1 /*
   2  * Copyright (c) 2008, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
  26 #define CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
  27 
  28 #include "code/relocInfo.hpp"
  29 #include "code/relocInfo_ext.hpp"
  30 
  31 class BiasedLockingCounters;
  32 
  33 // Introduced AddressLiteral and its subclasses to ease portability from
  34 // x86 and avoid relocation issues
  35 class AddressLiteral {
  36   RelocationHolder _rspec;
  37   // Typically we use AddressLiterals we want to use their rval
  38   // However in some situations we want the lval (effect address) of the item.
  39   // We provide a special factory for making those lvals.
  40   bool _is_lval;
  41 
  42   address          _target;
  43 
  44  private:
  45   static relocInfo::relocType reloc_for_target(address target) {
  46     // Used for ExternalAddress or when the type is not specified
  47     // Sometimes ExternalAddress is used for values which aren't
  48     // exactly addresses, like the card table base.
  49     // external_word_type can't be used for values in the first page
  50     // so just skip the reloc in that case.
  51     return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
  52   }
  53 
  54   void set_rspec(relocInfo::relocType rtype);
  55 
  56  protected:
  57   // creation
  58   AddressLiteral()
  59     : _is_lval(false),
  60       _target(NULL)
  61   {}
  62 
  63   public:
  64 
  65   AddressLiteral(address target, relocInfo::relocType rtype) {
  66     _is_lval = false;
  67     _target = target;
  68     set_rspec(rtype);
  69   }
  70 
  71   AddressLiteral(address target, RelocationHolder const& rspec)
  72     : _rspec(rspec),
  73       _is_lval(false),
  74       _target(target)
  75   {}
  76 
  77   AddressLiteral(address target) {
  78     _is_lval = false;
  79     _target = target;
  80     set_rspec(reloc_for_target(target));
  81   }
  82 
  83   AddressLiteral addr() {
  84     AddressLiteral ret = *this;
  85     ret._is_lval = true;
  86     return ret;
  87   }
  88 
  89  private:
  90 
  91   address target() { return _target; }
  92   bool is_lval() { return _is_lval; }
  93 
  94   relocInfo::relocType reloc() const { return _rspec.type(); }
  95   const RelocationHolder& rspec() const { return _rspec; }
  96 
  97   friend class Assembler;
  98   friend class MacroAssembler;
  99   friend class Address;
 100   friend class LIR_Assembler;
 101   friend class InlinedAddress;
 102 };
 103 
 104 class ExternalAddress: public AddressLiteral {
 105 
 106   public:
 107 
 108   ExternalAddress(address target) : AddressLiteral(target) {}
 109 
 110 };
 111 
 112 class InternalAddress: public AddressLiteral {
 113 
 114   public:
 115 
 116   InternalAddress(address target) : AddressLiteral(target, relocInfo::internal_word_type) {}
 117 
 118 };
 119 
 120 // Inlined constants, for use with ldr_literal / bind_literal
 121 // Note: InlinedInteger not supported (use move_slow(Register,int[,cond]))
 122 class InlinedLiteral: StackObj {
 123  public:
 124   Label label; // need to be public for direct access with &
 125   InlinedLiteral() {
 126   }
 127 };
 128 
 129 class InlinedMetadata: public InlinedLiteral {
 130  private:
 131   Metadata *_data;
 132 
 133  public:
 134   InlinedMetadata(Metadata *data): InlinedLiteral() {
 135     _data = data;
 136   }
 137   Metadata *data() { return _data; }
 138 };
 139 
 140 // Currently unused
 141 // class InlinedOop: public InlinedLiteral {
 142 //  private:
 143 //   jobject _jobject;
 144 //
 145 //  public:
 146 //   InlinedOop(jobject target): InlinedLiteral() {
 147 //     _jobject = target;
 148 //   }
 149 //   jobject jobject() { return _jobject; }
 150 // };
 151 
 152 class InlinedAddress: public InlinedLiteral {
 153  private:
 154   AddressLiteral _literal;
 155 
 156  public:
 157 
 158   InlinedAddress(jobject object): InlinedLiteral(), _literal((address)object, relocInfo::oop_type) {
 159     ShouldNotReachHere(); // use mov_oop (or implement InlinedOop)
 160   }
 161 
 162   InlinedAddress(Metadata *data): InlinedLiteral(), _literal((address)data, relocInfo::metadata_type) {
 163     ShouldNotReachHere(); // use InlinedMetadata or mov_metadata
 164   }
 165 
 166   InlinedAddress(address target, const RelocationHolder &rspec): InlinedLiteral(), _literal(target, rspec) {
 167     assert(rspec.type() != relocInfo::oop_type, "Do not use InlinedAddress for oops");
 168     assert(rspec.type() != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas");
 169   }
 170 
 171   InlinedAddress(address target, relocInfo::relocType rtype): InlinedLiteral(), _literal(target, rtype) {
 172     assert(rtype != relocInfo::oop_type, "Do not use InlinedAddress for oops");
 173     assert(rtype != relocInfo::metadata_type, "Do not use InlinedAddress for metadatas");
 174   }
 175 
 176   // Note: default is relocInfo::none for InlinedAddress
 177   InlinedAddress(address target): InlinedLiteral(), _literal(target, relocInfo::none) {
 178   }
 179 
 180   address target() { return _literal.target(); }
 181 
 182   const RelocationHolder& rspec() const { return _literal.rspec(); }
 183 };
 184 
 185 class InlinedString: public InlinedLiteral {
 186  private:
 187   const char* _msg;
 188 
 189  public:
 190   InlinedString(const char* msg): InlinedLiteral() {
 191     _msg = msg;
 192   }
 193   const char* msg() { return _msg; }
 194 };
 195 
 196 class MacroAssembler: public Assembler {
 197 protected:
 198 
 199   // Support for VM calls
 200   //
 201 
 202   // This is the base routine called by the different versions of call_VM_leaf.
