1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/c1/barrierSetC1.hpp"
  39 #include "runtime/arguments.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/vm_version.hpp"
  43 #include "utilities/bitMap.inline.hpp"
  44 #include "utilities/macros.hpp"
  45 
  46 #ifdef ASSERT
  47 #define __ gen()->lir(__FILE__, __LINE__)->
  48 #else
  49 #define __ gen()->lir()->
  50 #endif
  51 
  52 #ifndef PATCHED_ADDR
  53 #define PATCHED_ADDR  (max_jint)
  54 #endif
  55 
  56 void PhiResolverState::reset(int max_vregs) {
  57   // Initialize array sizes
  58   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  59   _virtual_operands.trunc_to(0);
  60   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  61   _other_operands.trunc_to(0);
  62   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  63   _vreg_table.trunc_to(0);
  64 }
  65 
  66 
  67 
  68 //--------------------------------------------------------------
  69 // PhiResolver
  70 
  71 // Resolves cycles:
  72 //
  73 //  r1 := r2  becomes  temp := r1
  74 //  r2 := r1           r1 := r2
  75 //                     r2 := temp
  76 // and orders moves:
  77 //
  78 //  r2 := r3  becomes  r1 := r2
  79 //  r1 := r2           r2 := r3
  80 
  81 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  82  : _gen(gen)
  83  , _state(gen->resolver_state())
  84  , _temp(LIR_OprFact::illegalOpr)
  85 {
  86   // reinitialize the shared state arrays
  87   _state.reset(max_vregs);
  88 }
  89 
  90 
  91 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  92   assert(src->is_valid(), "");
  93   assert(dest->is_valid(), "");
  94   __ move(src, dest);
  95 }
  96 
  97 
  98 void PhiResolver::move_temp_to(LIR_Opr dest) {
  99   assert(_temp->is_valid(), "");
 100   emit_move(_temp, dest);
 101   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 102 }
 103 
 104 
 105 void PhiResolver::move_to_temp(LIR_Opr src) {
 106   assert(_temp->is_illegal(), "");
 107   _temp = _gen->new_register(src->type());
 108   emit_move(src, _temp);
 109 }
 110 
 111 
 112 // Traverse assignment graph in depth first order and generate moves in post order
 113 // ie. two assignments: b := c, a := b start with node c:
 114 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 115 // Generates moves in this order: move b to a and move c to b
 116 // ie. cycle a := b, b := a start with node a
 117 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 118 // Generates moves in this order: move b to temp, move a to b, move temp to a
 119 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 120   if (!dest->visited()) {
 121     dest->set_visited();
 122     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 123       move(dest, dest->destination_at(i));
 124     }
 125   } else if (!dest->start_node()) {
 126     // cylce in graph detected
 127     assert(_loop == NULL, "only one loop valid!");
 128     _loop = dest;
 129     move_to_temp(src->operand());
 130     return;
 131   } // else dest is a start node
 132 
 133   if (!dest->assigned()) {
 134     if (_loop == dest) {
 135       move_temp_to(dest->operand());
 136       dest->set_assigned();
 137     } else if (src != NULL) {
 138       emit_move(src->operand(), dest->operand());
 139       dest->set_assigned();
 140     }
 141   }
 142 }
 143 
 144 
 145 PhiResolver::~PhiResolver() {
 146   int i;
 147   // resolve any cycles in moves from and to virtual registers
 148   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 149     ResolveNode* node = virtual_operands().at(i);
 150     if (!node->visited()) {
 151       _loop = NULL;
 152       move(NULL, node);
 153       node->set_start_node();
 154       assert(_temp->is_illegal(), "move_temp_to() call missing");
 155     }
 156   }
 157 
 158   // generate move for move from non virtual register to abitrary destination
 159   for (i = other_operands().length() - 1; i >= 0; i --) {
 160     ResolveNode* node = other_operands().at(i);
 161     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 162       emit_move(node->operand(), node->destination_at(j)->operand());
 163     }
 164   }
 165 }
 166 
 167 
 168 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 169   ResolveNode* node;
 170   if (opr->is_virtual()) {
 171     int vreg_num = opr->vreg_number();
 172     node = vreg_table().at_grow(vreg_num, NULL);
 173     assert(node == NULL || node->operand() == opr, "");
 174     if (node == NULL) {
 175       node = new ResolveNode(opr);
 176       vreg_table().at_put(vreg_num, node);
 177     }
 178     // Make sure that all virtual operands show up in the list when
 179     // they are used as the source of a move.
 180     if (source && !virtual_operands().contains(node)) {
 181       virtual_operands().append(node);
 182     }
 183   } else {
 184     assert(source, "");
 185     node = new ResolveNode(opr);
 186     other_operands().append(node);
 187   }
 188   return node;
 189 }
 190 
 191 
 192 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 193   assert(dest->is_virtual(), "");
 194   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 195   assert(src->is_valid(), "");
 196   assert(dest->is_valid(), "");
 197   ResolveNode* source = source_node(src);
 198   source->append(destination_node(dest));
 199 }
 200 
 201 
 202 //--------------------------------------------------------------
 203 // LIRItem
 204 
 205 void LIRItem::set_result(LIR_Opr opr) {
 206   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 207   value()->set_operand(opr);
 208 
 209   if (opr->is_virtual()) {
 210     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 211   }
 212 
 213   _result = opr;
 214 }
 215 
 216 void LIRItem::load_item() {
 217   if (result()->is_illegal()) {
 218     // update the items result
 219     _result = value()->operand();
 220   }
 221   if (!result()->is_register()) {
 222     LIR_Opr reg = _gen->new_register(value()->type());
 223     __ move(result(), reg);
 224     if (result()->is_constant()) {
 225       _result = reg;
 226     } else {
 227       set_result(reg);
 228     }
 229   }
 230 }
 231 
 232 
 233 void LIRItem::load_for_store(BasicType type) {
 234   if (_gen->can_store_as_constant(value(), type)) {
 235     _result = value()->operand();
 236     if (!_result->is_constant()) {
 237       _result = LIR_OprFact::value_type(value()->type());
 238     }
 239   } else if (type == T_BYTE || type == T_BOOLEAN) {
 240     load_byte_item();
 241   } else {
 242     load_item();
 243   }
 244 }
 245 
 246 void LIRItem::load_item_force(LIR_Opr reg) {
 247   LIR_Opr r = result();
 248   if (r != reg) {
 249 #if !defined(ARM) && !defined(E500V2)
 250     if (r->type() != reg->type()) {
 251       // moves between different types need an intervening spill slot
 252       r = _gen->force_to_spill(r, reg->type());
 253     }
 254 #endif
 255     __ move(r, reg);
 256     _result = reg;
 257   }
 258 }
 259 
 260 ciObject* LIRItem::get_jobject_constant() const {
 261   ObjectType* oc = type()->as_ObjectType();
 262   if (oc) {
 263     return oc->constant_value();
 264   }
 265   return NULL;
 266 }
 267 
 268 
 269 jint LIRItem::get_jint_constant() const {
 270   assert(is_constant() && value() != NULL, "");
 271   assert(type()->as_IntConstant() != NULL, "type check");
 272   return type()->as_IntConstant()->value();
 273 }
 274 
 275 
 276 jint LIRItem::get_address_constant() const {
 277   assert(is_constant() && value() != NULL, "");
 278   assert(type()->as_AddressConstant() != NULL, "type check");
 279   return type()->as_AddressConstant()->value();
 280 }
 281 
 282 
 283 jfloat LIRItem::get_jfloat_constant() const {
 284   assert(is_constant() && value() != NULL, "");
 285   assert(type()->as_FloatConstant() != NULL, "type check");
 286   return type()->as_FloatConstant()->value();
 287 }
 288 
 289 
 290 jdouble LIRItem::get_jdouble_constant() const {
 291   assert(is_constant() && value() != NULL, "");
 292   assert(type()->as_DoubleConstant() != NULL, "type check");
 293   return type()->as_DoubleConstant()->value();
 294 }
 295 
 296 
 297 jlong LIRItem::get_jlong_constant() const {
 298   assert(is_constant() && value() != NULL, "");
 299   assert(type()->as_LongConstant() != NULL, "type check");
 300   return type()->as_LongConstant()->value();
 301 }
 302 
 303 
 304 
 305 //--------------------------------------------------------------
 306 
 307 
 308 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 309 #ifndef PRODUCT
 310   if (PrintIRWithLIR) {
 311     block->print();
 312   }
 313 #endif
 314 
 315   // set up the list of LIR instructions
 316   assert(block->lir() == NULL, "LIR list already computed for this block");
 317   _lir = new LIR_List(compilation(), block);
 318   block->set_lir(_lir);
 319 
 320   __ branch_destination(block->label());
 321 
 322   if (LIRTraceExecution &&
 323       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 324       !block->is_set(BlockBegin::exception_entry_flag)) {
 325     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 326     trace_block_entry(block);
 327   }
 328 }
 329 
 330 
 331 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 332 #ifndef PRODUCT
 333   if (PrintIRWithLIR) {
 334     tty->cr();
 335   }
 336 #endif
 337 
 338   // LIR_Opr for unpinned constants shouldn't be referenced by other
 339   // blocks so clear them out after processing the block.
 340   for (int i = 0; i < _unpinned_constants.length(); i++) {
 341     _unpinned_constants.at(i)->clear_operand();
 342   }
 343   _unpinned_constants.trunc_to(0);
 344 
 345   // clear our any registers for other local constants
 346   _constants.trunc_to(0);
 347   _reg_for_constants.trunc_to(0);
 348 }
 349 
 350 
 351 void LIRGenerator::block_do(BlockBegin* block) {
 352   CHECK_BAILOUT();
 353 
 354   block_do_prolog(block);
 355   set_block(block);
 356 
 357   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 358     if (instr->is_pinned()) do_root(instr);
 359   }
 360 
 361   set_block(NULL);
 362   block_do_epilog(block);
 363 }
 364 
 365 
 366 //-------------------------LIRGenerator-----------------------------
 367 
 368 // This is where the tree-walk starts; instr must be root;
 369 void LIRGenerator::do_root(Value instr) {
 370   CHECK_BAILOUT();
 371 
 372   InstructionMark im(compilation(), instr);
 373 
 374   assert(instr->is_pinned(), "use only with roots");
 375   assert(instr->subst() == instr, "shouldn't have missed substitution");
 376 
 377   instr->visit(this);
 378 
 379   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 380          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 381 }
 382 
 383 
 384 // This is called for each node in tree; the walk stops if a root is reached
 385 void LIRGenerator::walk(Value instr) {
 386   InstructionMark im(compilation(), instr);
 387   //stop walk when encounter a root
 388   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 389     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 390   } else {
 391     assert(instr->subst() == instr, "shouldn't have missed substitution");
 392     instr->visit(this);
 393     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 394   }
 395 }
 396 
 397 
 398 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 399   assert(state != NULL, "state must be defined");
 400 
 401 #ifndef PRODUCT
 402   state->verify();
 403 #endif
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 465   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 466    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 467    * the class. */
 468   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 469     assert(info != NULL, "info must be set if class is not loaded");
 470     __ klass2reg_patch(NULL, r, info);
 471   } else {
 472     // no patching needed
 473     __ metadata2reg(obj->constant_encoding(), r);
 474   }
 475 }
 476 
 477 
 478 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 479                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 480   CodeStub* stub = new RangeCheckStub(range_check_info, index, array);
 481   if (index->is_constant()) {
 482     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 483                 index->as_jint(), null_check_info);
 484     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 485   } else {
 486     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 487                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 488     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 489   }
 490 }
 491 
 492 
 493 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 494   CodeStub* stub = new RangeCheckStub(info, index);
 495   if (index->is_constant()) {
 496     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 497     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 500                 java_nio_Buffer::limit_offset(), T_INT, info);
 501     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 502   }
 503   __ move(index, result);
 504 }
 505 
 506 
 507 
 508 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 509   LIR_Opr result_op = result;
 510   LIR_Opr left_op   = left;
 511   LIR_Opr right_op  = right;
 512 
 513   if (TwoOperandLIRForm && left_op != result_op) {
 514     assert(right_op != result_op, "malformed");
 515     __ move(left_op, result_op);
 516     left_op = result_op;
 517   }
 518 
 519   switch(code) {
 520     case Bytecodes::_dadd:
 521     case Bytecodes::_fadd:
 522     case Bytecodes::_ladd:
 523     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 524     case Bytecodes::_fmul:
 525     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 526 
 527     case Bytecodes::_dmul:
 528       {
 529         if (is_strictfp) {
 530           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 531         } else {
 532           __ mul(left_op, right_op, result_op); break;
 533         }
 534       }
 535       break;
 536 
 537     case Bytecodes::_imul:
 538       {
 539         bool did_strength_reduce = false;
 540 
 541         if (right->is_constant()) {
 542           jint c = right->as_jint();
 543           if (c > 0 && is_power_of_2(c)) {
 544             // do not need tmp here
 545             __ shift_left(left_op, exact_log2(c), result_op);
 546             did_strength_reduce = true;
 547           } else {
 548             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 549           }
 550         }
 551         // we couldn't strength reduce so just emit the multiply
 552         if (!did_strength_reduce) {
 553           __ mul(left_op, right_op, result_op);
 554         }
 555       }
 556       break;
 557 
 558     case Bytecodes::_dsub:
 559     case Bytecodes::_fsub:
 560     case Bytecodes::_lsub:
 561     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 562 
 563     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 564     // ldiv and lrem are implemented with a direct runtime call
 565 
 566     case Bytecodes::_ddiv:
 567       {
 568         if (is_strictfp) {
 569           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 570         } else {
 571           __ div (left_op, right_op, result_op); break;
 572         }
 573       }
 574       break;
 575 
 576     case Bytecodes::_drem:
 577     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 578 
 579     default: ShouldNotReachHere();
 580   }
 581 }
 582 
 583 
 584 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 585   arithmetic_op(code, result, left, right, false, tmp);
 586 }
 587 
 588 
 589 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 590   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 591 }
 592 
 593 
 594 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 595   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 596 }
 597 
 598 
 599 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 600 
 601   if (TwoOperandLIRForm && value != result_op
 602       // Only 32bit right shifts require two operand form on S390.
