1 /*
  2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "c1/c1_Defs.hpp"
 27 #include "c1/c1_LIRGenerator.hpp"
 28 #include "gc/shared/c1/barrierSetC1.hpp"
 29 #include "utilities/macros.hpp"
 30 
 31 #ifndef PATCHED_ADDR
 32 #define PATCHED_ADDR  (max_jint)
 33 #endif
 34 
 35 #ifdef ASSERT
 36 #define __ gen->lir(__FILE__, __LINE__)->
 37 #else
 38 #define __ gen->lir()->
 39 #endif
 40 
 41 LIR_Opr BarrierSetC1::resolve_address(LIRAccess& access, bool resolve_in_register) {
 42   DecoratorSet decorators = access.decorators();
 43   bool is_array = (decorators & IS_ARRAY) != 0;
 44   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
 45 
 46   LIRItem& base = access.base().item();
 47   LIR_Opr offset = access.offset().opr();
 48   LIRGenerator *gen = access.gen();
 49 
 50   LIR_Opr addr_opr;
 51   if (is_array) {
 52     addr_opr = LIR_OprFact::address(gen->emit_array_address(base.result(), offset, access.type()));
 53   } else if (needs_patching) {
 54     // we need to patch the offset in the instruction so don't allow
 55     // generate_address to try to be smart about emitting the -1.
 56     // Otherwise the patching code won't know how to find the
 57     // instruction to patch.
 58     addr_opr = LIR_OprFact::address(new LIR_Address(base.result(), PATCHED_ADDR, access.type()));
 59   } else {
 60     addr_opr = LIR_OprFact::address(gen->generate_address(base.result(), offset, 0, 0, access.type()));
 61   }
 62 
 63   if (resolve_in_register) {
 64     LIR_Opr resolved_addr = gen->new_pointer_register();
 65     __ leal(addr_opr, resolved_addr);
 66     resolved_addr = LIR_OprFact::address(new LIR_Address(resolved_addr, access.type()));
 67     return resolved_addr;
 68   } else {
 69     return addr_opr;
 70   }
 71 }
 72 
 73 void BarrierSetC1::store_at(LIRAccess& access, LIR_Opr value) {
 74   DecoratorSet decorators = access.decorators();
 75   bool in_heap = (decorators & IN_HEAP) != 0;
 76   assert(in_heap, "not supported yet");
 77 
 78   LIR_Opr resolved = resolve_address(access, false);
 79   access.set_resolved_addr(resolved);
 80   store_at_resolved(access, value);
 81 }
 82 
 83 void BarrierSetC1::load_at(LIRAccess& access, LIR_Opr result) {
 84   DecoratorSet decorators = access.decorators();
 85   bool in_heap = (decorators & IN_HEAP) != 0;
 86   assert(in_heap, "not supported yet");
 87 
 88   LIR_Opr resolved = resolve_address(access, false);
 89   access.set_resolved_addr(resolved);
 90   load_at_resolved(access, result);
 91 }
 92 
 93 void BarrierSetC1::load(LIRAccess& access, LIR_Opr result) {
 94   DecoratorSet decorators = access.decorators();
 95   bool in_heap = (decorators & IN_HEAP) != 0;
 96   assert(!in_heap, "consider using load_at");
 97   load_at_resolved(access, result);
 98 }
 99 
100 LIR_Opr BarrierSetC1::atomic_cmpxchg_at(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
101   DecoratorSet decorators = access.decorators();
102   bool in_heap = (decorators & IN_HEAP) != 0;
103   assert(in_heap, "not supported yet");
104 
105   access.load_address();
106 
107   LIR_Opr resolved = resolve_address(access, true);
108   access.set_resolved_addr(resolved);
109   return atomic_cmpxchg_at_resolved(access, cmp_value, new_value);
110 }
111 
112 LIR_Opr BarrierSetC1::atomic_xchg_at(LIRAccess& access, LIRItem& value) {
113   DecoratorSet decorators = access.decorators();
114   bool in_heap = (decorators & IN_HEAP) != 0;
115   assert(in_heap, "not supported yet");
116 
117   access.load_address();
118 
119   LIR_Opr resolved = resolve_address(access, true);
120   access.set_resolved_addr(resolved);
121   return atomic_xchg_at_resolved(access, value);
122 }
123 
124 LIR_Opr BarrierSetC1::atomic_add_at(LIRAccess& access, LIRItem& value) {
125   DecoratorSet decorators = access.decorators();
126   bool in_heap = (decorators & IN_HEAP) != 0;
127   assert(in_heap, "not supported yet");
128 
129   access.load_address();
130 
131   LIR_Opr resolved = resolve_address(access, true);
