1 /*
  2  * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 #include "precompiled.hpp"
 26 #include "c1/c1_Defs.hpp"
 27 #include "c1/c1_LIRGenerator.hpp"
 28 #include "gc/shared/c1/barrierSetC1.hpp"
 29 #include "utilities/macros.hpp"
 30 
 31 #ifndef PATCHED_ADDR
 32 #define PATCHED_ADDR  (max_jint)
 33 #endif
 34 
 35 #ifdef ASSERT
 36 #define __ gen->lir(__FILE__, __LINE__)->
 37 #else
 38 #define __ gen->lir()->
 39 #endif
 40 
 41 LIR_Opr BarrierSetC1::resolve_address(LIRAccess& access, bool resolve_in_register) {
 42   DecoratorSet decorators = access.decorators();
 43   bool is_array = (decorators & IS_ARRAY) != 0;
 44   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
 45 
 46   LIRItem& base = access.base().item();
 47   LIR_Opr offset = access.offset().opr();
 48   LIRGenerator *gen = access.gen();
 49 
 50   LIR_Opr addr_opr;
 51   if (is_array) {
 52     addr_opr = LIR_OprFact::address(gen->emit_array_address(base.result(), offset, access.type()));
 53   } else if (needs_patching) {
 54     // we need to patch the offset in the instruction so don't allow
 55     // generate_address to try to be smart about emitting the -1.
 56     // Otherwise the patching code won't know how to find the
 57     // instruction to patch.
 58     addr_opr = LIR_OprFact::address(new LIR_Address(base.result(), PATCHED_ADDR, access.type()));
 59   } else {
 60     addr_opr = LIR_OprFact::address(gen->generate_address(base.result(), offset, 0, 0, access.type()));
 61   }
 62 
 63   if (resolve_in_register) {
 64     LIR_Opr resolved_addr = gen->new_pointer_register();
 65     __ leal(addr_opr, resolved_addr);
 66     resolved_addr = LIR_OprFact::address(new LIR_Address(resolved_addr, access.type()));
 67     return resolved_addr;
 68   } else {
 69     return addr_opr;
 70   }
 71 }
 72 
 73 void BarrierSetC1::store_at(LIRAccess& access, LIR_Opr value) {
 74   DecoratorSet decorators = access.decorators();
 75   bool in_heap = (decorators & IN_HEAP) != 0;
 76   assert(in_heap, "not supported yet");
 77 
 78   LIR_Opr resolved = resolve_address(access, false);
 79   access.set_resolved_addr(resolved);
 80   store_at_resolved(access, value);
 81 }
 82 
 83 void BarrierSetC1::load_at(LIRAccess& access, LIR_Opr result) {
 84   DecoratorSet decorators = access.decorators();
 85   bool in_heap = (decorators & IN_HEAP) != 0;
 86   assert(in_heap, "not supported yet");
 87 
 88   LIR_Opr resolved = resolve_address(access, false);
 89   access.set_resolved_addr(resolved);
 90   load_at_resolved(access, result);
 91 }
 92 
 93 LIR_Opr BarrierSetC1::atomic_cmpxchg_at(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
 94   DecoratorSet decorators = access.decorators();
 95   bool in_heap = (decorators & IN_HEAP) != 0;
 96   assert(in_heap, "not supported yet");
 97 
 98   access.load_address();
 99 
100   LIR_Opr resolved = resolve_address(access, true);
101   access.set_resolved_addr(resolved);
102   return atomic_cmpxchg_at_resolved(access, cmp_value, new_value);
103 }
104 
105 LIR_Opr BarrierSetC1::atomic_xchg_at(LIRAccess& access, LIRItem& value) {
106   DecoratorSet decorators = access.decorators();
107   bool in_heap = (decorators & IN_HEAP) != 0;
108   assert(in_heap, "not supported yet");
109 
110   access.load_address();
111 
112   LIR_Opr resolved = resolve_address(access, true);
113   access.set_resolved_addr(resolved);
114   return atomic_xchg_at_resolved(access, value);
115 }
116 
117 LIR_Opr BarrierSetC1::atomic_add_at(LIRAccess& access, LIRItem& value) {
118   DecoratorSet decorators = access.decorators();
119   bool in_heap = (decorators & IN_HEAP) != 0;
120   assert(in_heap, "not supported yet");
121 
122   access.load_address();
123 
124   LIR_Opr resolved = resolve_address(access, true);
125   access.set_resolved_addr(resolved);
