2266           op->tmp1()->as_register());
2267     __ cmp(op->tmp1()->as_register(), InstanceKlass::fully_initialized);
2268     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2269     __ delayed()->nop();
2270   }
2271   __ allocate_object(op->obj()->as_register(),
2272                      op->tmp1()->as_register(),
2273                      op->tmp2()->as_register(),
2274                      op->tmp3()->as_register(),
2275                      op->header_size(),
2276                      op->object_size(),
2277                      op->klass()->as_register(),
2278                      *op->stub()->entry());
2279   __ bind(*op->stub()->continuation());
2280   __ verify_oop(op->obj()->as_register());
2281 }
2282 
2283 
2284 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2285   assert(op->tmp1()->as_register()  == G1 &&
2286          op->tmp2()->as_register()  == G3 &&
2287          op->tmp3()->as_register()  == G4 &&
2288          op->tmp4()->as_register()  == O1 &&
2289          op->klass()->as_register() == G5, "must be");
2290 
2291   __ signx(op->len()->as_register());
2292   if (UseSlowPath ||
2293       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2294       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2295     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2296     __ delayed()->nop();
2297   } else {
2298     __ allocate_array(op->obj()->as_register(),
2299                       op->len()->as_register(),
2300                       op->tmp1()->as_register(),
2301                       op->tmp2()->as_register(),
2302                       op->tmp3()->as_register(),
2303                       arrayOopDesc::header_size(op->type()),
2304                       type2aelembytes(op->type()),
2305                       op->klass()->as_register(),
2306                       *op->stub()->entry());
2307   }
2308   __ bind(*op->stub()->continuation());
2309 }
2310 
2311 
2312 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2313                                         ciMethodData *md, ciProfileData *data,
2314                                         Register recv, Register tmp1, Label* update_done) {
2315   uint i;
2316   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2317     Label next_test;
2318     // See if the receiver is receiver[n].
2319     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2320                           mdo_offset_bias);
2321     __ ld_ptr(receiver_addr, tmp1);
2322     __ verify_klass_ptr(tmp1);
2323     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2324     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2325                       mdo_offset_bias);
2326     __ ld_ptr(data_addr, tmp1);
2327     __ add(tmp1, DataLayout::counter_increment, tmp1);
2328     __ st_ptr(tmp1, data_addr);
2329     __ ba(*update_done);
2330     __ delayed()->nop();
2331     __ bind(next_test);
2332   }
2333 
2334   // Didn't find receiver; find next empty slot and fill it in
2335   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2336     Label next_test;
2337     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2338                       mdo_offset_bias);
2339     __ ld_ptr(recv_addr, tmp1);
2340     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2341     __ st_ptr(recv, recv_addr);
2342     __ set(DataLayout::counter_increment, tmp1);
2343     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2344               mdo_offset_bias);
2345     __ ba(*update_done);
2346     __ delayed()->nop();
2347     __ bind(next_test);
2348   }
2349 }
2350 
2351 
2352 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2353                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2354   md = method->method_data_or_null();
2355   assert(md != NULL, "Sanity");
2356   data = md->bci_to_data(bci);
2357   assert(data != NULL,       "need data for checkcast");
2358   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2359   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2360     // The offset is large so bias the mdo by the base of the slot so
2361     // that the ld can use simm13s to reference the slots of the data
2362     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2363   }
2364 }
2365 
2366 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2367   // we always need a stub for the failure case.
