1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "code/codeBlob.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/codeHeapState.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/dependencies.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "code/pcDesc.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "jfr/jfrEvents.hpp"
  37 #include "logging/log.hpp"
  38 #include "logging/logStream.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/iterator.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/method.inline.hpp"
  43 #include "oops/objArrayOop.hpp"
  44 #include "oops/oop.inline.hpp"
  45 #include "oops/verifyOopClosure.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/compilationPolicy.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/icache.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/safepointVerifiers.hpp"
  54 #include "runtime/sweeper.hpp"
  55 #include "runtime/vmThread.hpp"
  56 #include "services/memoryService.hpp"
  57 #include "utilities/align.hpp"
  58 #include "utilities/vmError.hpp"
  59 #include "utilities/xmlstream.hpp"
  60 #ifdef COMPILER1
  61 #include "c1/c1_Compilation.hpp"
  62 #include "c1/c1_Compiler.hpp"
  63 #endif
  64 #ifdef COMPILER2
  65 #include "opto/c2compiler.hpp"
  66 #include "opto/compile.hpp"
  67 #include "opto/node.hpp"
  68 #endif
  69 
  70 // Helper class for printing in CodeCache
  71 class CodeBlob_sizes {
  72  private:
  73   int count;
  74   int total_size;
  75   int header_size;
  76   int code_size;
  77   int stub_size;
  78   int relocation_size;
  79   int scopes_oop_size;
  80   int scopes_metadata_size;
  81   int scopes_data_size;
  82   int scopes_pcs_size;
  83 
  84  public:
  85   CodeBlob_sizes() {
  86     count            = 0;
  87     total_size       = 0;
  88     header_size      = 0;
  89     code_size        = 0;
  90     stub_size        = 0;
  91     relocation_size  = 0;
  92     scopes_oop_size  = 0;
  93     scopes_metadata_size  = 0;
  94     scopes_data_size = 0;
  95     scopes_pcs_size  = 0;
  96   }
  97 
  98   int total()                                    { return total_size; }
  99   bool is_empty()                                { return count == 0; }
 100 
 101   void print(const char* title) {
 102     tty->print_cr(" #%d %s = %dK (hdr %d%%,  loc %d%%, code %d%%, stub %d%%, [oops %d%%, metadata %d%%, data %d%%, pcs %d%%])",
 103                   count,
 104                   title,
 105                   (int)(total() / K),
 106                   header_size             * 100 / total_size,
 107                   relocation_size         * 100 / total_size,
 108                   code_size               * 100 / total_size,
 109                   stub_size               * 100 / total_size,
 110                   scopes_oop_size         * 100 / total_size,
 111                   scopes_metadata_size    * 100 / total_size,
 112                   scopes_data_size        * 100 / total_size,
 113                   scopes_pcs_size         * 100 / total_size);
 114   }
 115 
 116   void add(CodeBlob* cb) {
 117     count++;
 118     total_size       += cb->size();
 119     header_size      += cb->header_size();
 120     relocation_size  += cb->relocation_size();
 121     if (cb->is_nmethod()) {
 122       nmethod* nm = cb->as_nmethod_or_null();
 123       code_size        += nm->insts_size();
 124       stub_size        += nm->stub_size();
 125 
 126       scopes_oop_size  += nm->oops_size();
 127       scopes_metadata_size  += nm->metadata_size();
 128       scopes_data_size += nm->scopes_data_size();
 129       scopes_pcs_size  += nm->scopes_pcs_size();
 130     } else {
 131       code_size        += cb->code_size();
 132     }
 133   }
 134 };
 135 
 136 // Iterate over all CodeHeaps
 137 #define FOR_ALL_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _heaps->begin(); heap != _heaps->end(); ++heap)
 138 #define FOR_ALL_NMETHOD_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _nmethod_heaps->begin(); heap != _nmethod_heaps->end(); ++heap)
 139 #define FOR_ALL_ALLOCABLE_HEAPS(heap) for (GrowableArrayIterator<CodeHeap*> heap = _allocable_heaps->begin(); heap != _allocable_heaps->end(); ++heap)
 140 
 141 // Iterate over all CodeBlobs (cb) on the given CodeHeap
 142 #define FOR_ALL_BLOBS(cb, heap) for (CodeBlob* cb = first_blob(heap); cb != NULL; cb = next_blob(heap, cb))
 143 
 144 address CodeCache::_low_bound = 0;
 145 address CodeCache::_high_bound = 0;
 146 int CodeCache::_number_of_nmethods_with_dependencies = 0;
 147 nmethod* CodeCache::_scavenge_root_nmethods = NULL;
 148 ExceptionCache* volatile CodeCache::_exception_cache_purge_list = NULL;
 149 
 150 // Initialize arrays of CodeHeap subsets
 151 GrowableArray<CodeHeap*>* CodeCache::_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 152 GrowableArray<CodeHeap*>* CodeCache::_compiled_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 153 GrowableArray<CodeHeap*>* CodeCache::_nmethod_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 154 GrowableArray<CodeHeap*>* CodeCache::_allocable_heaps = new(ResourceObj::C_HEAP, mtCode) GrowableArray<CodeHeap*> (CodeBlobType::All, true);
 155 
 156 void CodeCache::check_heap_sizes(size_t non_nmethod_size, size_t profiled_size, size_t non_profiled_size, size_t cache_size, bool all_set) {
 157   size_t total_size = non_nmethod_size + profiled_size + non_profiled_size;
 158   // Prepare error message
 159   const char* error = "Invalid code heap sizes";
 160   err_msg message("NonNMethodCodeHeapSize (" SIZE_FORMAT "K) + ProfiledCodeHeapSize (" SIZE_FORMAT "K)"
 161                   " + NonProfiledCodeHeapSize (" SIZE_FORMAT "K) = " SIZE_FORMAT "K",
 162           non_nmethod_size/K, profiled_size/K, non_profiled_size/K, total_size/K);
 163 
 164   if (total_size > cache_size) {
 165     // Some code heap sizes were explicitly set: total_size must be <= cache_size
 166     message.append(" is greater than ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 167     vm_exit_during_initialization(error, message);
 168   } else if (all_set && total_size != cache_size) {
 169     // All code heap sizes were explicitly set: total_size must equal cache_size
 170     message.append(" is not equal to ReservedCodeCacheSize (" SIZE_FORMAT "K).", cache_size/K);
 171     vm_exit_during_initialization(error, message);
 172   }
 173 }
 174 
 175 void CodeCache::initialize_heaps() {
 176   bool non_nmethod_set      = FLAG_IS_CMDLINE(NonNMethodCodeHeapSize);
 177   bool profiled_set         = FLAG_IS_CMDLINE(ProfiledCodeHeapSize);
 178   bool non_profiled_set     = FLAG_IS_CMDLINE(NonProfiledCodeHeapSize);
 179   size_t min_size           = os::vm_page_size();
