1 /*
  2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * Copyright (c) 2012, 2018 SAP SE. All rights reserved.
  4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  5  *
  6  * This code is free software; you can redistribute it and/or modify it
  7  * under the terms of the GNU General Public License version 2 only, as
  8  * published by the Free Software Foundation.
  9  *
 10  * This code is distributed in the hope that it will be useful, but WITHOUT
 11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 13  * version 2 for more details (a copy is included in the LICENSE file that
 14  * accompanied this code).
 15  *
 16  * You should have received a copy of the GNU General Public License version
 17  * 2 along with this work; if not, write to the Free Software Foundation,
 18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 19  *
 20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 21  * or visit www.oracle.com if you need additional information or have any
 22  * questions.
 23  *
 24  */
 25 
 26 // no precompiled headers
 27 #include "jvm.h"
 28 #include "asm/assembler.inline.hpp"
 29 #include "classfile/classLoader.hpp"
 30 #include "classfile/systemDictionary.hpp"
 31 #include "classfile/vmSymbols.hpp"
 32 #include "code/codeCache.hpp"
 33 #include "code/icBuffer.hpp"
 34 #include "code/vtableStubs.hpp"
 35 #include "interpreter/interpreter.hpp"
 36 #include "memory/allocation.inline.hpp"
 37 #include "nativeInst_ppc.hpp"
 38 #include "os_share_linux.hpp"
 39 #include "prims/jniFastGetField.hpp"
 40 #include "prims/jvm_misc.hpp"
 41 #include "runtime/arguments.hpp"
 42 #include "runtime/extendedPC.hpp"
 43 #include "runtime/frame.inline.hpp"
 44 #include "runtime/interfaceSupport.inline.hpp"
 45 #include "runtime/java.hpp"
 46 #include "runtime/javaCalls.hpp"
 47 #include "runtime/mutexLocker.hpp"
 48 #include "runtime/osThread.hpp"
 49 #include "runtime/safepointMechanism.hpp"
 50 #include "runtime/sharedRuntime.hpp"
 51 #include "runtime/stubRoutines.hpp"
 52 #include "runtime/thread.inline.hpp"
 53 #include "runtime/timer.hpp"
 54 #include "utilities/debug.hpp"
 55 #include "utilities/events.hpp"
 56 #include "utilities/vmError.hpp"
 57 
 58 // put OS-includes here
 59 # include <sys/types.h>
 60 # include <sys/mman.h>
 61 # include <pthread.h>
 62 # include <signal.h>
 63 # include <errno.h>
 64 # include <dlfcn.h>
 65 # include <stdlib.h>
 66 # include <stdio.h>
 67 # include <unistd.h>
 68 # include <sys/resource.h>
 69 # include <pthread.h>
 70 # include <sys/stat.h>
 71 # include <sys/time.h>
 72 # include <sys/utsname.h>
 73 # include <sys/socket.h>
 74 # include <sys/wait.h>
 75 # include <pwd.h>
 76 # include <poll.h>
 77 # include <ucontext.h>
 78 
 79 
 80 address os::current_stack_pointer() {
 81   intptr_t* csp;
 82 
 83   // inline assembly `mr regno(csp), R1_SP':
 84   __asm__ __volatile__ ("mr %0, 1":"=r"(csp):);
 85 
 86   return (address) csp;
 87 }
 88 
 89 char* os::non_memory_address_word() {
 90   // Must never look like an address returned by reserve_memory,
 91   // even in its subfields (as defined by the CPU immediate fields,
 92   // if the CPU splits constants across multiple instructions).
 93 
 94   return (char*) -1;
 95 }
 96 
 97 // Frame information (pc, sp, fp) retrieved via ucontext
 98 // always looks like a C-frame according to the frame
 99 // conventions in frame_ppc64.hpp.
100 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
101   // On powerpc64, ucontext_t is not selfcontained but contains
102   // a pointer to an optional substructure (mcontext_t.regs) containing the volatile
103   // registers - NIP, among others.
