1 /*
  2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
  3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
  4  *
  5  * This code is free software; you can redistribute it and/or modify it
  6  * under the terms of the GNU General Public License version 2 only, as
  7  * published by the Free Software Foundation.
  8  *
  9  * This code is distributed in the hope that it will be useful, but WITHOUT
 10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 12  * version 2 for more details (a copy is included in the LICENSE file that
 13  * accompanied this code).
 14  *
 15  * You should have received a copy of the GNU General Public License version
 16  * 2 along with this work; if not, write to the Free Software Foundation,
 17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 18  *
 19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 20  * or visit www.oracle.com if you need additional information or have any
 21  * questions.
 22  *
 23  */
 24 
 25 // no precompiled headers
 26 #include "jvm.h"
 27 #include "asm/macroAssembler.hpp"
 28 #include "classfile/classLoader.hpp"
 29 #include "classfile/systemDictionary.hpp"
 30 #include "classfile/vmSymbols.hpp"
 31 #include "code/codeCache.hpp"
 32 #include "code/icBuffer.hpp"
 33 #include "code/vtableStubs.hpp"
 34 #include "interpreter/interpreter.hpp"
 35 #include "logging/log.hpp"
 36 #include "memory/allocation.inline.hpp"
 37 #include "os_share_linux.hpp"
 38 #include "prims/jniFastGetField.hpp"
 39 #include "prims/jvm_misc.hpp"
 40 #include "runtime/arguments.hpp"
 41 #include "runtime/extendedPC.hpp"
 42 #include "runtime/frame.inline.hpp"
 43 #include "runtime/interfaceSupport.inline.hpp"
 44 #include "runtime/java.hpp"
 45 #include "runtime/javaCalls.hpp"
 46 #include "runtime/mutexLocker.hpp"
 47 #include "runtime/osThread.hpp"
 48 #include "runtime/sharedRuntime.hpp"
 49 #include "runtime/stubRoutines.hpp"
 50 #include "runtime/thread.inline.hpp"
 51 #include "runtime/timer.hpp"
 52 #include "services/memTracker.hpp"
 53 #include "utilities/align.hpp"
 54 #include "utilities/debug.hpp"
 55 #include "utilities/events.hpp"
 56 #include "utilities/vmError.hpp"
 57 
 58 // put OS-includes here
 59 # include <sys/types.h>
 60 # include <sys/mman.h>
 61 # include <pthread.h>
 62 # include <signal.h>
 63 # include <errno.h>
 64 # include <dlfcn.h>
 65 # include <stdlib.h>
 66 # include <stdio.h>
 67 # include <unistd.h>
 68 # include <sys/resource.h>
 69 # include <pthread.h>
 70 # include <sys/stat.h>
 71 # include <sys/time.h>
 72 # include <sys/utsname.h>
 73 # include <sys/socket.h>
 74 # include <sys/wait.h>
 75 # include <pwd.h>
 76 # include <poll.h>
 77 # include <ucontext.h>
 78 #ifndef AMD64
 79 # include <fpu_control.h>
 80 #endif
 81 
 82 #ifdef AMD64
 83 #define REG_SP REG_RSP
 84 #define REG_PC REG_RIP
 85 #define REG_FP REG_RBP
 86 #define SPELL_REG_SP "rsp"
 87 #define SPELL_REG_FP "rbp"
 88 #else
 89 #define REG_SP REG_UESP
 90 #define REG_PC REG_EIP
 91 #define REG_FP REG_EBP
 92 #define SPELL_REG_SP "esp"
 93 #define SPELL_REG_FP "ebp"
 94 #endif // AMD64
 95 
 96 address os::current_stack_pointer() {
 97 #ifdef SPARC_WORKS
 98   void *esp;
 99   __asm__("mov %%" SPELL_REG_SP ", %0":"=r"(esp));
100   return (address) ((char*)esp + sizeof(long)*2);
101 #elif defined(__clang__)
102   void* esp;
103   __asm__ __volatile__ ("mov %%" SPELL_REG_SP ", %0":"=r"(esp):);
104   return (address) esp;
105 #else
106   register void *esp __asm__ (SPELL_REG_SP);
107   return (address) esp;
108 #endif
109 }
110 
111 char* os::non_memory_address_word() {
112   // Must never look like an address returned by reserve_memory,
113   // even in its subfields (as defined by the CPU immediate fields,
114   // if the CPU splits constants across multiple instructions).