 180   size_t cache_size         = ReservedCodeCacheSize;
 181   size_t non_nmethod_size   = NonNMethodCodeHeapSize;
 182   size_t profiled_size      = ProfiledCodeHeapSize;
 183   size_t non_profiled_size  = NonProfiledCodeHeapSize;
 184   // Check if total size set via command line flags exceeds the reserved size
 185   check_heap_sizes((non_nmethod_set  ? non_nmethod_size  : min_size),
 186                    (profiled_set     ? profiled_size     : min_size),
 187                    (non_profiled_set ? non_profiled_size : min_size),
 188                    cache_size,
 189                    non_nmethod_set && profiled_set && non_profiled_set);
 190 
 191   // Determine size of compiler buffers
 192   size_t code_buffers_size = 0;
 193 #ifdef COMPILER1
 194   // C1 temporary code buffers (see Compiler::init_buffer_blob())
 195   const int c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 196   code_buffers_size += c1_count * Compiler::code_buffer_size();
 197 #endif
 198 #ifdef COMPILER2
 199   // C2 scratch buffers (see Compile::init_scratch_buffer_blob())
 200   const int c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 201   // Initial size of constant table (this may be increased if a compiled method needs more space)
 202   code_buffers_size += c2_count * C2Compiler::initial_code_buffer_size();
 203 #endif
 204 
 205   // Increase default non_nmethod_size to account for compiler buffers
 206   if (!non_nmethod_set) {
 207     non_nmethod_size += code_buffers_size;
 208   }
 209   // Calculate default CodeHeap sizes if not set by user
 210   if (!non_nmethod_set && !profiled_set && !non_profiled_set) {
 211     // Check if we have enough space for the non-nmethod code heap
 212     if (cache_size > non_nmethod_size) {
 213       // Use the default value for non_nmethod_size and one half of the
 214       // remaining size for non-profiled and one half for profiled methods
 215       size_t remaining_size = cache_size - non_nmethod_size;
 216       profiled_size = remaining_size / 2;
 217       non_profiled_size = remaining_size - profiled_size;
 218     } else {
 219       // Use all space for the non-nmethod heap and set other heaps to minimal size
 220       non_nmethod_size = cache_size - 2 * min_size;
 221       profiled_size = min_size;
 222       non_profiled_size = min_size;
 223     }
 224   } else if (!non_nmethod_set || !profiled_set || !non_profiled_set) {
 225     // The user explicitly set some code heap sizes. Increase or decrease the (default)
 226     // sizes of the other code heaps accordingly. First adapt non-profiled and profiled
 227     // code heap sizes and then only change non-nmethod code heap size if still necessary.
 228     intx diff_size = cache_size - (non_nmethod_size + profiled_size + non_profiled_size);
 229     if (non_profiled_set) {
 230       if (!profiled_set) {
 231         // Adapt size of profiled code heap
 232         if (diff_size < 0 && ((intx)profiled_size + diff_size) <= 0) {
 233           // Not enough space available, set to minimum size
 234           diff_size += profiled_size - min_size;
 235           profiled_size = min_size;
 236         } else {
 237           profiled_size += diff_size;
 238           diff_size = 0;
 239         }
 240       }
 241     } else if (profiled_set) {
 242       // Adapt size of non-profiled code heap
 243       if (diff_size < 0 && ((intx)non_profiled_size + diff_size) <= 0) {
 244         // Not enough space available, set to minimum size
 245         diff_size += non_profiled_size - min_size;
 246         non_profiled_size = min_size;
 247       } else {
 248         non_profiled_size += diff_size;
 249         diff_size = 0;
 250       }
 251     } else if (non_nmethod_set) {
 252       // Distribute remaining size between profiled and non-profiled code heaps
 253       diff_size = cache_size - non_nmethod_size;
 254       profiled_size = diff_size / 2;
 255       non_profiled_size = diff_size - profiled_size;
 256       diff_size = 0;
 257     }
 258     if (diff_size != 0) {
 259       // Use non-nmethod code heap for remaining space requirements
 260       assert(!non_nmethod_set && ((intx)non_nmethod_size + diff_size) > 0, "sanity");
 261       non_nmethod_size += diff_size;
 262     }
 263   }
 264 
 265   // We do not need the profiled CodeHeap, use all space for the non-profiled CodeHeap
 266   if (!heap_available(CodeBlobType::MethodProfiled)) {
 267     non_profiled_size += profiled_size;
 268     profiled_size = 0;
 269   }
 270   // We do not need the non-profiled CodeHeap, use all space for the non-nmethod CodeHeap
 271   if (!heap_available(CodeBlobType::MethodNonProfiled)) {
 272     non_nmethod_size += non_profiled_size;
 273     non_profiled_size = 0;
 274   }
 275   // Make sure we have enough space for VM internal code
 276   uint min_code_cache_size = CodeCacheMinimumUseSpace DEBUG_ONLY(* 3);
 277   if (non_nmethod_size < min_code_cache_size) {
 278     vm_exit_during_initialization(err_msg(
 279         "Not enough space in non-nmethod code heap to run VM: " SIZE_FORMAT "K < " SIZE_FORMAT "K",
 280         non_nmethod_size/K, min_code_cache_size/K));
 281   }
 282 
 283   // Verify sizes and update flag values
 284   assert(non_profiled_size + profiled_size + non_nmethod_size == cache_size, "Invalid code heap sizes");
 285   FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, non_nmethod_size);
 286   FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, profiled_size);
 287   FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, non_profiled_size);
 288 
 289   // If large page support is enabled, align code heaps according to large
 290   // page size to make sure that code cache is covered by large pages.
 291   const size_t alignment = MAX2(page_size(false), (size_t) os::vm_allocation_granularity());
 292   non_nmethod_size = align_up(non_nmethod_size, alignment);
 293   profiled_size    = align_down(profiled_size, alignment);
 294 
 295   // Reserve one continuous chunk of memory for CodeHeaps and split it into
 296   // parts for the individual heaps. The memory layout looks like this:
 297   // ---------- high -----------
 298   //    Non-profiled nmethods
 299   //      Profiled nmethods
 300   //         Non-nmethods
 301   // ---------- low ------------
 302   ReservedCodeSpace rs = reserve_heap_memory(cache_size);
 303   ReservedSpace non_method_space    = rs.first_part(non_nmethod_size);
 304   ReservedSpace rest                = rs.last_part(non_nmethod_size);
 305   ReservedSpace profiled_space      = rest.first_part(profiled_size);
 306   ReservedSpace non_profiled_space  = rest.last_part(profiled_size);
 307 
 308   // Non-nmethods (stubs, adapters, ...)