104   // This substructure may or may not be there depending where uc came from:
105   // - if uc was handed over as the argument to a sigaction handler, a pointer to the
106   //   substructure was provided by the kernel when calling the signal handler, and
107   //   regs->nip can be accessed.
108   // - if uc was filled by getcontext(), it is undefined - getcontext() does not fill
109   //   it because the volatile registers are not needed to make setcontext() work.
110   //   Hopefully it was zero'd out beforehand.
111   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_get_pc in sigaction context");
112   return (address)uc->uc_mcontext.regs->nip;
113 }
114 
115 // modify PC in ucontext.
116 // Note: Only use this for an ucontext handed down to a signal handler. See comment
117 // in ucontext_get_pc.
118 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
119   guarantee(uc->uc_mcontext.regs != NULL, "only use ucontext_set_pc in sigaction context");
120   uc->uc_mcontext.regs->nip = (unsigned long)pc;
121 }
122 
123 static address ucontext_get_lr(const ucontext_t * uc) {
124   return (address)uc->uc_mcontext.regs->link;
125 }
126 
127 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
128   return (intptr_t*)uc->uc_mcontext.regs->gpr[1/*REG_SP*/];
129 }
130 
131 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
132   return NULL;
133 }
134 
135 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
136                     intptr_t** ret_sp, intptr_t** ret_fp) {
137 
138   ExtendedPC  epc;
139   const ucontext_t* uc = (const ucontext_t*)ucVoid;
140 
141   if (uc != NULL) {
142     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
143     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
144     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
145   } else {
146     // construct empty ExtendedPC for return value checking
147     epc = ExtendedPC(NULL);
148     if (ret_sp) *ret_sp = (intptr_t *)NULL;
149     if (ret_fp) *ret_fp = (intptr_t *)NULL;
150   }
151 
152   return epc;
153 }
154 
155 frame os::fetch_frame_from_context(const void* ucVoid) {
156   intptr_t* sp;
157   intptr_t* fp;
158   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
159   return frame(sp, epc.pc());
160 }
161 
162 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
163   address pc = (address) os::Linux::ucontext_get_pc(uc);
164   if (Interpreter::contains(pc)) {
165     // Interpreter performs stack banging after the fixed frame header has
166     // been generated while the compilers perform it before. To maintain
167     // semantic consistency between interpreted and compiled frames, the
168     // method returns the Java sender of the current frame.
169     *fr = os::fetch_frame_from_context(uc);
170     if (!fr->is_first_java_frame()) {
171       assert(fr->safe_for_sender(thread), "Safety check");
172       *fr = fr->java_sender();
173     }
174   } else {
175     // More complex code with compiled code.
176     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
177     CodeBlob* cb = CodeCache::find_blob(pc);
178     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
179       // Not sure where the pc points to, fallback to default
180       // stack overflow handling. In compiled code, we bang before
181       // the frame is complete.
182       return false;
183     } else {
184       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
185       address lr = ucontext_get_lr(uc);
186       *fr = frame(sp, lr);
187       if (!fr->is_java_frame()) {
188         assert(fr->safe_for_sender(thread), "Safety check");
189         assert(!fr->is_first_frame(), "Safety check");
190         *fr = fr->java_sender();
191       }
192     }
193   }
194   assert(fr->is_java_frame(), "Safety check");
195   return true;
196 }
197 
198 frame os::get_sender_for_C_frame(frame* fr) {
199   if (*fr->sp() == 0) {
200     // fr is the last C frame
201     return frame(NULL, NULL);
202   }
203   return frame(fr->sender_sp(), fr->sender_pc());
204 }
205 
206 
207 frame os::current_frame() {
208   intptr_t* csp = (intptr_t*) *((intptr_t*) os::current_stack_pointer());
209   // hack.
210   frame topframe(csp, (address)0x8);
211   // Return sender of sender of current topframe which hopefully
212   // both have pc != NULL.