 203   void call_VM_leaf_helper(address entry_point, int number_of_arguments);
 204 
 205   // This is the base routine called by the different versions of call_VM. The interpreter
 206   // may customize this version by overriding it for its purposes (e.g., to save/restore
 207   // additional registers when doing a VM call).
 208   virtual void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions);
 209 public:
 210 
 211   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 212 
 213   // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 214   // The implementation is only non-empty for the InterpreterMacroAssembler,
 215   // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 216   virtual void check_and_handle_popframe() {}
 217   virtual void check_and_handle_earlyret() {}
 218 
 219   // By default, we do not need relocation information for non
 220   // patchable absolute addresses. However, when needed by some
 221   // extensions, ignore_non_patchable_relocations can be modified,
 222   // returning false to preserve all relocation information.
 223   inline bool ignore_non_patchable_relocations() { return true; }
 224 
 225   // Initially added to the Assembler interface as a pure virtual:
 226   //   RegisterConstant delayed_value(..)
 227   // for:
 228   //   6812678 macro assembler needs delayed binding of a few constants (for 6655638)
 229   // this was subsequently modified to its present name and return type
 230   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr, Register tmp, int offset);
 231 
 232 
 233   void align(int modulus);
 234 
 235   // Support for VM calls
 236   //
 237   // It is imperative that all calls into the VM are handled via the call_VM methods.
 238   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 239   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 240 
 241   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
 242   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
 243   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 244   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 245 
 246   // The following methods are required by templateTable.cpp,
 247   // but not used on ARM.
 248   void call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 249   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 250   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 251   void call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 252 
 253   // Note: The super_call_VM calls are not used on ARM
 254 
 255   // Raw call, without saving/restoring registers, exception handling, etc.
 256   // Mainly used from various stubs.
 257   // Note: if 'save_R9_if_scratched' is true, call_VM may on some
 258   // platforms save values on the stack. Set it to false (and handle
 259   // R9 in the callers) if the top of the stack must not be modified
 260   // by call_VM.
 261   void call_VM(address entry_point, bool save_R9_if_scratched);
 262 
 263   void call_VM_leaf(address entry_point);
 264   void call_VM_leaf(address entry_point, Register arg_1);
 265   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 266   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 267   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 268 
 269   void get_vm_result(Register oop_result, Register tmp);
 270   void get_vm_result_2(Register metadata_result, Register tmp);
 271 
 272   // Always sets/resets sp, which default to SP if (last_sp == noreg)
 273   // Optionally sets/resets fp (use noreg to avoid setting it)
 274   // Optionally sets/resets pc depending on save_last_java_pc flag
 275   // Note: when saving PC, set_last_Java_frame returns PC's offset in the code section
 276   //       (for oop_maps offset computation)
 277   int set_last_Java_frame(Register last_sp, Register last_fp, bool save_last_java_pc, Register tmp);
 278   void reset_last_Java_frame(Register tmp);
 279   // status set in set_last_Java_frame for reset_last_Java_frame
 280   bool _fp_saved;
 281   bool _pc_saved;
 282 
 283 #ifdef PRODUCT
 284 #define BLOCK_COMMENT(str) /* nothing */
 285 #define STOP(error) __ stop(error)
 286 #else
 287 #define BLOCK_COMMENT(str) __ block_comment(str)
 288 #define STOP(error) __ block_comment(error); __ stop(error)
 289 #endif
 290 
 291   void lookup_virtual_method(Register recv_klass,
 292                              Register vtable_index,
 293                              Register method_result);
 294 
 295   // Test sub_klass against super_klass, with fast and slow paths.
 296 
 297   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 298   // One of the three labels can be NULL, meaning take the fall-through.
 299   // No registers are killed, except temp_regs.
 300   void check_klass_subtype_fast_path(Register sub_klass,
 301                                      Register super_klass,
 302                                      Register temp_reg,
 303                                      Register temp_reg2,
 304                                      Label* L_success,
 305                                      Label* L_failure,
 306                                      Label* L_slow_path);
 307 
 308   // The rest of the type check; must be wired to a corresponding fast path.
 309   // It does not repeat the fast path logic, so don't use it standalone.
 310   // temp_reg3 can be noreg, if no temps are available.
 311   // Updates the sub's secondary super cache as necessary.
 312   // If set_cond_codes:
 313   // - condition codes will be Z on success, NZ on failure.
 314   // - temp_reg will be 0 on success, non-0 on failure
 315   void check_klass_subtype_slow_path(Register sub_klass,
 316                                      Register super_klass,
 317                                      Register temp_reg,
 318                                      Register temp_reg2,
 319                                      Register temp_reg3, // auto assigned if noreg
 320                                      Label* L_success,
 321                                      Label* L_failure,
 322                                      bool set_cond_codes = false);
 323 
 324   // Simplified, combined version, good for typical uses.
 325   // temp_reg3 can be noreg, if no temps are available. It is used only on slow path.
 326   // Falls through on failure.
 327   void check_klass_subtype(Register sub_klass,
 328                            Register super_klass,
 329                            Register temp_reg,
 330                            Register temp_reg2,
 331                            Register temp_reg3, // auto assigned on slow path if noreg
 332                            Label& L_success);
 333 
 334   // Returns address of receiver parameter, using tmp as base register. tmp and params_count can be the same.
 335   Address receiver_argument_address(Register params_base, Register params_count, Register tmp);
 336 
 337   void _verify_oop(Register reg, const char* s, const char* file, int line);
 338   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
 339 
 340   // TODO: verify method and klass metadata (compare against vptr?)