 309   add_heap(non_method_space, "CodeHeap 'non-nmethods'", CodeBlobType::NonNMethod);
 310   // Tier 2 and tier 3 (profiled) methods
 311   add_heap(profiled_space, "CodeHeap 'profiled nmethods'", CodeBlobType::MethodProfiled);
 312   // Tier 1 and tier 4 (non-profiled) methods and native methods
 313   add_heap(non_profiled_space, "CodeHeap 'non-profiled nmethods'", CodeBlobType::MethodNonProfiled);
 314 }
 315 
 316 size_t CodeCache::page_size(bool aligned) {
 317   if (os::can_execute_large_page_memory()) {
 318     return aligned ? os::page_size_for_region_aligned(ReservedCodeCacheSize, 8) :
 319                      os::page_size_for_region_unaligned(ReservedCodeCacheSize, 8);
 320   } else {
 321     return os::vm_page_size();
 322   }
 323 }
 324 
 325 ReservedCodeSpace CodeCache::reserve_heap_memory(size_t size) {
 326   // Align and reserve space for code cache
 327   const size_t rs_ps = page_size();
 328   const size_t rs_align = MAX2(rs_ps, (size_t) os::vm_allocation_granularity());
 329   const size_t rs_size = align_up(size, rs_align);
 330   ReservedCodeSpace rs(rs_size, rs_align, rs_ps > (size_t) os::vm_page_size());
 331   if (!rs.is_reserved()) {
 332     vm_exit_during_initialization(err_msg("Could not reserve enough space for code cache (" SIZE_FORMAT "K)",
 333                                           rs_size/K));
 334   }
 335 
 336   // Initialize bounds
 337   _low_bound = (address)rs.base();
 338   _high_bound = _low_bound + rs.size();
 339   return rs;
 340 }
 341 
 342 // Heaps available for allocation
 343 bool CodeCache::heap_available(int code_blob_type) {
 344   if (!SegmentedCodeCache) {
 345     // No segmentation: use a single code heap
 346     return (code_blob_type == CodeBlobType::All);
 347   } else if (Arguments::is_interpreter_only()) {
 348     // Interpreter only: we don't need any method code heaps
 349     return (code_blob_type == CodeBlobType::NonNMethod);
 350   } else if (TieredCompilation && (TieredStopAtLevel > CompLevel_simple)) {
 351     // Tiered compilation: use all code heaps
 352     return (code_blob_type < CodeBlobType::All);
 353   } else {
 354     // No TieredCompilation: we only need the non-nmethod and non-profiled code heap
 355     return (code_blob_type == CodeBlobType::NonNMethod) ||
 356            (code_blob_type == CodeBlobType::MethodNonProfiled);
 357   }
 358 }
 359 
 360 const char* CodeCache::get_code_heap_flag_name(int code_blob_type) {
 361   switch(code_blob_type) {
 362   case CodeBlobType::NonNMethod:
 363     return "NonNMethodCodeHeapSize";
 364     break;
 365   case CodeBlobType::MethodNonProfiled:
 366     return "NonProfiledCodeHeapSize";
 367     break;
 368   case CodeBlobType::MethodProfiled:
 369     return "ProfiledCodeHeapSize";
 370     break;
 371   }
 372   ShouldNotReachHere();
 373   return NULL;
 374 }
 375 
 376 int CodeCache::code_heap_compare(CodeHeap* const &lhs, CodeHeap* const &rhs) {
 377   if (lhs->code_blob_type() == rhs->code_blob_type()) {
 378     return (lhs > rhs) ? 1 : ((lhs < rhs) ? -1 : 0);
 379   } else {
 380     return lhs->code_blob_type() - rhs->code_blob_type();
 381   }
 382 }
 383 
 384 void CodeCache::add_heap(CodeHeap* heap) {
 385   assert(!Universe::is_fully_initialized(), "late heap addition?");
 386 
 387   _heaps->insert_sorted<code_heap_compare>(heap);
 388 
 389   int type = heap->code_blob_type();
 390   if (code_blob_type_accepts_compiled(type)) {
 391     _compiled_heaps->insert_sorted<code_heap_compare>(heap);
 392   }
 393   if (code_blob_type_accepts_nmethod(type)) {
 394     _nmethod_heaps->insert_sorted<code_heap_compare>(heap);
 395   }
 396   if (code_blob_type_accepts_allocable(type)) {
 397     _allocable_heaps->insert_sorted<code_heap_compare>(heap);
 398   }
 399 }
 400 
 401 void CodeCache::add_heap(ReservedSpace rs, const char* name, int code_blob_type) {
 402   // Check if heap is needed
 403   if (!heap_available(code_blob_type)) {
 404     return;
 405   }
 406 
 407   // Create CodeHeap
 408   CodeHeap* heap = new CodeHeap(name, code_blob_type);
 409   add_heap(heap);
 410 
 411   // Reserve Space
 412   size_t size_initial = MIN2((size_t)InitialCodeCacheSize, rs.size());
 413   size_initial = align_up(size_initial, os::vm_page_size());
 414   if (!heap->reserve(rs, size_initial, CodeCacheSegmentSize)) {
 415     vm_exit_during_initialization(err_msg("Could not reserve enough space in %s (" SIZE_FORMAT "K)",
 416                                           heap->name(), size_initial/K));
 417   }
 418 
 419   // Register the CodeHeap
 420   MemoryService::add_code_heap_memory_pool(heap, name);
 421 }
 422 
 423 CodeHeap* CodeCache::get_code_heap_containing(void* start) {
 424   FOR_ALL_HEAPS(heap) {
 425     if ((*heap)->contains(start)) {
 426       return *heap;
 427     }
 428   }
 429   return NULL;
 430 }
 431 
 432 CodeHeap* CodeCache::get_code_heap(const CodeBlob* cb) {
 433   assert(cb != NULL, "CodeBlob is null");
 434   FOR_ALL_HEAPS(heap) {
 435     if ((*heap)->contains_blob(cb)) {
 436       return *heap;
 437     }
 438   }
 439   ShouldNotReachHere();
 440   return NULL;
 441 }
 442 
 443 CodeHeap* CodeCache::get_code_heap(int code_blob_type) {
 444   FOR_ALL_HEAPS(heap) {
 445     if ((*heap)->accepts(code_blob_type)) {
 446       return *heap;
 447     }
 448   }
 449   return NULL;
 450 }
 451 
 452 CodeBlob* CodeCache::first_blob(CodeHeap* heap) {
 453   assert_locked_or_safepoint(CodeCache_lock);
 454   assert(heap != NULL, "heap is null");
 455   return (CodeBlob*)heap->first();
 456 }
 457 
 458 CodeBlob* CodeCache::first_blob(int code_blob_type) {
 459   if (heap_available(code_blob_type)) {
 460     return first_blob(get_code_heap(code_blob_type));
 461   } else {
 462     return NULL;
 463   }
 464 }
 465 
 466 CodeBlob* CodeCache::next_blob(CodeHeap* heap, CodeBlob* cb) {
 467   assert_locked_or_safepoint(CodeCache_lock);
 468   assert(heap != NULL, "heap is null");
 469   return (CodeBlob*)heap->next(cb);
 470 }
 471 
 472 /**
 473  * Do not seize the CodeCache lock here--if the caller has not
 474  * already done so, we are going to lose bigtime, since the code
 475  * cache will contain a garbage CodeBlob until the caller can
 476  * run the constructor for the CodeBlob subclass he is busy
 477  * instantiating.