213   frame tmp = os::get_sender_for_C_frame(&topframe);
214   return os::get_sender_for_C_frame(&tmp);
215 }
216 
217 // Utility functions
218 
219 extern "C" JNIEXPORT int
220 JVM_handle_linux_signal(int sig,
221                         siginfo_t* info,
222                         void* ucVoid,
223                         int abort_if_unrecognized) {
224   ucontext_t* uc = (ucontext_t*) ucVoid;
225 
226   Thread* t = Thread::current_or_null_safe();
227 
228   SignalHandlerMark shm(t);
229 
230   // Note: it's not uncommon that JNI code uses signal/sigset to install
231   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
232   // or have a SIGILL handler when detecting CPU type). When that happens,
233   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
234   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
235   // that do not require siginfo/ucontext first.
236 
237   if (sig == SIGPIPE) {
238     if (os::Linux::chained_handler(sig, info, ucVoid)) {
239       return true;
240     } else {
241       // Ignoring SIGPIPE - see bugs 4229104
242       return true;
243     }
244   }
245 
246   // Make the signal handler transaction-aware by checking the existence of a
247   // second (transactional) context with MSR TS bits active. If the signal is
248   // caught during a transaction, then just return to the HTM abort handler.
249   // Please refer to Linux kernel document powerpc/transactional_memory.txt,
250   // section "Signals".
251   if (uc && uc->uc_link) {
252     ucontext_t* second_uc = uc->uc_link;
253 
254     // MSR TS bits are 29 and 30 (Power ISA, v2.07B, Book III-S, pp. 857-858,
255     // 3.2.1 "Machine State Register"), however note that ISA notation for bit
256     // numbering is MSB 0, so for normal bit numbering (LSB 0) they come to be
257     // bits 33 and 34. It's not related to endianness, just a notation matter.
258     if (second_uc->uc_mcontext.regs->msr & 0x600000000) {
259       if (TraceTraps) {
260         tty->print_cr("caught signal in transaction, "
261                         "ignoring to jump to abort handler");
262       }
263       // Return control to the HTM abort handler.
264       return true;
265     }
266   }
267 
268 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
269   if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
270     handle_assert_poison_fault(ucVoid, info->si_addr);
271     return 1;
272   }
273 #endif
274 
275   JavaThread* thread = NULL;
276   VMThread* vmthread = NULL;
277   if (os::Linux::signal_handlers_are_installed) {
278     if (t != NULL) {
279       if(t->is_Java_thread()) {
280         thread = (JavaThread*)t;
281       } else if(t->is_VM_thread()) {
282         vmthread = (VMThread *)t;
283       }
284     }
285   }
286 
287   // Moved SafeFetch32 handling outside thread!=NULL conditional block to make
288   // it work if no associated JavaThread object exists.
289   if (uc) {
290     address const pc = os::Linux::ucontext_get_pc(uc);
291     if (pc && StubRoutines::is_safefetch_fault(pc)) {
292       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
293       return true;
294     }
295   }
296 
297   // decide if this trap can be handled by a stub
298   address stub = NULL;
299   address pc   = NULL;
300 
301   //%note os_trap_1
302   if (info != NULL && uc != NULL && thread != NULL) {
303     pc = (address) os::Linux::ucontext_get_pc(uc);
304 
305     // Handle ALL stack overflow variations here
306     if (sig == SIGSEGV) {
307       // Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see
308       // comment below). Use get_stack_bang_address instead of si_addr.
309       address addr = ((NativeInstruction*)pc)->get_stack_bang_address(uc);
310 
311       // Check if fault address is within thread stack.
312       if (thread->on_local_stack(addr)) {
313         // stack overflow
314         if (thread->in_stack_yellow_reserved_zone(addr)) {
315           if (thread->thread_state() == _thread_in_Java) {
316             if (thread->in_stack_reserved_zone(addr)) {
317               frame fr;
318               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
319                 assert(fr.is_java_frame(), "Must be a Javac frame");
320                 frame activation =
321                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
322                 if (activation.sp() != NULL) {
323                   thread->disable_stack_reserved_zone();
324                   if (activation.is_interpreted_frame()) {
325                     thread->set_reserved_stack_activation((address)activation.fp());
326                   } else {
327                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
328                   }
329                   return 1;
330                 }
331               }
332             }
333             // Throw a stack overflow exception.