 341   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 342   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
 343 
 344 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
 345 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop ", __FILE__, __LINE__)
 346 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 347 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 348 
 349   void null_check(Register reg, Register tmp, int offset = -1);
 350   inline void null_check(Register reg) { null_check(reg, noreg, -1); } // for C1 lir_null_check
 351 
 352   // Puts address of allocated object into register `obj` and end of allocated object into register `obj_end`.
 353   void eden_allocate(Register obj, Register obj_end, Register tmp1, Register tmp2,
 354                      RegisterOrConstant size_expression, Label& slow_case);
 355   void tlab_allocate(Register obj, Register obj_end, Register tmp1,
 356                      RegisterOrConstant size_expression, Label& slow_case);
 357 
 358   void zero_memory(Register start, Register end, Register tmp);
 359 
 360   static bool needs_explicit_null_check(intptr_t offset);
 361 
 362   void arm_stack_overflow_check(int frame_size_in_bytes, Register tmp);
 363   void arm_stack_overflow_check(Register Rsize, Register tmp);
 364 
 365   void bang_stack_with_offset(int offset) {
 366     ShouldNotReachHere();
 367   }
 368 
 369   // Biased locking support
 370   // lock_reg and obj_reg must be loaded up with the appropriate values.
 371   // swap_reg must be supplied.
 372   // tmp_reg must be supplied.
 373   // Optional slow case is for implementations (interpreter and C1) which branch to
 374   // slow case directly. If slow_case is NULL, then leaves condition
 375   // codes set (for C2's Fast_Lock node) and jumps to done label.
 376   // Falls through for the fast locking attempt.
 377   // Returns offset of first potentially-faulting instruction for null
 378   // check info (currently consumed only by C1). If
 379   // swap_reg_contains_mark is true then returns -1 as it is assumed
 380   // the calling code has already passed any potential faults.
 381   // Notes:
 382   // - swap_reg and tmp_reg are scratched
 383   // - Rtemp was (implicitly) scratched and can now be specified as the tmp2
 384   int biased_locking_enter(Register obj_reg, Register swap_reg, Register tmp_reg,
 385                            bool swap_reg_contains_mark,
 386                            Register tmp2,
 387                            Label& done, Label& slow_case,
 388                            BiasedLockingCounters* counters = NULL);
 389   void biased_locking_exit(Register obj_reg, Register temp_reg, Label& done);
 390 
 391   // Building block for CAS cases of biased locking: makes CAS and records statistics.
 392   // Optional slow_case label is used to transfer control if CAS fails. Otherwise leaves condition codes set.
 393   void biased_locking_enter_with_cas(Register obj_reg, Register old_mark_reg, Register new_mark_reg,
 394                                      Register tmp, Label& slow_case, int* counter_addr);
 395 
 396   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 397 
 398   void nop() {
 399     mov(R0, R0);
 400   }
 401 
 402   void push(Register rd, AsmCondition cond = al) {
 403     assert(rd != SP, "unpredictable instruction");
 404     str(rd, Address(SP, -wordSize, pre_indexed), cond);
 405   }
 406 
 407   void push(RegisterSet reg_set, AsmCondition cond = al) {
 408     assert(!reg_set.contains(SP), "unpredictable instruction");
 409     stmdb(SP, reg_set, writeback, cond);
 410   }
 411 
 412   void pop(Register rd, AsmCondition cond = al) {
 413     assert(rd != SP, "unpredictable instruction");
 414     ldr(rd, Address(SP, wordSize, post_indexed), cond);
 415   }
 416 
 417   void pop(RegisterSet reg_set, AsmCondition cond = al) {
 418     assert(!reg_set.contains(SP), "unpredictable instruction");
 419     ldmia(SP, reg_set, writeback, cond);
 420   }
 421 
 422   void fpushd(FloatRegister fd, AsmCondition cond = al) {
 423     fstmdbd(SP, FloatRegisterSet(fd), writeback, cond);
 424   }
 425 
 426   void fpushs(FloatRegister fd, AsmCondition cond = al) {
 427     fstmdbs(SP, FloatRegisterSet(fd), writeback, cond);
 428   }
 429 
 430   void fpopd(FloatRegister fd, AsmCondition cond = al) {
 431     fldmiad(SP, FloatRegisterSet(fd), writeback, cond);
 432   }
 433 
 434   void fpops(FloatRegister fd, AsmCondition cond = al) {
 435     fldmias(SP, FloatRegisterSet(fd), writeback, cond);
 436   }
 437 
 438   // Order access primitives
 439   enum Membar_mask_bits {
 440     StoreStore = 1 << 3,
 441     LoadStore  = 1 << 2,
 442     StoreLoad  = 1 << 1,
 443     LoadLoad   = 1 << 0
 444   };
 445 
 446   void membar(Membar_mask_bits mask,
 447               Register tmp,
 448               bool preserve_flags = true,
 449               Register load_tgt = noreg);
 450 
 451   void breakpoint(AsmCondition cond = al);
 452   void stop(const char* msg);
 453   // prints msg and continues
 454   void warn(const char* msg);
 455   void unimplemented(const char* what = "");
 456   void should_not_reach_here()                   { stop("should not reach here"); }
 457   static void debug(const char* msg, const intx* registers);
 458 
 459   // Create a walkable frame to help tracking down who called this code.
 460   // Returns the frame size in words.