 603       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 604     assert(count != result_op, "malformed");
 605     __ move(value, result_op);
 606     value = result_op;
 607   }
 608 
 609   assert(count->is_constant() || count->is_register(), "must be");
 610   switch(code) {
 611   case Bytecodes::_ishl:
 612   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 613   case Bytecodes::_ishr:
 614   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 615   case Bytecodes::_iushr:
 616   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 617   default: ShouldNotReachHere();
 618   }
 619 }
 620 
 621 
 622 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 623   if (TwoOperandLIRForm && left_op != result_op) {
 624     assert(right_op != result_op, "malformed");
 625     __ move(left_op, result_op);
 626     left_op = result_op;
 627   }
 628 
 629   switch(code) {
 630     case Bytecodes::_iand:
 631     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 632 
 633     case Bytecodes::_ior:
 634     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 635 
 636     case Bytecodes::_ixor:
 637     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 638 
 639     default: ShouldNotReachHere();
 640   }
 641 }
 642 
 643 
 644 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 645   if (!GenerateSynchronizationCode) return;
 646   // for slow path, use debug info for state after successful locking
 647   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 648   __ load_stack_address_monitor(monitor_no, lock);
 649   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 650   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 651 }
 652 
 653 
 654 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 655   if (!GenerateSynchronizationCode) return;
 656   // setup registers
 657   LIR_Opr hdr = lock;
 658   lock = new_hdr;
 659   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 660   __ load_stack_address_monitor(monitor_no, lock);
 661   __ unlock_object(hdr, object, lock, scratch, slow_path);
 662 }
 663 
 664 #ifndef PRODUCT
 665 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 666   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 667     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 668   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 669     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 670   }
 671 }
 672 #endif
 673 
 674 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 675   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 676   // If klass is not loaded we do not know if the klass has finalizers:
 677   if (UseFastNewInstance && klass->is_loaded()
 678       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 679 
 680     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 681 
 682     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 683 
 684     assert(klass->is_loaded(), "must be loaded");
 685     // allocate space for instance
 686     assert(klass->size_helper() >= 0, "illegal instance size");
 687     const int instance_size = align_object_size(klass->size_helper());
 688     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 689                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 690   } else {
 691     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 692     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 693     __ branch_destination(slow_path->continuation());
 694   }
 695 }
 696 
 697 
 698 static bool is_constant_zero(Instruction* inst) {
 699   IntConstant* c = inst->type()->as_IntConstant();
 700   if (c) {
 701     return (c->value() == 0);
 702   }
 703   return false;
 704 }
 705 
 706 
 707 static bool positive_constant(Instruction* inst) {
 708   IntConstant* c = inst->type()->as_IntConstant();
 709   if (c) {
 710     return (c->value() >= 0);
 711   }
 712   return false;
 713 }
 714 
 715 
 716 static ciArrayKlass* as_array_klass(ciType* type) {
 717   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 718     return (ciArrayKlass*)type;
 719   } else {
 720     return NULL;
 721   }
 722 }
 723 
 724 static ciType* phi_declared_type(Phi* phi) {
 725   ciType* t = phi->operand_at(0)->declared_type();
 726   if (t == NULL) {
 727     return NULL;
 728   }
 729   for(int i = 1; i < phi->operand_count(); i++) {
 730     if (t != phi->operand_at(i)->declared_type()) {
 731       return NULL;
 732     }
 733   }
 734   return t;
 735 }
 736 
 737 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 738   Instruction* src     = x->argument_at(0);
 739   Instruction* src_pos = x->argument_at(1);
 740   Instruction* dst     = x->argument_at(2);
 741   Instruction* dst_pos = x->argument_at(3);
 742   Instruction* length  = x->argument_at(4);
 743 
 744   // first try to identify the likely type of the arrays involved
 745   ciArrayKlass* expected_type = NULL;
 746   bool is_exact = false, src_objarray = false, dst_objarray = false;
 747   {
 748     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 749     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 750     Phi* phi;
 751     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 752       src_declared_type = as_array_klass(phi_declared_type(phi));
 753     }
 754     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 755     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 756     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 757       dst_declared_type = as_array_klass(phi_declared_type(phi));
 758     }
 759 
 760     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 761       // the types exactly match so the type is fully known
 762       is_exact = true;
 763       expected_type = src_exact_type;
 764     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 765       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 766       ciArrayKlass* src_type = NULL;
 767       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 768         src_type = (ciArrayKlass*) src_exact_type;
 769       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 770         src_type = (ciArrayKlass*) src_declared_type;
 771       }
 772       if (src_type != NULL) {
 773         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 774           is_exact = true;
 775           expected_type = dst_type;
 776         }
 777       }
 778     }
 779     // at least pass along a good guess
 780     if (expected_type == NULL) expected_type = dst_exact_type;
 781     if (expected_type == NULL) expected_type = src_declared_type;
 782     if (expected_type == NULL) expected_type = dst_declared_type;
 783 
 784     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 785     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 786   }
 787 
 788   // if a probable array type has been identified, figure out if any
 789   // of the required checks for a fast case can be elided.
 790   int flags = LIR_OpArrayCopy::all_flags;
 791 
 792   if (!src_objarray)
 793     flags &= ~LIR_OpArrayCopy::src_objarray;
 794   if (!dst_objarray)
 795     flags &= ~LIR_OpArrayCopy::dst_objarray;
 796 
 797   if (!x->arg_needs_null_check(0))
 798     flags &= ~LIR_OpArrayCopy::src_null_check;
 799   if (!x->arg_needs_null_check(2))
 800     flags &= ~LIR_OpArrayCopy::dst_null_check;
 801 
 802 
 803   if (expected_type != NULL) {
 804     Value length_limit = NULL;
 805 
 806     IfOp* ifop = length->as_IfOp();
 807     if (ifop != NULL) {
 808       // look for expressions like min(v, a.length) which ends up as
 809       //   x > y ? y : x  or  x >= y ? y : x
 810       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 811           ifop->x() == ifop->fval() &&
 812           ifop->y() == ifop->tval()) {
 813         length_limit = ifop->y();
 814       }
 815     }
 816 
 817     // try to skip null checks and range checks
 818     NewArray* src_array = src->as_NewArray();
 819     if (src_array != NULL) {
 820       flags &= ~LIR_OpArrayCopy::src_null_check;
 821       if (length_limit != NULL &&
 822           src_array->length() == length_limit &&
 823           is_constant_zero(src_pos)) {
 824         flags &= ~LIR_OpArrayCopy::src_range_check;
 825       }
 826     }
 827 
 828     NewArray* dst_array = dst->as_NewArray();
 829     if (dst_array != NULL) {
 830       flags &= ~LIR_OpArrayCopy::dst_null_check;
 831       if (length_limit != NULL &&
 832           dst_array->length() == length_limit &&
 833           is_constant_zero(dst_pos)) {
 834         flags &= ~LIR_OpArrayCopy::dst_range_check;
 835       }
 836     }
 837 
 838     // check from incoming constant values
 839     if (positive_constant(src_pos))
 840       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 841     if (positive_constant(dst_pos))
 842       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 843     if (positive_constant(length))
 844       flags &= ~LIR_OpArrayCopy::length_positive_check;
 845 
 846     // see if the range check can be elided, which might also imply
 847     // that src or dst is non-null.
 848     ArrayLength* al = length->as_ArrayLength();
 849     if (al != NULL) {
 850       if (al->array() == src) {
 851         // it's the length of the source array
 852         flags &= ~LIR_OpArrayCopy::length_positive_check;
 853         flags &= ~LIR_OpArrayCopy::src_null_check;
 854         if (is_constant_zero(src_pos))
 855           flags &= ~LIR_OpArrayCopy::src_range_check;
 856       }
 857       if (al->array() == dst) {
 858         // it's the length of the destination array
 859         flags &= ~LIR_OpArrayCopy::length_positive_check;
 860         flags &= ~LIR_OpArrayCopy::dst_null_check;
 861         if (is_constant_zero(dst_pos))
 862           flags &= ~LIR_OpArrayCopy::dst_range_check;
 863       }
 864     }
 865     if (is_exact) {
 866       flags &= ~LIR_OpArrayCopy::type_check;
 867     }
 868   }
 869 
 870   IntConstant* src_int = src_pos->type()->as_IntConstant();
 871   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 872   if (src_int && dst_int) {
 873     int s_offs = src_int->value();
 874     int d_offs = dst_int->value();
 875     if (src_int->value() >= dst_int->value()) {
 876       flags &= ~LIR_OpArrayCopy::overlapping;
 877     }
 878     if (expected_type != NULL) {
 879       BasicType t = expected_type->element_type()->basic_type();
 880       int element_size = type2aelembytes(t);
 881       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 882           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 883         flags &= ~LIR_OpArrayCopy::unaligned;
 884       }
 885     }
 886   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 887     // src and dest positions are the same, or dst is zero so assume
 888     // nonoverlapping copy.
 889     flags &= ~LIR_OpArrayCopy::overlapping;
 890   }
 891 
 892   if (src == dst) {
 893     // moving within a single array so no type checks are needed
 894     if (flags & LIR_OpArrayCopy::type_check) {
 895       flags &= ~LIR_OpArrayCopy::type_check;
 896     }
 897   }
 898   *flagsp = flags;
 899   *expected_typep = (ciArrayKlass*)expected_type;
 900 }
 901 
 902 
 903 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 904   assert(opr->is_register(), "why spill if item is not register?");
 905 
 906   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 907     LIR_Opr result = new_register(T_FLOAT);
 908     set_vreg_flag(result, must_start_in_memory);
 909     assert(opr->is_register(), "only a register can be spilled");
 910     assert(opr->value_type()->is_float(), "rounding only for floats available");
 911     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 912     return result;
 913   }
 914   return opr;
 915 }
 916 
 917 
 918 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 919   assert(type2size[t] == type2size[value->type()],
 920          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 921   if (!value->is_register()) {
 922     // force into a register
 923     LIR_Opr r = new_register(value->type());
 924     __ move(value, r);
 925     value = r;
 926   }
 927 
 928   // create a spill location
 929   LIR_Opr tmp = new_register(t);
 930   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 931 
 932   // move from register to spill
 933   __ move(value, tmp);
 934   return tmp;
 935 }
 936 
 937 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 938   if (if_instr->should_profile()) {
 939     ciMethod* method = if_instr->profiled_method();
 940     assert(method != NULL, "method should be set if branch is profiled");
 941     ciMethodData* md = method->method_data_or_null();
 942     assert(md != NULL, "Sanity");
 943     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 944     assert(data != NULL, "must have profiling data");
 945     assert(data->is_BranchData(), "need BranchData for two-way branches");
 946     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 947     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 948     if (if_instr->is_swapped()) {
 949       int t = taken_count_offset;
 950       taken_count_offset = not_taken_count_offset;
 951       not_taken_count_offset = t;
 952     }
 953 
 954     LIR_Opr md_reg = new_register(T_METADATA);
 955     __ metadata2reg(md->constant_encoding(), md_reg);
 956 
 957     LIR_Opr data_offset_reg = new_pointer_register();
 958     __ cmove(lir_cond(cond),
 959              LIR_OprFact::intptrConst(taken_count_offset),
 960              LIR_OprFact::intptrConst(not_taken_count_offset),
 961              data_offset_reg, as_BasicType(if_instr->x()->type()));
 962 
 963     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 964     LIR_Opr data_reg = new_pointer_register();
 965     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 966     __ move(data_addr, data_reg);
 967     // Use leal instead of add to avoid destroying condition codes on x86
 968     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 969     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 970     __ move(data_reg, data_addr);
 971   }
 972 }
 973 
 974 // Phi technique:
 975 // This is about passing live values from one basic block to the other.
 976 // In code generated with Java it is rather rare that more than one
 977 // value is on the stack from one basic block to the other.
 978 // We optimize our technique for efficient passing of one value
 979 // (of type long, int, double..) but it can be extended.
 980 // When entering or leaving a basic block, all registers and all spill
 981 // slots are release and empty. We use the released registers
 982 // and spill slots to pass the live values from one block
 983 // to the other. The topmost value, i.e., the value on TOS of expression
 984 // stack is passed in registers. All other values are stored in spilling
 985 // area. Every Phi has an index which designates its spill slot
 986 // At exit of a basic block, we fill the register(s) and spill slots.
 987 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 988 // and locks necessary registers and spilling slots.
 989 
 990 
 991 // move current value to referenced phi function
 992 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 993   Phi* phi = sux_val->as_Phi();
 994   // cur_val can be null without phi being null in conjunction with inlining
 995   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 996     Phi* cur_phi = cur_val->as_Phi();
 997     if (cur_phi != NULL && cur_phi->is_illegal()) {
 998       // Phi and local would need to get invalidated
 999       // (which is unexpected for Linear Scan).
1000       // But this case is very rare so we simply bail out.
1001       bailout("propagation of illegal phi");
1002       return;
1003     }
1004     LIR_Opr operand = cur_val->operand();
1005     if (operand->is_illegal()) {
1006       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1007              "these can be produced lazily");
1008       operand = operand_for_instruction(cur_val);
1009     }
1010     resolver->move(operand, operand_for_instruction(phi));
1011   }
1012 }
1013 
1014 
1015 // Moves all stack values into their PHI position
1016 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1017   BlockBegin* bb = block();
1018   if (bb->number_of_sux() == 1) {
1019     BlockBegin* sux = bb->sux_at(0);
1020     assert(sux->number_of_preds() > 0, "invalid CFG");
1021 
1022     // a block with only one predecessor never has phi functions
1023     if (sux->number_of_preds() > 1) {
1024       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1025       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1026 
1027       ValueStack* sux_state = sux->state();
1028       Value sux_value;
1029       int index;
1030 
1031       assert(cur_state->scope() == sux_state->scope(), "not matching");
1032       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1033       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1034 
1035       for_each_stack_value(sux_state, index, sux_value) {
1036         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1037       }
1038 
1039       for_each_local_value(sux_state, index, sux_value) {
1040         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1041       }
1042 
1043       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1044     }
1045   }
1046 }
1047 
1048 
1049 LIR_Opr LIRGenerator::new_register(BasicType type) {
1050   int vreg = _virtual_register_number;
1051   // add a little fudge factor for the bailout, since the bailout is
1052   // only checked periodically.  This gives a few extra registers to
1053   // hand out before we really run out, which helps us keep from
1054   // tripping over assertions.