2368   CodeStub* stub = op->stub();
2369   Register obj = op->object()->as_register();
2370   Register k_RInfo = op->tmp1()->as_register();
2371   Register klass_RInfo = op->tmp2()->as_register();
2372   Register dst = op->result_opr()->as_register();
2373   Register Rtmp1 = op->tmp3()->as_register();
2374   ciKlass* k = op->klass();
2375 
2376 
2377   if (obj == k_RInfo) {
2378     k_RInfo = klass_RInfo;
2379     klass_RInfo = obj;
2380   }
2381 
2382   ciMethodData* md;
2383   ciProfileData* data;
2384   int mdo_offset_bias = 0;
2385   if (op->should_profile()) {
2386     ciMethod* method = op->profiled_method();
2387     assert(method != NULL, "Should have method");
2388     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2389 
2390     Label not_null;
2391     __ br_notnull_short(obj, Assembler::pn, not_null);
2392     Register mdo      = k_RInfo;
2393     Register data_val = Rtmp1;
2394     metadata2reg(md->constant_encoding(), mdo);
2395     if (mdo_offset_bias > 0) {
2396       __ set(mdo_offset_bias, data_val);
2397       __ add(mdo, data_val, mdo);
2398     }
2399     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2400     __ ldub(flags_addr, data_val);
2401     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2402     __ stb(data_val, flags_addr);
2403     __ ba(*obj_is_null);
2404     __ delayed()->nop();
2405     __ bind(not_null);
2406   } else {
2407     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2408     __ delayed()->nop();
2409   }
2410 
2411   Label profile_cast_failure, profile_cast_success;
2412   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2413   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2414 
2415   // patching may screw with our temporaries on sparc,
2416   // so let's do it before loading the class
2417   if (k->is_loaded()) {
2418     metadata2reg(k->constant_encoding(), k_RInfo);
2419   } else {
2420     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2421   }
2422   assert(obj != k_RInfo, "must be different");
2423 
2424   // get object class
2425   // not a safepoint as obj null check happens earlier
2426   __ load_klass(obj, klass_RInfo);
2427   if (op->fast_check()) {
2428     assert_different_registers(klass_RInfo, k_RInfo);
2429     __ cmp(k_RInfo, klass_RInfo);
2430     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2431     __ delayed()->nop();
2432   } else {
2433     bool need_slow_path = true;
2434     if (k->is_loaded()) {
2435       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2436         need_slow_path = false;
2437       // perform the fast part of the checking logic
2438       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2439                                        (need_slow_path ? success_target : NULL),
2440                                        failure_target, NULL,
2441                                        RegisterOrConstant(k->super_check_offset()));
2442     } else {
2443       // perform the fast part of the checking logic
2444       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2445                                        failure_target, NULL);
2446     }
2447     if (need_slow_path) {
2448       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2449       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2450       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2451       __ delayed()->nop();
2452       __ cmp(G3, 0);
2453       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2454       __ delayed()->nop();
2455       // Fall through to success case
2456     }
2457   }
2458 
2459   if (op->should_profile()) {
2460     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2461     assert_different_registers(obj, mdo, recv, tmp1);
2462     __ bind(profile_cast_success);
2463     metadata2reg(md->constant_encoding(), mdo);
2464     if (mdo_offset_bias > 0) {
2465       __ set(mdo_offset_bias, tmp1);
2466       __ add(mdo, tmp1, mdo);
2467     }
2468     __ load_klass(obj, recv);
2469     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2470     // Jump over the failure case
2471     __ ba(*success);
2472     __ delayed()->nop();
2473     // Cast failure case
2474     __ bind(profile_cast_failure);
2475     metadata2reg(md->constant_encoding(), mdo);
2476     if (mdo_offset_bias > 0) {
2477       __ set(mdo_offset_bias, tmp1);
2478       __ add(mdo, tmp1, mdo);
2479     }
2480     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2481     __ ld_ptr(data_addr, tmp1);
2482     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2483     __ st_ptr(tmp1, data_addr);
2484     __ ba(*failure);
2485     __ delayed()->nop();
2486   }
2487   __ ba(*success);
2488   __ delayed()->nop();
2489 }
2490 
2491 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2492   LIR_Code code = op->code();
2493   if (code == lir_store_check) {
2494     Register value = op->object()->as_register();
2495     Register array = op->array()->as_register();
2496     Register k_RInfo = op->tmp1()->as_register();
2497     Register klass_RInfo = op->tmp2()->as_register();
2498     Register Rtmp1 = op->tmp3()->as_register();
2499 
2500     __ verify_oop(value);
2501     CodeStub* stub = op->stub();
2502     // check if it needs to be profiled
2503     ciMethodData* md;
2504     ciProfileData* data;
2505     int mdo_offset_bias = 0;
2506     if (op->should_profile()) {
2507       ciMethod* method = op->profiled_method();
2508       assert(method != NULL, "Should have method");
2509       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2510     }
2511     Label profile_cast_success, profile_cast_failure, done;
2512     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2513     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2514 
2515     if (op->should_profile()) {
2516       Label not_null;
2517       __ br_notnull_short(value, Assembler::pn, not_null);
2518       Register mdo      = k_RInfo;
2519       Register data_val = Rtmp1;
2520       metadata2reg(md->constant_encoding(), mdo);
2521       if (mdo_offset_bias > 0) {
2522         __ set(mdo_offset_bias, data_val);
2523         __ add(mdo, data_val, mdo);
2524       }
