1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/codeHeapState.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/nmethod.hpp"
  35 #include "code/pcDesc.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "jfr/jfrEvents.hpp"
  38 #include "logging/log.hpp"
  39 #include "logging/logStream.hpp"
  40 #include "memory/allocation.inline.hpp"
  41 #include "memory/iterator.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/method.inline.hpp"
  44 #include "oops/objArrayOop.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/verifyOopClosure.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/compilationPolicy.hpp"
  49 #include "runtime/deoptimization.hpp"
  50 #include "runtime/handles.inline.hpp"
  51 #include "runtime/icache.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sweeper.hpp"
  56 #include "runtime/vmThread.hpp"
  57 #include "services/memoryService.hpp"
  58 #include "utilities/align.hpp"
  59 #include "utilities/vmError.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef COMPILER1
  62 #include "c1/c1_Compilation.hpp"
  63 #include "c1/c1_Compiler.hpp"
  64 #endif
  65 #ifdef COMPILER2
  66 #include "opto/c2compiler.hpp"
  67 #include "opto/compile.hpp"
  68 #include "opto/node.hpp"
  69 #endif
  70 
  71 // Helper class for printing in CodeCache
  72 class CodeBlob_sizes {
  73  private:
  74   int count;
  75   int total_size;
  76   int header_size;
  77   int code_size;
  78   int stub_size;
  79   int relocation_size;
  80   int scopes_oop_size;
  81   int scopes_metadata_size;
  82   int scopes_data_size;
  83   int scopes_pcs_size;
  84 
  85  public:
  86   CodeBlob_sizes() {
  87     count            = 0;
  88     total_size       = 0;
  89     header_size      = 0;
  90     code_size        = 0;
  91     stub_size        = 0;
  92     relocation_size  = 0;
  93     scopes_oop_size  = 0;
  94     scopes_metadata_size  = 0;
  95     scopes_data_size = 0;
  96     scopes_pcs_size  = 0;
  97   }
  98 
  99   int total()                                    { return total_size; }
 100   bool is_empty()                                { return count == 0; }
 101 
 102   void print(const char* title) {
 103     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
 104                   count,
 105                   title,
 106                   (int)(total() / K),
 107                   header_size             * 100 / total_size,
 108                   relocation_size         * 100 / total_size,
 109                   code_size               * 100 / total_size,
 110                   stub_size               * 100 / total_size,
 111                   scopes_oop_size         * 100 / total_size,
 112                   scopes_metadata_size    * 100 / total_size,
 113                   scopes_data_size        * 100 / total_size,
 114                   scopes_pcs_size         * 100 / total_size);
 115   }
 116 
 117   void add(CodeBlob* cb) {
 118     count++;
 119     total_size       += cb->size();
 120     header_size      += cb->header_size();
 121     relocation_size  += cb->relocation_size();
 122     if (cb->is_nmethod()) {
 123       nmethod* nm = cb->as_nmethod_or_null();
 124       code_size        += nm->insts_size();
 125       stub_size        += nm->stub_size();
 126 
 127       scopes_oop_size  += nm->oops_size();
 128       scopes_metadata_size  += nm->metadata_size();
 129       scopes_data_size += nm->scopes_data_size();
 130       scopes_pcs_size  += nm->scopes_pcs_size();
 131     } else {
 132       code_size        += cb->code_size();
 133     }
 134   }
 135 };
 136 
 137 // Iterate over all CodeHeaps
 138 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 139 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 140 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 141 
 142 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 143 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 144 
 145 address CodeCache::_low_bound = 0;
 146 address CodeCache::_high_bound = 0;
 147 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 148 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 149 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = NULL;
 150 
 151 // Initialize arrays of CodeHeap subsets
 152 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 153 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 154 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 155 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 156 
 157 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 158   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 159   // Prepare error message
 160   const char* error = "Invalid code heap sizes";
 161   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 162                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 163           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 164 
 165   if (total_size > cache_size) {
 166     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 167     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 168     vm_exit_during_initialization(error, message);
 169   } else if (all_set && total_size != cache_size) {
 170     // All code heap sizes were explicitly set: total_size must equal cache_size
 171     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 172     vm_exit_during_initialization(error, message);
 173   }
 174 }
 175 
 176 void CodeCache::initialize_heaps() {
 177   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 178   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 179   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 180   size_t min_size           = os::vm_page_size();
 181   size_t cache_size         = ReservedCodeCacheSize;
 182   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 183   size_t profiled_size      = ProfiledCodeHeapSize;
 184   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 185   // Check if total size set via command line flags exceeds the reserved size
 186   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 187                    (profiled_set     ? profiled_size     : min_size),
 188                    (non_profiled_set ? non_profiled_size : min_size),
 189                    cache_size,
 190                    non_nmethod_set && profiled_set && non_profiled_set);
 191 
 192   // Determine size of compiler buffers
 193   size_t code_buffers_size = 0;
 194 #ifdef COMPILER1
 195   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 196   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 197   code_buffers_size += c1_count * Compiler::code_buffer_size();
 198 #endif
 199 #ifdef COMPILER2
 200   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 201   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 202   // Initial size of constant table (this may be increased if a compiled method needs more space)
 203   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 204 #endif
 205 
 206   // Increase default non_nmethod_size to account for compiler buffers
 207   if (!non_nmethod_set) {
 208     non_nmethod_size += code_buffers_size;
 209   }
 210   // Calculate default CodeHeap sizes if not set by user
 211   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 212     // Check if we have enough space for the non-nmethod code heap
 213     if (cache_size > non_nmethod_size) {
 214       // Use the default value for non_nmethod_size and one half of the
 215       // remaining size for non-profiled and one half for profiled methods
 216       size_t remaining_size = cache_size - non_nmethod_size;
 217       profiled_size = remaining_size / 2;
 218       non_profiled_size = remaining_size - profiled_size;
 219     } else {
 220       // Use all space for the non-nmethod heap and set other heaps to minimal size
 221       non_nmethod_size = cache_size - 2 * min_size;
 222       profiled_size = min_size;
 223       non_profiled_size = min_size;
 224     }
 225   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 226     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 227     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 228     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 229     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 230     if (non_profiled_set) {
 231       if (!profiled_set) {
 232         // Adapt size of profiled code heap
 233         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 234           // Not enough space available, set to minimum size
 235           diff_size += profiled_size - min_size;
 236           profiled_size = min_size;
 237         } else {
 238           profiled_size += diff_size;
 239           diff_size = 0;
 240         }
 241       }
 242     } else if (profiled_set) {
 243       // Adapt size of non-profiled code heap
 244       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 245         // Not enough space available, set to minimum size
 246         diff_size += non_profiled_size - min_size;
 247         non_profiled_size = min_size;
 248       } else {
 249         non_profiled_size += diff_size;
 250         diff_size = 0;
 251       }
 252     } else if (non_nmethod_set) {
 253       // Distribute remaining size between profiled and non-profiled code heaps
 254       diff_size = cache_size - non_nmethod_size;
 255       profiled_size = diff_size / 2;
 256       non_profiled_size = diff_size - profiled_size;
 257       diff_size = 0;
 258     }
 259     if (diff_size != 0) {
 260       // Use non-nmethod code heap for remaining space requirements
 261       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 262       non_nmethod_size += diff_size;
 263     }
 264   }
 265 
 266   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 267   if (!heap_available(CodeBlobType::MethodProfiled)) {
 268     non_profiled_size += profiled_size;
 269     profiled_size = 0;
 270   }
 271   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 272   if (!heap_available(CodeBlobType::MethodNonProfiled)) {
 273     non_nmethod_size += non_profiled_size;
 274     non_profiled_size = 0;
 275   }
 276   // Make sure we have enough space for VM internal code
 277   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 278   if (non_nmethod_size < min_code_cache_size) {
 279     vm_exit_during_initialization(err_msg(
 280         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 281         non_nmethod_size/K, min_code_cache_size/K));
 282   }
 283 
 284   // Verify sizes and update flag values
 285   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 286   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 287   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 288   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 289 
 290   // If large page support is enabled, align code heaps according to large
 291   // page size to make sure that code cache is covered by large pages.