334             // Guard pages will be reenabled while unwinding the stack.
335             thread->disable_stack_yellow_reserved_zone();
336             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
337           } else {
338             // Thread was in the vm or native code. Return and try to finish.
339             thread->disable_stack_yellow_reserved_zone();
340             return 1;
341           }
342         } else if (thread->in_stack_red_zone(addr)) {
343           // Fatal red zone violation.  Disable the guard pages and fall through
344           // to handle_unexpected_exception way down below.
345           thread->disable_stack_red_zone();
346           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
347 
348           // This is a likely cause, but hard to verify. Let's just print
349           // it as a hint.
350           tty->print_raw_cr("Please check if any of your loaded .so files has "
351                             "enabled executable stack (see man page execstack(8))");
352         } else {
353           // Accessing stack address below sp may cause SEGV if current
354           // thread has MAP_GROWSDOWN stack. This should only happen when
355           // current thread was created by user code with MAP_GROWSDOWN flag
356           // and then attached to VM. See notes in os_linux.cpp.
357           if (thread->osthread()->expanding_stack() == 0) {
358              thread->osthread()->set_expanding_stack();
359              if (os::Linux::manually_expand_stack(thread, addr)) {
360                thread->osthread()->clear_expanding_stack();
361                return 1;
362              }
363              thread->osthread()->clear_expanding_stack();
364           } else {
365              fatal("recursive segv. expanding stack.");
366           }
367         }
368       }
369     }
370 
371     if (thread->thread_state() == _thread_in_Java) {
372       // Java thread running in Java code => find exception handler if any
373       // a fault inside compiled code, the interpreter, or a stub
374 
375       // A VM-related SIGILL may only occur if we are not in the zero page.
376       // On AIX, we get a SIGILL if we jump to 0x0 or to somewhere else
377       // in the zero page, because it is filled with 0x0. We ignore
378       // explicit SIGILLs in the zero page.
379       if (sig == SIGILL && (pc < (address) 0x200)) {
380         if (TraceTraps) {
381           tty->print_raw_cr("SIGILL happened inside zero page.");
382         }
383         goto report_and_die;
384       }
385 
386       CodeBlob *cb = NULL;
387       // Handle signal from NativeJump::patch_verified_entry().
388       if (( TrapBasedNotEntrantChecks && sig == SIGTRAP && nativeInstruction_at(pc)->is_sigtrap_zombie_not_entrant()) ||
389           (!TrapBasedNotEntrantChecks && sig == SIGILL  && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant())) {
390         if (TraceTraps) {
391           tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
392         }
393         stub = SharedRuntime::get_handle_wrong_method_stub();
394       }
395 
396       else if (sig == ((SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? SIGTRAP : SIGSEGV) &&
397                // A linux-ppc64 kernel before 2.6.6 doesn't set si_addr on some segfaults
398                // in 64bit mode (cf. http://www.kernel.org/pub/linux/kernel/v2.6/ChangeLog-2.6.6),
399                // especially when we try to read from the safepoint polling page. So the check
400                //   (address)info->si_addr == os::get_standard_polling_page()
401                // doesn't work for us. We use:
402                ((NativeInstruction*)pc)->is_safepoint_poll() &&
403                CodeCache::contains((void*) pc) &&
404                ((cb = CodeCache::find_blob(pc)) != NULL) &&
405                cb->is_compiled()) {
406         if (TraceTraps) {
407           tty->print_cr("trap: safepoint_poll at " INTPTR_FORMAT " (%s)", p2i(pc),
408                         (SafepointMechanism::uses_thread_local_poll() && USE_POLL_BIT_ONLY) ? "SIGTRAP" : "SIGSEGV");
409         }
410         stub = SharedRuntime::get_poll_stub(pc);
411       }
412 
413       // SIGTRAP-based ic miss check in compiled code.