115 
116   return (char*) -1;
117 }
118 
119 address os::Linux::ucontext_get_pc(const ucontext_t * uc) {
120   return (address)uc->uc_mcontext.gregs[REG_PC];
121 }
122 
123 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
124   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
125 }
126 
127 intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
128   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
129 }
130 
131 intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
132   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
133 }
134 
135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
136 // is currently interrupted by SIGPROF.
137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
138 // frames. Currently we don't do that on Linux, so it's the same as
139 // os::fetch_frame_from_context().
140 // This method is also used for stack overflow signal handling.
141 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
142   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
143 
144   assert(thread != NULL, "just checking");
145   assert(ret_sp != NULL, "just checking");
146   assert(ret_fp != NULL, "just checking");
147 
148   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
149 }
150 
151 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
152                     intptr_t** ret_sp, intptr_t** ret_fp) {
153 
154   ExtendedPC  epc;
155   const ucontext_t* uc = (const ucontext_t*)ucVoid;
156 
157   if (uc != NULL) {
158     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
159     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
160     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
161   } else {
162     // construct empty ExtendedPC for return value checking
163     epc = ExtendedPC(NULL);
164     if (ret_sp) *ret_sp = (intptr_t *)NULL;
165     if (ret_fp) *ret_fp = (intptr_t *)NULL;
166   }
167 
168   return epc;
169 }
170 
171 frame os::fetch_frame_from_context(const void* ucVoid) {
172   intptr_t* sp;
173   intptr_t* fp;
174   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
175   return frame(sp, fp, epc.pc());
176 }
177 
178 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
179   intptr_t* sp;
180   intptr_t* fp;
181   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
182   return frame(sp, fp, epc.pc());
183 }
184 
185 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
186   address pc = (address) os::Linux::ucontext_get_pc(uc);
187   if (Interpreter::contains(pc)) {
188     // interpreter performs stack banging after the fixed frame header has
189     // been generated while the compilers perform it before. To maintain
190     // semantic consistency between interpreted and compiled frames, the
191     // method returns the Java sender of the current frame.
192     *fr = os::fetch_frame_from_ucontext(thread, uc);
193     if (!fr->is_first_java_frame()) {
194       // get_frame_at_stack_banging_point() is only called when we
195       // have well defined stacks so java_sender() calls do not need
196       // to assert safe_for_sender() first.
197       *fr = fr->java_sender();
198     }
199   } else {
200     // more complex code with compiled code
201     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
202     CodeBlob* cb = CodeCache::find_blob(pc);
203     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
204       // Not sure where the pc points to, fallback to default
205       // stack overflow handling
206       return false;
207     } else {
208       // in compiled code, the stack banging is performed just after the return pc
209       // has been pushed on the stack
210       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
211       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
212       *fr = frame(sp + 1, fp, (address)*sp);
213       if (!fr->is_java_frame()) {
214         assert(!fr->is_first_frame(), "Safety check");
215         // See java_sender() comment above.
216         *fr = fr->java_sender();
217       }
218     }
219   }
220   assert(fr->is_java_frame(), "Safety check");
221   return true;
222 }
223 
224 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
225 // turned off by -fomit-frame-pointer,
226 frame os::get_sender_for_C_frame(frame* fr) {
227   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
228 }
229 
230 intptr_t* _get_previous_fp() {
231 #ifdef SPARC_WORKS
232   intptr_t **ebp;
233   __asm__("mov %%" SPELL_REG_FP ", %0":"=r"(ebp));
234 #elif defined(__clang__)
235   intptr_t **ebp;
236   __asm__ __volatile__ ("mov %%" SPELL_REG_FP ", %0":"=r"(ebp):);
237 #else
238   register intptr_t **ebp __asm__ (SPELL_REG_FP);
239 #endif
240   // ebp is for this frame (_get_previous_fp). We want the ebp for the
241   // caller of os::current_frame*(), so go up two frames. However, for
242   // optimized builds, _get_previous_fp() will be inlined, so only go
243   // up 1 frame in that case.