 478  */
 479 CodeBlob* CodeCache::allocate(int size, int code_blob_type, int orig_code_blob_type) {
 480   // Possibly wakes up the sweeper thread.
 481   NMethodSweeper::notify(code_blob_type);
 482   assert_locked_or_safepoint(CodeCache_lock);
 483   assert(size > 0, "Code cache allocation request must be > 0 but is %d", size);
 484   if (size <= 0) {
 485     return NULL;
 486   }
 487   CodeBlob* cb = NULL;
 488 
 489   // Get CodeHeap for the given CodeBlobType
 490   CodeHeap* heap = get_code_heap(code_blob_type);
 491   assert(heap != NULL, "heap is null");
 492 
 493   while (true) {
 494     cb = (CodeBlob*)heap->allocate(size);
 495     if (cb != NULL) break;
 496     if (!heap->expand_by(CodeCacheExpansionSize)) {
 497       // Save original type for error reporting
 498       if (orig_code_blob_type == CodeBlobType::All) {
 499         orig_code_blob_type = code_blob_type;
 500       }
 501       // Expansion failed
 502       if (SegmentedCodeCache) {
 503         // Fallback solution: Try to store code in another code heap.
 504         // NonNMethod -> MethodNonProfiled -> MethodProfiled (-> MethodNonProfiled)
 505         // Note that in the sweeper, we check the reverse_free_ratio of the code heap
 506         // and force stack scanning if less than 10% of the code heap are free.
 507         int type = code_blob_type;
 508         switch (type) {
 509         case CodeBlobType::NonNMethod:
 510           type = CodeBlobType::MethodNonProfiled;
 511           break;
 512         case CodeBlobType::MethodNonProfiled:
 513           type = CodeBlobType::MethodProfiled;
 514           break;
 515         case CodeBlobType::MethodProfiled:
 516           // Avoid loop if we already tried that code heap
 517           if (type == orig_code_blob_type) {
 518             type = CodeBlobType::MethodNonProfiled;
 519           }
 520           break;
 521         }
 522         if (type != code_blob_type && type != orig_code_blob_type && heap_available(type)) {
 523           if (PrintCodeCacheExtension) {
 524             tty->print_cr("Extension of %s failed. Trying to allocate in %s.",
 525                           heap->name(), get_code_heap(type)->name());
 526           }
 527           return allocate(size, type, orig_code_blob_type);
 528         }
 529       }
 530       MutexUnlockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 531       CompileBroker::handle_full_code_cache(orig_code_blob_type);
 532       return NULL;
 533     }
 534     if (PrintCodeCacheExtension) {
 535       ResourceMark rm;
 536       if (_nmethod_heaps->length() >= 1) {
 537         tty->print("%s", heap->name());
 538       } else {
 539         tty->print("CodeCache");
 540       }
 541       tty->print_cr(" extended to [" INTPTR_FORMAT ", " INTPTR_FORMAT "] (" SSIZE_FORMAT " bytes)",
 542                     (intptr_t)heap->low_boundary(), (intptr_t)heap->high(),
 543                     (address)heap->high() - (address)heap->low_boundary());
 544     }
 545   }
 546   print_trace("allocation", cb, size);
 547   return cb;
 548 }
 549 
 550 void CodeCache::free(CodeBlob* cb) {
 551   assert_locked_or_safepoint(CodeCache_lock);
 552   CodeHeap* heap = get_code_heap(cb);
 553   print_trace("free", cb);
 554   if (cb->is_nmethod()) {
 555     heap->set_nmethod_count(heap->nmethod_count() - 1);
 556     if (((nmethod *)cb)->has_dependencies()) {
 557       _number_of_nmethods_with_dependencies--;
 558     }
 559   }
 560   if (cb->is_adapter_blob()) {
 561     heap->set_adapter_count(heap->adapter_count() - 1);
 562   }
 563 
 564   // Get heap for given CodeBlob and deallocate
 565   get_code_heap(cb)->deallocate(cb);
 566 
 567   assert(heap->blob_count() >= 0, "sanity check");
 568 }
 569 
 570 void CodeCache::free_unused_tail(CodeBlob* cb, size_t used) {
 571   assert_locked_or_safepoint(CodeCache_lock);
 572   guarantee(cb->is_buffer_blob() && strncmp("Interpreter", cb->name(), 11) == 0, "Only possible for interpreter!");
 573   print_trace("free_unused_tail", cb);
 574 
 575   // We also have to account for the extra space (i.e. header) used by the CodeBlob
 576   // which provides the memory (see BufferBlob::create() in codeBlob.cpp).
 577   used += CodeBlob::align_code_offset(cb->header_size());
 578 
 579   // Get heap for given CodeBlob and deallocate its unused tail
 580   get_code_heap(cb)->deallocate_tail(cb, used);
 581   // Adjust the sizes of the CodeBlob
 582   cb->adjust_size(used);
 583 }
 584 
 585 void CodeCache::commit(CodeBlob* cb) {
 586   // this is called by nmethod::nmethod, which must already own CodeCache_lock
 587   assert_locked_or_safepoint(CodeCache_lock);
 588   CodeHeap* heap = get_code_heap(cb);
 589   if (cb->is_nmethod()) {
 590     heap->set_nmethod_count(heap->nmethod_count() + 1);
 591     if (((nmethod *)cb)->has_dependencies()) {
 592       _number_of_nmethods_with_dependencies++;
 593     }
 594   }
 595   if (cb->is_adapter_blob()) {
 596     heap->set_adapter_count(heap->adapter_count() + 1);
 597   }
 598 
 599   // flush the hardware I-cache
 600   ICache::invalidate_range(cb->content_begin(), cb->content_size());
 601 }
 602 
 603 bool CodeCache::contains(void *p) {
 604   // S390 uses contains() in current_frame(), which is used before
 605   // code cache initialization if NativeMemoryTracking=detail is set.
 606   S390_ONLY(if (_heaps == NULL) return false;)
 607   // It should be ok to call contains without holding a lock.
 608   FOR_ALL_HEAPS(heap) {
 609     if ((*heap)->contains(p)) {
 610       return true;
 611     }
 612   }
 613   return false;
 614 }
 615 
 616 bool CodeCache::contains(nmethod *nm) {
 617   return contains((void *)nm);
 618 }
 619 
 620 // This method is safe to call without holding the CodeCache_lock, as long as a dead CodeBlob is not
 621 // looked up (i.e., one that has been marked for deletion). It only depends on the _segmap to contain
 622 // valid indices, which it will always do, as long as the CodeBlob is not in the process of being recycled.