1055   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1056     bailout("out of virtual registers");
1057     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1058       // wrap it around
1059       _virtual_register_number = LIR_OprDesc::vreg_base;
1060     }
1061   }
1062   _virtual_register_number += 1;
1063   return LIR_OprFact::virtual_register(vreg, type);
1064 }
1065 
1066 
1067 // Try to lock using register in hint
1068 LIR_Opr LIRGenerator::rlock(Value instr) {
1069   return new_register(instr->type());
1070 }
1071 
1072 
1073 // does an rlock and sets result
1074 LIR_Opr LIRGenerator::rlock_result(Value x) {
1075   LIR_Opr reg = rlock(x);
1076   set_result(x, reg);
1077   return reg;
1078 }
1079 
1080 
1081 // does an rlock and sets result
1082 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1083   LIR_Opr reg;
1084   switch (type) {
1085   case T_BYTE:
1086   case T_BOOLEAN:
1087     reg = rlock_byte(type);
1088     break;
1089   default:
1090     reg = rlock(x);
1091     break;
1092   }
1093 
1094   set_result(x, reg);
1095   return reg;
1096 }
1097 
1098 
1099 //---------------------------------------------------------------------
1100 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1101   ObjectType* oc = value->type()->as_ObjectType();
1102   if (oc) {
1103     return oc->constant_value();
1104   }
1105   return NULL;
1106 }
1107 
1108 
1109 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1110   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1111   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1112 
1113   // no moves are created for phi functions at the begin of exception
1114   // handlers, so assign operands manually here
1115   for_each_phi_fun(block(), phi,
1116                    operand_for_instruction(phi));
1117 
1118   LIR_Opr thread_reg = getThreadPointer();
1119   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1120                exceptionOopOpr());
1121   __ move_wide(LIR_OprFact::oopConst(NULL),
1122                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1123   __ move_wide(LIR_OprFact::oopConst(NULL),
1124                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1125 
1126   LIR_Opr result = new_register(T_OBJECT);
1127   __ move(exceptionOopOpr(), result);
1128   set_result(x, result);
1129 }
1130 
1131 
1132 //----------------------------------------------------------------------
1133 //----------------------------------------------------------------------
1134 //----------------------------------------------------------------------
1135 //----------------------------------------------------------------------
1136 //                        visitor functions
1137 //----------------------------------------------------------------------
1138 //----------------------------------------------------------------------
1139 //----------------------------------------------------------------------
1140 //----------------------------------------------------------------------
1141 
1142 void LIRGenerator::do_Phi(Phi* x) {
1143   // phi functions are never visited directly
1144   ShouldNotReachHere();
1145 }
1146 
1147 
1148 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1149 void LIRGenerator::do_Constant(Constant* x) {
1150   if (x->state_before() != NULL) {
1151     // Any constant with a ValueStack requires patching so emit the patch here
1152     LIR_Opr reg = rlock_result(x);
1153     CodeEmitInfo* info = state_for(x, x->state_before());
1154     __ oop2reg_patch(NULL, reg, info);
1155   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1156     if (!x->is_pinned()) {
1157       // unpinned constants are handled specially so that they can be
1158       // put into registers when they are used multiple times within a
1159       // block.  After the block completes their operand will be
1160       // cleared so that other blocks can't refer to that register.
1161       set_result(x, load_constant(x));
1162     } else {
1163       LIR_Opr res = x->operand();
1164       if (!res->is_valid()) {
1165         res = LIR_OprFact::value_type(x->type());
1166       }
1167       if (res->is_constant()) {
1168         LIR_Opr reg = rlock_result(x);
1169         __ move(res, reg);
1170       } else {
1171         set_result(x, res);
1172       }
1173     }
1174   } else {
1175     set_result(x, LIR_OprFact::value_type(x->type()));
1176   }
1177 }
1178 
1179 
1180 void LIRGenerator::do_Local(Local* x) {
1181   // operand_for_instruction has the side effect of setting the result
1182   // so there's no need to do it here.
1183   operand_for_instruction(x);
1184 }
1185 
1186 
1187 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1188   Unimplemented();
1189 }
1190 
1191 
1192 void LIRGenerator::do_Return(Return* x) {
1193   if (compilation()->env()->dtrace_method_probes()) {
1194     BasicTypeList signature;
1195     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1196     signature.append(T_METADATA); // Method*
1197     LIR_OprList* args = new LIR_OprList();
1198     args->append(getThreadPointer());
1199     LIR_Opr meth = new_register(T_METADATA);
1200     __ metadata2reg(method()->constant_encoding(), meth);
1201     args->append(meth);
1202     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1203   }
1204 
1205   if (x->type()->is_void()) {
1206     __ return_op(LIR_OprFact::illegalOpr);
1207   } else {
1208     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1209     LIRItem result(x->result(), this);
1210 
1211     result.load_item_force(reg);
1212     __ return_op(result.result());
1213   }
1214   set_no_result(x);
1215 }
1216 
1217 // Examble: ref.get()
1218 // Combination of LoadField and g1 pre-write barrier
1219 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1220 
1221   const int referent_offset = java_lang_ref_Reference::referent_offset;
1222   guarantee(referent_offset > 0, "referent offset not initialized");
1223 
1224   assert(x->number_of_arguments() == 1, "wrong type");
1225 
1226   LIRItem reference(x->argument_at(0), this);
1227   reference.load_item();
1228 
1229   // need to perform the null check on the reference objecy
1230   CodeEmitInfo* info = NULL;
1231   if (x->needs_null_check()) {
1232     info = state_for(x);
1233   }
1234 
1235   LIR_Opr result = rlock_result(x, T_OBJECT);
1236   access_load_at(IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT,
1237                  reference, LIR_OprFact::intConst(referent_offset), result);
1238 }
1239 
1240 // Example: clazz.isInstance(object)
1241 void LIRGenerator::do_isInstance(Intrinsic* x) {
1242   assert(x->number_of_arguments() == 2, "wrong type");
1243 
1244   // TODO could try to substitute this node with an equivalent InstanceOf
1245   // if clazz is known to be a constant Class. This will pick up newly found
1246   // constants after HIR construction. I'll leave this to a future change.
1247 
1248   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1249   // could follow the aastore example in a future change.
1250 
1251   LIRItem clazz(x->argument_at(0), this);
1252   LIRItem object(x->argument_at(1), this);
1253   clazz.load_item();
1254   object.load_item();
1255   LIR_Opr result = rlock_result(x);
1256 
1257   // need to perform null check on clazz
1258   if (x->needs_null_check()) {
1259     CodeEmitInfo* info = state_for(x);
1260     __ null_check(clazz.result(), info);
1261   }
1262 
1263   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1264                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1265                                      x->type(),
1266                                      NULL); // NULL CodeEmitInfo results in a leaf call
1267   __ move(call_result, result);
1268 }
1269 
1270 // Example: object.getClass ()
1271 void LIRGenerator::do_getClass(Intrinsic* x) {
1272   assert(x->number_of_arguments() == 1, "wrong type");
1273 
1274   LIRItem rcvr(x->argument_at(0), this);
1275   rcvr.load_item();
1276   LIR_Opr temp = new_register(T_METADATA);
1277   LIR_Opr result = rlock_result(x);
1278 
1279   // need to perform the null check on the rcvr
1280   CodeEmitInfo* info = NULL;
1281   if (x->needs_null_check()) {
1282     info = state_for(x);
1283   }
1284 
1285   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1286   // meaning of these two is mixed up (see JDK-8026837).
1287   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1288   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), temp);
1289   // mirror = ((OopHandle)mirror)->resolve();
1290   access_load(IN_NATIVE, T_OBJECT,
1291               LIR_OprFact::address(new LIR_Address(temp, T_OBJECT)), result);
1292 }
1293 
1294 // java.lang.Class::isPrimitive()
1295 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1296   assert(x->number_of_arguments() == 1, "wrong type");
1297 
1298   LIRItem rcvr(x->argument_at(0), this);
1299   rcvr.load_item();
1300   LIR_Opr temp = new_register(T_METADATA);
1301   LIR_Opr result = rlock_result(x);
1302 
1303   CodeEmitInfo* info = NULL;
1304   if (x->needs_null_check()) {
1305     info = state_for(x);
1306   }
1307 
1308   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1309   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1310   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1311 }
1312 
1313 
1314 // Example: Thread.currentThread()
1315 void LIRGenerator::do_currentThread(Intrinsic* x) {
1316   assert(x->number_of_arguments() == 0, "wrong type");
1317   LIR_Opr reg = rlock_result(x);
1318   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1319 }
1320 
1321 
1322 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1323   assert(x->number_of_arguments() == 1, "wrong type");
1324   LIRItem receiver(x->argument_at(0), this);
1325 
1326   receiver.load_item();
1327   BasicTypeList signature;
1328   signature.append(T_OBJECT); // receiver
1329   LIR_OprList* args = new LIR_OprList();
1330   args->append(receiver.result());
1331   CodeEmitInfo* info = state_for(x, x->state());
1332   call_runtime(&signature, args,
1333                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1334                voidType, info);
1335 
1336   set_no_result(x);
1337 }
1338 
1339 
1340 //------------------------local access--------------------------------------
1341 
1342 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1343   if (x->operand()->is_illegal()) {
1344     Constant* c = x->as_Constant();
1345     if (c != NULL) {
1346       x->set_operand(LIR_OprFact::value_type(c->type()));
1347     } else {
1348       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1349       // allocate a virtual register for this local or phi
1350       x->set_operand(rlock(x));
1351       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1352     }
1353   }
1354   return x->operand();
1355 }
1356 
1357 
1358 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1359   if (opr->is_virtual()) {
1360     return instruction_for_vreg(opr->vreg_number());
1361   }
1362   return NULL;
1363 }
1364 
1365 
1366 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1367   if (reg_num < _instruction_for_operand.length()) {
1368     return _instruction_for_operand.at(reg_num);
1369   }
1370   return NULL;
1371 }
1372 
1373 
1374 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1375   if (_vreg_flags.size_in_bits() == 0) {
1376     BitMap2D temp(100, num_vreg_flags);
1377     _vreg_flags = temp;
1378   }
1379   _vreg_flags.at_put_grow(vreg_num, f, true);
1380 }
1381 
1382 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1383   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1384     return false;
1385   }
1386   return _vreg_flags.at(vreg_num, f);
1387 }
1388 
1389 
1390 // Block local constant handling.  This code is useful for keeping
1391 // unpinned constants and constants which aren't exposed in the IR in
1392 // registers.  Unpinned Constant instructions have their operands
1393 // cleared when the block is finished so that other blocks can't end
1394 // up referring to their registers.
1395 
1396 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1397   assert(!x->is_pinned(), "only for unpinned constants");
1398   _unpinned_constants.append(x);
1399   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1400 }
1401 
1402 
1403 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1404   BasicType t = c->type();
1405   for (int i = 0; i < _constants.length(); i++) {
1406     LIR_Const* other = _constants.at(i);
1407     if (t == other->type()) {
1408       switch (t) {
1409       case T_INT:
1410       case T_FLOAT:
1411         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1412         break;
1413       case T_LONG:
1414       case T_DOUBLE:
1415         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1416         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1417         break;
1418       case T_OBJECT:
1419         if (c->as_jobject() != other->as_jobject()) continue;
1420         break;
1421       default:
1422         break;
1423       }
1424       return _reg_for_constants.at(i);
1425     }
1426   }
1427 
1428   LIR_Opr result = new_register(t);
1429   __ move((LIR_Opr)c, result);
1430   _constants.append(c);
1431   _reg_for_constants.append(result);
1432   return result;
1433 }
1434 
1435 //------------------------field access--------------------------------------
1436 
1437 void LIRGenerator::do_CompareAndSwap(Intrinsic* x, ValueType* type) {
1438   assert(x->number_of_arguments() == 4, "wrong type");
1439   LIRItem obj   (x->argument_at(0), this);  // object
1440   LIRItem offset(x->argument_at(1), this);  // offset of field
1441   LIRItem cmp   (x->argument_at(2), this);  // value to compare with field
1442   LIRItem val   (x->argument_at(3), this);  // replace field with val if matches cmp
1443   assert(obj.type()->tag() == objectTag, "invalid type");
1444 
1445   // In 64bit the type can be long, sparc doesn't have this assert
1446   // assert(offset.type()->tag() == intTag, "invalid type");
1447 
1448   assert(cmp.type()->tag() == type->tag(), "invalid type");
1449   assert(val.type()->tag() == type->tag(), "invalid type");
1450 
1451   LIR_Opr result = access_atomic_cmpxchg_at(IN_HEAP, as_BasicType(type),
1452                                             obj, offset, cmp, val);
1453   set_result(x, result);
1454 }
1455 
1456 // Comment copied form templateTable_i486.cpp
1457 // ----------------------------------------------------------------------------
1458 // Volatile variables demand their effects be made known to all CPU's in
1459 // order.  Store buffers on most chips allow reads & writes to reorder; the
1460 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1461 // memory barrier (i.e., it's not sufficient that the interpreter does not
1462 // reorder volatile references, the hardware also must not reorder them).
1463 //
1464 // According to the new Java Memory Model (JMM):
1465 // (1) All volatiles are serialized wrt to each other.
1466 // ALSO reads & writes act as aquire & release, so:
1467 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1468 // the read float up to before the read.  It's OK for non-volatile memory refs
1469 // that happen before the volatile read to float down below it.
1470 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1471 // that happen BEFORE the write float down to after the write.  It's OK for
1472 // non-volatile memory refs that happen after the volatile write to float up
1473 // before it.
1474 //
1475 // We only put in barriers around volatile refs (they are expensive), not
1476 // _between_ memory refs (that would require us to track the flavor of the
1477 // previous memory refs).  Requirements (2) and (3) require some barriers
1478 // before volatile stores and after volatile loads.  These nearly cover
1479 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1480 // case is placed after volatile-stores although it could just as well go
1481 // before volatile-loads.