 292   const size_t alignment = MAX2(page_size(false), (size_t) os::vm_allocation_granularity());
 293   non_nmethod_size = align_up(non_nmethod_size, alignment);
 294   profiled_size    = align_down(profiled_size, alignment);
 295 
 296   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 297   // parts for the individual heaps. The memory layout looks like this:
 298   // ---------- high -----------
 299   //    Non-profiled nmethods
 300   //      Profiled nmethods
 301   //         Non-nmethods
 302   // ---------- low ------------
 303   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 304   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 305   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 306   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 307   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 308 
 309   // Non-nmethods (stubs, adapters, ...)
 310   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 311   // Tier 2 and tier 3 (profiled) methods
 312   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 313   // Tier 1 and tier 4 (non-profiled) methods and native methods
 314   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 315 }
 316 
 317 size_t CodeCache::page_size(bool aligned) {
 318   if (os::can_execute_large_page_memory()) {
 319     return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, 8) :
 320                      os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8);
 321   } else {
 322     return os::vm_page_size();
 323   }
 324 }
 325 
 326 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 327   // Align and reserve space for code cache
 328   const size_t rs_ps = page_size();
 329   const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
 330   const size_t rs_size = align_up(size, rs_align);
 331   ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
 332   if (!rs.is_reserved()) {
 333     vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
 334                                           rs_size/K));
 335   }
 336 
 337   // Initialize bounds
 338   _low_bound = (address)rs.base();
 339   _high_bound = _low_bound + rs.size();
 340   return rs;
 341 }
 342 
 343 // Heaps available for allocation
 344 bool CodeCache::heap_available(int code_blob_type) {
 345   if (!SegmentedCodeCache) {
 346     // No segmentation: use a single code heap
 347     return (code_blob_type == CodeBlobType::All);
 348   } else if (Arguments::is_interpreter_only()) {
 349     // Interpreter only: we don't need any method code heaps
 350     return (code_blob_type == CodeBlobType::NonNMethod);
 351   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 352     // Tiered compilation: use all code heaps
 353     return (code_blob_type < CodeBlobType::All);
 354   } else {
 355     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 356     return (code_blob_type == CodeBlobType::NonNMethod) ||
 357            (code_blob_type == CodeBlobType::MethodNonProfiled);
 358   }
 359 }
 360 
 361 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 362   switch(code_blob_type) {
 363   case CodeBlobType::NonNMethod:
 364     return "NonNMethodCodeHeapSize";
 365     break;
 366   case CodeBlobType::MethodNonProfiled:
 367     return "NonProfiledCodeHeapSize";
 368     break;
 369   case CodeBlobType::MethodProfiled:
 370     return "ProfiledCodeHeapSize";
 371     break;
 372   }
 373   ShouldNotReachHere();
 374   return NULL;
 375 }
 376 
 377 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 378   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 379     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 380   } else {
 381     return lhs->code_blob_type() - rhs->code_blob_type();
 382   }
 383 }
 384 
 385 void CodeCache::add_heap(CodeHeap* heap) {
 386   assert(!Universe::is_fully_initialized(), "late heap addition?");
 387 
 388   _heaps->insert_sorted<code_heap_compare>(heap);
 389 
 390   int type = heap->code_blob_type();
 391   if (code_blob_type_accepts_compiled(type)) {
 392     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 393   }
 394   if (code_blob_type_accepts_nmethod(type)) {
 395     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 396   }
 397   if (code_blob_type_accepts_allocable(type)) {
 398     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 399   }
 400 }
 401 
 402 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 403   // Check if heap is needed
 404   if (!heap_available(code_blob_type)) {
 405     return;
 406   }
 407 
 408   // Create CodeHeap
 409   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 410   add_heap(heap);
 411 
 412   // Reserve Space
 413   size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
 414   size_initial = align_up(size_initial, os::vm_page_size());
 415   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 416     vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
 417                                           heap->name(), size_initial/K));
 418   }
 419 
 420   // Register the CodeHeap
 421   MemoryService::add_code_heap_memory_pool(heap, name);
 422 }
 423 
 424 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 425   FOR_ALL_HEAPS(heap) {
 426     if ((*heap)->contains(start)) {
 427       return *heap;
 428     }
 429   }
 430   return NULL;
 431 }
 432 
 433 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 434   assert(cb != NULL, "CodeBlob is null");
 435   FOR_ALL_HEAPS(heap) {
 436     if ((*heap)->contains_blob(cb)) {
 437       return *heap;
 438     }
 439   }
 440   ShouldNotReachHere();
 441   return NULL;
 442 }
 443 
 444 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 445   FOR_ALL_HEAPS(heap) {
 446     if ((*heap)->accepts(code_blob_type)) {
 447       return *heap;
 448     }
 449   }
 450   return NULL;
 451 }
 452 
 453 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 454   assert_locked_or_safepoint(CodeCache_lock);
 455   assert(heap != NULL, "heap is null");
 456   return (CodeBlob*)heap->first();
 457 }
 458 
 459 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 460   if (heap_available(code_blob_type)) {
 461     return first_blob(get_code_heap(code_blob_type));
 462   } else {
 463     return NULL;
 464   }
 465 }
 466 
 467 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 468   assert_locked_or_safepoint(CodeCache_lock);
 469   assert(heap != NULL, "heap is null");
 470   return (CodeBlob*)heap->next(cb);
 471 }
 472 
 473 /**
 474  * Do not seize the CodeCache lock here--if the caller has not
 475  * already done so, we are going to lose bigtime, since the code
 476  * cache will contain a garbage CodeBlob until the caller can
 477  * run the constructor for the CodeBlob subclass he is busy
 478  * instantiating.
 479  */
 480 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 481   // Possibly wakes up the sweeper thread.