 623 CodeBlob* CodeCache::find_blob(void* start) {
 624   CodeBlob* result = find_blob_unsafe(start);
 625   // We could potentially look up non_entrant methods
 626   guarantee(result == NULL || !result->is_zombie() || result->is_locked_by_vm() || VMError::is_error_reported(), "unsafe access to zombie method");
 627   return result;
 628 }
 629 
 630 // Lookup that does not fail if you lookup a zombie method (if you call this, be sure to know
 631 // what you are doing)
 632 CodeBlob* CodeCache::find_blob_unsafe(void* start) {
 633   // NMT can walk the stack before code cache is created
 634   if (_heaps != NULL) {
 635     CodeHeap* heap = get_code_heap_containing(start);
 636     if (heap != NULL) {
 637       return heap->find_blob_unsafe(start);
 638     }
 639   }
 640   return NULL;
 641 }
 642 
 643 nmethod* CodeCache::find_nmethod(void* start) {
 644   CodeBlob* cb = find_blob(start);
 645   assert(cb->is_nmethod(), "did not find an nmethod");
 646   return (nmethod*)cb;
 647 }
 648 
 649 void CodeCache::blobs_do(void f(CodeBlob* nm)) {
 650   assert_locked_or_safepoint(CodeCache_lock);
 651   FOR_ALL_HEAPS(heap) {
 652     FOR_ALL_BLOBS(cb, *heap) {
 653       f(cb);
 654     }
 655   }
 656 }
 657 
 658 void CodeCache::nmethods_do(void f(nmethod* nm)) {
 659   assert_locked_or_safepoint(CodeCache_lock);
 660   NMethodIterator iter;
 661   while(iter.next()) {
 662     f(iter.method());
 663   }
 664 }
 665 
 666 void CodeCache::metadata_do(void f(Metadata* m)) {
 667   assert_locked_or_safepoint(CodeCache_lock);
 668   NMethodIterator iter;
 669   while(iter.next_alive()) {
 670     iter.method()->metadata_do(f);
 671   }
 672   AOTLoader::metadata_do(f);
 673 }
 674 
 675 int CodeCache::alignment_unit() {
 676   return (int)_heaps->first()->alignment_unit();
 677 }
 678 
 679 int CodeCache::alignment_offset() {
 680   return (int)_heaps->first()->alignment_offset();
 681 }
 682 
 683 // Mark nmethods for unloading if they contain otherwise unreachable oops.
 684 void CodeCache::do_unloading(BoolObjectClosure* is_alive, bool unloading_occurred) {
 685   assert_locked_or_safepoint(CodeCache_lock);
 686   UnloadingScope scope(is_alive);
 687   CompiledMethodIterator iter;
 688   while(iter.next_alive()) {
 689     iter.method()->do_unloading(unloading_occurred);
 690   }
 691 }
 692 
 693 void CodeCache::blobs_do(CodeBlobClosure* f) {
 694   assert_locked_or_safepoint(CodeCache_lock);
 695   FOR_ALL_ALLOCABLE_HEAPS(heap) {
 696     FOR_ALL_BLOBS(cb, *heap) {
 697       if (cb->is_alive()) {
 698         f->do_code_blob(cb);
 699 #ifdef ASSERT
 700         if (cb->is_nmethod()) {
 701           Universe::heap()->verify_nmethod((nmethod*)cb);
 702         }
 703 #endif //ASSERT
 704       }
 705     }
 706   }
 707 }
 708 
 709 // Walk the list of methods which might contain oops to the java heap.
 710 void CodeCache::scavenge_root_nmethods_do(CodeBlobToOopClosure* f) {
 711   assert_locked_or_safepoint(CodeCache_lock);
 712 
 713   const bool fix_relocations = f->fix_relocations();
 714   debug_only(mark_scavenge_root_nmethods());
 715 
 716   nmethod* prev = NULL;
 717   nmethod* cur = scavenge_root_nmethods();
 718   while (cur != NULL) {
 719     debug_only(cur->clear_scavenge_root_marked());
 720     assert(cur->scavenge_root_not_marked(), "");
 721     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 722 
 723     bool is_live = (!cur->is_zombie() && !cur->is_unloaded());
 724     LogTarget(Trace, gc, nmethod) lt;
 725     if (lt.is_enabled()) {
 726       LogStream ls(lt);
 727       CompileTask::print(&ls, cur,
 728         is_live ? "scavenge root " : "dead scavenge root", /*short_form:*/ true);
 729     }
 730     if (is_live) {
 731       // Perform cur->oops_do(f), maybe just once per nmethod.
 732       f->do_code_blob(cur);
 733     }
 734     nmethod* const next = cur->scavenge_root_link();
 735     // The scavengable nmethod list must contain all methods with scavengable
 736     // oops. It is safe to include more nmethod on the list, but we do not
 737     // expect any live non-scavengable nmethods on the list.
 738     if (fix_relocations) {
 739       if (!is_live || !cur->detect_scavenge_root_oops()) {
 740         unlink_scavenge_root_nmethod(cur, prev);
 741       } else {
 742         prev = cur;
 743       }
 744     }
 745     cur = next;
 746   }
 747 
 748   // Check for stray marks.
 749   debug_only(verify_perm_nmethods(NULL));
 750 }
 751 
 752 void CodeCache::register_scavenge_root_nmethod(nmethod* nm) {
 753   assert_locked_or_safepoint(CodeCache_lock);
 754   if (!nm->on_scavenge_root_list() && nm->detect_scavenge_root_oops()) {
 755     add_scavenge_root_nmethod(nm);
 756   }
 757 }
 758 
 759 void CodeCache::verify_scavenge_root_nmethod(nmethod* nm) {
 760   nm->verify_scavenge_root_oops();
 761 }
 762 
 763 void CodeCache::add_scavenge_root_nmethod(nmethod* nm) {
 764   assert_locked_or_safepoint(CodeCache_lock);
 765 
 766   nm->set_on_scavenge_root_list();
 767   nm->set_scavenge_root_link(_scavenge_root_nmethods);
 768   set_scavenge_root_nmethods(nm);
 769   print_trace("add_scavenge_root", nm);
 770 }
 771 
 772 void CodeCache::unlink_scavenge_root_nmethod(nmethod* nm, nmethod* prev) {
 773   assert_locked_or_safepoint(CodeCache_lock);
 774 
 775   assert((prev == NULL && scavenge_root_nmethods() == nm) ||
 776          (prev != NULL && prev->scavenge_root_link() == nm), "precondition");
 777 
 778   print_trace("unlink_scavenge_root", nm);
 779   if (prev == NULL) {
 780     set_scavenge_root_nmethods(nm->scavenge_root_link());
 781   } else {
 782     prev->set_scavenge_root_link(nm->scavenge_root_link());
 783   }
 784   nm->set_scavenge_root_link(NULL);
 785   nm->clear_on_scavenge_root_list();
 786 }
 787 
 788 void CodeCache::drop_scavenge_root_nmethod(nmethod* nm) {
 789   assert_locked_or_safepoint(CodeCache_lock);
 790 
 791   print_trace("drop_scavenge_root", nm);
 792   nmethod* prev = NULL;
 793   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 794     if (cur == nm) {
 795       unlink_scavenge_root_nmethod(cur, prev);
 796       return;
 797     }
 798     prev = cur;
 799   }
 800   assert(false, "should have been on list");
 801 }
 802 
 803 void CodeCache::prune_scavenge_root_nmethods() {
 804   assert_locked_or_safepoint(CodeCache_lock);
 805 
 806   debug_only(mark_scavenge_root_nmethods());
 807 
 808   nmethod* last = NULL;
 809   nmethod* cur = scavenge_root_nmethods();
 810   while (cur != NULL) {
 811     nmethod* next = cur->scavenge_root_link();
 812     debug_only(cur->clear_scavenge_root_marked());
 813     assert(cur->scavenge_root_not_marked(), "");
 814     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 815 
 816     if (!cur->is_zombie() && !cur->is_unloaded()
 817         && cur->detect_scavenge_root_oops()) {
 818       // Keep it.  Advance 'last' to prevent deletion.