1482 
1483 
1484 void LIRGenerator::do_StoreField(StoreField* x) {
1485   bool needs_patching = x->needs_patching();
1486   bool is_volatile = x->field()->is_volatile();
1487   BasicType field_type = x->field_type();
1488 
1489   CodeEmitInfo* info = NULL;
1490   if (needs_patching) {
1491     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1492     info = state_for(x, x->state_before());
1493   } else if (x->needs_null_check()) {
1494     NullCheck* nc = x->explicit_null_check();
1495     if (nc == NULL) {
1496       info = state_for(x);
1497     } else {
1498       info = state_for(nc);
1499     }
1500   }
1501 
1502   LIRItem object(x->obj(), this);
1503   LIRItem value(x->value(),  this);
1504 
1505   object.load_item();
1506 
1507   if (is_volatile || needs_patching) {
1508     // load item if field is volatile (fewer special cases for volatiles)
1509     // load item if field not initialized
1510     // load item if field not constant
1511     // because of code patching we cannot inline constants
1512     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1513       value.load_byte_item();
1514     } else  {
1515       value.load_item();
1516     }
1517   } else {
1518     value.load_for_store(field_type);
1519   }
1520 
1521   set_no_result(x);
1522 
1523 #ifndef PRODUCT
1524   if (PrintNotLoaded && needs_patching) {
1525     tty->print_cr("   ###class not loaded at store_%s bci %d",
1526                   x->is_static() ?  "static" : "field", x->printable_bci());
1527   }
1528 #endif
1529 
1530   if (x->needs_null_check() &&
1531       (needs_patching ||
1532        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1533     // Emit an explicit null check because the offset is too large.
1534     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1535     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1536     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1537   }
1538 
1539   DecoratorSet decorators = IN_HEAP;
1540   if (is_volatile) {
1541     decorators |= MO_SEQ_CST;
1542   }
1543   if (needs_patching) {
1544     decorators |= C1_NEEDS_PATCHING;
1545   }
1546 
1547   access_store_at(decorators, field_type, object, LIR_OprFact::intConst(x->offset()),
1548                   value.result(), info != NULL ? new CodeEmitInfo(info) : NULL, info);
1549 }
1550 
1551 void LIRGenerator::do_StoreIndexed(StoreIndexed* x) {
1552   assert(x->is_pinned(),"");
1553   bool needs_range_check = x->compute_needs_range_check();
1554   bool use_length = x->length() != NULL;
1555   bool obj_store = x->elt_type() == T_ARRAY || x->elt_type() == T_OBJECT;
1556   bool needs_store_check = obj_store && (x->value()->as_Constant() == NULL ||
1557                                          !get_jobject_constant(x->value())->is_null_object() ||
1558                                          x->should_profile());
1559 
1560   LIRItem array(x->array(), this);
1561   LIRItem index(x->index(), this);
1562   LIRItem value(x->value(), this);
1563   LIRItem length(this);
1564 
1565   array.load_item();
1566   index.load_nonconstant();
1567 
1568   if (use_length && needs_range_check) {
1569     length.set_instruction(x->length());
1570     length.load_item();
1571 
1572   }
1573   if (needs_store_check || x->check_boolean()) {
1574     value.load_item();
1575   } else {
1576     value.load_for_store(x->elt_type());
1577   }
1578 
1579   set_no_result(x);
1580 
1581   // the CodeEmitInfo must be duplicated for each different
1582   // LIR-instruction because spilling can occur anywhere between two
1583   // instructions and so the debug information must be different
1584   CodeEmitInfo* range_check_info = state_for(x);
1585   CodeEmitInfo* null_check_info = NULL;
1586   if (x->needs_null_check()) {
1587     null_check_info = new CodeEmitInfo(range_check_info);
1588   }
1589 
1590   if (GenerateRangeChecks && needs_range_check) {
1591     if (use_length) {
1592       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1593       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1594     } else {
1595       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1596       // range_check also does the null check
1597       null_check_info = NULL;
1598     }
1599   }
1600 
1601   if (GenerateArrayStoreCheck && needs_store_check) {
1602     CodeEmitInfo* store_check_info = new CodeEmitInfo(range_check_info);
1603     array_store_check(value.result(), array.result(), store_check_info, x->profiled_method(), x->profiled_bci());
1604   }
1605 
1606   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1607   if (x->check_boolean()) {
1608     decorators |= C1_MASK_BOOLEAN;
1609   }
1610 
1611   access_store_at(decorators, x->elt_type(), array, index.result(), value.result(),
1612                   NULL, null_check_info);
1613 }
1614 
1615 void LIRGenerator::access_load_at(DecoratorSet decorators, BasicType type,
1616                                   LIRItem& base, LIR_Opr offset, LIR_Opr result,
1617                                   CodeEmitInfo* patch_info, CodeEmitInfo* load_emit_info) {
1618   decorators |= C1_READ_ACCESS;
1619   LIRAccess access(this, decorators, base, offset, type, patch_info, load_emit_info);
1620   if (access.is_raw()) {
1621     _barrier_set->BarrierSetC1::load_at(access, result);
1622   } else {
1623     _barrier_set->load_at(access, result);
1624   }
1625 }
1626 
1627 void LIRGenerator::access_load(DecoratorSet decorators, BasicType type,
1628                                LIR_Opr addr, LIR_Opr result) {
1629   decorators |= C1_READ_ACCESS;
1630   LIRAccess access(this, decorators, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, type);
1631   access.set_resolved_addr(addr);
1632   if (access.is_raw()) {
1633     _barrier_set->BarrierSetC1::load(access, result);
1634   } else {
1635     _barrier_set->load(access, result);
1636   }
1637 }
1638 
1639 void LIRGenerator::access_store_at(DecoratorSet decorators, BasicType type,
1640                                    LIRItem& base, LIR_Opr offset, LIR_Opr value,
1641                                    CodeEmitInfo* patch_info, CodeEmitInfo* store_emit_info) {
1642   decorators |= C1_WRITE_ACCESS;
1643   LIRAccess access(this, decorators, base, offset, type, patch_info, store_emit_info);
1644   if (access.is_raw()) {
1645     _barrier_set->BarrierSetC1::store_at(access, value);
1646   } else {
1647     _barrier_set->store_at(access, value);
1648   }
1649 }
1650 
1651 LIR_Opr LIRGenerator::access_atomic_cmpxchg_at(DecoratorSet decorators, BasicType type,
1652                                                LIRItem& base, LIRItem& offset, LIRItem& cmp_value, LIRItem& new_value) {
1653   // Atomic operations are SEQ_CST by default
1654   decorators |= C1_READ_ACCESS;
1655   decorators |= C1_WRITE_ACCESS;
1656   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1657   LIRAccess access(this, decorators, base, offset, type);
1658   if (access.is_raw()) {
1659     return _barrier_set->BarrierSetC1::atomic_cmpxchg_at(access, cmp_value, new_value);
1660   } else {
1661     return _barrier_set->atomic_cmpxchg_at(access, cmp_value, new_value);
1662   }
1663 }
1664 
1665 LIR_Opr LIRGenerator::access_atomic_xchg_at(DecoratorSet decorators, BasicType type,
1666                                             LIRItem& base, LIRItem& offset, LIRItem& value) {
1667   // Atomic operations are SEQ_CST by default
1668   decorators |= C1_READ_ACCESS;
1669   decorators |= C1_WRITE_ACCESS;
1670   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1671   LIRAccess access(this, decorators, base, offset, type);
1672   if (access.is_raw()) {
1673     return _barrier_set->BarrierSetC1::atomic_xchg_at(access, value);
1674   } else {
1675     return _barrier_set->atomic_xchg_at(access, value);
1676   }
1677 }
1678 
1679 LIR_Opr LIRGenerator::access_atomic_add_at(DecoratorSet decorators, BasicType type,
1680                                            LIRItem& base, LIRItem& offset, LIRItem& value) {
1681   // Atomic operations are SEQ_CST by default
1682   decorators |= C1_READ_ACCESS;
1683   decorators |= C1_WRITE_ACCESS;
1684   decorators |= ((decorators & MO_DECORATOR_MASK) != 0) ? MO_SEQ_CST : 0;
1685   LIRAccess access(this, decorators, base, offset, type);
1686   if (access.is_raw()) {
1687     return _barrier_set->BarrierSetC1::atomic_add_at(access, value);
1688   } else {
1689     return _barrier_set->atomic_add_at(access, value);
1690   }
1691 }
1692 
1693 void LIRGenerator::do_LoadField(LoadField* x) {
1694   bool needs_patching = x->needs_patching();
1695   bool is_volatile = x->field()->is_volatile();
1696   BasicType field_type = x->field_type();
1697 
1698   CodeEmitInfo* info = NULL;
1699   if (needs_patching) {
1700     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1701     info = state_for(x, x->state_before());
1702   } else if (x->needs_null_check()) {
1703     NullCheck* nc = x->explicit_null_check();
1704     if (nc == NULL) {
1705       info = state_for(x);
1706     } else {
1707       info = state_for(nc);
1708     }
1709   }
1710 
1711   LIRItem object(x->obj(), this);
1712 
1713   object.load_item();
1714 
1715 #ifndef PRODUCT
1716   if (PrintNotLoaded && needs_patching) {
1717     tty->print_cr("   ###class not loaded at load_%s bci %d",
1718                   x->is_static() ?  "static" : "field", x->printable_bci());
1719   }
1720 #endif
1721 
1722   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1723   if (x->needs_null_check() &&
1724       (needs_patching ||
1725        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1726        stress_deopt)) {
1727     LIR_Opr obj = object.result();
1728     if (stress_deopt) {
1729       obj = new_register(T_OBJECT);
1730       __ move(LIR_OprFact::oopConst(NULL), obj);
1731     }
1732     // Emit an explicit null check because the offset is too large.
1733     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1734     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1735     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1736   }
1737 
1738   DecoratorSet decorators = IN_HEAP;
1739   if (is_volatile) {
1740     decorators |= MO_SEQ_CST;
1741   }
1742   if (needs_patching) {
1743     decorators |= C1_NEEDS_PATCHING;
1744   }
1745 
1746   LIR_Opr result = rlock_result(x, field_type);
1747   access_load_at(decorators, field_type,
1748                  object, LIR_OprFact::intConst(x->offset()), result,
1749                  info ? new CodeEmitInfo(info) : NULL, info);
1750 }
1751 
1752 
1753 //------------------------java.nio.Buffer.checkIndex------------------------
1754 
1755 // int java.nio.Buffer.checkIndex(int)
1756 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1757   // NOTE: by the time we are in checkIndex() we are guaranteed that
1758   // the buffer is non-null (because checkIndex is package-private and
1759   // only called from within other methods in the buffer).
1760   assert(x->number_of_arguments() == 2, "wrong type");
1761   LIRItem buf  (x->argument_at(0), this);
1762   LIRItem index(x->argument_at(1), this);
1763   buf.load_item();
1764   index.load_item();
1765 
1766   LIR_Opr result = rlock_result(x);
1767   if (GenerateRangeChecks) {
1768     CodeEmitInfo* info = state_for(x);
1769     CodeStub* stub = new RangeCheckStub(info, index.result());
1770     if (index.result()->is_constant()) {
1771       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1772       __ branch(lir_cond_belowEqual, T_INT, stub);
1773     } else {
1774       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1775                   java_nio_Buffer::limit_offset(), T_INT, info);
1776       __ branch(lir_cond_aboveEqual, T_INT, stub);
1777     }
1778     __ move(index.result(), result);
1779   } else {
1780     // Just load the index into the result register
1781     __ move(index.result(), result);
1782   }
1783 }
1784 
1785 
1786 //------------------------array access--------------------------------------
1787 
1788 
1789 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1790   LIRItem array(x->array(), this);
1791   array.load_item();
1792   LIR_Opr reg = rlock_result(x);
1793 
1794   CodeEmitInfo* info = NULL;
1795   if (x->needs_null_check()) {
1796     NullCheck* nc = x->explicit_null_check();
1797     if (nc == NULL) {
1798       info = state_for(x);
1799     } else {
1800       info = state_for(nc);
1801     }
1802     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1803       LIR_Opr obj = new_register(T_OBJECT);
1804       __ move(LIR_OprFact::oopConst(NULL), obj);
1805       __ null_check(obj, new CodeEmitInfo(info));
1806     }
1807   }
1808   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1809 }
1810 
1811 
1812 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1813   bool use_length = x->length() != NULL;
1814   LIRItem array(x->array(), this);
1815   LIRItem index(x->index(), this);
1816   LIRItem length(this);
1817   bool needs_range_check = x->compute_needs_range_check();
1818 
1819   if (use_length && needs_range_check) {
1820     length.set_instruction(x->length());
1821     length.load_item();
1822   }
1823 
1824   array.load_item();
1825   if (index.is_constant() && can_inline_as_constant(x->index())) {
1826     // let it be a constant
1827     index.dont_load_item();
1828   } else {
1829     index.load_item();
1830   }
1831 
1832   CodeEmitInfo* range_check_info = state_for(x);
1833   CodeEmitInfo* null_check_info = NULL;
1834   if (x->needs_null_check()) {
1835     NullCheck* nc = x->explicit_null_check();
1836     if (nc != NULL) {
1837       null_check_info = state_for(nc);
1838     } else {
1839       null_check_info = range_check_info;
1840     }
1841     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1842       LIR_Opr obj = new_register(T_OBJECT);
1843       __ move(LIR_OprFact::oopConst(NULL), obj);
1844       __ null_check(obj, new CodeEmitInfo(null_check_info));
1845     }
1846   }
1847 
1848   if (GenerateRangeChecks && needs_range_check) {
1849     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1850       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result(), array.result()));
1851     } else if (use_length) {
1852       // TODO: use a (modified) version of array_range_check that does not require a
1853       //       constant length to be loaded to a register
1854       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1855       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result(), array.result()));
1856     } else {
1857       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1858       // The range check performs the null check, so clear it out for the load
1859       null_check_info = NULL;
1860     }
1861   }
1862 
1863   DecoratorSet decorators = IN_HEAP | IS_ARRAY;
1864 
1865   LIR_Opr result = rlock_result(x, x->elt_type());
1866   access_load_at(decorators, x->elt_type(),
1867                  array, index.result(), result,
1868                  NULL, null_check_info);
1869 }
1870 
1871 
1872 void LIRGenerator::do_NullCheck(NullCheck* x) {
1873   if (x->can_trap()) {
1874     LIRItem value(x->obj(), this);
1875     value.load_item();
1876     CodeEmitInfo* info = state_for(x);
1877     __ null_check(value.result(), info);
1878   }
1879 }
1880 
1881 
1882 void LIRGenerator::do_TypeCast(TypeCast* x) {
1883   LIRItem value(x->obj(), this);
1884   value.load_item();
1885   // the result is the same as from the node we are casting
1886   set_result(x, value.result());
1887 }
1888 
1889 
1890 void LIRGenerator::do_Throw(Throw* x) {
1891   LIRItem exception(x->exception(), this);
1892   exception.load_item();
1893   set_no_result(x);
1894   LIR_Opr exception_opr = exception.result();
1895   CodeEmitInfo* info = state_for(x, x->state());
1896 
1897 #ifndef PRODUCT
1898   if (PrintC1Statistics) {
1899     increment_counter(Runtime1::throw_count_address(), T_INT);
1900   }
1901 #endif
1902 
1903   // check if the instruction has an xhandler in any of the nested scopes
1904   bool unwind = false;
1905   if (info->exception_handlers()->length() == 0) {
1906     // this throw is not inside an xhandler
1907     unwind = true;
1908   } else {
1909     // get some idea of the throw type
1910     bool type_is_exact = true;
1911     ciType* throw_type = x->exception()->exact_type();
1912     if (throw_type == NULL) {
1913       type_is_exact = false;
1914       throw_type = x->exception()->declared_type();
1915     }
1916     if (throw_type != NULL && throw_type->is_instance_klass()) {
1917       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1918       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1919     }
1920   }
1921 
1922   // do null check before moving exception oop into fixed register
1923   // to avoid a fixed interval with an oop during the null check.