 482   NMethodSweeper::notify(code_blob_type);
 483   assert_locked_or_safepoint(CodeCache_lock);
 484   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 485   if (size <= 0) {
 486     return NULL;
 487   }
 488   CodeBlob* cb = NULL;
 489 
 490   // Get CodeHeap for the given CodeBlobType
 491   CodeHeap* heap = get_code_heap(code_blob_type);
 492   assert(heap != NULL, "heap is null");
 493 
 494   while (true) {
 495     cb = (CodeBlob*)heap->allocate(size);
 496     if (cb != NULL) break;
 497     if (!heap->expand_by(CodeCacheExpansionSize)) {
 498       // Save original type for error reporting
 499       if (orig_code_blob_type == CodeBlobType::All) {
 500         orig_code_blob_type = code_blob_type;
 501       }
 502       // Expansion failed
 503       if (SegmentedCodeCache) {
 504         // Fallback solution: Try to store code in another code heap.
 505         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 506         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 507         // and force stack scanning if less than 10% of the code heap are free.
 508         int type = code_blob_type;
 509         switch (type) {
 510         case CodeBlobType::NonNMethod:
 511           type = CodeBlobType::MethodNonProfiled;
 512           break;
 513         case CodeBlobType::MethodNonProfiled:
 514           type = CodeBlobType::MethodProfiled;
 515           break;
 516         case CodeBlobType::MethodProfiled:
 517           // Avoid loop if we already tried that code heap
 518           if (type == orig_code_blob_type) {
 519             type = CodeBlobType::MethodNonProfiled;
 520           }
 521           break;
 522         }
 523         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 524           if (PrintCodeCacheExtension) {
 525             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 526                           heap->name(), get_code_heap(type)->name());
 527           }
 528           return allocate(size, type, orig_code_blob_type);
 529         }
 530       }
 531       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 532       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 533       return NULL;
 534     }
 535     if (PrintCodeCacheExtension) {
 536       ResourceMark rm;
 537       if (_nmethod_heaps->length() >= 1) {
 538         tty->print("%s", heap->name());
 539       } else {
 540         tty->print("CodeCache");
 541       }
 542       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 543                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 544                     (address)heap->high() - (address)heap->low_boundary());
 545     }
 546   }
 547   print_trace("allocation", cb, size);
 548   return cb;
 549 }
 550 
 551 void CodeCache::free(CodeBlob* cb) {
 552   assert_locked_or_safepoint(CodeCache_lock);
 553   CodeHeap* heap = get_code_heap(cb);
 554   print_trace("free", cb);
 555   if (cb->is_nmethod()) {
 556     heap->set_nmethod_count(heap->nmethod_count() - 1);
 557     if (((nmethod *)cb)->has_dependencies()) {
 558       _number_of_nmethods_with_dependencies--;
 559     }
 560   }
 561   if (cb->is_adapter_blob()) {
 562     heap->set_adapter_count(heap->adapter_count() - 1);
 563   }
 564 
 565   // Get heap for given CodeBlob and deallocate
 566   get_code_heap(cb)->deallocate(cb);
 567 
 568   assert(heap->blob_count() >= 0, "sanity check");
 569 }
 570 
 571 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
 572   assert_locked_or_safepoint(CodeCache_lock);
 573   guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
 574   print_trace("free_unused_tail", cb);
 575 
 576   // We also have to account for the extra space (i.e. header) used by the CodeBlob
 577   // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
 578   used += CodeBlob::align_code_offset(cb->header_size());
 579 
 580   // Get heap for given CodeBlob and deallocate its unused tail
 581   get_code_heap(cb)->deallocate_tail(cb, used);
 582   // Adjust the sizes of the CodeBlob
 583   cb->adjust_size(used);
 584 }
 585 
 586 void CodeCache::commit(CodeBlob* cb) {
 587   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 588   assert_locked_or_safepoint(CodeCache_lock);
 589   CodeHeap* heap = get_code_heap(cb);
 590   if (cb->is_nmethod()) {
 591     heap->set_nmethod_count(heap->nmethod_count() + 1);
 592     if (((nmethod *)cb)->has_dependencies()) {
 593       _number_of_nmethods_with_dependencies++;
 594     }
 595   }
 596   if (cb->is_adapter_blob()) {
 597     heap->set_adapter_count(heap->adapter_count() + 1);
 598   }
 599 
 600   // flush the hardware I-cache
 601   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 602 }
 603 
 604 bool CodeCache::contains(void *p) {
 605   // S390 uses contains() in current_frame(), which is used before
 606   // code cache initialization if NativeMemoryTracking=detail is set.
 607   S390_ONLY(if (_heaps == NULL) return false;)
 608   // It should be ok to call contains without holding a lock.
 609   FOR_ALL_HEAPS(heap) {
 610     if ((*heap)->contains(p)) {
 611       return true;
 612     }
 613   }
 614   return false;
 615 }
 616 
 617 bool CodeCache::contains(nmethod *nm) {
 618   return contains((void *)nm);
 619 }
 620 
 621 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 622 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 623 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 624 CodeBlob* CodeCache::find_blob(void* start) {
 625   CodeBlob* result = find_blob_unsafe(start);
 626   // We could potentially look up non_entrant methods
 627   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 628   return result;
 629 }
 630 
 631 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 632 // what you are doing)
 633 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 634   // NMT can walk the stack before code cache is created
 635   if (_heaps != NULL) {
 636     CodeHeap* heap = get_code_heap_containing(start);
 637     if (heap != NULL) {
 638       return heap->find_blob_unsafe(start);
 639     }
 640   }
 641   return NULL;
 642 }
 643 
 644 nmethod* CodeCache::find_nmethod(void* start) {
 645   CodeBlob* cb = find_blob(start);
 646   assert(cb->is_nmethod(), "did not find an nmethod");
 647   return (nmethod*)cb;
 648 }
 649 
 650 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 651   assert_locked_or_safepoint(CodeCache_lock);
 652   FOR_ALL_HEAPS(heap) {
 653     FOR_ALL_BLOBS(cb, *heap) {
 654       f(cb);
 655     }
 656   }
 657 }
 658 
 659 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 660   assert_locked_or_safepoint(CodeCache_lock);
 661   NMethodIterator iter;
 662   while(iter.next()) {
 663     f(iter.method());
 664   }
 665 }
 666 
 667 void CodeCache::metadata_do(void f(Metadata* m)) {
 668   assert_locked_or_safepoint(CodeCache_lock);
 669   NMethodIterator iter;
 670   while(iter.next_alive()) {
 671     iter.method()->metadata_do(f);
 672   }
 673   AOTLoader::metadata_do(f);
 674 }
 675 
 676 int CodeCache::alignment_unit() {
 677   return (int)_heaps->first()->alignment_unit();
 678 }
 679 
 680 int CodeCache::alignment_offset() {
 681   return (int)_heaps->first()->alignment_offset();
 682 }
 683 
 684 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 685 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 686   assert_locked_or_safepoint(CodeCache_lock);
 687   UnloadingScope scope(is_alive);
 688   CompiledMethodIterator iter;
 689   while(iter.next_alive()) {
 690     iter.method()->do_unloading(unloading_occurred);
 691   }
 692 }
 693 
 694 void CodeCache::blobs_do(CodeBlobClosure* f) {
 695   assert_locked_or_safepoint(CodeCache_lock);
 696   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 697     FOR_ALL_BLOBS(cb, *heap) {
 698       if (cb->is_alive()) {
 699         f->do_code_blob(cb);
 700 #ifdef ASSERT
 701         if (cb->is_nmethod()) {
 702           Universe::heap()->verify_nmethod((nmethod*)cb);
 703         }
 704 #endif //ASSERT
 705       }
 706     }
 707   }
 708 }
 709 
 710 // Walk the list of methods which might contain oops to the java heap.