 461   int should_not_call_this() {
 462     raw_push(FP, LR);
 463     should_not_reach_here();
 464     flush();
 465     return 2; // frame_size_in_words (FP+LR)
 466   }
 467 
 468   int save_all_registers();
 469   void restore_all_registers();
 470   int save_caller_save_registers();
 471   void restore_caller_save_registers();
 472 
 473   void add_rc(Register dst, Register arg1, RegisterOrConstant arg2);
 474 
 475   // add_slow and mov_slow are used to manipulate offsets larger than 1024,
 476   // these functions are not expected to handle all possible constants,
 477   // only those that can really occur during compilation
 478   void add_slow(Register rd, Register rn, int c);
 479   void sub_slow(Register rd, Register rn, int c);
 480 
 481 
 482   void mov_slow(Register rd, intptr_t c, AsmCondition cond = al);
 483   void mov_slow(Register rd, const char *string);
 484   void mov_slow(Register rd, address addr);
 485 
 486   void patchable_mov_oop(Register rd, jobject o, int oop_index) {
 487     mov_oop(rd, o, oop_index);
 488   }
 489   void mov_oop(Register rd, jobject o, int index = 0, AsmCondition cond = al);
 490 
 491   void patchable_mov_metadata(Register rd, Metadata* o, int index) {
 492     mov_metadata(rd, o, index);
 493   }
 494   void mov_metadata(Register rd, Metadata* o, int index = 0);
 495 
 496   void mov_float(FloatRegister fd, jfloat c, AsmCondition cond = al);
 497   void mov_double(FloatRegister fd, jdouble c, AsmCondition cond = al);
 498 
 499 
 500   // Note: this variant of mov_address assumes the address moves with
 501   // the code. Do *not* implement it with non-relocated instructions,
 502   // unless PC-relative.
 503   void mov_relative_address(Register rd, address addr, AsmCondition cond = al) {
 504     int offset = addr - pc() - 8;
 505     assert((offset & 3) == 0, "bad alignment");
 506     if (offset >= 0) {
 507       assert(AsmOperand::is_rotated_imm(offset), "addr too far");
 508       add(rd, PC, offset, cond);
 509     } else {
 510       assert(AsmOperand::is_rotated_imm(-offset), "addr too far");
 511       sub(rd, PC, -offset, cond);
 512     }
 513   }
 514 
 515   // Runtime address that may vary from one execution to another. The
 516   // symbolic_reference describes what the address is, allowing
 517   // the address to be resolved in a different execution context.
 518   // Warning: do not implement as a PC relative address.
 519   void mov_address(Register rd, address addr, symbolic_Relocation::symbolic_reference t) {
 520     mov_address(rd, addr, RelocationHolder::none);
 521   }
 522 
 523   // rspec can be RelocationHolder::none (for ignored symbolic_Relocation).
 524   // In that case, the address is absolute and the generated code need
 525   // not be relocable.
 526   void mov_address(Register rd, address addr, RelocationHolder const& rspec) {
 527     assert(rspec.type() != relocInfo::runtime_call_type, "do not use mov_address for runtime calls");
 528     assert(rspec.type() != relocInfo::static_call_type, "do not use mov_address for relocable calls");
 529     if (rspec.type() == relocInfo::none) {
 530       // absolute address, relocation not needed
 531       mov_slow(rd, (intptr_t)addr);
 532       return;
 533     }
 534     if (VM_Version::supports_movw()) {
 535       relocate(rspec);
 536       int c = (int)addr;
 537       movw(rd, c & 0xffff);
 538       if ((unsigned int)c >> 16) {
 539         movt(rd, (unsigned int)c >> 16);
 540       }
 541       return;
 542     }
 543     Label skip_literal;
 544     InlinedAddress addr_literal(addr, rspec);
 545     ldr_literal(rd, addr_literal);
 546     b(skip_literal);
 547     bind_literal(addr_literal);
 548     bind(skip_literal);
 549   }
 550 
 551   // Note: Do not define mov_address for a Label
 552   //
 553   // Load from addresses potentially within the code are now handled
 554   // InlinedLiteral subclasses (to allow more flexibility on how the
 555   // ldr_literal is performed).
 556 
 557   void ldr_literal(Register rd, InlinedAddress& L) {
 558     assert(L.rspec().type() != relocInfo::runtime_call_type, "avoid ldr_literal for calls");
 559     assert(L.rspec().type() != relocInfo::static_call_type, "avoid ldr_literal for calls");
 560     relocate(L.rspec());
 561     ldr(rd, Address(PC, target(L.label) - pc() - 8));
 562   }
 563 
 564   void ldr_literal(Register rd, InlinedString& L) {
 565     const char* msg = L.msg();
 566     if (code()->consts()->contains((address)msg)) {
 567       // string address moves with the code
 568       ldr(rd, Address(PC, ((address)msg) - pc() - 8));
 569       return;
 570     }
 571     // Warning: use external strings with care. They are not relocated
 572     // if the code moves. If needed, use code_string to move them
 573     // to the consts section.
 574     ldr(rd, Address(PC, target(L.label) - pc() - 8));
 575   }
 576 
 577   void ldr_literal(Register rd, InlinedMetadata& L) {
 578     // relocation done in the bind_literal for metadatas
 579     ldr(rd, Address(PC, target(L.label) - pc() - 8));
 580   }
 581 
 582   void bind_literal(InlinedAddress& L) {
 583     bind(L.label);
 584     assert(L.rspec().type() != relocInfo::metadata_type, "Must use InlinedMetadata");
 585     // We currently do not use oop 'bound' literals.
 586     // If the code evolves and the following assert is triggered,
 587     // we need to implement InlinedOop (see InlinedMetadata).
 588     assert(L.rspec().type() != relocInfo::oop_type, "Inlined oops not supported");
 589     // Note: relocation is handled by relocate calls in ldr_literal
 590     AbstractAssembler::emit_address((address)L.target());
 591   }
 592 
 593   void bind_literal(InlinedString& L) {
 594     const char* msg = L.msg();
 595     if (code()->consts()->contains((address)msg)) {
 596       // The Label should not be used; avoid binding it
 597       // to detect errors.