244 #ifdef _NMT_NOINLINE_
245   return **(intptr_t***)ebp;
246 #else
247   return *ebp;
248 #endif
249 }
250 
251 
252 frame os::current_frame() {
253   intptr_t* fp = _get_previous_fp();
254   frame myframe((intptr_t*)os::current_stack_pointer(),
255                 (intptr_t*)fp,
256                 CAST_FROM_FN_PTR(address, os::current_frame));
257   if (os::is_first_C_frame(&myframe)) {
258     // stack is not walkable
259     return frame();
260   } else {
261     return os::get_sender_for_C_frame(&myframe);
262   }
263 }
264 
265 // Utility functions
266 
267 // From IA32 System Programming Guide
268 enum {
269   trap_page_fault = 0xE
270 };
271 
272 extern "C" JNIEXPORT int
273 JVM_handle_linux_signal(int sig,
274                         siginfo_t* info,
275                         void* ucVoid,
276                         int abort_if_unrecognized) {
277   ucontext_t* uc = (ucontext_t*) ucVoid;
278 
279   Thread* t = Thread::current_or_null_safe();
280 
281   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
282   // (no destructors can be run)
283   os::ThreadCrashProtection::check_crash_protection(sig, t);
284 
285   SignalHandlerMark shm(t);
286 
287   // Note: it's not uncommon that JNI code uses signal/sigset to install
288   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
289   // or have a SIGILL handler when detecting CPU type). When that happens,
290   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
291   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
292   // that do not require siginfo/ucontext first.
293 
294   if (sig == SIGPIPE || sig == SIGXFSZ) {
295     // allow chained handler to go first
296     if (os::Linux::chained_handler(sig, info, ucVoid)) {
297       return true;
298     } else {
299       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
300       return true;
301     }
302   }
303 
304 #ifdef CAN_SHOW_REGISTERS_ON_ASSERT
305   if ((sig == SIGSEGV || sig == SIGBUS) && info != NULL && info->si_addr == g_assert_poison) {
306     handle_assert_poison_fault(ucVoid, info->si_addr);
307     return 1;
308   }
309 #endif
310 
311   JavaThread* thread = NULL;
312   VMThread* vmthread = NULL;
313   if (os::Linux::signal_handlers_are_installed) {
314     if (t != NULL ){
315       if(t->is_Java_thread()) {
316         thread = (JavaThread*)t;
317       }
318       else if(t->is_VM_thread()){
319         vmthread = (VMThread *)t;
320       }
321     }
322   }
323 /*
324   NOTE: does not seem to work on linux.
325   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
326     // can't decode this kind of signal
327     info = NULL;
328   } else {
329     assert(sig == info->si_signo, "bad siginfo");
330   }
331 */
332   // decide if this trap can be handled by a stub
333   address stub = NULL;
334 
335   address pc          = NULL;
336 
337   //%note os_trap_1
338   if (info != NULL && uc != NULL && thread != NULL) {
339     pc = (address) os::Linux::ucontext_get_pc(uc);
340 
341     if (StubRoutines::is_safefetch_fault(pc)) {
342       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
343       return 1;
344     }
345 
346 #ifndef AMD64
347     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
348     // This can happen in any running code (currently more frequently in
349     // interpreter code but has been seen in compiled code)
350     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
351       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
352             "to unstable signal handling in this distribution.");
353     }
354 #endif // AMD64
355 
356     // Handle ALL stack overflow variations here
357     if (sig == SIGSEGV) {
358       address addr = (address) info->si_addr;
359 
360       // check if fault address is within thread stack
361       if (thread->on_local_stack(addr)) {
362         // stack overflow
363         if (thread->in_stack_yellow_reserved_zone(addr)) {
364           if (thread->thread_state() == _thread_in_Java) {
365             if (thread->in_stack_reserved_zone(addr)) {
366               frame fr;
367               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
368                 assert(fr.is_java_frame(), "Must be a Java frame");
369                 frame activation =
370                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
371                 if (activation.sp() != NULL) {
372                   thread->disable_stack_reserved_zone();
373                   if (activation.is_interpreted_frame()) {
374                     thread->set_reserved_stack_activation((address)(
375                       activation.fp() + frame::interpreter_frame_initial_sp_offset));
376                   } else {
377                     thread->set_reserved_stack_activation((address)activation.unextended_sp());
378                   }
379                   return 1;
380                 }
381               }
382             }
383             // Throw a stack overflow exception.  Guard pages will be reenabled
384             // while unwinding the stack.