 819       last = cur;
 820     } else {
 821       // Prune it from the list, so we don't have to look at it any more.
 822       print_trace("prune_scavenge_root", cur);
 823       unlink_scavenge_root_nmethod(cur, last);
 824     }
 825     cur = next;
 826   }
 827 
 828   // Check for stray marks.
 829   debug_only(verify_perm_nmethods(NULL));
 830 }
 831 
 832 #ifndef PRODUCT
 833 void CodeCache::asserted_non_scavengable_nmethods_do(CodeBlobClosure* f) {
 834   // While we are here, verify the integrity of the list.
 835   mark_scavenge_root_nmethods();
 836   for (nmethod* cur = scavenge_root_nmethods(); cur != NULL; cur = cur->scavenge_root_link()) {
 837     assert(cur->on_scavenge_root_list(), "else shouldn't be on this list");
 838     cur->clear_scavenge_root_marked();
 839   }
 840   verify_perm_nmethods(f);
 841 }
 842 
 843 // Temporarily mark nmethods that are claimed to be on the scavenge list.
 844 void CodeCache::mark_scavenge_root_nmethods() {
 845   NMethodIterator iter;
 846   while(iter.next_alive()) {
 847     nmethod* nm = iter.method();
 848     assert(nm->scavenge_root_not_marked(), "clean state");
 849     if (nm->on_scavenge_root_list())
 850       nm->set_scavenge_root_marked();
 851   }
 852 }
 853 
 854 // If the closure is given, run it on the unlisted nmethods.
 855 // Also make sure that the effects of mark_scavenge_root_nmethods is gone.
 856 void CodeCache::verify_perm_nmethods(CodeBlobClosure* f_or_null) {
 857   NMethodIterator iter;
 858   while(iter.next_alive()) {
 859     nmethod* nm = iter.method();
 860     bool call_f = (f_or_null != NULL);
 861     assert(nm->scavenge_root_not_marked(), "must be already processed");
 862     if (nm->on_scavenge_root_list())
 863       call_f = false;  // don't show this one to the client
 864     Universe::heap()->verify_nmethod(nm);
 865     if (call_f)  f_or_null->do_code_blob(nm);
 866   }
 867 }
 868 #endif //PRODUCT
 869 
 870 void CodeCache::verify_clean_inline_caches() {
 871 #ifdef ASSERT
 872   NMethodIterator iter;
 873   while(iter.next_alive()) {
 874     nmethod* nm = iter.method();
 875     assert(!nm->is_unloaded(), "Tautology");
 876     nm->verify_clean_inline_caches();
 877     nm->verify();
 878   }
 879 #endif
 880 }
 881 
 882 void CodeCache::verify_icholder_relocations() {
 883 #ifdef ASSERT
 884   // make sure that we aren't leaking icholders
 885   int count = 0;
 886   FOR_ALL_HEAPS(heap) {
 887     FOR_ALL_BLOBS(cb, *heap) {
 888       CompiledMethod *nm = cb->as_compiled_method_or_null();
 889       if (nm != NULL) {
 890         count += nm->verify_icholder_relocations();
 891       }
 892     }
 893   }
 894   assert(count + InlineCacheBuffer::pending_icholder_count() + CompiledICHolder::live_not_claimed_count() ==
 895          CompiledICHolder::live_count(), "must agree");
 896 #endif
 897 }
 898 
 899 // Defer freeing of concurrently cleaned ExceptionCache entries until
 900 // after a global handshake operation.
 901 void CodeCache::release_exception_cache(ExceptionCache* entry) {
 902   if (SafepointSynchronize::is_at_safepoint()) {
 903     delete entry;
 904   } else {
 905     for (;;) {
 906       ExceptionCache* purge_list_head = Atomic::load(&_exception_cache_purge_list);
 907       entry->set_purge_list_next(purge_list_head);
 908       if (Atomic::cmpxchg(entry, &_exception_cache_purge_list, purge_list_head) == purge_list_head) {
 909         break;
 910       }
 911     }
 912   }
 913 }
 914 
 915 // Delete exception caches that have been concurrently unlinked,
 916 // followed by a global handshake operation.