126   return atomic_add_at_resolved(access, value);
127 }
128 
129 void BarrierSetC1::store_at_resolved(LIRAccess& access, LIR_Opr value) {
130   DecoratorSet decorators = access.decorators();
131   bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses) && os::is_MP();
132   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
133   bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
134   LIRGenerator* gen = access.gen();
135 
136   if (mask_boolean) {
137     value = gen->mask_boolean(access.base().opr(), value, access.access_emit_info());
138   }
139 
140   if (is_volatile && os::is_MP()) {
141     __ membar_release();
142   }
143 
144   LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
145   if (is_volatile && !needs_patching) {
146     gen->volatile_field_store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info());
147   } else {
148     __ store(value, access.resolved_addr()->as_address_ptr(), access.access_emit_info(), patch_code);
149   }
150 
151   if (is_volatile && !support_IRIW_for_not_multiple_copy_atomic_cpu) {
152     __ membar();
153   }
154 }
155 
156 void BarrierSetC1::load_at_resolved(LIRAccess& access, LIR_Opr result) {
157   LIRGenerator *gen = access.gen();
158   DecoratorSet decorators = access.decorators();
159   bool is_volatile = (((decorators & MO_SEQ_CST) != 0) || AlwaysAtomicAccesses) && os::is_MP();
160   bool needs_patching = (decorators & C1_NEEDS_PATCHING) != 0;
161   bool mask_boolean = (decorators & C1_MASK_BOOLEAN) != 0;
162 
163   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile) {
164     __ membar();
165   }
166 
167   LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
168   if (is_volatile && !needs_patching) {
169     gen->volatile_field_load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info());
170   } else {
171     __ load(access.resolved_addr()->as_address_ptr(), result, access.access_emit_info(), patch_code);
172   }
173 
174   if (is_volatile && os::is_MP()) {
175     __ membar_acquire();
176   }
177 
178   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
179   if (mask_boolean) {
180     LabelObj* equalZeroLabel = new LabelObj();
181     __ cmp(lir_cond_equal, result, 0);
182     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
183     __ move(LIR_OprFact::intConst(1), result);
184     __ branch_destination(equalZeroLabel->label());
185   }
186 }
187 
188 LIR_Opr BarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
189   LIRGenerator *gen = access.gen();
190   return gen->atomic_cmpxchg(access.type(), access.resolved_addr(), cmp_value, new_value);
191 }
192 
193 LIR_Opr BarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) {
194   LIRGenerator *gen = access.gen();
195   return gen->atomic_xchg(access.type(), access.resolved_addr(), value);
196 }
197 
198 LIR_Opr BarrierSetC1::atomic_add_at_resolved(LIRAccess& access, LIRItem& value) {
199   LIRGenerator *gen = access.gen();
200   return gen->atomic_add(access.type(), access.resolved_addr(), value);
201 }
202 
203 void BarrierSetC1::generate_referent_check(LIRAccess& access, LabelObj* cont) {
204   // We might be reading the value of the referent field of a
205   // Reference object in order to attach it back to the live
206   // object graph. If G1 is enabled then we need to record
207   // the value that is being returned in an SATB log buffer.
208   //
209   // We need to generate code similar to the following...
210   //
211   // if (offset == java_lang_ref_Reference::referent_offset) {
212   //   if (src != NULL) {
213   //     if (klass(src)->reference_type() != REF_NONE) {
214   //       pre_barrier(..., value, ...);
215   //     }
216   //   }
217   // }
218 
219   bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
220   bool gen_offset_check = true;    // Assume we need to generate the offset guard.