2525       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2526       __ ldub(flags_addr, data_val);
2527       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2528       __ stb(data_val, flags_addr);
2529       __ ba_short(done);
2530       __ bind(not_null);
2531     } else {
2532       __ br_null_short(value, Assembler::pn, done);
2533     }
2534     add_debug_info_for_null_check_here(op->info_for_exception());
2535     __ load_klass(array, k_RInfo);
2536     __ load_klass(value, klass_RInfo);
2537 
2538     // get instance klass
2539     __ ld_ptr(Address(k_RInfo, ObjArrayKlass::element_klass_offset()), k_RInfo);
2540     // perform the fast part of the checking logic
2541     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2542 
2543     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2544     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2545     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2546     __ delayed()->nop();
2547     __ cmp(G3, 0);
2548     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2549     __ delayed()->nop();
2550     // fall through to the success case
2551 
2552     if (op->should_profile()) {
2553       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2554       assert_different_registers(value, mdo, recv, tmp1);
2555       __ bind(profile_cast_success);
2556       metadata2reg(md->constant_encoding(), mdo);
2557       if (mdo_offset_bias > 0) {
2558         __ set(mdo_offset_bias, tmp1);
2559         __ add(mdo, tmp1, mdo);
2560       }
2561       __ load_klass(value, recv);
2562       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2563       __ ba_short(done);
2564       // Cast failure case
2565       __ bind(profile_cast_failure);
2566       metadata2reg(md->constant_encoding(), mdo);
2567       if (mdo_offset_bias > 0) {
2568         __ set(mdo_offset_bias, tmp1);
2569         __ add(mdo, tmp1, mdo);
2570       }
2571       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2572       __ ld_ptr(data_addr, tmp1);
2573       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2574       __ st_ptr(tmp1, data_addr);
2575       __ ba(*stub->entry());
2576       __ delayed()->nop();
2577     }
2578     __ bind(done);
2579   } else if (code == lir_checkcast) {
2580     Register obj = op->object()->as_register();
2581     Register dst = op->result_opr()->as_register();
2582     Label success;
2583     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2584     __ bind(success);
2585     __ mov(obj, dst);
2586   } else if (code == lir_instanceof) {
2587     Register obj = op->object()->as_register();
2588     Register dst = op->result_opr()->as_register();
2589     Label success, failure, done;
2590     emit_typecheck_helper(op, &success, &failure, &failure);
2591     __ bind(failure);
2592     __ set(0, dst);
2593     __ ba_short(done);
2594     __ bind(success);
2595     __ set(1, dst);
2596     __ bind(done);
2597   } else {
2598     ShouldNotReachHere();
2599   }
2600 
2601 }
2602 
2603 
2604 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2605   if (op->code() == lir_cas_long) {
2606     assert(VM_Version::supports_cx8(), "wrong machine");
2607     Register addr = op->addr()->as_pointer_register();
2608     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2609     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2610     Register new_value_lo = op->new_value()->as_register_lo();
2611     Register new_value_hi = op->new_value()->as_register_hi();
2612     Register t1 = op->tmp1()->as_register();
2613     Register t2 = op->tmp2()->as_register();
2614     __ mov(cmp_value_lo, t1);
2615     __ mov(new_value_lo, t2);
2616     // perform the compare and swap operation
2617     __ casx(addr, t1, t2);
2618     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2619     // overwritten with the original value in "addr" and will be equal to t1.
2620     __ cmp(t1, t2);
2621   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2622     Register addr = op->addr()->as_pointer_register();
2623     Register cmp_value = op->cmp_value()->as_register();
2624     Register new_value = op->new_value()->as_register();
2625     Register t1 = op->tmp1()->as_register();
2626     Register t2 = op->tmp2()->as_register();
2627     __ mov(cmp_value, t1);
2628     __ mov(new_value, t2);
2629     if (op->code() == lir_cas_obj) {
2630       if (UseCompressedOops) {
2631         __ encode_heap_oop(t1);
2632         __ encode_heap_oop(t2);
2633         __ cas(addr, t1, t2);
2634       } else {
2635         __ cas_ptr(addr, t1, t2);
2636       }
2637     } else {
2638       __ cas(addr, t1, t2);
2639     }
2640     __ cmp(t1, t2);
2641   } else {
2642     Unimplemented();
2643   }
2644 }
2645 
2646 void LIR_Assembler::set_24bit_FPU() {
2647   Unimplemented();
2648 }
2649 
2650 
2651 void LIR_Assembler::reset_FPU() {
2652   Unimplemented();
2653 }
2654 
2655 
2656 void LIR_Assembler::breakpoint() {
2657   __ breakpoint_trap();
2658 }
2659 
2660 
2661 void LIR_Assembler::push(LIR_Opr opr) {
2662   Unimplemented();
2663 }
2664 
2665 
2666 void LIR_Assembler::pop(LIR_Opr opr) {
2667   Unimplemented();
2668 }
2669 
2670 
2671 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2672   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2673   Register dst = dst_opr->as_register();
2674   Register reg = mon_addr.base();
2675   int offset = mon_addr.disp();
2676   // compute pointer to BasicLock
2677   if (mon_addr.is_simm13()) {
2678     __ add(reg, offset, dst);
2679   } else {
2680     __ set(offset, dst);
2681     __ add(dst, reg, dst);
2682   }
2683 }
2684 
2685 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
2686   assert(op->crc()->is_single_cpu(),  "crc must be register");
2687   assert(op->val()->is_single_cpu(),  "byte value must be register");
2688   assert(op->result_opr()->is_single_cpu(), "result must be register");
2689   Register crc = op->crc()->as_register();
2690   Register val = op->val()->as_register();
2691   Register table = op->result_opr()->as_register();
2692   Register res   = op->result_opr()->as_register();
2693 
2694   assert_different_registers(val, crc, table);
2695 
2696   __ set(ExternalAddress(StubRoutines::crc_table_addr()), table);