 711 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 712   assert_locked_or_safepoint(CodeCache_lock);
 713 
 714   const bool fix_relocations = f->fix_relocations();
 715   debug_only(mark_scavenge_root_nmethods());
 716 
 717   nmethod* prev = NULL;
 718   nmethod* cur = scavenge_root_nmethods();
 719   while (cur != NULL) {
 720     debug_only(cur->clear_scavenge_root_marked());
 721     assert(cur->scavenge_root_not_marked(), "");
 722     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 723 
 724     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 725     LogTarget(Trace, gc, nmethod) lt;
 726     if (lt.is_enabled()) {
 727       LogStream ls(lt);
 728       CompileTask::print(&ls, cur,
 729         is_live ? "scavenge root " : "dead scavenge root", /*short_form:*/ true);
 730     }
 731     if (is_live) {
 732       // Perform cur->oops_do(f), maybe just once per nmethod.
 733       f->do_code_blob(cur);
 734     }
 735     nmethod* const next = cur->scavenge_root_link();
 736     // The scavengable nmethod list must contain all methods with scavengable
 737     // oops. It is safe to include more nmethod on the list, but we do not
 738     // expect any live non-scavengable nmethods on the list.
 739     if (fix_relocations) {
 740       if (!is_live || !cur->detect_scavenge_root_oops()) {
 741         unlink_scavenge_root_nmethod(cur, prev);
 742       } else {
 743         prev = cur;
 744       }
 745     }
 746     cur = next;
 747   }
 748 
 749   // Check for stray marks.
 750   debug_only(verify_perm_nmethods(NULL));
 751 }
 752 
 753 void CodeCache::register_scavenge_root_nmethod(nmethod* nm) {
 754   assert_locked_or_safepoint(CodeCache_lock);
 755   if (!nm->on_scavenge_root_list() && nm->detect_scavenge_root_oops()) {
 756     add_scavenge_root_nmethod(nm);
 757   }
 758 }
 759 
 760 void CodeCache::verify_scavenge_root_nmethod(nmethod* nm) {
 761   nm->verify_scavenge_root_oops();
 762 }
 763 
 764 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 765   assert_locked_or_safepoint(CodeCache_lock);
 766 
 767   nm->set_on_scavenge_root_list();
 768   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 769   set_scavenge_root_nmethods(nm);
 770   print_trace("add_scavenge_root", nm);
 771 }
 772 
 773 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 774   assert_locked_or_safepoint(CodeCache_lock);
 775 
 776   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 777          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 778 
 779   print_trace("unlink_scavenge_root", nm);
 780   if (prev == NULL) {
 781     set_scavenge_root_nmethods(nm->scavenge_root_link());
 782   } else {
 783     prev->set_scavenge_root_link(nm->scavenge_root_link());
 784   }
 785   nm->set_scavenge_root_link(NULL);
 786   nm->clear_on_scavenge_root_list();
 787 }
 788 
 789 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 790   assert_locked_or_safepoint(CodeCache_lock);
 791 
 792   print_trace("drop_scavenge_root", nm);
 793   nmethod* prev = NULL;
 794   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 795     if (cur == nm) {
 796       unlink_scavenge_root_nmethod(cur, prev);
 797       return;
 798     }
 799     prev = cur;
 800   }
 801   assert(false, "should have been on list");
 802 }
 803 
 804 void CodeCache::prune_scavenge_root_nmethods() {
 805   assert_locked_or_safepoint(CodeCache_lock);
 806 
 807   debug_only(mark_scavenge_root_nmethods());
 808 
 809   nmethod* last = NULL;
 810   nmethod* cur = scavenge_root_nmethods();
 811   while (cur != NULL) {
 812     nmethod* next = cur->scavenge_root_link();
 813     debug_only(cur->clear_scavenge_root_marked());
 814     assert(cur->scavenge_root_not_marked(), "");
 815     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 816 
 817     if (!cur->is_zombie() && !cur->is_unloaded()
 818         && cur->detect_scavenge_root_oops()) {
 819       // Keep it.  Advance 'last' to prevent deletion.
 820       last = cur;
 821     } else {
 822       // Prune it from the list, so we don't have to look at it any more.
 823       print_trace("prune_scavenge_root", cur);
 824       unlink_scavenge_root_nmethod(cur, last);
 825     }
 826     cur = next;
 827   }
 828 
 829   // Check for stray marks.
 830   debug_only(verify_perm_nmethods(NULL));
 831 }
 832 
 833 #ifndef PRODUCT
 834 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 835   // While we are here, verify the integrity of the list.
 836   mark_scavenge_root_nmethods();
 837   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 838     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 839     cur->clear_scavenge_root_marked();
 840   }
 841   verify_perm_nmethods(f);
 842 }
 843 
 844 // Temporarily mark nmethods that are claimed to be on the scavenge list.
 845 void CodeCache::mark_scavenge_root_nmethods() {
 846   NMethodIterator iter;
 847   while(iter.next_alive()) {
 848     nmethod* nm = iter.method();
 849     assert(nm->scavenge_root_not_marked(), "clean state");
 850     if (nm->on_scavenge_root_list())
 851       nm->set_scavenge_root_marked();
 852   }
 853 }
 854 
 855 // If the closure is given, run it on the unlisted nmethods.
 856 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 857 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 858   NMethodIterator iter;
 859   while(iter.next_alive()) {
 860     nmethod* nm = iter.method();
 861     bool call_f = (f_or_null != NULL);
 862     assert(nm->scavenge_root_not_marked(), "must be already processed");
 863     if (nm->on_scavenge_root_list())
 864       call_f = false;  // don't show this one to the client
 865     Universe::heap()->verify_nmethod(nm);
 866     if (call_f)  f_or_null->do_code_blob(nm);
 867   }
 868 }
 869 #endif //PRODUCT
 870 
 871 void CodeCache::verify_clean_inline_caches() {
 872 #ifdef ASSERT
 873   NMethodIterator iter;
 874   while(iter.next_alive()) {
 875     nmethod* nm = iter.method();
 876     assert(!nm->is_unloaded(), "Tautology");
 877     nm->verify_clean_inline_caches();
 878     nm->verify();
 879   }
 880 #endif
 881 }
 882 
 883 void CodeCache::verify_icholder_relocations() {
 884 #ifdef ASSERT
 885   // make sure that we aren't leaking icholders
 886   int count = 0;
 887   FOR_ALL_HEAPS(heap) {
 888     FOR_ALL_BLOBS(cb, *heap) {
 889       CompiledMethod *nm = cb->as_compiled_method_or_null();
 890       if (nm != NULL) {
 891         count += nm->verify_icholder_relocations();
 892       }
 893     }
 894   }
 895   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 896          CompiledICHolder::live_count(), "must agree");
 897 #endif
 898 }
 899 
 900 // Defer freeing of concurrently cleaned ExceptionCache entries until
 901 // after a global handshake operation.