1924   // Use a copy of the CodeEmitInfo because debug information is
1925   // different for null_check and throw.
1926   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
1927     // if the exception object wasn't created using new then it might be null.
1928     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1929   }
1930 
1931   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1932     // we need to go through the exception lookup path to get JVMTI
1933     // notification done
1934     unwind = false;
1935   }
1936 
1937   // move exception oop into fixed register
1938   __ move(exception_opr, exceptionOopOpr());
1939 
1940   if (unwind) {
1941     __ unwind_exception(exceptionOopOpr());
1942   } else {
1943     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1944   }
1945 }
1946 
1947 
1948 void LIRGenerator::do_RoundFP(RoundFP* x) {
1949   LIRItem input(x->input(), this);
1950   input.load_item();
1951   LIR_Opr input_opr = input.result();
1952   assert(input_opr->is_register(), "why round if value is not in a register?");
1953   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1954   if (input_opr->is_single_fpu()) {
1955     set_result(x, round_item(input_opr)); // This code path not currently taken
1956   } else {
1957     LIR_Opr result = new_register(T_DOUBLE);
1958     set_vreg_flag(result, must_start_in_memory);
1959     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
1960     set_result(x, result);
1961   }
1962 }
1963 
1964 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
1965 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
1966 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
1967   LIRItem base(x->base(), this);
1968   LIRItem idx(this);
1969 
1970   base.load_item();
1971   if (x->has_index()) {
1972     idx.set_instruction(x->index());
1973     idx.load_nonconstant();
1974   }
1975 
1976   LIR_Opr reg = rlock_result(x, x->basic_type());
1977 
1978   int   log2_scale = 0;
1979   if (x->has_index()) {
1980     log2_scale = x->log2_scale();
1981   }
1982 
1983   assert(!x->has_index() || idx.value() == x->index(), "should match");
1984 
1985   LIR_Opr base_op = base.result();
1986   LIR_Opr index_op = idx.result();
1987 #ifndef _LP64
1988   if (base_op->type() == T_LONG) {
1989     base_op = new_register(T_INT);
1990     __ convert(Bytecodes::_l2i, base.result(), base_op);
1991   }
1992   if (x->has_index()) {
1993     if (index_op->type() == T_LONG) {
1994       LIR_Opr long_index_op = index_op;
1995       if (index_op->is_constant()) {
1996         long_index_op = new_register(T_LONG);
1997         __ move(index_op, long_index_op);
1998       }
1999       index_op = new_register(T_INT);
2000       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2001     } else {
2002       assert(x->index()->type()->tag() == intTag, "must be");
2003     }
2004   }
2005   // At this point base and index should be all ints.
2006   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2007   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2008 #else
2009   if (x->has_index()) {
2010     if (index_op->type() == T_INT) {
2011       if (!index_op->is_constant()) {
2012         index_op = new_register(T_LONG);
2013         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2014       }
2015     } else {
2016       assert(index_op->type() == T_LONG, "must be");
2017       if (index_op->is_constant()) {
2018         index_op = new_register(T_LONG);
2019         __ move(idx.result(), index_op);
2020       }
2021     }
2022   }
2023   // At this point base is a long non-constant
2024   // Index is a long register or a int constant.
2025   // We allow the constant to stay an int because that would allow us a more compact encoding by
2026   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2027   // move it into a register first.
2028   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2029   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2030                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2031 #endif
2032 
2033   BasicType dst_type = x->basic_type();
2034 
2035   LIR_Address* addr;
2036   if (index_op->is_constant()) {
2037     assert(log2_scale == 0, "must not have a scale");
2038     assert(index_op->type() == T_INT, "only int constants supported");
2039     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2040   } else {
2041 #ifdef X86
2042     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2043 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2044     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2045 #else
2046     if (index_op->is_illegal() || log2_scale == 0) {
2047       addr = new LIR_Address(base_op, index_op, dst_type);
2048     } else {
2049       LIR_Opr tmp = new_pointer_register();
2050       __ shift_left(index_op, log2_scale, tmp);
2051       addr = new LIR_Address(base_op, tmp, dst_type);
2052     }
2053 #endif
2054   }
2055 
2056   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2057     __ unaligned_move(addr, reg);
2058   } else {
2059     if (dst_type == T_OBJECT && x->is_wide()) {
2060       __ move_wide(addr, reg);
2061     } else {
2062       __ move(addr, reg);
2063     }
2064   }
2065 }
2066 
2067 
2068 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2069   int  log2_scale = 0;
2070   BasicType type = x->basic_type();
2071 
2072   if (x->has_index()) {
2073     log2_scale = x->log2_scale();
2074   }
2075 
2076   LIRItem base(x->base(), this);
2077   LIRItem value(x->value(), this);
2078   LIRItem idx(this);
2079 
2080   base.load_item();
2081   if (x->has_index()) {
2082     idx.set_instruction(x->index());
2083     idx.load_item();
2084   }
2085 
2086   if (type == T_BYTE || type == T_BOOLEAN) {
2087     value.load_byte_item();
2088   } else {
2089     value.load_item();
2090   }
2091 
2092   set_no_result(x);
2093 
2094   LIR_Opr base_op = base.result();
2095   LIR_Opr index_op = idx.result();
2096 
2097 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2098   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2099 #else
2100 #ifndef _LP64
2101   if (base_op->type() == T_LONG) {
2102     base_op = new_register(T_INT);
2103     __ convert(Bytecodes::_l2i, base.result(), base_op);
2104   }
2105   if (x->has_index()) {
2106     if (index_op->type() == T_LONG) {
2107       index_op = new_register(T_INT);
2108       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2109     }
2110   }
2111   // At this point base and index should be all ints and not constants
2112   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2113   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2114 #else
2115   if (x->has_index()) {
2116     if (index_op->type() == T_INT) {
2117       index_op = new_register(T_LONG);
2118       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2119     }
2120   }
2121   // At this point base and index are long and non-constant
2122   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2123   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2124 #endif
2125 
2126   if (log2_scale != 0) {
2127     // temporary fix (platform dependent code without shift on Intel would be better)
2128     // TODO: ARM also allows embedded shift in the address
2129     LIR_Opr tmp = new_pointer_register();
2130     if (TwoOperandLIRForm) {
2131       __ move(index_op, tmp);
2132       index_op = tmp;
2133     }
2134     __ shift_left(index_op, log2_scale, tmp);
2135     if (!TwoOperandLIRForm) {
2136       index_op = tmp;
2137     }
2138   }
2139 
2140   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2141 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2142   __ move(value.result(), addr);
2143 }
2144 
2145 
2146 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2147   BasicType type = x->basic_type();
2148   LIRItem src(x->object(), this);
2149   LIRItem off(x->offset(), this);
2150 
2151   off.load_item();
2152   src.load_item();
2153 
2154   DecoratorSet decorators = IN_HEAP;
2155 
2156   if (x->is_volatile()) {
2157     decorators |= MO_SEQ_CST;
2158   }
2159   if (type == T_BOOLEAN) {
2160     decorators |= C1_MASK_BOOLEAN;
2161   }
2162   if (type == T_ARRAY || type == T_OBJECT) {
2163     decorators |= ON_UNKNOWN_OOP_REF;
2164   }
2165 
2166   LIR_Opr result = rlock_result(x, type);
2167   access_load_at(decorators, type,
2168                  src, off.result(), result);
2169 }
2170 
2171 
2172 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2173   BasicType type = x->basic_type();
2174   LIRItem src(x->object(), this);
2175   LIRItem off(x->offset(), this);
2176   LIRItem data(x->value(), this);
2177 
2178   src.load_item();
2179   if (type == T_BOOLEAN || type == T_BYTE) {
2180     data.load_byte_item();
2181   } else {
2182     data.load_item();
2183   }
2184   off.load_item();
2185 
2186   set_no_result(x);
2187 
2188   DecoratorSet decorators = IN_HEAP;
2189   if (type == T_ARRAY || type == T_OBJECT) {
2190     decorators |= ON_UNKNOWN_OOP_REF;
2191   }
2192   if (x->is_volatile()) {
2193     decorators |= MO_SEQ_CST;
2194   }
2195   access_store_at(decorators, type, src, off.result(), data.result());
2196 }
2197 
2198 void LIRGenerator::do_UnsafeGetAndSetObject(UnsafeGetAndSetObject* x) {
2199   BasicType type = x->basic_type();
2200   LIRItem src(x->object(), this);
2201   LIRItem off(x->offset(), this);
2202   LIRItem value(x->value(), this);
2203 
2204   DecoratorSet decorators = IN_HEAP | MO_SEQ_CST;
2205 
2206   if (type == T_ARRAY || type == T_OBJECT) {
2207     decorators |= ON_UNKNOWN_OOP_REF;
2208   }
2209 
2210   LIR_Opr result;
2211   if (x->is_add()) {
2212     result = access_atomic_add_at(decorators, type, src, off, value);
2213   } else {
2214     result = access_atomic_xchg_at(decorators, type, src, off, value);
2215   }
2216   set_result(x, result);
2217 }
2218 
2219 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2220   int lng = x->length();
2221 
2222   for (int i = 0; i < lng; i++) {
2223     SwitchRange* one_range = x->at(i);
2224     int low_key = one_range->low_key();
2225     int high_key = one_range->high_key();
2226     BlockBegin* dest = one_range->sux();
2227     if (low_key == high_key) {
2228       __ cmp(lir_cond_equal, value, low_key);
2229       __ branch(lir_cond_equal, T_INT, dest);
2230     } else if (high_key - low_key == 1) {
2231       __ cmp(lir_cond_equal, value, low_key);
2232       __ branch(lir_cond_equal, T_INT, dest);
2233       __ cmp(lir_cond_equal, value, high_key);
2234       __ branch(lir_cond_equal, T_INT, dest);
2235     } else {
2236       LabelObj* L = new LabelObj();
2237       __ cmp(lir_cond_less, value, low_key);
2238       __ branch(lir_cond_less, T_INT, L->label());
2239       __ cmp(lir_cond_lessEqual, value, high_key);
2240       __ branch(lir_cond_lessEqual, T_INT, dest);
2241       __ branch_destination(L->label());
2242     }
2243   }
2244   __ jump(default_sux);
2245 }
2246 
2247 
2248 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2249   SwitchRangeList* res = new SwitchRangeList();
2250   int len = x->length();
2251   if (len > 0) {
2252     BlockBegin* sux = x->sux_at(0);
2253     int key = x->lo_key();
2254     BlockBegin* default_sux = x->default_sux();
2255     SwitchRange* range = new SwitchRange(key, sux);
2256     for (int i = 0; i < len; i++, key++) {
2257       BlockBegin* new_sux = x->sux_at(i);
2258       if (sux == new_sux) {
2259         // still in same range
2260         range->set_high_key(key);
2261       } else {
2262         // skip tests which explicitly dispatch to the default
2263         if (sux != default_sux) {
2264           res->append(range);
2265         }
2266         range = new SwitchRange(key, new_sux);
2267       }
2268       sux = new_sux;
2269     }
2270     if (res->length() == 0 || res->last() != range)  res->append(range);
2271   }
2272   return res;
2273 }
2274 
2275 
2276 // we expect the keys to be sorted by increasing value
2277 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2278   SwitchRangeList* res = new SwitchRangeList();
2279   int len = x->length();
2280   if (len > 0) {
2281     BlockBegin* default_sux = x->default_sux();
2282     int key = x->key_at(0);
2283     BlockBegin* sux = x->sux_at(0);
2284     SwitchRange* range = new SwitchRange(key, sux);
2285     for (int i = 1; i < len; i++) {
2286       int new_key = x->key_at(i);
2287       BlockBegin* new_sux = x->sux_at(i);
2288       if (key+1 == new_key && sux == new_sux) {
2289         // still in same range
2290         range->set_high_key(new_key);
2291       } else {
2292         // skip tests which explicitly dispatch to the default
2293         if (range->sux() != default_sux) {
2294           res->append(range);
2295         }
2296         range = new SwitchRange(new_key, new_sux);
2297       }
2298       key = new_key;
2299       sux = new_sux;
2300     }
2301     if (res->length() == 0 || res->last() != range)  res->append(range);
2302   }
2303   return res;
2304 }
2305 
2306 
2307 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2308   LIRItem tag(x->tag(), this);
2309   tag.load_item();
2310   set_no_result(x);
2311 
2312   if (x->is_safepoint()) {
2313     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2314   }
2315 
2316   // move values into phi locations
2317   move_to_phi(x->state());
2318 
2319   int lo_key = x->lo_key();
2320   int len = x->length();
2321   assert(lo_key <= (lo_key + (len - 1)), "integer overflow");
2322   LIR_Opr value = tag.result();
2323 
2324   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2325     ciMethod* method = x->state()->scope()->method();
2326     ciMethodData* md = method->method_data_or_null();
2327     assert(md != NULL, "Sanity");
2328     ciProfileData* data = md->bci_to_data(x->state()->bci());
2329     assert(data != NULL, "must have profiling data");
2330     assert(data->is_MultiBranchData(), "bad profile data?");
2331     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2332     LIR_Opr md_reg = new_register(T_METADATA);
2333     __ metadata2reg(md->constant_encoding(), md_reg);
2334     LIR_Opr data_offset_reg = new_pointer_register();
2335     LIR_Opr tmp_reg = new_pointer_register();
2336 
2337     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2338     for (int i = 0; i < len; i++) {
2339       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2340       __ cmp(lir_cond_equal, value, i + lo_key);
2341       __ move(data_offset_reg, tmp_reg);
2342       __ cmove(lir_cond_equal,
2343                LIR_OprFact::intptrConst(count_offset),
2344                tmp_reg,
2345                data_offset_reg, T_INT);
2346     }
2347 
2348     LIR_Opr data_reg = new_pointer_register();
2349     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2350     __ move(data_addr, data_reg);
2351     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2352     __ move(data_reg, data_addr);
2353   }
2354 
2355   if (UseTableRanges) {
2356     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2357   } else {
2358     for (int i = 0; i < len; i++) {
2359       __ cmp(lir_cond_equal, value, i + lo_key);
2360       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2361     }
2362     __ jump(x->default_sux());
2363   }
2364 }
2365 
2366 
2367 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2368   LIRItem tag(x->tag(), this);
2369   tag.load_item();
2370   set_no_result(x);
2371 
2372   if (x->is_safepoint()) {
2373     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2374   }
2375 
2376   // move values into phi locations
2377   move_to_phi(x->state());
2378 
2379   LIR_Opr value = tag.result();
2380   int len = x->length();
2381 
2382   if (compilation()->env()->comp_level() == CompLevel_full_profile && UseSwitchProfiling) {
2383     ciMethod* method = x->state()->scope()->method();
2384     ciMethodData* md = method->method_data_or_null();
2385     assert(md != NULL, "Sanity");
2386     ciProfileData* data = md->bci_to_data(x->state()->bci());
2387     assert(data != NULL, "must have profiling data");
2388     assert(data->is_MultiBranchData(), "bad profile data?");
2389     int default_count_offset = md->byte_offset_of_slot(data, MultiBranchData::default_count_offset());
2390     LIR_Opr md_reg = new_register(T_METADATA);
2391     __ metadata2reg(md->constant_encoding(), md_reg);
2392     LIR_Opr data_offset_reg = new_pointer_register();
2393     LIR_Opr tmp_reg = new_pointer_register();
2394 
2395     __ move(LIR_OprFact::intptrConst(default_count_offset), data_offset_reg);
2396     for (int i = 0; i < len; i++) {
2397       int count_offset = md->byte_offset_of_slot(data, MultiBranchData::case_count_offset(i));
2398       __ cmp(lir_cond_equal, value, x->key_at(i));
2399       __ move(data_offset_reg, tmp_reg);
2400       __ cmove(lir_cond_equal,
2401                LIR_OprFact::intptrConst(count_offset),
2402                tmp_reg,
2403                data_offset_reg, T_INT);
2404     }
2405 
2406     LIR_Opr data_reg = new_pointer_register();
2407     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
2408     __ move(data_addr, data_reg);
2409     __ add(data_reg, LIR_OprFact::intptrConst(1), data_reg);
2410     __ move(data_reg, data_addr);
2411   }
2412 
2413   if (UseTableRanges) {
2414     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2415   } else {
2416     int len = x->length();
2417     for (int i = 0; i < len; i++) {
2418       __ cmp(lir_cond_equal, value, x->key_at(i));
2419       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2420     }
2421     __ jump(x->default_sux());
2422   }
2423 }
2424 
2425 
2426 void LIRGenerator::do_Goto(Goto* x) {
2427   set_no_result(x);
2428 
2429   if (block()->next()->as_OsrEntry()) {
2430     // need to free up storage used for OSR entry point
2431     LIR_Opr osrBuffer = block()->next()->operand();
2432     BasicTypeList signature;
2433     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2434     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2435     __ move(osrBuffer, cc->args()->at(0));
2436     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2437                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2438   }
2439 
2440   if (x->is_safepoint()) {
2441     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2442 
2443     // increment backedge counter if needed
2444     CodeEmitInfo* info = state_for(x, state);
2445     increment_backedge_counter(info, x->profiled_bci());
2446     CodeEmitInfo* safepoint_info = state_for(x, state);
2447     __ safepoint(safepoint_poll_register(), safepoint_info);
2448   }
2449 
2450   // Gotos can be folded Ifs, handle this case.