 917 void CodeCache::purge_exception_caches() {
 918   ExceptionCache* curr = _exception_cache_purge_list;
 919   while (curr != NULL) {
 920     ExceptionCache* next = curr->purge_list_next();
 921     delete curr;
 922     curr = next;
 923   }
 924   _exception_cache_purge_list = NULL;
 925 }
 926 
 927 void CodeCache::gc_prologue() { }
 928 
 929 void CodeCache::gc_epilogue() {
 930   prune_scavenge_root_nmethods();
 931 }
 932 
 933 uint8_t CodeCache::_unloading_cycle = 1;
 934 
 935 void CodeCache::increment_unloading_cycle() {
 936   if (_unloading_cycle == 1) {
 937     _unloading_cycle = 2;
 938   } else {
 939     _unloading_cycle = 1;
 940   }
 941 }
 942 
 943 void CodeCache::verify_oops() {
 944   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 945   VerifyOopClosure voc;
 946   NMethodIterator iter;
 947   while(iter.next_alive()) {
 948     nmethod* nm = iter.method();
 949     nm->oops_do(&voc);
 950     nm->verify_oop_relocations();
 951   }
 952 }
 953 
 954 int CodeCache::blob_count(int code_blob_type) {
 955   CodeHeap* heap = get_code_heap(code_blob_type);
 956   return (heap != NULL) ? heap->blob_count() : 0;
 957 }
 958 
 959 int CodeCache::blob_count() {
 960   int count = 0;
 961   FOR_ALL_HEAPS(heap) {
 962     count += (*heap)->blob_count();
 963   }
 964   return count;
 965 }
 966 
 967 int CodeCache::nmethod_count(int code_blob_type) {
 968   CodeHeap* heap = get_code_heap(code_blob_type);
 969   return (heap != NULL) ? heap->nmethod_count() : 0;
 970 }
 971 
 972 int CodeCache::nmethod_count() {
 973   int count = 0;
 974   FOR_ALL_NMETHOD_HEAPS(heap) {
 975     count += (*heap)->nmethod_count();
 976   }
 977   return count;
 978 }
 979 
 980 int CodeCache::adapter_count(int code_blob_type) {
 981   CodeHeap* heap = get_code_heap(code_blob_type);
 982   return (heap != NULL) ? heap->adapter_count() : 0;
 983 }
 984 
 985 int CodeCache::adapter_count() {
 986   int count = 0;
 987   FOR_ALL_HEAPS(heap) {
 988     count += (*heap)->adapter_count();
 989   }
 990   return count;
 991 }
 992 
 993 address CodeCache::low_bound(int code_blob_type) {
 994   CodeHeap* heap = get_code_heap(code_blob_type);
 995   return (heap != NULL) ? (address)heap->low_boundary() : NULL;
 996 }
 997 
 998 address CodeCache::high_bound(int code_blob_type) {
 999   CodeHeap* heap = get_code_heap(code_blob_type);
1000   return (heap != NULL) ? (address)heap->high_boundary() : NULL;
1001 }
1002 
1003 size_t CodeCache::capacity() {
1004   size_t cap = 0;
1005   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1006     cap += (*heap)->capacity();
1007   }
1008   return cap;
1009 }
1010 
1011 size_t CodeCache::unallocated_capacity(int code_blob_type) {
1012   CodeHeap* heap = get_code_heap(code_blob_type);
1013   return (heap != NULL) ? heap->unallocated_capacity() : 0;
1014 }
1015 
1016 size_t CodeCache::unallocated_capacity() {
1017   size_t unallocated_cap = 0;
1018   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1019     unallocated_cap += (*heap)->unallocated_capacity();
1020   }
1021   return unallocated_cap;
1022 }
1023 
1024 size_t CodeCache::max_capacity() {
1025   size_t max_cap = 0;
1026   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1027     max_cap += (*heap)->max_capacity();
1028   }
1029   return max_cap;
1030 }
1031 
1032 /**
1033  * Returns the reverse free ratio. E.g., if 25% (1/4) of the code heap
1034  * is free, reverse_free_ratio() returns 4.
1035  */
1036 double CodeCache::reverse_free_ratio(int code_blob_type) {
1037   CodeHeap* heap = get_code_heap(code_blob_type);
1038   if (heap == NULL) {
1039     return 0;
1040   }
1041 
1042   double unallocated_capacity = MAX2((double)heap->unallocated_capacity(), 1.0); // Avoid division by 0;
1043   double max_capacity = (double)heap->max_capacity();
1044   double result = max_capacity / unallocated_capacity;
1045   assert (max_capacity >= unallocated_capacity, "Must be");
1046   assert (result >= 1.0, "reverse_free_ratio must be at least 1. It is %f", result);
1047   return result;
1048 }
1049 
1050 size_t CodeCache::bytes_allocated_in_freelists() {
1051   size_t allocated_bytes = 0;
1052   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1053     allocated_bytes += (*heap)->allocated_in_freelist();
1054   }
1055   return allocated_bytes;
1056 }
1057 
1058 int CodeCache::allocated_segments() {
1059   int number_of_segments = 0;
1060   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1061     number_of_segments += (*heap)->allocated_segments();
1062   }
1063   return number_of_segments;
1064 }
1065 
1066 size_t CodeCache::freelists_length() {
1067   size_t length = 0;
1068   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1069     length += (*heap)->freelist_length();
1070   }
1071   return length;
1072 }
1073 
1074 void icache_init();
1075 
1076 void CodeCache::initialize() {
1077   assert(CodeCacheSegmentSize >= (uintx)CodeEntryAlignment, "CodeCacheSegmentSize must be large enough to align entry points");
1078 #ifdef COMPILER2
1079   assert(CodeCacheSegmentSize >= (uintx)OptoLoopAlignment,  "CodeCacheSegmentSize must be large enough to align inner loops");
1080 #endif
1081   assert(CodeCacheSegmentSize >= sizeof(jdouble),    "CodeCacheSegmentSize must be large enough to align constants");
1082   // This was originally just a check of the alignment, causing failure, instead, round
1083   // the code cache to the page size.  In particular, Solaris is moving to a larger
1084   // default page size.
1085   CodeCacheExpansionSize = align_up(CodeCacheExpansionSize, os::vm_page_size());
1086 
1087   if (SegmentedCodeCache) {
1088     // Use multiple code heaps
1089     initialize_heaps();
1090   } else {
1091     // Use a single code heap
1092     FLAG_SET_ERGO(uintx, NonNMethodCodeHeapSize, 0);
1093     FLAG_SET_ERGO(uintx, ProfiledCodeHeapSize, 0);
1094     FLAG_SET_ERGO(uintx, NonProfiledCodeHeapSize, 0);
1095     ReservedCodeSpace rs = reserve_heap_memory(ReservedCodeCacheSize);
1096     add_heap(rs, "CodeCache", CodeBlobType::All);
1097   }
1098 
1099   // Initialize ICache flush mechanism
1100   // This service is needed for os::register_code_area
1101   icache_init();
1102 
1103   // Give OS a chance to register generated code area.
1104   // This is used on Windows 64 bit platforms to register
1105   // Structured Exception Handlers for our generated code.
1106   os::register_code_area((char*)low_bound(), (char*)high_bound());
1107 }
1108 
1109 void codeCache_init() {
1110   CodeCache::initialize();
1111   // Load AOT libraries and add AOT code heaps.
1112   AOTLoader::initialize();
1113 }
1114 
1115 //------------------------------------------------------------------------------------------------
1116 
1117 int CodeCache::number_of_nmethods_with_dependencies() {
1118   return _number_of_nmethods_with_dependencies;
1119 }
1120 
1121 void CodeCache::clear_inline_caches() {
1122   assert_locked_or_safepoint(CodeCache_lock);
1123   CompiledMethodIterator iter;
1124   while(iter.next_alive()) {
1125     iter.method()->clear_inline_caches();
1126   }
1127 }
1128 
1129 void CodeCache::cleanup_inline_caches() {
1130   assert_locked_or_safepoint(CodeCache_lock);
1131   NMethodIterator iter;
1132   while(iter.next_alive()) {
1133     iter.method()->cleanup_inline_caches(/*clean_all=*/true);
1134   }
1135 }
1136 
1137 // Keeps track of time spent for checking dependencies
1138 NOT_PRODUCT(static elapsedTimer dependentCheckTime;)
1139 
1140 int CodeCache::mark_for_deoptimization(KlassDepChange& changes) {
1141   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1142   int number_of_marked_CodeBlobs = 0;
1143 
1144   // search the hierarchy looking for nmethods which are affected by the loading of this class
1145 
1146   // then search the interfaces this class implements looking for nmethods
1147   // which might be dependent of the fact that an interface only had one
1148   // implementor.