 902 void CodeCache::release_exception_cache(ExceptionCache* entry) {
 903   if (SafepointSynchronize::is_at_safepoint()) {
 904     delete entry;
 905   } else {
 906     for (;;) {
 907       ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
 908       entry->set_purge_list_next(purge_list_head);
 909       if (Atomic::cmpxchg(entry, &_exception_cache_purge_list, purge_list_head) == purge_list_head) {
 910         break;
 911       }
 912     }
 913   }
 914 }
 915 
 916 // Delete exception caches that have been concurrently unlinked,
 917 // followed by a global handshake operation.
 918 void CodeCache::purge_exception_caches() {
 919   ExceptionCache* curr = _exception_cache_purge_list;
 920   while (curr != NULL) {
 921     ExceptionCache* next = curr->purge_list_next();
 922     delete curr;
 923     curr = next;
 924   }
 925   _exception_cache_purge_list = NULL;
 926 }
 927 
 928 void CodeCache::gc_prologue() { }
 929 
 930 void CodeCache::gc_epilogue() {
 931   prune_scavenge_root_nmethods();
 932 }
 933 
 934 uint8_t CodeCache::_unloading_cycle = 1;
 935 
 936 void CodeCache::increment_unloading_cycle() {
 937   if (_unloading_cycle == 1) {
 938     _unloading_cycle = 2;
 939   } else {
 940     _unloading_cycle = 1;
 941   }
 942 }
 943 
 944 CodeCache::UnloadingScope::UnloadingScope(BoolObjectClosure* is_alive)
 945   : _is_unloading_behaviour(is_alive)
 946 {
 947   IsUnloadingBehaviour::set_current(&_is_unloading_behaviour);
 948   increment_unloading_cycle();
 949   DependencyContext::gc_prologue();
 950 }
 951 
 952 CodeCache::UnloadingScope::~UnloadingScope() {
 953   IsUnloadingBehaviour::set_current(NULL);
 954   DependencyContext::gc_epilogue();
 955 }
 956 
 957 void CodeCache::verify_oops() {
 958   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 959   VerifyOopClosure voc;
 960   NMethodIterator iter;
 961   while(iter.next_alive()) {
 962     nmethod* nm = iter.method();
 963     nm->oops_do(&voc);
 964     nm->verify_oop_relocations();
 965   }
 966 }
 967 
 968 int CodeCache::blob_count(int code_blob_type) {
 969   CodeHeap* heap = get_code_heap(code_blob_type);
 970   return (heap != NULL) ? heap->blob_count() : 0;
 971 }
 972 
 973 int CodeCache::blob_count() {
 974   int count = 0;
 975   FOR_ALL_HEAPS(heap) {
 976     count += (*heap)->blob_count();
 977   }
 978   return count;
 979 }
 980 
 981 int CodeCache::nmethod_count(int code_blob_type) {
 982   CodeHeap* heap = get_code_heap(code_blob_type);
 983   return (heap != NULL) ? heap->nmethod_count() : 0;
 984 }
 985 
 986 int CodeCache::nmethod_count() {
 987   int count = 0;
 988   FOR_ALL_NMETHOD_HEAPS(heap) {
 989     count += (*heap)->nmethod_count();
 990   }
 991   return count;
 992 }
 993 
 994 int CodeCache::adapter_count(int code_blob_type) {
 995   CodeHeap* heap = get_code_heap(code_blob_type);
 996   return (heap != NULL) ? heap->adapter_count() : 0;
 997 }
 998 
 999 int CodeCache::adapter_count() {
1000   int count = 0;
1001   FOR_ALL_HEAPS(heap) {
1002     count += (*heap)->adapter_count();
1003   }
1004   return count;
1005 }
1006 
1007 address CodeCache::low_bound(int code_blob_type) {
1008   CodeHeap* heap = get_code_heap(code_blob_type);
1009   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
1010 }
1011 
1012 address CodeCache::high_bound(int code_blob_type) {
1013   CodeHeap* heap = get_code_heap(code_blob_type);
1014   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
1015 }
1016 
1017 size_t CodeCache::capacity() {
1018   size_t cap = 0;
1019   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1020     cap += (*heap)->capacity();
1021   }
1022   return cap;
1023 }
1024 
1025 size_t CodeCache::unallocated_capacity(int code_blob_type) {
1026   CodeHeap* heap = get_code_heap(code_blob_type);
1027   return (heap != NULL) ? heap->unallocated_capacity() : 0;
1028 }
1029 
1030 size_t CodeCache::unallocated_capacity() {
1031   size_t unallocated_cap = 0;
1032   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1033     unallocated_cap += (*heap)->unallocated_capacity();
1034   }
1035   return unallocated_cap;
1036 }
1037 
1038 size_t CodeCache::max_capacity() {
1039   size_t max_cap = 0;
1040   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1041     max_cap += (*heap)->max_capacity();
1042   }
1043   return max_cap;
1044 }
1045 
1046 /**
1047  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
1048  * is free, reverse_free_ratio() returns 4.
1049  */
1050 double CodeCache::reverse_free_ratio(int code_blob_type) {
1051   CodeHeap* heap = get_code_heap(code_blob_type);
1052   if (heap == NULL) {
1053     return 0;
1054   }
1055 
1056   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1057   double max_capacity = (double)heap->max_capacity();
1058   double result = max_capacity / unallocated_capacity;
1059   assert (max_capacity >= unallocated_capacity, "Must be");
1060   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1061   return result;
1062 }
1063 
1064 size_t CodeCache::bytes_allocated_in_freelists() {
1065   size_t allocated_bytes = 0;
1066   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1067     allocated_bytes += (*heap)->allocated_in_freelist();
1068   }
1069   return allocated_bytes;
1070 }
1071 
1072 int CodeCache::allocated_segments() {
1073   int number_of_segments = 0;
1074   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1075     number_of_segments += (*heap)->allocated_segments();
1076   }
1077   return number_of_segments;
1078 }
1079 
1080 size_t CodeCache::freelists_length() {
1081   size_t length = 0;
1082   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1083     length += (*heap)->freelist_length();
1084   }
1085   return length;
1086 }
1087 
1088 void icache_init();
1089 
1090 void CodeCache::initialize() {
1091   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1092 #ifdef COMPILER2
1093   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1094 #endif
1095   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1096   // This was originally just a check of the alignment, causing failure, instead, round
1097   // the code cache to the page size.  In particular, Solaris is moving to a larger
1098   // default page size.
1099   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1100 
1101   if (SegmentedCodeCache) {
1102     // Use multiple code heaps
1103     initialize_heaps();
1104   } else {
1105     // Use a single code heap
1106     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1107     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1108     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1109     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1110     add_heap(rs, "CodeCache", CodeBlobType::All);
1111   }
1112 
1113   // Initialize ICache flush mechanism
1114   // This service is needed for os::register_code_area
1115   icache_init();
1116 
1117   // Give OS a chance to register generated code area.