385             thread->disable_stack_yellow_reserved_zone();
386             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
387           } else {
388             // Thread was in the vm or native code.  Return and try to finish.
389             thread->disable_stack_yellow_reserved_zone();
390             return 1;
391           }
392         } else if (thread->in_stack_red_zone(addr)) {
393           // Fatal red zone violation.  Disable the guard pages and fall through
394           // to handle_unexpected_exception way down below.
395           thread->disable_stack_red_zone();
396           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
397 
398           // This is a likely cause, but hard to verify. Let's just print
399           // it as a hint.
400           tty->print_raw_cr("Please check if any of your loaded .so files has "
401                             "enabled executable stack (see man page execstack(8))");
402         } else {
403           // Accessing stack address below sp may cause SEGV if current
404           // thread has MAP_GROWSDOWN stack. This should only happen when
405           // current thread was created by user code with MAP_GROWSDOWN flag
406           // and then attached to VM. See notes in os_linux.cpp.
407           if (thread->osthread()->expanding_stack() == 0) {
408              thread->osthread()->set_expanding_stack();
409              if (os::Linux::manually_expand_stack(thread, addr)) {
410                thread->osthread()->clear_expanding_stack();
411                return 1;
412              }
413              thread->osthread()->clear_expanding_stack();
414           } else {
415              fatal("recursive segv. expanding stack.");
416           }
417         }
418       }
419     }
420 
421     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
422       // Verify that OS save/restore AVX registers.
423       stub = VM_Version::cpuinfo_cont_addr();
424     }
425 
426     if (thread->thread_state() == _thread_in_Java) {
427       // Java thread running in Java code => find exception handler if any
428       // a fault inside compiled code, the interpreter, or a stub
429 
430       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
431         stub = SharedRuntime::get_poll_stub(pc);
432       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
433         // BugId 4454115: A read from a MappedByteBuffer can fault
434         // here if the underlying file has been truncated.
435         // Do not crash the VM in such a case.
436         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
437         CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
438         if (nm != NULL && nm->has_unsafe_access()) {
439           address next_pc = Assembler::locate_next_instruction(pc);
440           stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
441         }
442       }
443       else
444 
445 #ifdef AMD64
446       if (sig == SIGFPE  &&
447           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
448         stub =
449           SharedRuntime::
450           continuation_for_implicit_exception(thread,
451                                               pc,
452                                               SharedRuntime::
453                                               IMPLICIT_DIVIDE_BY_ZERO);
454 #else
455       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
456         // HACK: si_code does not work on linux 2.2.12-20!!!
457         int op = pc[0];
458         if (op == 0xDB) {
459           // FIST
460           // TODO: The encoding of D2I in i486.ad can cause an exception
461           // prior to the fist instruction if there was an invalid operation
462           // pending. We want to dismiss that exception. From the win_32
463           // side it also seems that if it really was the fist causing
464           // the exception that we do the d2i by hand with different
465           // rounding. Seems kind of weird.
466           // NOTE: that we take the exception at the NEXT floating point instruction.
467           assert(pc[0] == 0xDB, "not a FIST opcode");
468           assert(pc[1] == 0x14, "not a FIST opcode");
469           assert(pc[2] == 0x24, "not a FIST opcode");
470           return true;
471         } else if (op == 0xF7) {
472           // IDIV
473           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
474         } else {
475           // TODO: handle more cases if we are using other x86 instructions
476           //   that can generate SIGFPE signal on linux.
477           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
478           fatal("please update this code.");
479         }
480 #endif // AMD64
481       } else if (sig == SIGSEGV &&
482                  MacroAssembler::uses_implicit_null_check(info->si_addr)) {
483           // Determination of interpreter/vtable stub/compiled code null exception
484           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
485       }
486     } else if (thread->thread_state() == _thread_in_vm &&
487                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
488                thread->doing_unsafe_access()) {
489         address next_pc = Assembler::locate_next_instruction(pc);
490         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
491     }
492 
493     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
494     // and the heap gets shrunk before the field access.