 598       return;
 599     }
 600     bind(L.label);
 601     AbstractAssembler::emit_address((address)L.msg());
 602   }
 603 
 604   void bind_literal(InlinedMetadata& L) {
 605     bind(L.label);
 606     relocate(metadata_Relocation::spec_for_immediate());
 607     AbstractAssembler::emit_address((address)L.data());
 608   }
 609 
 610   void resolve_oop_handle(Register result);
 611   void load_mirror(Register mirror, Register method, Register tmp);
 612 
 613 #define ARM_INSTR_1(common_mnemonic, arm32_mnemonic, arg_type) \
 614   void common_mnemonic(arg_type arg) { \
 615       arm32_mnemonic(arg); \
 616   }
 617 
 618 #define ARM_INSTR_2(common_mnemonic, arm32_mnemonic, arg1_type, arg2_type) \
 619   void common_mnemonic(arg1_type arg1, arg2_type arg2) { \
 620       arm32_mnemonic(arg1, arg2); \
 621   }
 622 
 623 #define ARM_INSTR_3(common_mnemonic, arm32_mnemonic, arg1_type, arg2_type, arg3_type) \
 624   void common_mnemonic(arg1_type arg1, arg2_type arg2, arg3_type arg3) { \
 625       arm32_mnemonic(arg1, arg2, arg3); \
 626   }
 627 
 628   ARM_INSTR_1(jump, bx,  Register)
 629   ARM_INSTR_1(call, blx, Register)
 630 
 631   ARM_INSTR_2(cbz_32,  cbz,  Register, Label&)
 632   ARM_INSTR_2(cbnz_32, cbnz, Register, Label&)
 633 
 634   ARM_INSTR_2(ldr_u32, ldr,  Register, Address)
 635   ARM_INSTR_2(ldr_s32, ldr,  Register, Address)
 636   ARM_INSTR_2(str_32,  str,  Register, Address)
 637 
 638   ARM_INSTR_2(mvn_32,  mvn,  Register, Register)
 639   ARM_INSTR_2(cmp_32,  cmp,  Register, Register)
 640   ARM_INSTR_2(neg_32,  neg,  Register, Register)
 641   ARM_INSTR_2(clz_32,  clz,  Register, Register)
 642   ARM_INSTR_2(rbit_32, rbit, Register, Register)
 643 
 644   ARM_INSTR_2(cmp_32,  cmp,  Register, int)
 645   ARM_INSTR_2(cmn_32,  cmn,  Register, int)
 646 
 647   ARM_INSTR_3(add_32,  add,  Register, Register, Register)
 648   ARM_INSTR_3(sub_32,  sub,  Register, Register, Register)
 649   ARM_INSTR_3(subs_32, subs, Register, Register, Register)
 650   ARM_INSTR_3(mul_32,  mul,  Register, Register, Register)
 651   ARM_INSTR_3(and_32,  andr, Register, Register, Register)
 652   ARM_INSTR_3(orr_32,  orr,  Register, Register, Register)
 653   ARM_INSTR_3(eor_32,  eor,  Register, Register, Register)
 654 
 655   ARM_INSTR_3(add_32,  add,  Register, Register, AsmOperand)
 656   ARM_INSTR_3(sub_32,  sub,  Register, Register, AsmOperand)
 657   ARM_INSTR_3(orr_32,  orr,  Register, Register, AsmOperand)
 658   ARM_INSTR_3(eor_32,  eor,  Register, Register, AsmOperand)
 659   ARM_INSTR_3(and_32,  andr, Register, Register, AsmOperand)
 660 
 661 
 662   ARM_INSTR_3(add_32,  add,  Register, Register, int)
 663   ARM_INSTR_3(adds_32, adds, Register, Register, int)
 664   ARM_INSTR_3(sub_32,  sub,  Register, Register, int)
 665   ARM_INSTR_3(subs_32, subs, Register, Register, int)
 666 
 667   ARM_INSTR_2(tst_32,  tst,  Register, unsigned int)
 668   ARM_INSTR_2(tst_32,  tst,  Register, AsmOperand)
 669 
 670   ARM_INSTR_3(and_32,  andr, Register, Register, uint)
 671   ARM_INSTR_3(orr_32,  orr,  Register, Register, uint)
 672   ARM_INSTR_3(eor_32,  eor,  Register, Register, uint)
 673 
 674   ARM_INSTR_1(cmp_zero_float,  fcmpzs, FloatRegister)
 675   ARM_INSTR_1(cmp_zero_double, fcmpzd, FloatRegister)
 676 
 677   ARM_INSTR_2(ldr_float,   flds,   FloatRegister, Address)
 678   ARM_INSTR_2(str_float,   fsts,   FloatRegister, Address)
 679   ARM_INSTR_2(mov_float,   fcpys,  FloatRegister, FloatRegister)
 680   ARM_INSTR_2(neg_float,   fnegs,  FloatRegister, FloatRegister)
 681   ARM_INSTR_2(abs_float,   fabss,  FloatRegister, FloatRegister)
 682   ARM_INSTR_2(sqrt_float,  fsqrts, FloatRegister, FloatRegister)
 683   ARM_INSTR_2(cmp_float,   fcmps,  FloatRegister, FloatRegister)
 684 
 685   ARM_INSTR_3(add_float,   fadds,  FloatRegister, FloatRegister, FloatRegister)
 686   ARM_INSTR_3(sub_float,   fsubs,  FloatRegister, FloatRegister, FloatRegister)
 687   ARM_INSTR_3(mul_float,   fmuls,  FloatRegister, FloatRegister, FloatRegister)
 688   ARM_INSTR_3(div_float,   fdivs,  FloatRegister, FloatRegister, FloatRegister)
 689 
 690   ARM_INSTR_2(ldr_double,  fldd,   FloatRegister, Address)
 691   ARM_INSTR_2(str_double,  fstd,   FloatRegister, Address)
 692   ARM_INSTR_2(mov_double,  fcpyd,  FloatRegister, FloatRegister)
 693   ARM_INSTR_2(neg_double,  fnegd,  FloatRegister, FloatRegister)
 694   ARM_INSTR_2(cmp_double,  fcmpd,  FloatRegister, FloatRegister)
 695   ARM_INSTR_2(abs_double,  fabsd,  FloatRegister, FloatRegister)