2451   if (x->should_profile()) {
2452     ciMethod* method = x->profiled_method();
2453     assert(method != NULL, "method should be set if branch is profiled");
2454     ciMethodData* md = method->method_data_or_null();
2455     assert(md != NULL, "Sanity");
2456     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2457     assert(data != NULL, "must have profiling data");
2458     int offset;
2459     if (x->direction() == Goto::taken) {
2460       assert(data->is_BranchData(), "need BranchData for two-way branches");
2461       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2462     } else if (x->direction() == Goto::not_taken) {
2463       assert(data->is_BranchData(), "need BranchData for two-way branches");
2464       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2465     } else {
2466       assert(data->is_JumpData(), "need JumpData for branches");
2467       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2468     }
2469     LIR_Opr md_reg = new_register(T_METADATA);
2470     __ metadata2reg(md->constant_encoding(), md_reg);
2471 
2472     increment_counter(new LIR_Address(md_reg, offset,
2473                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2474   }
2475 
2476   // emit phi-instruction move after safepoint since this simplifies
2477   // describing the state as the safepoint.
2478   move_to_phi(x->state());
2479 
2480   __ jump(x->default_sux());
2481 }
2482 
2483 /**
2484  * Emit profiling code if needed for arguments, parameters, return value types
2485  *
2486  * @param md                    MDO the code will update at runtime
2487  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2488  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2489  * @param profiled_k            current profile
2490  * @param obj                   IR node for the object to be profiled
2491  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2492  *                              Set once we find an update to make and use for next ones.
2493  * @param not_null              true if we know obj cannot be null
2494  * @param signature_at_call_k   signature at call for obj
2495  * @param callee_signature_k    signature of callee for obj
2496  *                              at call and callee signatures differ at method handle call
2497  * @return                      the only klass we know will ever be seen at this profile point
2498  */
2499 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2500                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2501                                     ciKlass* callee_signature_k) {
2502   ciKlass* result = NULL;
2503   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2504   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2505   // known not to be null or null bit already set and already set to
2506   // unknown: nothing we can do to improve profiling
2507   if (!do_null && !do_update) {
2508     return result;
2509   }
2510 
2511   ciKlass* exact_klass = NULL;
2512   Compilation* comp = Compilation::current();
2513   if (do_update) {
2514     // try to find exact type, using CHA if possible, so that loading
2515     // the klass from the object can be avoided
2516     ciType* type = obj->exact_type();
2517     if (type == NULL) {
2518       type = obj->declared_type();
2519       type = comp->cha_exact_type(type);
2520     }
2521     assert(type == NULL || type->is_klass(), "type should be class");
2522     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2523 
2524     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2525   }
2526 
2527   if (!do_null && !do_update) {
2528     return result;
2529   }
2530 
2531   ciKlass* exact_signature_k = NULL;
2532   if (do_update) {
2533     // Is the type from the signature exact (the only one possible)?
2534     exact_signature_k = signature_at_call_k->exact_klass();
2535     if (exact_signature_k == NULL) {
2536       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2537     } else {
2538       result = exact_signature_k;
2539       // Known statically. No need to emit any code: prevent
2540       // LIR_Assembler::emit_profile_type() from emitting useless code
2541       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2542     }
2543     // exact_klass and exact_signature_k can be both non NULL but
2544     // different if exact_klass is loaded after the ciObject for
2545     // exact_signature_k is created.
2546     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2547       // sometimes the type of the signature is better than the best type
2548       // the compiler has
2549       exact_klass = exact_signature_k;
2550     }
2551     if (callee_signature_k != NULL &&
2552         callee_signature_k != signature_at_call_k) {
2553       ciKlass* improved_klass = callee_signature_k->exact_klass();
2554       if (improved_klass == NULL) {
2555         improved_klass = comp->cha_exact_type(callee_signature_k);
2556       }
2557       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2558         exact_klass = exact_signature_k;
2559       }
2560     }
2561     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2562   }
2563 
2564   if (!do_null && !do_update) {
2565     return result;
2566   }
2567 
2568   if (mdp == LIR_OprFact::illegalOpr) {
2569     mdp = new_register(T_METADATA);
2570     __ metadata2reg(md->constant_encoding(), mdp);
2571     if (md_base_offset != 0) {
2572       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2573       mdp = new_pointer_register();
2574       __ leal(LIR_OprFact::address(base_type_address), mdp);
2575     }
2576   }
2577   LIRItem value(obj, this);
2578   value.load_item();
2579   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2580                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2581   return result;
2582 }
2583 
2584 // profile parameters on entry to the root of the compilation
2585 void LIRGenerator::profile_parameters(Base* x) {
2586   if (compilation()->profile_parameters()) {
2587     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2588     ciMethodData* md = scope()->method()->method_data_or_null();
2589     assert(md != NULL, "Sanity");
2590 
2591     if (md->parameters_type_data() != NULL) {
2592       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2593       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2594       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2595       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2596         LIR_Opr src = args->at(i);
2597         assert(!src->is_illegal(), "check");
2598         BasicType t = src->type();
2599         if (t == T_OBJECT || t == T_ARRAY) {
2600           intptr_t profiled_k = parameters->type(j);
2601           Local* local = x->state()->local_at(java_index)->as_Local();
2602           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2603                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2604                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2605           // If the profile is known statically set it once for all and do not emit any code
2606           if (exact != NULL) {
2607             md->set_parameter_type(j, exact);
2608           }
2609           j++;
2610         }
2611         java_index += type2size[t];
2612       }
2613     }
2614   }
2615 }
2616 
2617 void LIRGenerator::do_Base(Base* x) {
2618   __ std_entry(LIR_OprFact::illegalOpr);
2619   // Emit moves from physical registers / stack slots to virtual registers
2620   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2621   IRScope* irScope = compilation()->hir()->top_scope();
2622   int java_index = 0;
2623   for (int i = 0; i < args->length(); i++) {
2624     LIR_Opr src = args->at(i);
2625     assert(!src->is_illegal(), "check");
2626     BasicType t = src->type();
2627 
2628     // Types which are smaller than int are passed as int, so
2629     // correct the type which passed.
2630     switch (t) {
2631     case T_BYTE:
2632     case T_BOOLEAN:
2633     case T_SHORT:
2634     case T_CHAR:
2635       t = T_INT;
2636       break;
2637     default:
2638       break;
2639     }
2640 
2641     LIR_Opr dest = new_register(t);
2642     __ move(src, dest);
2643 
2644     // Assign new location to Local instruction for this local
2645     Local* local = x->state()->local_at(java_index)->as_Local();
2646     assert(local != NULL, "Locals for incoming arguments must have been created");
2647 #ifndef __SOFTFP__
2648     // The java calling convention passes double as long and float as int.
2649     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2650 #endif // __SOFTFP__
2651     local->set_operand(dest);
2652     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2653     java_index += type2size[t];
2654   }
2655 
2656   if (compilation()->env()->dtrace_method_probes()) {
2657     BasicTypeList signature;
2658     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2659     signature.append(T_METADATA); // Method*
2660     LIR_OprList* args = new LIR_OprList();
2661     args->append(getThreadPointer());
2662     LIR_Opr meth = new_register(T_METADATA);
2663     __ metadata2reg(method()->constant_encoding(), meth);
2664     args->append(meth);
2665     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2666   }
2667 
2668   if (method()->is_synchronized()) {
2669     LIR_Opr obj;
2670     if (method()->is_static()) {
2671       obj = new_register(T_OBJECT);
2672       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2673     } else {
2674       Local* receiver = x->state()->local_at(0)->as_Local();
2675       assert(receiver != NULL, "must already exist");
2676       obj = receiver->operand();
2677     }
2678     assert(obj->is_valid(), "must be valid");
2679 
2680     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2681       LIR_Opr lock = syncLockOpr();
2682       __ load_stack_address_monitor(0, lock);
2683 
2684       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2685       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2686 
2687       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2688       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2689     }
2690   }
2691   if (compilation()->age_code()) {
2692     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2693     decrement_age(info);
2694   }
2695   // increment invocation counters if needed
2696   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2697     profile_parameters(x);
2698     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2699     increment_invocation_counter(info);
2700   }
2701 
2702   // all blocks with a successor must end with an unconditional jump
2703   // to the successor even if they are consecutive
2704   __ jump(x->default_sux());
2705 }
2706 
2707 
2708 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2709   // construct our frame and model the production of incoming pointer
2710   // to the OSR buffer.
2711   __ osr_entry(LIR_Assembler::osrBufferPointer());
2712   LIR_Opr result = rlock_result(x);
2713   __ move(LIR_Assembler::osrBufferPointer(), result);
2714 }
2715 
2716 
2717 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2718   assert(args->length() == arg_list->length(),
2719          "args=%d, arg_list=%d", args->length(), arg_list->length());
2720   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2721     LIRItem* param = args->at(i);
2722     LIR_Opr loc = arg_list->at(i);
2723     if (loc->is_register()) {
2724       param->load_item_force(loc);
2725     } else {
2726       LIR_Address* addr = loc->as_address_ptr();
2727       param->load_for_store(addr->type());
2728       if (addr->type() == T_OBJECT) {
2729         __ move_wide(param->result(), addr);
2730       } else
2731         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2732           __ unaligned_move(param->result(), addr);
2733         } else {
2734           __ move(param->result(), addr);
2735         }
2736     }
2737   }
2738 
2739   if (x->has_receiver()) {
2740     LIRItem* receiver = args->at(0);
2741     LIR_Opr loc = arg_list->at(0);
2742     if (loc->is_register()) {
2743       receiver->load_item_force(loc);
2744     } else {
2745       assert(loc->is_address(), "just checking");
2746       receiver->load_for_store(T_OBJECT);
2747       __ move_wide(receiver->result(), loc->as_address_ptr());
2748     }
2749   }
2750 }
2751 
2752 
2753 // Visits all arguments, returns appropriate items without loading them
2754 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2755   LIRItemList* argument_items = new LIRItemList();
2756   if (x->has_receiver()) {
2757     LIRItem* receiver = new LIRItem(x->receiver(), this);
2758     argument_items->append(receiver);
2759   }
2760   for (int i = 0; i < x->number_of_arguments(); i++) {
2761     LIRItem* param = new LIRItem(x->argument_at(i), this);
2762     argument_items->append(param);
2763   }
2764   return argument_items;
2765 }
2766 
2767 
2768 // The invoke with receiver has following phases:
2769 //   a) traverse and load/lock receiver;
2770 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2771 //   c) push receiver on stack
2772 //   d) load each of the items and push on stack
2773 //   e) unlock receiver
2774 //   f) move receiver into receiver-register %o0
2775 //   g) lock result registers and emit call operation
2776 //
2777 // Before issuing a call, we must spill-save all values on stack
2778 // that are in caller-save register. "spill-save" moves those registers
2779 // either in a free callee-save register or spills them if no free
2780 // callee save register is available.