495     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
496       address addr = JNI_FastGetField::find_slowcase_pc(pc);
497       if (addr != (address)-1) {
498         stub = addr;
499       }
500     }
501 
502     // Check to see if we caught the safepoint code in the
503     // process of write protecting the memory serialization page.
504     // It write enables the page immediately after protecting it
505     // so we can just return to retry the write.
506     if ((sig == SIGSEGV) &&
507         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
508       // Block current thread until the memory serialize page permission restored.
509       os::block_on_serialize_page_trap();
510       return true;
511     }
512   }
513 
514 #ifndef AMD64
515   // Execution protection violation
516   //
517   // This should be kept as the last step in the triage.  We don't
518   // have a dedicated trap number for a no-execute fault, so be
519   // conservative and allow other handlers the first shot.
520   //
521   // Note: We don't test that info->si_code == SEGV_ACCERR here.
522   // this si_code is so generic that it is almost meaningless; and
523   // the si_code for this condition may change in the future.
524   // Furthermore, a false-positive should be harmless.
525   if (UnguardOnExecutionViolation > 0 &&
526       (sig == SIGSEGV || sig == SIGBUS) &&
527       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
528     int page_size = os::vm_page_size();
529     address addr = (address) info->si_addr;
530     address pc = os::Linux::ucontext_get_pc(uc);
531     // Make sure the pc and the faulting address are sane.
532     //
533     // If an instruction spans a page boundary, and the page containing
534     // the beginning of the instruction is executable but the following
535     // page is not, the pc and the faulting address might be slightly
536     // different - we still want to unguard the 2nd page in this case.
537     //
538     // 15 bytes seems to be a (very) safe value for max instruction size.
539     bool pc_is_near_addr =
540       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
541     bool instr_spans_page_boundary =
542       (align_down((intptr_t) pc ^ (intptr_t) addr,
543                        (intptr_t) page_size) > 0);
544 
545     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
546       static volatile address last_addr =
547         (address) os::non_memory_address_word();
548 
549       // In conservative mode, don't unguard unless the address is in the VM
550       if (addr != last_addr &&
551           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
552 
553         // Set memory to RWX and retry
554         address page_start = align_down(addr, page_size);
555         bool res = os::protect_memory((char*) page_start, page_size,
556                                       os::MEM_PROT_RWX);
557 
558         log_debug(os)("Execution protection violation "
559                       "at " INTPTR_FORMAT
560                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
561                       p2i(page_start), (res ? "success" : "failed"), errno);
562         stub = pc;
563 
564         // Set last_addr so if we fault again at the same address, we don't end
565         // up in an endless loop.
566         //
567         // There are two potential complications here.  Two threads trapping at
568         // the same address at the same time could cause one of the threads to
569         // think it already unguarded, and abort the VM.  Likely very rare.
570         //
571         // The other race involves two threads alternately trapping at
572         // different addresses and failing to unguard the page, resulting in
573         // an endless loop.  This condition is probably even more unlikely than
574         // the first.
575         //
576         // Although both cases could be avoided by using locks or thread local
577         // last_addr, these solutions are unnecessary complication: this
578         // handler is a best-effort safety net, not a complete solution.  It is
579         // disabled by default and should only be used as a workaround in case
580         // we missed any no-execute-unsafe VM code.