414       else if (sig == SIGTRAP && TrapBasedICMissChecks &&
415                nativeInstruction_at(pc)->is_sigtrap_ic_miss_check()) {
416         if (TraceTraps) {
417           tty->print_cr("trap: ic_miss_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
418         }
419         stub = SharedRuntime::get_ic_miss_stub();
420       }
421 
422       // SIGTRAP-based implicit null check in compiled code.
423       else if (sig == SIGTRAP && TrapBasedNullChecks &&
424                nativeInstruction_at(pc)->is_sigtrap_null_check()) {
425         if (TraceTraps) {
426           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
427         }
428         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
429       }
430 
431       // SIGSEGV-based implicit null check in compiled code.
432       else if (sig == SIGSEGV && ImplicitNullChecks &&
433                CodeCache::contains((void*) pc) &&
434                MacroAssembler::uses_implicit_null_check(info->si_addr)) {
435         if (TraceTraps) {
436           tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", p2i(pc));
437         }
438         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
439       }
440 
441 #ifdef COMPILER2
442       // SIGTRAP-based implicit range check in compiled code.
443       else if (sig == SIGTRAP && TrapBasedRangeChecks &&
444                nativeInstruction_at(pc)->is_sigtrap_range_check()) {
445         if (TraceTraps) {
446           tty->print_cr("trap: range_check at " INTPTR_FORMAT " (SIGTRAP)", p2i(pc));
447         }
448         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
449       }
450 #endif
451       else if (sig == SIGBUS) {
452         // BugId 4454115: A read from a MappedByteBuffer can fault here if the
453         // underlying file has been truncated. Do not crash the VM in such a case.
454         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
455         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
456         if (nm != NULL && nm->has_unsafe_access()) {
457           address next_pc = pc + 4;
458           next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
459           os::Linux::ucontext_set_pc(uc, next_pc);
460           return true;
461         }
462       }
463     }
464 
465     else { // thread->thread_state() != _thread_in_Java
466       if (sig == SIGILL && VM_Version::is_determine_features_test_running()) {
467         // SIGILL must be caused by VM_Version::determine_features().
468         *(int *)pc = 0; // patch instruction to 0 to indicate that it causes a SIGILL,
469                         // flushing of icache is not necessary.
470         stub = pc + 4;  // continue with next instruction.
471       }
472       else if (thread->thread_state() == _thread_in_vm &&
473                sig == SIGBUS && thread->doing_unsafe_access()) {
474         address next_pc = pc + 4;
475         next_pc = SharedRuntime::handle_unsafe_access(thread, next_pc);
476         os::Linux::ucontext_set_pc(uc, pc + 4);
477         return true;
478       }
479     }
480 
481     // Check to see if we caught the safepoint code in the
482     // process of write protecting the memory serialization page.
483     // It write enables the page immediately after protecting it
484     // so we can just return to retry the write.
485     if ((sig == SIGSEGV) &&
486         // Si_addr may not be valid due to a bug in the linux-ppc64 kernel (see comment above).
487         // Use is_memory_serialization instead of si_addr.
488         ((NativeInstruction*)pc)->is_memory_serialization(thread, ucVoid)) {
489       // Synchronization problem in the pseudo memory barrier code (bug id 6546278)
490       // Block current thread until the memory serialize page permission restored.
491       os::block_on_serialize_page_trap();
492       return true;
493     }
494   }
495 
496   if (stub != NULL) {
497     // Save all thread context in case we need to restore it.