2781 //
2782 // The problem is where to invoke spill-save.
2783 // - if invoked between e) and f), we may lock callee save
2784 //   register in "spill-save" that destroys the receiver register
2785 //   before f) is executed
2786 // - if we rearrange f) to be earlier (by loading %o0) it
2787 //   may destroy a value on the stack that is currently in %o0
2788 //   and is waiting to be spilled
2789 // - if we keep the receiver locked while doing spill-save,
2790 //   we cannot spill it as it is spill-locked
2791 //
2792 void LIRGenerator::do_Invoke(Invoke* x) {
2793   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2794 
2795   LIR_OprList* arg_list = cc->args();
2796   LIRItemList* args = invoke_visit_arguments(x);
2797   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2798 
2799   // setup result register
2800   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2801   if (x->type() != voidType) {
2802     result_register = result_register_for(x->type());
2803   }
2804 
2805   CodeEmitInfo* info = state_for(x, x->state());
2806 
2807   invoke_load_arguments(x, args, arg_list);
2808 
2809   if (x->has_receiver()) {
2810     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2811     receiver = args->at(0)->result();
2812   }
2813 
2814   // emit invoke code
2815   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2816 
2817   // JSR 292
2818   // Preserve the SP over MethodHandle call sites, if needed.
2819   ciMethod* target = x->target();
2820   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2821                                   target->is_method_handle_intrinsic() ||
2822                                   target->is_compiled_lambda_form());
2823   if (is_method_handle_invoke) {
2824     info->set_is_method_handle_invoke(true);
2825     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2826         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2827     }
2828   }
2829 
2830   switch (x->code()) {
2831     case Bytecodes::_invokestatic:
2832       __ call_static(target, result_register,
2833                      SharedRuntime::get_resolve_static_call_stub(),
2834                      arg_list, info);
2835       break;
2836     case Bytecodes::_invokespecial:
2837     case Bytecodes::_invokevirtual:
2838     case Bytecodes::_invokeinterface:
2839       // for loaded and final (method or class) target we still produce an inline cache,
2840       // in order to be able to call mixed mode
2841       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
2842         __ call_opt_virtual(target, receiver, result_register,
2843                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2844                             arg_list, info);
2845       } else if (x->vtable_index() < 0) {
2846         __ call_icvirtual(target, receiver, result_register,
2847                           SharedRuntime::get_resolve_virtual_call_stub(),
2848                           arg_list, info);
2849       } else {
2850         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
2851         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
2852         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2853       }
2854       break;
2855     case Bytecodes::_invokedynamic: {
2856       __ call_dynamic(target, receiver, result_register,
2857                       SharedRuntime::get_resolve_static_call_stub(),
2858                       arg_list, info);
2859       break;
2860     }
2861     default:
2862       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
2863       break;
2864   }
2865 
2866   // JSR 292
2867   // Restore the SP after MethodHandle call sites, if needed.
2868   if (is_method_handle_invoke
2869       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2870     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2871   }
2872 
2873   if (x->type()->is_float() || x->type()->is_double()) {
2874     // Force rounding of results from non-strictfp when in strictfp
2875     // scope (or when we don't know the strictness of the callee, to
2876     // be safe.)
2877     if (method()->is_strict()) {
2878       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2879         result_register = round_item(result_register);
2880       }
2881     }
2882   }
2883 
2884   if (result_register->is_valid()) {
2885     LIR_Opr result = rlock_result(x);
2886     __ move(result_register, result);
2887   }
2888 }
2889 
2890 
2891 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2892   assert(x->number_of_arguments() == 1, "wrong type");
2893   LIRItem value       (x->argument_at(0), this);
2894   LIR_Opr reg = rlock_result(x);
2895   value.load_item();
2896   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2897   __ move(tmp, reg);
2898 }
2899 
2900 
2901 
2902 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2903 void LIRGenerator::do_IfOp(IfOp* x) {
2904 #ifdef ASSERT
2905   {
2906     ValueTag xtag = x->x()->type()->tag();
2907     ValueTag ttag = x->tval()->type()->tag();
2908     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2909     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2910     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2911   }
2912 #endif
2913 
2914   LIRItem left(x->x(), this);
2915   LIRItem right(x->y(), this);
2916   left.load_item();
2917   if (can_inline_as_constant(right.value())) {
2918     right.dont_load_item();
2919   } else {
2920     right.load_item();
2921   }
2922 
2923   LIRItem t_val(x->tval(), this);
2924   LIRItem f_val(x->fval(), this);
2925   t_val.dont_load_item();
2926   f_val.dont_load_item();
2927   LIR_Opr reg = rlock_result(x);
2928 
2929   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2930   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2931 }
2932 
2933 #ifdef JFR_HAVE_INTRINSICS
2934 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2935   CodeEmitInfo* info = state_for(x);
2936   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2937 
2938   assert(info != NULL, "must have info");
2939   LIRItem arg(x->argument_at(0), this);
2940 
2941   arg.load_item();
2942   LIR_Opr klass = new_register(T_METADATA);
2943   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
2944   LIR_Opr id = new_register(T_LONG);
2945   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2946   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2947 
2948   __ move(trace_id_addr, id);
2949   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2950   __ store(id, trace_id_addr);
2951 
2952 #ifdef TRACE_ID_META_BITS
2953   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
2954 #endif
2955 #ifdef TRACE_ID_SHIFT
2956   __ unsigned_shift_right(id, TRACE_ID_SHIFT, id);
2957 #endif
2958 
2959   __ move(id, rlock_result(x));
2960 }
2961 
2962 void LIRGenerator::do_getEventWriter(Intrinsic* x) {
2963   LabelObj* L_end = new LabelObj();
2964 
2965   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
2966                                            in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR),
2967                                            T_OBJECT);
2968   LIR_Opr result = rlock_result(x);
2969   __ move_wide(jobj_addr, result);
2970   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
2971   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
2972   __ move_wide(new LIR_Address(result, T_OBJECT), result);
2973 
2974   __ branch_destination(L_end->label());
2975 }
2976 
2977 #endif
2978 
2979 
2980 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
2981   assert(x->number_of_arguments() == 0, "wrong type");
2982   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
2983   BasicTypeList signature;
2984   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2985   LIR_Opr reg = result_register_for(x->type());
2986   __ call_runtime_leaf(routine, getThreadTemp(),
2987                        reg, new LIR_OprList());
2988   LIR_Opr result = rlock_result(x);
2989   __ move(reg, result);
2990 }
2991 
2992 
2993 
2994 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2995   switch (x->id()) {
2996   case vmIntrinsics::_intBitsToFloat      :
2997   case vmIntrinsics::_doubleToRawLongBits :
2998   case vmIntrinsics::_longBitsToDouble    :
2999   case vmIntrinsics::_floatToRawIntBits   : {
3000     do_FPIntrinsics(x);
3001     break;
3002   }
3003 
3004 #ifdef JFR_HAVE_INTRINSICS
3005   case vmIntrinsics::_getClassId:
3006     do_ClassIDIntrinsic(x);
3007     break;
3008   case vmIntrinsics::_getEventWriter:
3009     do_getEventWriter(x);
3010     break;
3011   case vmIntrinsics::_counterTime:
3012     do_RuntimeCall(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), x);
3013     break;
3014 #endif
3015 
3016   case vmIntrinsics::_currentTimeMillis:
3017     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3018     break;
3019 
3020   case vmIntrinsics::_nanoTime:
3021     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3022     break;
3023 
3024   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3025   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3026   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3027   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3028   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3029 
3030   case vmIntrinsics::_dlog:           // fall through
3031   case vmIntrinsics::_dlog10:         // fall through
3032   case vmIntrinsics::_dabs:           // fall through
3033   case vmIntrinsics::_dsqrt:          // fall through
3034   case vmIntrinsics::_dtan:           // fall through
3035   case vmIntrinsics::_dsin :          // fall through
3036   case vmIntrinsics::_dcos :          // fall through
3037   case vmIntrinsics::_dexp :          // fall through
3038   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3039   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3040 
3041   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3042   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3043 
3044   // java.nio.Buffer.checkIndex
3045   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3046 
3047   case vmIntrinsics::_compareAndSetObject:
3048     do_CompareAndSwap(x, objectType);
3049     break;
3050   case vmIntrinsics::_compareAndSetInt:
3051     do_CompareAndSwap(x, intType);
3052     break;
3053   case vmIntrinsics::_compareAndSetLong:
3054     do_CompareAndSwap(x, longType);
3055     break;
3056 
3057   case vmIntrinsics::_loadFence :
3058     if (os::is_MP()) __ membar_acquire();
3059     break;
3060   case vmIntrinsics::_storeFence:
3061     if (os::is_MP()) __ membar_release();
3062     break;
3063   case vmIntrinsics::_fullFence :
3064     if (os::is_MP()) __ membar();
3065     break;
3066   case vmIntrinsics::_onSpinWait:
3067     __ on_spin_wait();
3068     break;
3069   case vmIntrinsics::_Reference_get:
3070     do_Reference_get(x);
3071     break;
3072 
3073   case vmIntrinsics::_updateCRC32:
3074   case vmIntrinsics::_updateBytesCRC32:
3075   case vmIntrinsics::_updateByteBufferCRC32:
3076     do_update_CRC32(x);
3077     break;
3078 
3079   case vmIntrinsics::_updateBytesCRC32C:
3080   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3081     do_update_CRC32C(x);
3082     break;
3083 
3084   case vmIntrinsics::_vectorizedMismatch:
3085     do_vectorizedMismatch(x);
3086     break;
3087 
3088   default: ShouldNotReachHere(); break;
3089   }
3090 }
3091 
3092 void LIRGenerator::profile_arguments(ProfileCall* x) {
3093   if (compilation()->profile_arguments()) {
3094     int bci = x->bci_of_invoke();
3095     ciMethodData* md = x->method()->method_data_or_null();
3096     assert(md != NULL, "Sanity");
3097     ciProfileData* data = md->bci_to_data(bci);
3098     if (data != NULL) {
3099       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3100           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3101         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3102         int base_offset = md->byte_offset_of_slot(data, extra);
3103         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3104         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3105 
3106         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3107         int start = 0;
3108         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3109         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3110           // first argument is not profiled at call (method handle invoke)
3111           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3112           start = 1;
3113         }
3114         ciSignature* callee_signature = x->callee()->signature();
3115         // method handle call to virtual method
3116         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3117         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3118 
3119         bool ignored_will_link;
3120         ciSignature* signature_at_call = NULL;
3121         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3122         ciSignatureStream signature_at_call_stream(signature_at_call);
3123 
3124         // if called through method handle invoke, some arguments may have been popped
3125         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3126           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3127           ciKlass* exact = profile_type(md, base_offset, off,
3128               args->type(i), x->profiled_arg_at(i+start), mdp,
3129               !x->arg_needs_null_check(i+start),
3130               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3131           if (exact != NULL) {
3132             md->set_argument_type(bci, i, exact);
3133           }
3134         }
3135       } else {
3136 #ifdef ASSERT
3137         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3138         int n = x->nb_profiled_args();
3139         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3140             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3141             "only at JSR292 bytecodes");
3142 #endif
3143       }
3144     }
3145   }
3146 }
3147 
3148 // profile parameters on entry to an inlined method
3149 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3150   if (compilation()->profile_parameters() && x->inlined()) {
3151     ciMethodData* md = x->callee()->method_data_or_null();
3152     if (md != NULL) {
3153       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3154       if (parameters_type_data != NULL) {
3155         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3156         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3157         bool has_receiver = !x->callee()->is_static();
3158         ciSignature* sig = x->callee()->signature();
3159         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3160         int i = 0; // to iterate on the Instructions
3161         Value arg = x->recv();
3162         bool not_null = false;
3163         int bci = x->bci_of_invoke();
3164         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3165         // The first parameter is the receiver so that's what we start
3166         // with if it exists. One exception is method handle call to
3167         // virtual method: the receiver is in the args list
3168         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3169           i = 1;
3170           arg = x->profiled_arg_at(0);
3171           not_null = !x->arg_needs_null_check(0);
3172         }
3173         int k = 0; // to iterate on the profile data
3174         for (;;) {
3175           intptr_t profiled_k = parameters->type(k);
3176           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3177                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3178                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3179           // If the profile is known statically set it once for all and do not emit any code
3180           if (exact != NULL) {
3181             md->set_parameter_type(k, exact);
3182           }
3183           k++;
3184           if (k >= parameters_type_data->number_of_parameters()) {
3185 #ifdef ASSERT
3186             int extra = 0;
3187             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3188                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3189                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3190               extra += 1;
3191             }
3192             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3193 #endif
3194             break;
3195           }
3196           arg = x->profiled_arg_at(i);
3197           not_null = !x->arg_needs_null_check(i);
3198           i++;
3199         }
3200       }
3201     }
3202   }
3203 }
3204 
3205 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3206   // Need recv in a temporary register so it interferes with the other temporaries
3207   LIR_Opr recv = LIR_OprFact::illegalOpr;
3208   LIR_Opr mdo = new_register(T_OBJECT);
3209   // tmp is used to hold the counters on SPARC
3210   LIR_Opr tmp = new_pointer_register();
3211 
3212   if (x->nb_profiled_args() > 0) {
3213     profile_arguments(x);
3214   }
3215 
3216   // profile parameters on inlined method entry including receiver
3217   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3218     profile_parameters_at_call(x);
3219   }
3220 
3221   if (x->recv() != NULL) {
3222     LIRItem value(x->recv(), this);
3223     value.load_item();
3224     recv = new_register(T_OBJECT);
3225     __ move(value.result(), recv);
3226   }
3227   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3228 }
3229 
3230 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3231   int bci = x->bci_of_invoke();
3232   ciMethodData* md = x->method()->method_data_or_null();
3233   assert(md != NULL, "Sanity");
3234   ciProfileData* data = md->bci_to_data(bci);
3235   if (data != NULL) {
3236     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3237     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3238     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3239 
3240     bool ignored_will_link;
3241     ciSignature* signature_at_call = NULL;
3242     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3243 
3244     // The offset within the MDO of the entry to update may be too large
3245     // to be used in load/store instructions on some platforms. So have
3246     // profile_type() compute the address of the profile in a register.