2697   __ not1(crc);
2698   __ clruwu(crc);
2699   __ update_byte_crc32(crc, val, table);
2700   __ not1(crc);
2701 
2702   __ mov(crc, res);
2703 }
2704 
2705 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2706   Register obj = op->obj_opr()->as_register();
2707   Register hdr = op->hdr_opr()->as_register();
2708   Register lock = op->lock_opr()->as_register();
2709 
2710   // obj may not be an oop
2711   if (op->code() == lir_lock) {
2712     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2713     if (UseFastLocking) {
2714       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2715       // add debug info for NullPointerException only if one is possible
2716       if (op->info() != NULL) {
2717         add_debug_info_for_null_check_here(op->info());
2718       }
2719       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2720     } else {
2721       // always do slow locking
2722       // note: the slow locking code could be inlined here, however if we use
2723       //       slow locking, speed doesn't matter anyway and this solution is
2724       //       simpler and requires less duplicated code - additionally, the
2725       //       slow locking code is the same in either case which simplifies
2726       //       debugging
2727       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2728       __ delayed()->nop();
2729     }
2730   } else {
2731     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2732     if (UseFastLocking) {
2733       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2734       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2735     } else {
2736       // always do slow unlocking
2737       // note: the slow unlocking code could be inlined here, however if we use
2738       //       slow unlocking, speed doesn't matter anyway and this solution is
2739       //       simpler and requires less duplicated code - additionally, the
2740       //       slow unlocking code is the same in either case which simplifies
2741       //       debugging
2742       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2743       __ delayed()->nop();
2744     }
2745   }
2746   __ bind(*op->stub()->continuation());
2747 }
2748 
2749 
2750 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2751   ciMethod* method = op->profiled_method();
2752   int bci          = op->profiled_bci();
2753   ciMethod* callee = op->profiled_callee();
2754 
2755   // Update counter for all call types
2756   ciMethodData* md = method->method_data_or_null();
2757   assert(md != NULL, "Sanity");
2758   ciProfileData* data = md->bci_to_data(bci);
2759   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2760   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2761   Register mdo  = op->mdo()->as_register();
2762   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2763   Register tmp1 = op->tmp1()->as_register_lo();
2764   metadata2reg(md->constant_encoding(), mdo);
2765   int mdo_offset_bias = 0;
2766   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2767                             data->size_in_bytes())) {
2768     // The offset is large so bias the mdo by the base of the slot so
2769     // that the ld can use simm13s to reference the slots of the data
2770     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
2771     __ set(mdo_offset_bias, O7);
2772     __ add(mdo, O7, mdo);
2773   }
2774 
2775   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2776   // Perform additional virtual call profiling for invokevirtual and
2777   // invokeinterface bytecodes
2778   if (op->should_profile_receiver_type()) {
2779     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2780     Register recv = op->recv()->as_register();
2781     assert_different_registers(mdo, tmp1, recv);
2782     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2783     ciKlass* known_klass = op->known_holder();
2784     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2785       // We know the type that will be seen at this call site; we can
2786       // statically update the MethodData* rather than needing to do
2787       // dynamic tests on the receiver type
2788 
2789       // NOTE: we should probably put a lock around this search to
2790       // avoid collisions by concurrent compilations
2791       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2792       uint i;
2793       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2794         ciKlass* receiver = vc_data->receiver(i);
2795         if (known_klass->equals(receiver)) {
2796           Address data_addr(mdo, md->byte_offset_of_slot(data,
2797                                                          VirtualCallData::receiver_count_offset(i)) -
2798                             mdo_offset_bias);
2799           __ ld_ptr(data_addr, tmp1);
2800           __ add(tmp1, DataLayout::counter_increment, tmp1);
2801           __ st_ptr(tmp1, data_addr);
2802           return;
2803         }
2804       }
2805 
2806       // Receiver type not found in profile data; select an empty slot
2807 
2808       // Note that this is less efficient than it should be because it
2809       // always does a write to the receiver part of the
2810       // VirtualCallData rather than just the first time
2811       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2812         ciKlass* receiver = vc_data->receiver(i);
2813         if (receiver == NULL) {
2814           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
2815                             mdo_offset_bias);
2816           metadata2reg(known_klass->constant_encoding(), tmp1);
2817           __ st_ptr(tmp1, recv_addr);
2818           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
2819                             mdo_offset_bias);
2820           __ ld_ptr(data_addr, tmp1);
2821           __ add(tmp1, DataLayout::counter_increment, tmp1);
2822           __ st_ptr(tmp1, data_addr);
2823           return;
2824         }
2825       }
2826     } else {
2827       __ load_klass(recv, recv);
2828       Label update_done;
2829       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
2830       // Receiver did not match any saved receiver and there is no empty row for it.