1118   // This is used on Windows 64 bit platforms to register
1119   // Structured Exception Handlers for our generated code.
1120   os::register_code_area((char*)low_bound(), (char*)high_bound());
1121 }
1122 
1123 void codeCache_init() {
1124   CodeCache::initialize();
1125   // Load AOT libraries and add AOT code heaps.
1126   AOTLoader::initialize();
1127 }
1128 
1129 //------------------------------------------------------------------------------------------------
1130 
1131 int CodeCache::number_of_nmethods_with_dependencies() {
1132   return _number_of_nmethods_with_dependencies;
1133 }
1134 
1135 void CodeCache::clear_inline_caches() {
1136   assert_locked_or_safepoint(CodeCache_lock);
1137   CompiledMethodIterator iter;
1138   while(iter.next_alive()) {
1139     iter.method()->clear_inline_caches();
1140   }
1141 }
1142 
1143 void CodeCache::cleanup_inline_caches() {
1144   assert_locked_or_safepoint(CodeCache_lock);
1145   NMethodIterator iter;
1146   while(iter.next_alive()) {
1147     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1148   }
1149 }
1150 
1151 // Keeps track of time spent for checking dependencies
1152 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1153 
1154 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1155   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1156   int number_of_marked_CodeBlobs = 0;
1157 
1158   // search the hierarchy looking for nmethods which are affected by the loading of this class
1159 
1160   // then search the interfaces this class implements looking for nmethods
1161   // which might be dependent of the fact that an interface only had one
1162   // implementor.
1163   // nmethod::check_all_dependencies works only correctly, if no safepoint
1164   // can happen
1165   NoSafepointVerifier nsv;
1166   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1167     Klass* d = str.klass();
1168     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1169   }
1170 
1171 #ifndef PRODUCT
1172   if (VerifyDependencies) {
1173     // Object pointers are used as unique identifiers for dependency arguments. This
1174     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1175     dependentCheckTime.start();
1176     nmethod::check_all_dependencies(changes);
1177     dependentCheckTime.stop();
1178   }
1179 #endif
1180 
1181   return number_of_marked_CodeBlobs;
1182 }
1183 
1184 CompiledMethod* CodeCache::find_compiled(void* start) {
1185   CodeBlob *cb = find_blob(start);
1186   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1187   return (CompiledMethod*)cb;
1188 }
1189 
1190 bool CodeCache::is_far_target(address target) {
1191 #if INCLUDE_AOT
1192   return NativeCall::is_far_call(_low_bound,  target) ||
1193          NativeCall::is_far_call(_high_bound, target);
1194 #else
1195   return false;
1196 #endif
1197 }
1198 
1199 #ifdef HOTSWAP
1200 int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1201   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1202   int number_of_marked_CodeBlobs = 0;
1203 
1204   // Deoptimize all methods of the evolving class itself
1205   Array<Method*>* old_methods = dependee->methods();
1206   for (int i = 0; i < old_methods->length(); i++) {
1207     ResourceMark rm;
1208     Method* old_method = old_methods->at(i);
1209     CompiledMethod* nm = old_method->code();
1210     if (nm != NULL) {
1211       nm->mark_for_deoptimization();
1212       number_of_marked_CodeBlobs++;
1213     }
1214   }
1215 
1216   CompiledMethodIterator iter;
1217   while(iter.next_alive()) {
1218     CompiledMethod* nm = iter.method();
1219     if (nm->is_marked_for_deoptimization()) {
1220       // ...Already marked in the previous pass; don't count it again.
1221     } else if (nm->is_evol_dependent_on(dependee)) {
1222       ResourceMark rm;
1223       nm->mark_for_deoptimization();
1224       number_of_marked_CodeBlobs++;
1225     } else  {
1226       // flush caches in case they refer to a redefined Method*
1227       nm->clear_inline_caches();
1228     }
1229   }
1230 
1231   return number_of_marked_CodeBlobs;
1232 }
1233 #endif // HOTSWAP
1234 
1235 
1236 // Deoptimize all methods
1237 void CodeCache::mark_all_nmethods_for_deoptimization() {
1238   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1239   CompiledMethodIterator iter;
1240   while(iter.next_alive()) {
1241     CompiledMethod* nm = iter.method();
1242     if (!nm->method()->is_method_handle_intrinsic()) {
1243       nm->mark_for_deoptimization();
1244     }
1245   }
1246 }
1247 
1248 int CodeCache::mark_for_deoptimization(Method* dependee) {
1249   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1250   int number_of_marked_CodeBlobs = 0;
1251 
1252   CompiledMethodIterator iter;
1253   while(iter.next_alive()) {
1254     CompiledMethod* nm = iter.method();
1255     if (nm->is_dependent_on_method(dependee)) {
1256       ResourceMark rm;
1257       nm->mark_for_deoptimization();
1258       number_of_marked_CodeBlobs++;
1259     }
1260   }
1261 
1262   return number_of_marked_CodeBlobs;
1263 }
1264 
1265 void CodeCache::make_marked_nmethods_not_entrant() {
1266   assert_locked_or_safepoint(CodeCache_lock);
1267   CompiledMethodIterator iter;
1268   while(iter.next_alive()) {
1269     CompiledMethod* nm = iter.method();
1270     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1271       nm->make_not_entrant();
1272     }
1273   }
1274 }
1275 
1276 // Flushes compiled methods dependent on dependee.
1277 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1278   assert_lock_strong(Compile_lock);
1279 
1280   if (number_of_nmethods_with_dependencies() == 0) return;
1281 
1282   // CodeCache can only be updated by a thread_in_VM and they will all be
1283   // stopped during the safepoint so CodeCache will be safe to update without
1284   // holding the CodeCache_lock.
1285 
1286   KlassDepChange changes(dependee);
1287 
1288   // Compute the dependent nmethods
1289   if (mark_for_deoptimization(changes) > 0) {
1290     // At least one nmethod has been marked for deoptimization
1291     VM_Deoptimize op;
1292     VMThread::execute(&op);
1293   }
1294 }
1295 
1296 #ifdef HOTSWAP
1297 // Flushes compiled methods dependent on dependee in the evolutionary sense
1298 void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1299   // --- Compile_lock is not held. However we are at a safepoint.
1300   assert_locked_or_safepoint(Compile_lock);
1301   if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1302 
1303   // CodeCache can only be updated by a thread_in_VM and they will all be
1304   // stopped during the safepoint so CodeCache will be safe to update without
1305   // holding the CodeCache_lock.
1306 
1307   // Compute the dependent nmethods
1308   if (mark_for_evol_deoptimization(ev_k) > 0) {
1309     // At least one nmethod has been marked for deoptimization
1310 
1311     // All this already happens inside a VM_Operation, so we'll do all the work here.
1312     // Stuff copied from VM_Deoptimize and modified slightly.
1313 
1314     // We do not want any GCs to happen while we are in the middle of this VM operation
1315     ResourceMark rm;
1316     DeoptimizationMarker dm;
1317 
1318     // Deoptimize all activations depending on marked nmethods
1319     Deoptimization::deoptimize_dependents();
1320 
1321     // Make the dependent methods not entrant
1322     make_marked_nmethods_not_entrant();
1323   }
1324 }
1325 #endif // HOTSWAP
1326 
1327 
1328 // Flushes compiled methods dependent on dependee
1329 void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1330   // --- Compile_lock is not held. However we are at a safepoint.