581 
582         last_addr = addr;
583       }
584     }
585   }
586 #endif // !AMD64
587 
588   if (stub != NULL) {
589     // save all thread context in case we need to restore it
590     if (thread != NULL) thread->set_saved_exception_pc(pc);
591 
592     os::Linux::ucontext_set_pc(uc, stub);
593     return true;
594   }
595 
596   // signal-chaining
597   if (os::Linux::chained_handler(sig, info, ucVoid)) {
598      return true;
599   }
600 
601   if (!abort_if_unrecognized) {
602     // caller wants another chance, so give it to him
603     return false;
604   }
605 
606   if (pc == NULL && uc != NULL) {
607     pc = os::Linux::ucontext_get_pc(uc);
608   }
609 
610   // unmask current signal
611   sigset_t newset;
612   sigemptyset(&newset);
613   sigaddset(&newset, sig);
614   sigprocmask(SIG_UNBLOCK, &newset, NULL);
615 
616   VMError::report_and_die(t, sig, pc, info, ucVoid);
617 
618   ShouldNotReachHere();
619   return true; // Mute compiler
620 }
621 
622 void os::Linux::init_thread_fpu_state(void) {
623 #ifndef AMD64
624   // set fpu to 53 bit precision
625   set_fpu_control_word(0x27f);
626 #endif // !AMD64
627 }
628 
629 int os::Linux::get_fpu_control_word(void) {
630 #ifdef AMD64
631   return 0;
632 #else
633   int fpu_control;
634   _FPU_GETCW(fpu_control);
635   return fpu_control & 0xffff;
636 #endif // AMD64
637 }
638 
639 void os::Linux::set_fpu_control_word(int fpu_control) {
640 #ifndef AMD64
641   _FPU_SETCW(fpu_control);
642 #endif // !AMD64
643 }
644 
645 // Check that the linux kernel version is 2.4 or higher since earlier
646 // versions do not support SSE without patches.
647 bool os::supports_sse() {
648 #ifdef AMD64
649   return true;
650 #else
651   struct utsname uts;
652   if( uname(&uts) != 0 ) return false; // uname fails?
653   char *minor_string;
654   int major = strtol(uts.release,&minor_string,10);
655   int minor = strtol(minor_string+1,NULL,10);
656   bool result = (major > 2 || (major==2 && minor >= 4));
657   log_info(os)("OS version is %d.%d, which %s support SSE/SSE2",
658                major,minor, result ? "DOES" : "does NOT");
659   return result;
660 #endif // AMD64
661 }
662 
663 bool os::is_allocatable(size_t bytes) {
664 #ifdef AMD64
665   // unused on amd64?
666   return true;
667 #else
668 
669   if (bytes < 2 * G) {
670     return true;
671   }
672 
673   char* addr = reserve_memory(bytes, NULL);
674 
675   if (addr != NULL) {
676     release_memory(addr, bytes);
677   }
678 
679   return addr != NULL;
680 #endif // AMD64
681 }
682 
683 ////////////////////////////////////////////////////////////////////////////////
684 // thread stack
685 
686 // Minimum usable stack sizes required to get to user code. Space for
687 // HotSpot guard pages is added later.
688 size_t os::Posix::_compiler_thread_min_stack_allowed = 48 * K;
689 size_t os::Posix::_java_thread_min_stack_allowed = 40 * K;
690 #ifdef _LP64
691 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
692 #else
693 size_t os::Posix::_vm_internal_thread_min_stack_allowed = (48 DEBUG_ONLY(+ 4)) * K;
694 #endif // _LP64
695 
696 // return default stack size for thr_type
697 size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
698   // default stack size (compiler thread needs larger stack)
699 #ifdef AMD64
700   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
701 #else
702   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
703 #endif // AMD64
704   return s;
705 }
706 
707 /////////////////////////////////////////////////////////////////////////////
708 // helper functions for fatal error handler
709 
710 void os::print_context(outputStream *st, const void *context) {
711   if (context == NULL) return;
712 
713   const ucontext_t *uc = (const ucontext_t*)context;
714   st->print_cr("Registers:");
715 #ifdef AMD64
716   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
717   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
718   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
719   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
720   st->cr();
721   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
722   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
723   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
724   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
725   st->cr();
726   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
727   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
728   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
729   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
730   st->cr();
731   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
732   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
733   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
734   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
735   st->cr();
736   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
737   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
738   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
739   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
740   st->cr();
741   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
742 #else
743   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
744   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
745   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
746   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
747   st->cr();
748   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
749   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
750   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
751   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
752   st->cr();
753   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
754   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
755   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
756 #endif // AMD64
757   st->cr();
758   st->cr();
759 
760   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
761   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
762   print_hex_dump(st, (address)sp, (address)(sp + 8), sizeof(intptr_t));
763   st->cr();
764 
765   // Note: it may be unsafe to inspect memory near pc. For example, pc may
766   // point to garbage if entry point in an nmethod is corrupted. Leave
767   // this at the end, and hope for the best.