2831       // Increment total counter to indicate polymorphic case.
2832       __ ld_ptr(counter_addr, tmp1);
2833       __ add(tmp1, DataLayout::counter_increment, tmp1);
2834       __ st_ptr(tmp1, counter_addr);
2835 
2836       __ bind(update_done);
2837     }
2838   } else {
2839     // Static call
2840     __ ld_ptr(counter_addr, tmp1);
2841     __ add(tmp1, DataLayout::counter_increment, tmp1);
2842     __ st_ptr(tmp1, counter_addr);
2843   }
2844 }
2845 
2846 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2847   Register obj = op->obj()->as_register();
2848   Register tmp1 = op->tmp()->as_pointer_register();
2849   Register tmp2 = G1;
2850   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2851   ciKlass* exact_klass = op->exact_klass();
2852   intptr_t current_klass = op->current_klass();
2853   bool not_null = op->not_null();
2854   bool no_conflict = op->no_conflict();
2855 
2856   Label update, next, none;
2857 
2858   bool do_null = !not_null;
2859   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
2860   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
2861 
2862   assert(do_null || do_update, "why are we here?");
2863   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
2864 
2865   __ verify_oop(obj);
2866 
2867   if (tmp1 != obj) {
2868     __ mov(obj, tmp1);
2869   }
2870   if (do_null) {
2871     __ br_notnull_short(tmp1, Assembler::pt, update);
2872     if (!TypeEntries::was_null_seen(current_klass)) {
2873       __ ld_ptr(mdo_addr, tmp1);
2874       __ or3(tmp1, TypeEntries::null_seen, tmp1);
2875       __ st_ptr(tmp1, mdo_addr);
2876     }
2877     if (do_update) {
2878       __ ba(next);
2879       __ delayed()->nop();
2880     }
2881 #ifdef ASSERT
2882   } else {
2883     __ br_notnull_short(tmp1, Assembler::pt, update);
2884     __ stop("unexpect null obj");
2885 #endif
2886   }
2887 
2888   __ bind(update);
2889 
2890   if (do_update) {
2891 #ifdef ASSERT
2892     if (exact_klass != NULL) {
2893       Label ok;
2894       __ load_klass(tmp1, tmp1);
2895       metadata2reg(exact_klass->constant_encoding(), tmp2);
2896       __ cmp_and_br_short(tmp1, tmp2, Assembler::equal, Assembler::pt, ok);
2897       __ stop("exact klass and actual klass differ");
2898       __ bind(ok);
2899     }
2900 #endif
2901 
2902     Label do_update;
2903     __ ld_ptr(mdo_addr, tmp2);
2904 
2905     if (!no_conflict) {
2906       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
2907         if (exact_klass != NULL) {
2908           metadata2reg(exact_klass->constant_encoding(), tmp1);
2909         } else {
2910           __ load_klass(tmp1, tmp1);
2911         }
2912 
2913         __ xor3(tmp1, tmp2, tmp1);
2914         __ btst(TypeEntries::type_klass_mask, tmp1);
2915         // klass seen before, nothing to do. The unknown bit may have been
2916         // set already but no need to check.
2917         __ brx(Assembler::zero, false, Assembler::pt, next);
2918         __ delayed()->
2919 
2920            btst(TypeEntries::type_unknown, tmp1);
2921         // already unknown. Nothing to do anymore.
2922         __ brx(Assembler::notZero, false, Assembler::pt, next);
2923 
2924         if (TypeEntries::is_type_none(current_klass)) {
2925           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2926           __ brx(Assembler::zero, true, Assembler::pt, do_update);
2927           // first time here. Set profile type.
2928           __ delayed()->or3(tmp2, tmp1, tmp2);
2929         } else {
2930           __ delayed()->nop();
2931         }
2932       } else {
2933         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2934                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
2935 
2936         __ btst(TypeEntries::type_unknown, tmp2);
2937         // already unknown. Nothing to do anymore.
2938         __ brx(Assembler::notZero, false, Assembler::pt, next);
2939         __ delayed()->nop();
2940       }
2941 
2942       // different than before. Cannot keep accurate profile.