1331   assert_locked_or_safepoint(Compile_lock);
1332 
1333   // CodeCache can only be updated by a thread_in_VM and they will all be
1334   // stopped dring the safepoint so CodeCache will be safe to update without
1335   // holding the CodeCache_lock.
1336 
1337   // Compute the dependent nmethods
1338   if (mark_for_deoptimization(m_h()) > 0) {
1339     // At least one nmethod has been marked for deoptimization
1340 
1341     // All this already happens inside a VM_Operation, so we'll do all the work here.
1342     // Stuff copied from VM_Deoptimize and modified slightly.
1343 
1344     // We do not want any GCs to happen while we are in the middle of this VM operation
1345     ResourceMark rm;
1346     DeoptimizationMarker dm;
1347 
1348     // Deoptimize all activations depending on marked nmethods
1349     Deoptimization::deoptimize_dependents();
1350 
1351     // Make the dependent methods not entrant
1352     make_marked_nmethods_not_entrant();
1353   }
1354 }
1355 
1356 void CodeCache::verify() {
1357   assert_locked_or_safepoint(CodeCache_lock);
1358   FOR_ALL_HEAPS(heap) {
1359     (*heap)->verify();
1360     FOR_ALL_BLOBS(cb, *heap) {
1361       if (cb->is_alive()) {
1362         cb->verify();
1363       }
1364     }
1365   }
1366 }
1367 
1368 // A CodeHeap is full. Print out warning and report event.
1369 PRAGMA_DIAG_PUSH
1370 PRAGMA_FORMAT_NONLITERAL_IGNORED
1371 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1372   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1373   CodeHeap* heap = get_code_heap(code_blob_type);
1374   assert(heap != NULL, "heap is null");
1375 
1376   if ((heap->full_count() == 0) || print) {
1377     // Not yet reported for this heap, report
1378     if (SegmentedCodeCache) {
1379       ResourceMark rm;
1380       stringStream msg1_stream, msg2_stream;
1381       msg1_stream.print("%s is full. Compiler has been disabled.",
1382                         get_code_heap_name(code_blob_type));
1383       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1384                  get_code_heap_flag_name(code_blob_type));
1385       const char *msg1 = msg1_stream.as_string();
1386       const char *msg2 = msg2_stream.as_string();
1387 
1388       log_warning(codecache)("%s", msg1);
1389       log_warning(codecache)("%s", msg2);
1390       warning("%s", msg1);
1391       warning("%s", msg2);
1392     } else {
1393       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1394       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1395 
1396       log_warning(codecache)("%s", msg1);
1397       log_warning(codecache)("%s", msg2);
1398       warning("%s", msg1);
1399       warning("%s", msg2);
1400     }
1401     ResourceMark rm;
1402     stringStream s;
1403     // Dump code cache into a buffer before locking the tty.
1404     {
1405       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1406       print_summary(&s);
1407     }
1408     {
1409       ttyLocker ttyl;
1410       tty->print("%s", s.as_string());
1411     }
1412 
1413     if (heap->full_count() == 0) {
1414       LogTarget(Debug, codecache) lt;
1415       if (lt.is_enabled()) {
1416         CompileBroker::print_heapinfo(tty, "all", "4096"); // details, may be a lot!
1417       }
1418     }
1419   }
1420 
1421   heap->report_full();
1422 
1423   EventCodeCacheFull event;
1424   if (event.should_commit()) {
1425     event.set_codeBlobType((u1)code_blob_type);
1426     event.set_startAddress((u8)heap->low_boundary());
1427     event.set_commitedTopAddress((u8)heap->high());
1428     event.set_reservedTopAddress((u8)heap->high_boundary());
1429     event.set_entryCount(heap->blob_count());
1430     event.set_methodCount(heap->nmethod_count());
1431     event.set_adaptorCount(heap->adapter_count());
1432     event.set_unallocatedCapacity(heap->unallocated_capacity());
1433     event.set_fullCount(heap->full_count());
1434     event.commit();
1435   }
1436 }
1437 PRAGMA_DIAG_POP
1438 
1439 void CodeCache::print_memory_overhead() {
1440   size_t wasted_bytes = 0;
1441   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1442       CodeHeap* curr_heap = *heap;
1443       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1444         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1445         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1446       }
1447   }
1448   // Print bytes that are allocated in the freelist
1449   ttyLocker ttl;
1450   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1451   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1452   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1453   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1454 }
1455 
1456 //------------------------------------------------------------------------------------------------
1457 // Non-product version
1458 
1459 #ifndef PRODUCT
1460 
1461 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1462   if (PrintCodeCache2) {  // Need to add a new flag
1463     ResourceMark rm;
1464     if (size == 0)  size = cb->size();
1465     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1466   }
1467 }
1468 
1469 void CodeCache::print_internals() {
1470   int nmethodCount = 0;
1471   int runtimeStubCount = 0;
1472   int adapterCount = 0;
1473   int deoptimizationStubCount = 0;
1474   int uncommonTrapStubCount = 0;
1475   int bufferBlobCount = 0;
1476   int total = 0;
1477   int nmethodAlive = 0;
1478   int nmethodNotEntrant = 0;
1479   int nmethodZombie = 0;
1480   int nmethodUnloaded = 0;
1481   int nmethodJava = 0;
1482   int nmethodNative = 0;
1483   int max_nm_size = 0;
1484   ResourceMark rm;
1485 
1486   int i = 0;
1487   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1488     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1489       tty->print_cr("-- %s --", (*heap)->name());
1490     }
1491     FOR_ALL_BLOBS(cb, *heap) {
1492       total++;
1493       if (cb->is_nmethod()) {
1494         nmethod* nm = (nmethod*)cb;
1495 
1496         if (Verbose && nm->method() != NULL) {
1497           ResourceMark rm;
1498           char *method_name = nm->method()->name_and_sig_as_C_string();
1499           tty->print("%s", method_name);
1500           if(nm->is_alive()) { tty->print_cr(" alive"); }
1501           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1502           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1503         }
1504 
1505         nmethodCount++;
1506 
1507         if(nm->is_alive()) { nmethodAlive++; }
1508         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1509         if(nm->is_zombie()) { nmethodZombie++; }
1510         if(nm->is_unloaded()) { nmethodUnloaded++; }
1511         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1512 
1513         if(nm->method() != NULL && nm->is_java_method()) {
1514           nmethodJava++;
1515           max_nm_size = MAX2(max_nm_size, nm->size());
1516         }
1517       } else if (cb->is_runtime_stub()) {
1518         runtimeStubCount++;
1519       } else if (cb->is_deoptimization_stub()) {
1520         deoptimizationStubCount++;
1521       } else if (cb->is_uncommon_trap_stub()) {
1522         uncommonTrapStubCount++;
1523       } else if (cb->is_adapter_blob()) {
1524         adapterCount++;
1525       } else if (cb->is_buffer_blob()) {
1526         bufferBlobCount++;
1527       }
1528     }
1529   }
1530 
1531   int bucketSize = 512;
1532   int bucketLimit = max_nm_size / bucketSize + 1;
1533   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1534   memset(buckets, 0, sizeof(int) * bucketLimit);
1535 
1536   NMethodIterator iter;
1537   while(iter.next()) {