3247     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3248         ret->type(), x->ret(), mdp,
3249         !x->needs_null_check(),
3250         signature_at_call->return_type()->as_klass(),
3251         x->callee()->signature()->return_type()->as_klass());
3252     if (exact != NULL) {
3253       md->set_return_type(bci, exact);
3254     }
3255   }
3256 }
3257 
3258 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3259   // We can safely ignore accessors here, since c2 will inline them anyway,
3260   // accessors are also always mature.
3261   if (!x->inlinee()->is_accessor()) {
3262     CodeEmitInfo* info = state_for(x, x->state(), true);
3263     // Notify the runtime very infrequently only to take care of counter overflows
3264     int freq_log = Tier23InlineeNotifyFreqLog;
3265     double scale;
3266     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3267       freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3268     }
3269     increment_event_counter_impl(info, x->inlinee(), LIR_OprFact::intConst(InvocationCounter::count_increment), right_n_bits(freq_log), InvocationEntryBci, false, true);
3270   }
3271 }
3272 
3273 void LIRGenerator::increment_backedge_counter_conditionally(LIR_Condition cond, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info, int left_bci, int right_bci, int bci) {
3274   if (compilation()->count_backedges()) {
3275     __ cmp(cond, left, right);
3276     LIR_Opr step = new_register(T_INT);
3277     LIR_Opr plus_one = LIR_OprFact::intConst(InvocationCounter::count_increment);
3278     LIR_Opr zero = LIR_OprFact::intConst(0);
3279     __ cmove(cond,
3280         (left_bci < bci) ? plus_one : zero,
3281         (right_bci < bci) ? plus_one : zero,
3282         step, left->type());
3283     increment_backedge_counter(info, step, bci);
3284   }
3285 }
3286 
3287 
3288 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, LIR_Opr step, int bci, bool backedge) {
3289   int freq_log = 0;
3290   int level = compilation()->env()->comp_level();
3291   if (level == CompLevel_limited_profile) {
3292     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3293   } else if (level == CompLevel_full_profile) {
3294     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3295   } else {
3296     ShouldNotReachHere();
3297   }
3298   // Increment the appropriate invocation/backedge counter and notify the runtime.
3299   double scale;
3300   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3301     freq_log = CompilerConfig::scaled_freq_log(freq_log, scale);
3302   }
3303   increment_event_counter_impl(info, info->scope()->method(), step, right_n_bits(freq_log), bci, backedge, true);
3304 }
3305 
3306 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3307   ciMethod* method = info->scope()->method();
3308   MethodCounters* mc_adr = method->ensure_method_counters();
3309   if (mc_adr != NULL) {
3310     LIR_Opr mc = new_pointer_register();
3311     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3312     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3313     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3314     LIR_Opr result = new_register(T_INT);
3315     __ load(counter, result);
3316     __ sub(result, LIR_OprFact::intConst(1), result);
3317     __ store(result, counter);
3318     // DeoptimizeStub will reexecute from the current state in code info.
3319     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3320                                          Deoptimization::Action_make_not_entrant);
3321     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3322     __ branch(lir_cond_lessEqual, T_INT, deopt);
3323   }
3324 }
3325 
3326 
3327 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3328                                                 ciMethod *method, LIR_Opr step, int frequency,
3329                                                 int bci, bool backedge, bool notify) {
3330   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3331   int level = _compilation->env()->comp_level();
3332   assert(level > CompLevel_simple, "Shouldn't be here");
3333 
3334   int offset = -1;
3335   LIR_Opr counter_holder = NULL;
3336   if (level == CompLevel_limited_profile) {
3337     MethodCounters* counters_adr = method->ensure_method_counters();
3338     if (counters_adr == NULL) {
3339       bailout("method counters allocation failed");
3340       return;
3341     }
3342     counter_holder = new_pointer_register();
3343     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3344     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3345                                  MethodCounters::invocation_counter_offset());
3346   } else if (level == CompLevel_full_profile) {
3347     counter_holder = new_register(T_METADATA);
3348     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3349                                  MethodData::invocation_counter_offset());
3350     ciMethodData* md = method->method_data_or_null();
3351     assert(md != NULL, "Sanity");
3352     __ metadata2reg(md->constant_encoding(), counter_holder);
3353   } else {
3354     ShouldNotReachHere();
3355   }
3356   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3357   LIR_Opr result = new_register(T_INT);
3358   __ load(counter, result);
3359   __ add(result, step, result);
3360   __ store(result, counter);
3361   if (notify && (!backedge || UseOnStackReplacement)) {
3362     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3363     // The bci for info can point to cmp for if's we want the if bci
3364     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3365     int freq = frequency << InvocationCounter::count_shift;
3366     if (freq == 0) {
3367       if (!step->is_constant()) {
3368         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3369         __ branch(lir_cond_notEqual, T_ILLEGAL, overflow);
3370       } else {
3371         __ branch(lir_cond_always, T_ILLEGAL, overflow);
3372       }
3373     } else {
3374       LIR_Opr mask = load_immediate(freq, T_INT);
3375       if (!step->is_constant()) {
3376         // If step is 0, make sure the overflow check below always fails
3377         __ cmp(lir_cond_notEqual, step, LIR_OprFact::intConst(0));
3378         __ cmove(lir_cond_notEqual, result, LIR_OprFact::intConst(InvocationCounter::count_increment), result, T_INT);
3379       }
3380       __ logical_and(result, mask, result);
3381       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3382       __ branch(lir_cond_equal, T_INT, overflow);
3383     }
3384     __ branch_destination(overflow->continuation());
3385   }
3386 }
3387 
3388 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3389   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3390   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3391 
3392   if (x->pass_thread()) {
3393     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3394     args->append(getThreadPointer());
3395   }
3396 
3397   for (int i = 0; i < x->number_of_arguments(); i++) {
3398     Value a = x->argument_at(i);
3399     LIRItem* item = new LIRItem(a, this);
3400     item->load_item();
3401     args->append(item->result());
3402     signature->append(as_BasicType(a->type()));
3403   }
3404 
3405   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3406   if (x->type() == voidType) {
3407     set_no_result(x);
3408   } else {
3409     __ move(result, rlock_result(x));
3410   }
3411 }
3412 
3413 #ifdef ASSERT
3414 void LIRGenerator::do_Assert(Assert *x) {
3415   ValueTag tag = x->x()->type()->tag();
3416   If::Condition cond = x->cond();
3417 
3418   LIRItem xitem(x->x(), this);
3419   LIRItem yitem(x->y(), this);
3420   LIRItem* xin = &xitem;
3421   LIRItem* yin = &yitem;
3422 
3423   assert(tag == intTag, "Only integer assertions are valid!");
3424 
3425   xin->load_item();
3426   yin->dont_load_item();
3427 
3428   set_no_result(x);
3429 
3430   LIR_Opr left = xin->result();
3431   LIR_Opr right = yin->result();
3432 
3433   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3434 }
3435 #endif
3436 
3437 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3438 
3439 
3440   Instruction *a = x->x();
3441   Instruction *b = x->y();
3442   if (!a || StressRangeCheckElimination) {
3443     assert(!b || StressRangeCheckElimination, "B must also be null");
3444 
3445     CodeEmitInfo *info = state_for(x, x->state());
3446     CodeStub* stub = new PredicateFailedStub(info);
3447 
3448     __ jump(stub);
3449   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3450     int a_int = a->type()->as_IntConstant()->value();
3451     int b_int = b->type()->as_IntConstant()->value();
3452 
3453     bool ok = false;
3454 
3455     switch(x->cond()) {
3456       case Instruction::eql: ok = (a_int == b_int); break;
3457       case Instruction::neq: ok = (a_int != b_int); break;
3458       case Instruction::lss: ok = (a_int < b_int); break;
3459       case Instruction::leq: ok = (a_int <= b_int); break;
3460       case Instruction::gtr: ok = (a_int > b_int); break;
3461       case Instruction::geq: ok = (a_int >= b_int); break;
3462       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3463       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3464       default: ShouldNotReachHere();
3465     }
3466 
3467     if (ok) {
3468 
3469       CodeEmitInfo *info = state_for(x, x->state());
3470       CodeStub* stub = new PredicateFailedStub(info);
3471 
3472       __ jump(stub);
3473     }
3474   } else {
3475 
3476     ValueTag tag = x->x()->type()->tag();
3477     If::Condition cond = x->cond();
3478     LIRItem xitem(x->x(), this);
3479     LIRItem yitem(x->y(), this);
3480     LIRItem* xin = &xitem;
3481     LIRItem* yin = &yitem;
3482 
3483     assert(tag == intTag, "Only integer deoptimizations are valid!");
3484 
3485     xin->load_item();
3486     yin->dont_load_item();
3487     set_no_result(x);
3488 
3489     LIR_Opr left = xin->result();
3490     LIR_Opr right = yin->result();
3491 
3492     CodeEmitInfo *info = state_for(x, x->state());
3493     CodeStub* stub = new PredicateFailedStub(info);
3494 
3495     __ cmp(lir_cond(cond), left, right);
3496     __ branch(lir_cond(cond), right->type(), stub);
3497   }
3498 }
3499 
3500 
3501 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3502   LIRItemList args(1);
3503   LIRItem value(arg1, this);
3504   args.append(&value);
3505   BasicTypeList signature;
3506   signature.append(as_BasicType(arg1->type()));
3507 
3508   return call_runtime(&signature, &args, entry, result_type, info);
3509 }
3510 
3511 
3512 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3513   LIRItemList args(2);
3514   LIRItem value1(arg1, this);
3515   LIRItem value2(arg2, this);
3516   args.append(&value1);
3517   args.append(&value2);
3518   BasicTypeList signature;
3519   signature.append(as_BasicType(arg1->type()));
3520   signature.append(as_BasicType(arg2->type()));
3521 
3522   return call_runtime(&signature, &args, entry, result_type, info);
3523 }
3524 
3525 
3526 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3527                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3528   // get a result register
3529   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3530   LIR_Opr result = LIR_OprFact::illegalOpr;
3531   if (result_type->tag() != voidTag) {
3532     result = new_register(result_type);
3533     phys_reg = result_register_for(result_type);
3534   }
3535 
3536   // move the arguments into the correct location
3537   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3538   assert(cc->length() == args->length(), "argument mismatch");
3539   for (int i = 0; i < args->length(); i++) {
3540     LIR_Opr arg = args->at(i);
3541     LIR_Opr loc = cc->at(i);
3542     if (loc->is_register()) {
3543       __ move(arg, loc);
3544     } else {
3545       LIR_Address* addr = loc->as_address_ptr();
3546 //           if (!can_store_as_constant(arg)) {
3547 //             LIR_Opr tmp = new_register(arg->type());
3548 //             __ move(arg, tmp);
3549 //             arg = tmp;
3550 //           }
3551       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3552         __ unaligned_move(arg, addr);
3553       } else {
3554         __ move(arg, addr);
3555       }
3556     }
3557   }
3558 
3559   if (info) {
3560     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3561   } else {
3562     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3563   }
3564   if (result->is_valid()) {
3565     __ move(phys_reg, result);
3566   }
3567   return result;
3568 }
3569 
3570 
3571 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3572                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3573   // get a result register
3574   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3575   LIR_Opr result = LIR_OprFact::illegalOpr;
3576   if (result_type->tag() != voidTag) {
3577     result = new_register(result_type);
3578     phys_reg = result_register_for(result_type);
3579   }
3580 
3581   // move the arguments into the correct location
3582   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3583 
3584   assert(cc->length() == args->length(), "argument mismatch");
3585   for (int i = 0; i < args->length(); i++) {
3586     LIRItem* arg = args->at(i);
3587     LIR_Opr loc = cc->at(i);
3588     if (loc->is_register()) {
3589       arg->load_item_force(loc);
3590     } else {
3591       LIR_Address* addr = loc->as_address_ptr();
3592       arg->load_for_store(addr->type());
3593       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3594         __ unaligned_move(arg->result(), addr);
3595       } else {
3596         __ move(arg->result(), addr);
3597       }
3598     }
3599   }
3600 
3601   if (info) {
3602     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3603   } else {
3604     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3605   }
3606   if (result->is_valid()) {
3607     __ move(phys_reg, result);
3608   }
3609   return result;
3610 }
3611 
3612 void LIRGenerator::do_MemBar(MemBar* x) {
3613   if (os::is_MP()) {
3614     LIR_Code code = x->code();
3615     switch(code) {
3616       case lir_membar_acquire   : __ membar_acquire(); break;
3617       case lir_membar_release   : __ membar_release(); break;
3618       case lir_membar           : __ membar(); break;
3619       case lir_membar_loadload  : __ membar_loadload(); break;
3620       case lir_membar_storestore: __ membar_storestore(); break;
3621       case lir_membar_loadstore : __ membar_loadstore(); break;
3622       case lir_membar_storeload : __ membar_storeload(); break;
3623       default                   : ShouldNotReachHere(); break;
3624     }
3625   }
3626 }
3627 
3628 LIR_Opr LIRGenerator::mask_boolean(LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3629   LIR_Opr value_fixed = rlock_byte(T_BYTE);
3630   if (TwoOperandLIRForm) {
3631     __ move(value, value_fixed);
3632     __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3633   } else {
3634     __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3635   }
3636   LIR_Opr klass = new_register(T_METADATA);
3637   __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3638   null_check_info = NULL;
3639   LIR_Opr layout = new_register(T_INT);
3640   __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3641   int diffbit = Klass::layout_helper_boolean_diffbit();
3642   __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3643   __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3644   __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3645   value = value_fixed;
3646   return value;
3647 }
3648 
3649 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3650   if (x->check_boolean()) {
3651     value = mask_boolean(array, value, null_check_info);
3652   }
3653   return value;
3654 }