2943       __ or3(tmp2, TypeEntries::type_unknown, tmp2);
2944     } else {
2945       // There's a single possible klass at this profile point
2946       assert(exact_klass != NULL, "should be");
2947       if (TypeEntries::is_type_none(current_klass)) {
2948         metadata2reg(exact_klass->constant_encoding(), tmp1);
2949         __ xor3(tmp1, tmp2, tmp1);
2950         __ btst(TypeEntries::type_klass_mask, tmp1);
2951         __ brx(Assembler::zero, false, Assembler::pt, next);
2952 #ifdef ASSERT
2953 
2954         {
2955           Label ok;
2956           __ delayed()->btst(TypeEntries::type_mask, tmp2);
2957           __ brx(Assembler::zero, true, Assembler::pt, ok);
2958           __ delayed()->nop();
2959 
2960           __ stop("unexpected profiling mismatch");
2961           __ bind(ok);
2962         }
2963         // first time here. Set profile type.
2964         __ or3(tmp2, tmp1, tmp2);
2965 #else
2966         // first time here. Set profile type.
2967         __ delayed()->or3(tmp2, tmp1, tmp2);
2968 #endif
2969 
2970       } else {
2971         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
2972                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
2973 
2974         // already unknown. Nothing to do anymore.
2975         __ btst(TypeEntries::type_unknown, tmp2);
2976         __ brx(Assembler::notZero, false, Assembler::pt, next);
2977         __ delayed()->or3(tmp2, TypeEntries::type_unknown, tmp2);
2978       }
2979     }
2980 
2981     __ bind(do_update);
2982     __ st_ptr(tmp2, mdo_addr);
2983 
2984     __ bind(next);
2985   }
2986 }
2987 
2988 void LIR_Assembler::align_backward_branch_target() {
2989   __ align(OptoLoopAlignment);
2990 }
2991 
2992 
2993 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2994   // make sure we are expecting a delay
2995   // this has the side effect of clearing the delay state
2996   // so we can use _masm instead of _masm->delayed() to do the
2997   // code generation.
2998   __ delayed();
2999 
3000   // make sure we only emit one instruction
3001   int offset = code_offset();
3002   op->delay_op()->emit_code(this);
3003 #ifdef ASSERT
3004   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3005     op->delay_op()->print();
3006   }
3007   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3008          "only one instruction can go in a delay slot");
3009 #endif
3010 
3011   // we may also be emitting the call info for the instruction
3012   // which we are the delay slot of.
3013   CodeEmitInfo* call_info = op->call_info();
3014   if (call_info) {
3015     add_call_info(code_offset(), call_info);
3016   }
3017 
3018   if (VerifyStackAtCalls) {
3019     _masm->sub(FP, SP, O7);
3020     _masm->cmp(O7, initial_frame_size_in_bytes());
3021     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3022   }
3023 }
3024 
3025 
3026 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3027   assert(left->is_register(), "can only handle registers");
3028 
3029   if (left->is_single_cpu()) {
3030     __ neg(left->as_register(), dest->as_register());
3031   } else if (left->is_single_fpu()) {
3032     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3033   } else if (left->is_double_fpu()) {
3034     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3035   } else {
3036     assert (left->is_double_cpu(), "Must be a long");
3037     Register Rlow = left->as_register_lo();
3038     Register Rhi = left->as_register_hi();
3039     __ sub(G0, Rlow, dest->as_register_lo());
3040   }
3041 }
3042 
3043 
3044 void LIR_Assembler::fxch(int i) {
3045   Unimplemented();
3046 }
3047 
3048 void LIR_Assembler::fld(int i) {
3049   Unimplemented();
3050 }
3051 
3052 void LIR_Assembler::ffree(int i) {
3053   Unimplemented();
3054 }
3055 
3056 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3057                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3058 
3059   // if tmp is invalid, then the function being called doesn't destroy the thread
3060   if (tmp->is_valid()) {
3061     __ save_thread(tmp->as_pointer_register());
3062   }
3063   __ call(dest, relocInfo::runtime_call_type);
3064   __ delayed()->nop();
3065   if (info != NULL) {
3066     add_call_info_here(info);
3067   }
3068   if (tmp->is_valid()) {
3069     __ restore_thread(tmp->as_pointer_register());
3070   }
3071 
3072 #ifdef ASSERT
3073   __ verify_thread();
3074 #endif // ASSERT
3075 }
3076 
3077 
3078 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3079   ShouldNotReachHere();
3080 
3081   NEEDS_CLEANUP;
3082   if (type == T_LONG) {
3083     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3084 
3085     // (extended to allow indexed as well as constant displaced for JSR-166)
3086     Register idx = noreg; // contains either constant offset or index
3087 
3088     int disp = mem_addr->disp();
3089     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3090       if (!Assembler::is_simm13(disp)) {
3091         idx = O7;
3092         __ set(disp, idx);
3093       }
3094     } else {
3095       assert(disp == 0, "not both indexed and disp");
3096       idx = mem_addr->index()->as_register();
3097     }
3098 
3099     int null_check_offset = -1;
3100 
3101     Register base = mem_addr->base()->as_register();
3102     if (src->is_register() && dest->is_address()) {
3103       // G4 is high half, G5 is low half
3104       // clear the top bits of G5, and scale up G4
3105       __ srl (src->as_register_lo(),  0, G5);
3106       __ sllx(src->as_register_hi(), 32, G4);
3107       // combine the two halves into the 64 bits of G4
3108       __ or3(G4, G5, G4);
3109       null_check_offset = __ offset();
3110       if (idx == noreg) {
3111         __ stx(G4, base, disp);
3112       } else {
3113         __ stx(G4, base, idx);
3114       }
3115     } else if (src->is_address() && dest->is_register()) {
3116       null_check_offset = __ offset();
3117       if (idx == noreg) {
3118         __ ldx(base, disp, G5);
3119       } else {
3120         __ ldx(base, idx, G5);
3121       }
3122       __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3123       __ mov (G5, dest->as_register_lo());     // copy low half into lo
3124     } else {
3125       Unimplemented();
3126     }
3127     if (info != NULL) {
3128       add_debug_info_for_null_check(null_check_offset, info);
3129     }
3130 
3131   } else {
3132     // use normal move for all other volatiles since they don't need
3133     // special handling to remain atomic.