1538     nmethod* nm = iter.method();
1539     if(nm->method() != NULL && nm->is_java_method()) {
1540       buckets[nm->size() / bucketSize]++;
1541     }
1542   }
1543 
1544   tty->print_cr("Code Cache Entries (total of %d)",total);
1545   tty->print_cr("-------------------------------------------------");
1546   tty->print_cr("nmethods: %d",nmethodCount);
1547   tty->print_cr("\talive: %d",nmethodAlive);
1548   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1549   tty->print_cr("\tzombie: %d",nmethodZombie);
1550   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1551   tty->print_cr("\tjava: %d",nmethodJava);
1552   tty->print_cr("\tnative: %d",nmethodNative);
1553   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1554   tty->print_cr("adapters: %d",adapterCount);
1555   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1556   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1557   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1558   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1559   tty->print_cr("-------------------------------------------------");
1560 
1561   for(int i=0; i<bucketLimit; i++) {
1562     if(buckets[i] != 0) {
1563       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1564       tty->fill_to(40);
1565       tty->print_cr("%d",buckets[i]);
1566     }
1567   }
1568 
1569   FREE_C_HEAP_ARRAY(int, buckets);
1570   print_memory_overhead();
1571 }
1572 
1573 #endif // !PRODUCT
1574 
1575 void CodeCache::print() {
1576   print_summary(tty);
1577 
1578 #ifndef PRODUCT
1579   if (!Verbose) return;
1580 
1581   CodeBlob_sizes live;
1582   CodeBlob_sizes dead;
1583 
1584   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1585     FOR_ALL_BLOBS(cb, *heap) {
1586       if (!cb->is_alive()) {
1587         dead.add(cb);
1588       } else {
1589         live.add(cb);
1590       }
1591     }
1592   }
1593 
1594   tty->print_cr("CodeCache:");
1595   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1596 
1597   if (!live.is_empty()) {
1598     live.print("live");
1599   }
1600   if (!dead.is_empty()) {
1601     dead.print("dead");
1602   }
1603 
1604   if (WizardMode) {
1605      // print the oop_map usage
1606     int code_size = 0;
1607     int number_of_blobs = 0;
1608     int number_of_oop_maps = 0;
1609     int map_size = 0;
1610     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1611       FOR_ALL_BLOBS(cb, *heap) {
1612         if (cb->is_alive()) {
1613           number_of_blobs++;
1614           code_size += cb->code_size();
1615           ImmutableOopMapSet* set = cb->oop_maps();
1616           if (set != NULL) {
1617             number_of_oop_maps += set->count();
1618             map_size           += set->nr_of_bytes();
1619           }
1620         }
1621       }
1622     }
1623     tty->print_cr("OopMaps");
1624     tty->print_cr("  #blobs    = %d", number_of_blobs);
1625     tty->print_cr("  code size = %d", code_size);
1626     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1627     tty->print_cr("  map size  = %d", map_size);
1628   }
1629 
1630 #endif // !PRODUCT
1631 }
1632 
1633 void CodeCache::print_summary(outputStream* st, bool detailed) {
1634   int full_count = 0;
1635   FOR_ALL_HEAPS(heap_iterator) {
1636     CodeHeap* heap = (*heap_iterator);
1637     size_t total = (heap->high_boundary() - heap->low_boundary());
1638     if (_heaps->length() >= 1) {
1639       st->print("%s:", heap->name());
1640     } else {
1641       st->print("CodeCache:");
1642     }
1643     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1644                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1645                  total/K, (total - heap->unallocated_capacity())/K,
1646                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1647 
1648     if (detailed) {
1649       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1650                    p2i(heap->low_boundary()),
1651                    p2i(heap->high()),
1652                    p2i(heap->high_boundary()));
1653 
1654       full_count += get_codemem_full_count(heap->code_blob_type());
1655     }
1656   }
1657 
1658   if (detailed) {
1659     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1660                        " adapters=" UINT32_FORMAT,
1661                        blob_count(), nmethod_count(), adapter_count());
1662     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1663                  "enabled" : Arguments::mode() == Arguments::_int ?
1664                  "disabled (interpreter mode)" :
1665                  "disabled (not enough contiguous free space left)");
1666     st->print_cr("              stopped_count=%d, restarted_count=%d",
1667                  CompileBroker::get_total_compiler_stopped_count(),
1668                  CompileBroker::get_total_compiler_restarted_count());
1669     st->print_cr(" full_count=%d", full_count);
1670   }
1671 }
1672 
1673 void CodeCache::print_codelist(outputStream* st) {
1674   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1675 
1676   CompiledMethodIterator iter;
1677   while (iter.next_alive()) {
1678     CompiledMethod* cm = iter.method();
1679     ResourceMark rm;
1680     char* method_name = cm->method()->name_and_sig_as_C_string();
1681     st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1682                  cm->compile_id(), cm->comp_level(), cm->get_state(),
1683                  method_name,
1684                  (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1685   }
1686 }
1687 
1688 void CodeCache::print_layout(outputStream* st) {
1689   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1690   ResourceMark rm;
1691   print_summary(st, true);
1692 }
1693 
1694 void CodeCache::log_state(outputStream* st) {
1695   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1696             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1697             blob_count(), nmethod_count(), adapter_count(),
1698             unallocated_capacity());
1699 }
1700 
1701 //---<  BEGIN  >--- CodeHeap State Analytics.
1702 
1703 void CodeCache::aggregate(outputStream *out, const char* granularity) {
1704   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1705     CodeHeapState::aggregate(out, (*heap), granularity);
1706   }
1707 }
1708 
1709 void CodeCache::discard(outputStream *out) {
1710   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1711     CodeHeapState::discard(out, (*heap));
1712   }
1713 }
1714 
1715 void CodeCache::print_usedSpace(outputStream *out) {
1716   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1717     CodeHeapState::print_usedSpace(out, (*heap));
1718   }
1719 }
1720 
1721 void CodeCache::print_freeSpace(outputStream *out) {
1722   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1723     CodeHeapState::print_freeSpace(out, (*heap));
1724   }
1725 }
1726 
1727 void CodeCache::print_count(outputStream *out) {
1728   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1729     CodeHeapState::print_count(out, (*heap));
1730   }
1731 }
1732 
1733 void CodeCache::print_space(outputStream *out) {
1734   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1735     CodeHeapState::print_space(out, (*heap));
1736   }
1737 }
1738 
1739 void CodeCache::print_age(outputStream *out) {
1740   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1741     CodeHeapState::print_age(out, (*heap));
1742   }
1743 }
1744 
1745 void CodeCache::print_names(outputStream *out) {
1746   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1747     CodeHeapState::print_names(out, (*heap));
1748   }
1749 }
1750 //---<  END  >--- CodeHeap State Analytics.