132   access.set_resolved_addr(resolved);
133   return atomic_add_at_resolved(access, value);
134 }
135 
136 void BarrierSetC1::store_at_resolved(LIRAccess& access, LIR_Opr value) {
137   DecoratorSet decorators = access.decorators();
138   bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses) && os::is_MP();
139   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
140   bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
141   LIRGenerator* gen = access.gen();
142 
143   if (mask_boolean) {
144     value = gen->mask_boolean(access.base().opr(), value, access.access_emit_info());
145   }
146 
147   if (is_volatile && os::is_MP()) {
148     __ membar_release();
149   }
150 
151   LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
152   if (is_volatile && !needs_patching) {
153     gen->volatile_field_store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info());
154   } else {
155     __ store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info(), patch_code);
156   }
157 
158   if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
159     __ membar();
160   }
161 }
162 
163 void BarrierSetC1::load_at_resolved(LIRAccess& access, LIR_Opr result) {
164   LIRGenerator *gen = access.gen();
165   DecoratorSet decorators = access.decorators();
166   bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses) && os::is_MP();
167   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
168   bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
169   bool in_native = (decorators & IN_NATIVE) != 0;
170 
171   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile) {
172     __ membar();
173   }
174 
175   LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
176   if (in_native) {
177     __ move_wide(access.resolved_addr()->as_address_ptr(), result);
178   } else if (is_volatile && !needs_patching) {
179     gen->volatile_field_load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info());
180   } else {
181     __ load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info(), patch_code);
182   }
183 
184   if (is_volatile && os::is_MP()) {
185     __ membar_acquire();
186   }
187 
188   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
189   if (mask_boolean) {
190     LabelObj* equalZeroLabel = new LabelObj();
191     __ cmp(lir_cond_equal, result, 0);
192     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
193     __ move(LIR_OprFact::intConst(1), result);
194     __ branch_destination(equalZeroLabel->label());
195   }
196 }
197 
198 LIR_Opr BarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
199   LIRGenerator *gen = access.gen();
200   return gen->atomic_cmpxchg(access.type(), access.resolved_addr(), cmp_value, new_value);
201 }
202 
203 LIR_Opr BarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) {
204   LIRGenerator *gen = access.gen();
205   return gen->atomic_xchg(access.type(), access.resolved_addr(), value);
206 }
207 
208 LIR_Opr BarrierSetC1::atomic_add_at_resolved(LIRAccess& access, LIRItem& value) {
209   LIRGenerator *gen = access.gen();
210   return gen->atomic_add(access.type(), access.resolved_addr(), value);
211 }
212 
213 void BarrierSetC1::generate_referent_check(LIRAccess& access, LabelObj* cont) {
214   // We might be reading the value of the referent field of a
215   // Reference object in order to attach it back to the live
216   // object graph. If G1 is enabled then we need to record
217   // the value that is being returned in an SATB log buffer.
218   //
219   // We need to generate code similar to the following...
220   //
221   // if (offset == java_lang_ref_Reference::referent_offset) {
222   //   if (src != NULL) {
223   //     if (klass(src)->reference_type() != REF_NONE) {
224   //       pre_barrier(..., value, ...);
225   //     }
226   //   }
227   // }
228 
229   bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
230   bool gen_offset_check = true;    // Assume we need to generate the offset guard.