768   address pc = os::Linux::ucontext_get_pc(uc);
769   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
770   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
771 }
772 
773 void os::print_register_info(outputStream *st, const void *context) {
774   if (context == NULL) return;
775 
776   const ucontext_t *uc = (const ucontext_t*)context;
777 
778   st->print_cr("Register to memory mapping:");
779   st->cr();
780 
781   // this is horrendously verbose but the layout of the registers in the
782   // context does not match how we defined our abstract Register set, so
783   // we can't just iterate through the gregs area
784 
785   // this is only for the "general purpose" registers
786 
787 #ifdef AMD64
788   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
789   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
790   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
791   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
792   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
793   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
794   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
795   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
796   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
797   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
798   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
799   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
800   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
801   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
802   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
803   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
804 #else
805   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
806   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
807   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
808   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
809   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
810   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
811   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
812   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
813 #endif // AMD64
814 
815   st->cr();
816 }
817 
818 void os::setup_fpu() {
819 #ifndef AMD64
820   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
821   __asm__ volatile (  "fldcw (%0)" :
822                       : "r" (fpu_cntrl) : "memory");
823 #endif // !AMD64
824 }
825 
826 #ifndef PRODUCT
827 void os::verify_stack_alignment() {
828 #ifdef AMD64
829   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
830 #endif
831 }
832 #endif
833 
834 
835 /*
836  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
837  * updates (JDK-8023956).
838  */
839 void os::workaround_expand_exec_shield_cs_limit() {
840 #if defined(IA32)
841   size_t page_size = os::vm_page_size();
842 
843   /*
844    * JDK-8197429
845    *
846    * Expand the stack mapping to the end of the initial stack before
847    * attempting to install the codebuf.  This is needed because newer
848    * Linux kernels impose a distance of a megabyte between stack
849    * memory and other memory regions.  If we try to install the
850    * codebuf before expanding the stack the installation will appear
851    * to succeed but we'll get a segfault later if we expand the stack
852    * in Java code.
853    *
854    */
855   if (os::is_primordial_thread()) {
856     address limit = Linux::initial_thread_stack_bottom();
857     if (! DisablePrimordialThreadGuardPages) {
858       limit += JavaThread::stack_red_zone_size() +
859         JavaThread::stack_yellow_zone_size();
860     }
861     os::Linux::expand_stack_to(limit);
862   }
863 
864   /*
865    * Take the highest VA the OS will give us and exec
866    *
867    * Although using -(pagesz) as mmap hint works on newer kernel as you would
868    * think, older variants affected by this work-around don't (search forward only).
869    *
870    * On the affected distributions, we understand the memory layout to be:
871    *
872    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
873    *
874    * A few pages south main stack will do it.
875    *
876    * If we are embedded in an app other than launcher (initial != main stack),
877    * we don't have much control or understanding of the address space, just let it slide.
878    */
879   char* hint = (char*)(Linux::initial_thread_stack_bottom() -
880                        (JavaThread::stack_guard_zone_size() + page_size));
881   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
882 
883   if (codebuf == NULL) {
884     // JDK-8197429: There may be a stack gap of one megabyte between
885     // the limit of the stack and the nearest memory region: this is a
886     // Linux kernel workaround for CVE-2017-1000364.  If we failed to
887     // map our codebuf, try again at an address one megabyte lower.
888     hint -= 1 * M;
889     codebuf = os::attempt_reserve_memory_at(page_size, hint);
890   }
891 
892   if ((codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true))) {
893     return; // No matter, we tried, best effort.
894   }
895 
896   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
897 
898   log_info(os)("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
899 
900   // Some code to exec: the 'ret' instruction
901   codebuf[0] = 0xC3;
902 
903   // Call the code in the codebuf
904   __asm__ volatile("call *%0" : : "r"(codebuf));
905 
906   // keep the page mapped so CS limit isn't reduced.
907 #endif
908 }
909 
910 int os::extra_bang_size_in_bytes() {
911   // JDK-8050147 requires the full cache line bang for x86.
912   return VM_Version::L1_line_size();
913 }