 696   ARM_INSTR_2(sqrt_double, fsqrtd, FloatRegister, FloatRegister)
 697 
 698   ARM_INSTR_3(add_double,  faddd,  FloatRegister, FloatRegister, FloatRegister)
 699   ARM_INSTR_3(sub_double,  fsubd,  FloatRegister, FloatRegister, FloatRegister)
 700   ARM_INSTR_3(mul_double,  fmuld,  FloatRegister, FloatRegister, FloatRegister)
 701   ARM_INSTR_3(div_double,  fdivd,  FloatRegister, FloatRegister, FloatRegister)
 702 
 703   ARM_INSTR_2(convert_f2d, fcvtds, FloatRegister, FloatRegister)
 704   ARM_INSTR_2(convert_d2f, fcvtsd, FloatRegister, FloatRegister)
 705 
 706   ARM_INSTR_2(mov_fpr2gpr_float, fmrs, Register, FloatRegister)
 707 
 708 #undef ARM_INSTR_1
 709 #undef ARM_INSTR_2
 710 #undef ARM_INSTR_3
 711 
 712 
 713 
 714   void tbz(Register rt, int bit, Label& L) {
 715     assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
 716     tst(rt, 1 << bit);
 717     b(L, eq);
 718   }
 719 
 720   void tbnz(Register rt, int bit, Label& L) {
 721     assert(0 <= bit && bit < BitsPerWord, "bit number is out of range");
 722     tst(rt, 1 << bit);
 723     b(L, ne);
 724   }
 725 
 726   void cbz(Register rt, Label& L) {
 727     cmp(rt, 0);
 728     b(L, eq);
 729   }
 730 
 731   void cbz(Register rt, address target) {
 732     cmp(rt, 0);
 733     b(target, eq);
 734   }
 735 
 736   void cbnz(Register rt, Label& L) {
 737     cmp(rt, 0);
 738     b(L, ne);
 739   }
 740 
 741   void ret(Register dst = LR) {
 742     bx(dst);
 743   }
 744 
 745 
 746   Register zero_register(Register tmp) {
 747     mov(tmp, 0);
 748     return tmp;
 749   }
 750 
 751   void logical_shift_left(Register dst, Register src, int shift) {
 752     mov(dst, AsmOperand(src, lsl, shift));
 753   }
 754 
 755   void logical_shift_left_32(Register dst, Register src, int shift) {
 756     mov(dst, AsmOperand(src, lsl, shift));
 757   }
 758 
 759   void logical_shift_right(Register dst, Register src, int shift) {
 760     mov(dst, AsmOperand(src, lsr, shift));
 761   }
 762 
 763   void arith_shift_right(Register dst, Register src, int shift) {
 764     mov(dst, AsmOperand(src, asr, shift));
 765   }
 766 
 767   void asr_32(Register dst, Register src, int shift) {
 768     mov(dst, AsmOperand(src, asr, shift));
 769   }
 770 
 771   // If <cond> holds, compares r1 and r2. Otherwise, flags are set so that <cond> does not hold.
 772   void cond_cmp(Register r1, Register r2, AsmCondition cond) {
 773     cmp(r1, r2, cond);
 774   }
 775 
 776   // If <cond> holds, compares r and imm. Otherwise, flags are set so that <cond> does not hold.
 777   void cond_cmp(Register r, int imm, AsmCondition cond) {
 778     cmp(r, imm, cond);
 779   }
 780 
 781   void align_reg(Register dst, Register src, int align) {
 782     assert (is_power_of_2(align), "should be");
 783     bic(dst, src, align-1);
 784   }
 785 
 786   void prefetch_read(Address addr) {
 787     pld(addr);
 788   }
 789 
 790   void raw_push(Register r1, Register r2) {
 791     assert(r1->encoding() < r2->encoding(), "should be ordered");
 792     push(RegisterSet(r1) | RegisterSet(r2));
 793   }
 794 
 795   void raw_pop(Register r1, Register r2) {
 796     assert(r1->encoding() < r2->encoding(), "should be ordered");
 797     pop(RegisterSet(r1) | RegisterSet(r2));
 798   }
 799 
 800   void raw_push(Register r1, Register r2, Register r3) {
 801     assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
 802     push(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
 803   }
 804 
 805   void raw_pop(Register r1, Register r2, Register r3) {
 806     assert(r1->encoding() < r2->encoding() && r2->encoding() < r3->encoding(), "should be ordered");
 807     pop(RegisterSet(r1) | RegisterSet(r2) | RegisterSet(r3));
 808   }
 809 
 810   // Restores registers r1 and r2 previously saved by raw_push(r1, r2, ret_addr) and returns by ret_addr. Clobbers LR.
 811   void raw_pop_and_ret(Register r1, Register r2) {
 812     raw_pop(r1, r2, PC);
 813   }
 814 
 815   void indirect_jump(Address addr, Register scratch) {
 816     ldr(PC, addr);
 817   }
 818 
 819   void indirect_jump(InlinedAddress& literal, Register scratch) {
 820     ldr_literal(PC, literal);
 821   }
 822 
 823   void neg(Register dst, Register src) {
 824     rsb(dst, src, 0);
 825   }
 826 
 827   void branch_if_negative_32(Register r, Label& L) {
 828     // TODO: This function and branch_if_any_negative_32 could possibly
 829     // be revised after the aarch64 removal.