3134     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3135   }
3136 }
3137 
3138 void LIR_Assembler::membar() {
3139   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3140   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3141 }
3142 
3143 void LIR_Assembler::membar_acquire() {
3144   // no-op on TSO
3145 }
3146 
3147 void LIR_Assembler::membar_release() {
3148   // no-op on TSO
3149 }
3150 
3151 void LIR_Assembler::membar_loadload() {
3152   // no-op
3153   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3154 }
3155 
3156 void LIR_Assembler::membar_storestore() {
3157   // no-op
3158   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3159 }
3160 
3161 void LIR_Assembler::membar_loadstore() {
3162   // no-op
3163   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3164 }
3165 
3166 void LIR_Assembler::membar_storeload() {
3167   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3168 }
3169 
3170 void LIR_Assembler::on_spin_wait() {
3171   Unimplemented();
3172 }
3173 
3174 // Pack two sequential registers containing 32 bit values
3175 // into a single 64 bit register.
3176 // src and src->successor() are packed into dst
3177 // src and dst may be the same register.
3178 // Note: src is destroyed
3179 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3180   Register rs = src->as_register();
3181   Register rd = dst->as_register_lo();
3182   __ sllx(rs, 32, rs);
3183   __ srl(rs->successor(), 0, rs->successor());
3184   __ or3(rs, rs->successor(), rd);
3185 }
3186 
3187 // Unpack a 64 bit value in a register into
3188 // two sequential registers.
3189 // src is unpacked into dst and dst->successor()
3190 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3191   Register rs = src->as_register_lo();
3192   Register rd = dst->as_register_hi();
3193   assert_different_registers(rs, rd, rd->successor());
3194   __ srlx(rs, 32, rd);
3195   __ srl (rs,  0, rd->successor());
3196 }
3197 
3198 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
3199   const LIR_Address* addr = addr_opr->as_address_ptr();
3200   assert(addr->scale() == LIR_Address::times_1, "can't handle complex addresses yet");
3201   const Register dest_reg = dest->as_pointer_register();
3202   const Register base_reg = addr->base()->as_pointer_register();
3203 
3204   if (patch_code != lir_patch_none) {
3205     PatchingStub* patch = new PatchingStub(_masm, PatchingStub::access_field_id);
3206     assert(addr->disp() != 0, "must have");
3207     assert(base_reg != G3_scratch, "invariant");
3208     __ patchable_set(0, G3_scratch);
3209     patching_epilog(patch, patch_code, base_reg, info);
3210     assert(dest_reg != G3_scratch, "invariant");
3211     if (addr->index()->is_valid()) {
3212       const Register index_reg = addr->index()->as_pointer_register();
3213       assert(index_reg != G3_scratch, "invariant");
3214       __ add(index_reg, G3_scratch, G3_scratch);
3215     }
3216     __ add(base_reg, G3_scratch, dest_reg);
3217   } else {
3218     if (Assembler::is_simm13(addr->disp())) {
3219       if (addr->index()->is_valid()) {
3220         const Register index_reg = addr->index()->as_pointer_register();
3221         assert(index_reg != G3_scratch, "invariant");
3222         __ add(base_reg, addr->disp(), G3_scratch);
3223         __ add(index_reg, G3_scratch, dest_reg);
3224       } else {
3225         __ add(base_reg, addr->disp(), dest_reg);
3226       }
3227     } else {
3228       __ set(addr->disp(), G3_scratch);
3229       if (addr->index()->is_valid()) {
3230         const Register index_reg = addr->index()->as_pointer_register();
3231         assert(index_reg != G3_scratch, "invariant");
3232         __ add(index_reg, G3_scratch, G3_scratch);
3233       }
3234       __ add(base_reg, G3_scratch, dest_reg);
3235     }
3236   }
3237 }
3238 
3239 
3240 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3241   assert(result_reg->is_register(), "check");
3242   __ mov(G2_thread, result_reg->as_register());
3243 }
3244 
3245 #ifdef ASSERT
3246 // emit run-time assertion
3247 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3248   assert(op->code() == lir_assert, "must be");
3249 
3250   if (op->in_opr1()->is_valid()) {
3251     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3252     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3253   } else {
3254     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3255     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3256   }
3257 
3258   Label ok;
3259   if (op->condition() != lir_cond_always) {