221   bool gen_source_check = true;    // Assume we need to check the src object for null.
222   bool gen_type_check = true;      // Assume we need to check the reference_type.
223 
224   LIRGenerator *gen = access.gen();
225 
226   LIRItem& base = access.base().item();
227   LIR_Opr offset = access.offset().opr();
228 
229   if (offset->is_constant()) {
230     LIR_Const* constant = offset->as_constant_ptr();
231     jlong off_con = (constant->type() == T_INT ?
232                      (jlong)constant->as_jint() :
233                      constant->as_jlong());
234 
235 
236     if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
237       // The constant offset is something other than referent_offset.
238       // We can skip generating/checking the remaining guards and
239       // skip generation of the code stub.
240       gen_pre_barrier = false;
241     } else {
242       // The constant offset is the same as referent_offset -
243       // we do not need to generate a runtime offset check.
244       gen_offset_check = false;
245     }
246   }
247 
248   // We don't need to generate stub if the source object is an array
249   if (gen_pre_barrier && base.type()->is_array()) {
250     gen_pre_barrier = false;
251   }
252 
253   if (gen_pre_barrier) {
254     // We still need to continue with the checks.
255     if (base.is_constant()) {
256       ciObject* src_con = base.get_jobject_constant();
257       guarantee(src_con != NULL, "no source constant");
258 
259       if (src_con->is_null_object()) {
260         // The constant src object is null - We can skip
261         // generating the code stub.
262         gen_pre_barrier = false;
263       } else {
264         // Non-null constant source object. We still have to generate
265         // the slow stub - but we don't need to generate the runtime
266         // null object check.
267         gen_source_check = false;
268       }
269     }
270   }
271   if (gen_pre_barrier && !PatchALot) {
272     // Can the klass of object be statically determined to be
273     // a sub-class of Reference?
274     ciType* type = base.value()->declared_type();
275     if ((type != NULL) && type->is_loaded()) {
276       if (type->is_subtype_of(gen->compilation()->env()->Reference_klass())) {
277         gen_type_check = false;
278       } else if (type->is_klass() &&
279                  !gen->compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
280         // Not Reference and not Object klass.
281         gen_pre_barrier = false;
282       }
283     }
284   }
285 
286   if (gen_pre_barrier) {
287     // We can have generate one runtime check here. Let's start with
288     // the offset check.
289     if (gen_offset_check) {
290       // if (offset != referent_offset) -> continue
291       // If offset is an int then we can do the comparison with the
292       // referent_offset constant; otherwise we need to move
293       // referent_offset into a temporary register and generate
294       // a reg-reg compare.
295 
296       LIR_Opr referent_off;
297 
298       if (offset->type() == T_INT) {
299         referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
300       } else {
301         assert(offset->type() == T_LONG, "what else?");
302         referent_off = gen->new_register(T_LONG);
303         __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
304       }
305       __ cmp(lir_cond_notEqual, offset, referent_off);
306       __ branch(lir_cond_notEqual, offset->type(), cont->label());
307     }
308     if (gen_source_check) {
309       // offset is a const and equals referent offset
310       // if (source == null) -> continue
311       __ cmp(lir_cond_equal, base.result(), LIR_OprFact::oopConst(NULL));
312       __ branch(lir_cond_equal, T_OBJECT, cont->label());
313     }
314     LIR_Opr src_klass = gen->new_register(T_OBJECT);
315     if (gen_type_check) {
316       // We have determined that offset == referent_offset && src != null.
317       // if (src->_klass->_reference_type == REF_NONE) -> continue
318       __ move(new LIR_Address(base.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
319       LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
320       LIR_Opr reference_type = gen->new_register(T_INT);
321       __ move(reference_type_addr, reference_type);
322       __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
323       __ branch(lir_cond_equal, T_INT, cont->label());
324     }
325   }
326 }