 830     // tbnz is not used instead of tst & b.mi because destination may be out of tbnz range (+-32KB)
 831     // since these methods are used in LIR_Assembler::emit_arraycopy() to jump to stub entry.
 832     tst_32(r, r);
 833     b(L, mi);
 834   }
 835 
 836   void branch_if_any_negative_32(Register r1, Register r2, Register tmp, Label& L) {
 837     orrs(tmp, r1, r2);
 838     b(L, mi);
 839   }
 840 
 841   void branch_if_any_negative_32(Register r1, Register r2, Register r3, Register tmp, Label& L) {
 842     orr_32(tmp, r1, r2);
 843     orrs(tmp, tmp, r3);
 844     b(L, mi);
 845   }
 846 
 847   void add_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
 848       add(dst, r1, AsmOperand(r2, lsl, shift));
 849   }
 850 
 851   void sub_ptr_scaled_int32(Register dst, Register r1, Register r2, int shift) {
 852     sub(dst, r1, AsmOperand(r2, lsl, shift));
 853   }
 854 
 855 
 856     // klass oop manipulations if compressed
 857 
 858   void load_klass(Register dst_klass, Register src_oop, AsmCondition cond = al);
 859 
 860   void store_klass(Register src_klass, Register dst_oop);
 861 
 862 
 863     // oop manipulations
 864 
 865   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg, Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 866   void store_heap_oop(Address obj, Register new_val, Register tmp1 = noreg, Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 867   void store_heap_oop_null(Address obj, Register new_val, Register tmp1 = noreg, Register tmp2 = noreg, Register tmp3 = noreg, DecoratorSet decorators = 0);
 868 
 869   void access_load_at(BasicType type, DecoratorSet decorators, Address src, Register dst, Register tmp1, Register tmp2, Register tmp3);
 870   void access_store_at(BasicType type, DecoratorSet decorators, Address obj, Register new_val, Register tmp1, Register tmp2, Register tmp3, bool is_null);
 871 
 872   // Resolves obj for access. Result is placed in the same register.
 873   // All other registers are preserved.
 874   void resolve(DecoratorSet decorators, Register obj);
 875 
 876 
 877   void ldr_global_ptr(Register reg, address address_of_global);
 878   void ldr_global_s32(Register reg, address address_of_global);
 879   void ldrb_global(Register reg, address address_of_global);
 880 
 881   // address_placeholder_instruction is invalid instruction and is used
 882   // as placeholder in code for address of label
 883   enum { address_placeholder_instruction = 0xFFFFFFFF };
 884 
 885   void emit_address(Label& L) {
 886     assert(!L.is_bound(), "otherwise address will not be patched");
 887     target(L);       // creates relocation which will be patched later
 888 
 889     assert ((offset() & (wordSize-1)) == 0, "should be aligned by word size");
 890 
 891     AbstractAssembler::emit_address((address)address_placeholder_instruction);
 892   }
 893 
 894   void b(address target, AsmCondition cond = al) {
 895     Assembler::b(target, cond);                 \
 896   }
 897   void b(Label& L, AsmCondition cond = al) {
 898     // internal jumps
 899     Assembler::b(target(L), cond);
 900   }
 901 
 902   void bl(address target, AsmCondition cond = al) {
 903     Assembler::bl(target, cond);
 904   }
 905   void bl(Label& L, AsmCondition cond = al) {
 906     // internal calls
 907     Assembler::bl(target(L), cond);
 908   }
 909 
 910   void adr(Register dest, Label& L, AsmCondition cond = al) {
 911     int delta = target(L) - pc() - 8;
 912     if (delta >= 0) {
 913       add(dest, PC, delta, cond);
 914     } else {
 915       sub(dest, PC, -delta, cond);
 916     }
 917   }
 918 
 919   // Variable-length jump and calls. We now distinguish only the
 920   // patchable case from the other cases. Patchable must be
 921   // distinguised from relocable. Relocable means the generated code
 922   // containing the jump/call may move. Patchable means that the
 923   // targeted address may be changed later.
 924 
 925   // Non patchable versions.
 926   // - used only for relocInfo::runtime_call_type and relocInfo::none
 927   // - may use relative or absolute format (do not use relocInfo::none
 928   //   if the generated code may move)
 929   // - the implementation takes into account switch to THUMB mode if the
 930   //   destination is a THUMB address
 931   // - the implementation supports far targets
 932   //
 933   // To reduce regression risk, scratch still defaults to noreg on
 934   // arm32. This results in patchable instructions. However, if
 935   // patching really matters, the call sites should be modified and
 936   // use patchable_call or patchable_jump. If patching is not required
 937   // and if a register can be cloberred, it should be explicitly
 938   // specified to allow future optimizations.
 939   void jump(address target,
 940             relocInfo::relocType rtype = relocInfo::runtime_call_type,
 941             Register scratch = noreg, AsmCondition cond = al);
 942 
 943   void call(address target,
 944             RelocationHolder rspec, AsmCondition cond = al);
 945 
 946   void call(address target,
 947             relocInfo::relocType rtype = relocInfo::runtime_call_type,
 948             AsmCondition cond = al) {
 949     call(target, Relocation::spec_simple(rtype), cond);
 950   }
 951 
 952   void jump(AddressLiteral dest) {
 953     jump(dest.target(), dest.reloc());
 954   }
 955   void jump(address dest, relocInfo::relocType rtype, AsmCondition cond) {
 956     jump(dest, rtype, Rtemp, cond);
 957   }
 958 
 959   void call(AddressLiteral dest) {
 960     call(dest.target(), dest.reloc());
 961   }
 962 
 963   // Patchable version:
 964   // - set_destination can be used to atomically change the target
 965   //
 966   // The targets for patchable_jump and patchable_call must be in the
 967   // code cache.