498     if (thread != NULL) thread->set_saved_exception_pc(pc);
499     os::Linux::ucontext_set_pc(uc, stub);
500     return true;
501   }
502 
503   // signal-chaining
504   if (os::Linux::chained_handler(sig, info, ucVoid)) {
505     return true;
506   }
507 
508   if (!abort_if_unrecognized) {
509     // caller wants another chance, so give it to him
510     return false;
511   }
512 
513   if (pc == NULL && uc != NULL) {
514     pc = os::Linux::ucontext_get_pc(uc);
515   }
516 
517 report_and_die:
518   // unmask current signal
519   sigset_t newset;
520   sigemptyset(&newset);
521   sigaddset(&newset, sig);
522   sigprocmask(SIG_UNBLOCK, &newset, NULL);
523 
524   VMError::report_and_die(t, sig, pc, info, ucVoid);
525 
526   ShouldNotReachHere();
527   return false;
528 }
529 
530 void os::Linux::init_thread_fpu_state(void) {
531   // Disable FP exceptions.
532   __asm__ __volatile__ ("mtfsfi 6,0");
533 }
534 
535 int os::Linux::get_fpu_control_word(void) {
536   // x86 has problems with FPU precision after pthread_cond_timedwait().
537   // nothing to do on ppc64.
538   return 0;
539 }
540 
541 void os::Linux::set_fpu_control_word(int fpu_control) {
542   // x86 has problems with FPU precision after pthread_cond_timedwait().
543   // nothing to do on ppc64.
544 }
545 
546 ////////////////////////////////////////////////////////////////////////////////
547 // thread stack
548 
549 // Minimum usable stack sizes required to get to user code. Space for
550 // HotSpot guard pages is added later.
551 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
552 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
553 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
554 
555 // Return default stack size for thr_type.
556 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
557   // Default stack size (compiler thread needs larger stack).
558   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1024 * K);
559   return s;
560 }
561 
562 /////////////////////////////////////////////////////////////////////////////
563 // helper functions for fatal error handler
564 
565 void os::print_context(outputStream *st, const void *context) {
566   if (context == NULL) return;
567 
568   const ucontext_t* uc = (const ucontext_t*)context;
569 
570   st->print_cr("Registers:");
571   st->print("pc =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->nip);
572   st->print("lr =" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->link);
573   st->print("ctr=" INTPTR_FORMAT "  ", uc->uc_mcontext.regs->ctr);
574   st->cr();
575   for (int i = 0; i < 32; i++) {
576     st->print("r%-2d=" INTPTR_FORMAT "  ", i, uc->uc_mcontext.regs->gpr[i]);
577     if (i % 3 == 2) st->cr();
578   }
579   st->cr();
580   st->cr();
581 
582   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
583   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
584   print_hex_dump(st, (address)sp, (address)(sp + 128), sizeof(intptr_t));
585   st->cr();
586 
587   // Note: it may be unsafe to inspect memory near pc. For example, pc may
588   // point to garbage if entry point in an nmethod is corrupted. Leave
589   // this at the end, and hope for the best.
590   address pc = os::Linux::ucontext_get_pc(uc);
591   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
592   print_hex_dump(st, pc - 64, pc + 64, /*instrsize=*/4);
593   st->cr();
594 }
595 
596 void os::print_register_info(outputStream *st, const void *context) {
597   if (context == NULL) return;
598 
599   const ucontext_t *uc = (const ucontext_t*)context;
600 
601   st->print_cr("Register to memory mapping:");
602   st->cr();
603 
604   st->print("pc ="); print_location(st, (intptr_t)uc->uc_mcontext.regs->nip);
605   st->print("lr ="); print_location(st, (intptr_t)uc->uc_mcontext.regs->link);
606   st->print("ctr ="); print_location(st, (intptr_t)uc->uc_mcontext.regs->ctr);
607   for (int i = 0; i < 32; i++) {
608     st->print("r%-2d=", i);
609     print_location(st, uc->uc_mcontext.regs->gpr[i]);
610   }
611   st->cr();
612 }
613 
614 extern "C" {
615   int SpinPause() {
616     return 0;
617   }
618 }
619 
620 #ifndef PRODUCT
621 void os::verify_stack_alignment() {
622   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
623 }
624 #endif
625 
626 int os::extra_bang_size_in_bytes() {
627   // PPC does not require the additional stack bang.
628   return 0;
629 }