3260     Assembler::Condition acond;
3261     switch (op->condition()) {
3262       case lir_cond_equal:        acond = Assembler::equal;                break;
3263       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
3264       case lir_cond_less:         acond = Assembler::less;                 break;
3265       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
3266       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
3267       case lir_cond_greater:      acond = Assembler::greater;              break;
3268       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
3269       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
3270       default:                         ShouldNotReachHere();
3271     };
3272     __ br(acond, false, Assembler::pt, ok);
3273     __ delayed()->nop();
3274   }
3275   if (op->halt()) {
3276     const char* str = __ code_string(op->msg());
3277     __ stop(str);
3278   } else {
3279     breakpoint();
3280   }
3281   __ bind(ok);
3282 }
3283 #endif
3284 
3285 void LIR_Assembler::peephole(LIR_List* lir) {
3286   LIR_OpList* inst = lir->instructions_list();
3287   for (int i = 0; i < inst->length(); i++) {
3288     LIR_Op* op = inst->at(i);
3289     switch (op->code()) {
3290       case lir_cond_float_branch:
3291       case lir_branch: {
3292         LIR_OpBranch* branch = op->as_OpBranch();
3293         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3294         LIR_Op* delay_op = NULL;
3295         // we'd like to be able to pull following instructions into
3296         // this slot but we don't know enough to do it safely yet so
3297         // only optimize block to block control flow.
3298         if (LIRFillDelaySlots && branch->block()) {
3299           LIR_Op* prev = inst->at(i - 1);
3300           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3301             // swap previous instruction into delay slot
3302             inst->at_put(i - 1, op);
3303             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3304 #ifndef PRODUCT
3305             if (LIRTracePeephole) {
3306               tty->print_cr("delayed");
3307               inst->at(i - 1)->print();
3308               inst->at(i)->print();
3309               tty->cr();
3310             }
3311 #endif
3312             continue;
3313           }
3314         }
3315 
3316         if (!delay_op) {
3317           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3318         }
3319         inst->insert_before(i + 1, delay_op);
3320         break;
3321       }
3322       case lir_static_call:
3323       case lir_virtual_call:
3324       case lir_icvirtual_call:
3325       case lir_optvirtual_call:
3326       case lir_dynamic_call: {
3327         LIR_Op* prev = inst->at(i - 1);
3328         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3329             (op->code() != lir_virtual_call ||
3330              !prev->result_opr()->is_single_cpu() ||
3331              prev->result_opr()->as_register() != O0) &&
3332             LIR_Assembler::is_single_instruction(prev)) {
3333           // Only moves without info can be put into the delay slot.
3334           // Also don't allow the setup of the receiver in the delay
3335           // slot for vtable calls.
3336           inst->at_put(i - 1, op);
3337           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3338 #ifndef PRODUCT
3339           if (LIRTracePeephole) {
3340             tty->print_cr("delayed");
3341             inst->at(i - 1)->print();
3342             inst->at(i)->print();
3343             tty->cr();
3344           }
3345 #endif
3346         } else {
3347           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3348           inst->insert_before(i + 1, delay_op);
3349           i++;
3350         }
3351         break;
3352       }
3353     }
3354   }
3355 }
3356 
3357 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3358   LIR_Address* addr = src->as_address_ptr();
3359 
3360   assert(data == dest, "swap uses only 2 operands");
3361   assert (code == lir_xchg, "no xadd on sparc");
3362 
3363   if (data->type() == T_INT) {
3364     __ swap(as_Address(addr), data->as_register());
3365   } else if (data->is_oop()) {
3366     Register obj = data->as_register();
3367     Register narrow = tmp->as_register();
3368     assert(UseCompressedOops, "swap is 32bit only");
3369     __ encode_heap_oop(obj, narrow);
3370     __ swap(as_Address(addr), narrow);
3371     __ decode_heap_oop(narrow, obj);
3372   } else {
3373     ShouldNotReachHere();
3374   }
3375 }
3376 
3377 #undef __