 968   // [ including possible extensions of the code cache, like AOT code ]
 969   //
 970   // To reduce regression risk, scratch still defaults to noreg on
 971   // arm32. If a register can be cloberred, it should be explicitly
 972   // specified to allow future optimizations.
 973   void patchable_jump(address target,
 974                       relocInfo::relocType rtype = relocInfo::runtime_call_type,
 975                       Register scratch = noreg, AsmCondition cond = al
 976                       );
 977 
 978   // patchable_call may scratch Rtemp
 979   int patchable_call(address target,
 980                      RelocationHolder const& rspec,
 981                      bool c2 = false);
 982 
 983   int patchable_call(address target,
 984                      relocInfo::relocType rtype,
 985                      bool c2 = false) {
 986     return patchable_call(target, Relocation::spec_simple(rtype), c2);
 987   }
 988 
 989 
 990   static bool _reachable_from_cache(address target);
 991   static bool _cache_fully_reachable();
 992   bool cache_fully_reachable();
 993   bool reachable_from_cache(address target);
 994 
 995   void zero_extend(Register rd, Register rn, int bits);
 996   void sign_extend(Register rd, Register rn, int bits);
 997 
 998   inline void zap_high_non_significant_bits(Register r) {
 999   }
1000 
1001   void cmpoop(Register obj1, Register obj2);
1002 
1003   void long_move(Register rd_lo, Register rd_hi,
1004                  Register rn_lo, Register rn_hi,
1005                  AsmCondition cond = al);
1006   void long_shift(Register rd_lo, Register rd_hi,
1007                   Register rn_lo, Register rn_hi,
1008                   AsmShift shift, Register count);
1009   void long_shift(Register rd_lo, Register rd_hi,
1010                   Register rn_lo, Register rn_hi,
1011                   AsmShift shift, int count);
1012 
1013   void atomic_cas(Register tmpreg1, Register tmpreg2, Register oldval, Register newval, Register base, int offset);
1014   void atomic_cas_bool(Register oldval, Register newval, Register base, int offset, Register tmpreg);
1015   void atomic_cas64(Register temp_lo, Register temp_hi, Register temp_result, Register oldval_lo, Register oldval_hi, Register newval_lo, Register newval_hi, Register base, int offset);
1016 
1017   void cas_for_lock_acquire(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
1018   void cas_for_lock_release(Register oldval, Register newval, Register base, Register tmp, Label &slow_case, bool allow_fallthrough_on_failure = false, bool one_shot = false);
1019 
1020 #ifndef PRODUCT
1021   // Preserves flags and all registers.
1022   // On SMP the updated value might not be visible to external observers without a sychronization barrier
1023   void cond_atomic_inc32(AsmCondition cond, int* counter_addr);
1024 #endif // !PRODUCT
1025 
1026   // unconditional non-atomic increment
1027   void inc_counter(address counter_addr, Register tmpreg1, Register tmpreg2);
1028   void inc_counter(int* counter_addr, Register tmpreg1, Register tmpreg2) {
1029     inc_counter((address) counter_addr, tmpreg1, tmpreg2);
1030   }
1031 
1032   void pd_patch_instruction(address branch, address target, const char* file, int line);
1033 
1034   // Loading and storing values by size and signed-ness;
1035   // size must not exceed wordSize (i.e. 8-byte values are not supported on 32-bit ARM);
1036   // each of these calls generates exactly one load or store instruction,
1037   // so src can be pre- or post-indexed address.
1038   // 32-bit ARM variants also support conditional execution
1039   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, AsmCondition cond = al);
1040   void store_sized_value(Register src, Address dst, size_t size_in_bytes, AsmCondition cond = al);
1041 
1042   void lookup_interface_method(Register recv_klass,
1043                                Register intf_klass,
1044                                RegisterOrConstant itable_index,
1045                                Register method_result,
1046                                Register temp_reg1,
1047                                Register temp_reg2,
1048                                Label& L_no_such_interface);
1049 
1050   // Compare char[] arrays aligned to 4 bytes.
1051   void char_arrays_equals(Register ary1, Register ary2,
1052                           Register limit, Register result,
1053                           Register chr1, Register chr2, Label& Ldone);
1054 
1055 
1056   void floating_cmp(Register dst);
1057 
1058   // improved x86 portability (minimizing source code changes)
1059 
1060   void ldr_literal(Register rd, AddressLiteral addr) {
1061     relocate(addr.rspec());
1062     ldr(rd, Address(PC, addr.target() - pc() - 8));
1063   }
1064 
1065   void lea(Register Rd, AddressLiteral addr) {
1066     // Never dereferenced, as on x86 (lval status ignored)
1067     mov_address(Rd, addr.target(), addr.rspec());
1068   }
1069 
1070   void restore_default_fp_mode();
1071 
1072 #ifdef COMPILER2
1073   void fast_lock(Register obj, Register box, Register scratch, Register scratch2);
1074   void fast_unlock(Register obj, Register box, Register scratch, Register scratch2);
1075 #endif
1076 
1077 
1078 };
1079 
1080 
1081 // The purpose of this class is to build several code fragments of the same size
1082 // in order to allow fast table branch.
1083 
1084 class FixedSizeCodeBlock {
1085 public:
1086   FixedSizeCodeBlock(MacroAssembler* masm, int size_in_instrs, bool enabled);
1087   ~FixedSizeCodeBlock();
1088 
1089 private:
1090   MacroAssembler* _masm;
1091   address _start;
1092   int _size_in_instrs;
1093   bool _enabled;
1094 };
1095 
1096 
1097 #endif // CPU_ARM_VM_MACROASSEMBLER_ARM_HPP
1098