231   bool gen_source_check = true;    // Assume we need to check the src object for null.
232   bool gen_type_check = true;      // Assume we need to check the reference_type.
233 
234   LIRGenerator *gen = access.gen();
235 
236   LIRItem& base = access.base().item();
237   LIR_Opr offset = access.offset().opr();
238 
239   if (offset->is_constant()) {
240     LIR_Const* constant = offset->as_constant_ptr();
241     jlong off_con = (constant->type() == T_INT ?
242                      (jlong)constant->as_jint() :
243                      constant->as_jlong());
244 
245 
246     if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
247       // The constant offset is something other than referent_offset.
248       // We can skip generating/checking the remaining guards and
249       // skip generation of the code stub.
250       gen_pre_barrier = false;
251     } else {
252       // The constant offset is the same as referent_offset -
253       // we do not need to generate a runtime offset check.
254       gen_offset_check = false;
255     }
256   }
257 
258   // We don't need to generate stub if the source object is an array
259   if (gen_pre_barrier && base.type()->is_array()) {
260     gen_pre_barrier = false;
261   }
262 
263   if (gen_pre_barrier) {
264     // We still need to continue with the checks.
265     if (base.is_constant()) {
266       ciObject* src_con = base.get_jobject_constant();
267       guarantee(src_con != NULL, "no source constant");
268 
269       if (src_con->is_null_object()) {
270         // The constant src object is null - We can skip
271         // generating the code stub.
272         gen_pre_barrier = false;
273       } else {
274         // Non-null constant source object. We still have to generate
275         // the slow stub - but we don't need to generate the runtime
276         // null object check.
277         gen_source_check = false;
278       }
279     }
280   }
281   if (gen_pre_barrier && !PatchALot) {
282     // Can the klass of object be statically determined to be
283     // a sub-class of Reference?
284     ciType* type = base.value()->declared_type();
285     if ((type != NULL) && type->is_loaded()) {
286       if (type->is_subtype_of(gen->compilation()->env()->Reference_klass())) {
287         gen_type_check = false;
288       } else if (type->is_klass() &&
289                  !gen->compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
290         // Not Reference and not Object klass.
291         gen_pre_barrier = false;
292       }
293     }
294   }
295 
296   if (gen_pre_barrier) {
297     // We can have generate one runtime check here. Let's start with
298     // the offset check.
299     if (gen_offset_check) {
300       // if (offset != referent_offset) -> continue
301       // If offset is an int then we can do the comparison with the
302       // referent_offset constant; otherwise we need to move
303       // referent_offset into a temporary register and generate
304       // a reg-reg compare.
305 
306       LIR_Opr referent_off;
307 
308       if (offset->type() == T_INT) {
309         referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
310       } else {
311         assert(offset->type() == T_LONG, "what else?");
312         referent_off = gen->new_register(T_LONG);
313         __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
314       }
315       __ cmp(lir_cond_notEqual, offset, referent_off);
316       __ branch(lir_cond_notEqual, offset->type(), cont->label());
317     }
318     if (gen_source_check) {
319       // offset is a const and equals referent offset
320       // if (source == null) -> continue
321       __ cmp(lir_cond_equal, base.result(), LIR_OprFact::oopConst(NULL));
322       __ branch(lir_cond_equal, T_OBJECT, cont->label());
323     }
324     LIR_Opr src_klass = gen->new_register(T_OBJECT);
325     if (gen_type_check) {
326       // We have determined that offset == referent_offset && src != null.
327       // if (src->_klass->_reference_type == REF_NONE) -> continue
328       __ move(new LIR_Address(base.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
329       LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
330       LIR_Opr reference_type = gen->new_register(T_INT);
331       __ move(reference_type_addr, reference_type);
332       __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
333       __ branch(lir_cond_equal, T_INT, cont->label());
334     }
335   }
336 }