1149   // nmethod::check_all_dependencies works only correctly, if no safepoint
1150   // can happen
1151   NoSafepointVerifier nsv;
1152   for (DepChange::ContextStream str(changes, nsv); str.next(); ) {
1153     Klass* d = str.klass();
1154     number_of_marked_CodeBlobs += InstanceKlass::cast(d)->mark_dependent_nmethods(changes);
1155   }
1156 
1157 #ifndef PRODUCT
1158   if (VerifyDependencies) {
1159     // Object pointers are used as unique identifiers for dependency arguments. This
1160     // is only possible if no safepoint, i.e., GC occurs during the verification code.
1161     dependentCheckTime.start();
1162     nmethod::check_all_dependencies(changes);
1163     dependentCheckTime.stop();
1164   }
1165 #endif
1166 
1167   return number_of_marked_CodeBlobs;
1168 }
1169 
1170 CompiledMethod* CodeCache::find_compiled(void* start) {
1171   CodeBlob *cb = find_blob(start);
1172   assert(cb == NULL || cb->is_compiled(), "did not find an compiled_method");
1173   return (CompiledMethod*)cb;
1174 }
1175 
1176 bool CodeCache::is_far_target(address target) {
1177 #if INCLUDE_AOT
1178   return NativeCall::is_far_call(_low_bound,  target) ||
1179          NativeCall::is_far_call(_high_bound, target);
1180 #else
1181   return false;
1182 #endif
1183 }
1184 
1185 #ifdef HOTSWAP
1186 int CodeCache::mark_for_evol_deoptimization(InstanceKlass* dependee) {
1187   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1188   int number_of_marked_CodeBlobs = 0;
1189 
1190   // Deoptimize all methods of the evolving class itself
1191   Array<Method*>* old_methods = dependee->methods();
1192   for (int i = 0; i < old_methods->length(); i++) {
1193     ResourceMark rm;
1194     Method* old_method = old_methods->at(i);
1195     CompiledMethod* nm = old_method->code();
1196     if (nm != NULL) {
1197       nm->mark_for_deoptimization();
1198       number_of_marked_CodeBlobs++;
1199     }
1200   }
1201 
1202   CompiledMethodIterator iter;
1203   while(iter.next_alive()) {
1204     CompiledMethod* nm = iter.method();
1205     if (nm->is_marked_for_deoptimization()) {
1206       // ...Already marked in the previous pass; don't count it again.
1207     } else if (nm->is_evol_dependent_on(dependee)) {
1208       ResourceMark rm;
1209       nm->mark_for_deoptimization();
1210       number_of_marked_CodeBlobs++;
1211     } else  {
1212       // flush caches in case they refer to a redefined Method*
1213       nm->clear_inline_caches();
1214     }
1215   }
1216 
1217   return number_of_marked_CodeBlobs;
1218 }
1219 #endif // HOTSWAP
1220 
1221 
1222 // Deoptimize all methods
1223 void CodeCache::mark_all_nmethods_for_deoptimization() {
1224   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1225   CompiledMethodIterator iter;
1226   while(iter.next_alive()) {
1227     CompiledMethod* nm = iter.method();
1228     if (!nm->method()->is_method_handle_intrinsic()) {
1229       nm->mark_for_deoptimization();
1230     }
1231   }
1232 }
1233 
1234 int CodeCache::mark_for_deoptimization(Method* dependee) {
1235   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1236   int number_of_marked_CodeBlobs = 0;
1237 
1238   CompiledMethodIterator iter;
1239   while(iter.next_alive()) {
1240     CompiledMethod* nm = iter.method();
1241     if (nm->is_dependent_on_method(dependee)) {
1242       ResourceMark rm;
1243       nm->mark_for_deoptimization();
1244       number_of_marked_CodeBlobs++;
1245     }
1246   }
1247 
1248   return number_of_marked_CodeBlobs;
1249 }
1250 
1251 void CodeCache::make_marked_nmethods_not_entrant() {
1252   assert_locked_or_safepoint(CodeCache_lock);
1253   CompiledMethodIterator iter;
1254   while(iter.next_alive()) {
1255     CompiledMethod* nm = iter.method();
1256     if (nm->is_marked_for_deoptimization() && !nm->is_not_entrant()) {
1257       nm->make_not_entrant();
1258     }
1259   }
1260 }
1261 
1262 // Flushes compiled methods dependent on dependee.
1263 void CodeCache::flush_dependents_on(InstanceKlass* dependee) {
1264   assert_lock_strong(Compile_lock);
1265 
1266   if (number_of_nmethods_with_dependencies() == 0) return;
1267 
1268   // CodeCache can only be updated by a thread_in_VM and they will all be
1269   // stopped during the safepoint so CodeCache will be safe to update without
1270   // holding the CodeCache_lock.
1271 
1272   KlassDepChange changes(dependee);
1273 
1274   // Compute the dependent nmethods
1275   if (mark_for_deoptimization(changes) > 0) {
1276     // At least one nmethod has been marked for deoptimization
1277     VM_Deoptimize op;
1278     VMThread::execute(&op);
1279   }
1280 }
1281 
1282 #ifdef HOTSWAP
1283 // Flushes compiled methods dependent on dependee in the evolutionary sense
1284 void CodeCache::flush_evol_dependents_on(InstanceKlass* ev_k) {
1285   // --- Compile_lock is not held. However we are at a safepoint.
1286   assert_locked_or_safepoint(Compile_lock);
1287   if (number_of_nmethods_with_dependencies() == 0 && !UseAOT) return;
1288 
1289   // CodeCache can only be updated by a thread_in_VM and they will all be
1290   // stopped during the safepoint so CodeCache will be safe to update without
1291   // holding the CodeCache_lock.
1292 
1293   // Compute the dependent nmethods
1294   if (mark_for_evol_deoptimization(ev_k) > 0) {
1295     // At least one nmethod has been marked for deoptimization
1296 
1297     // All this already happens inside a VM_Operation, so we'll do all the work here.
1298     // Stuff copied from VM_Deoptimize and modified slightly.
1299 
1300     // We do not want any GCs to happen while we are in the middle of this VM operation
1301     ResourceMark rm;
1302     DeoptimizationMarker dm;
1303 
1304     // Deoptimize all activations depending on marked nmethods
1305     Deoptimization::deoptimize_dependents();
1306 
1307     // Make the dependent methods not entrant
1308     make_marked_nmethods_not_entrant();
1309   }
1310 }
1311 #endif // HOTSWAP
1312 
1313 
1314 // Flushes compiled methods dependent on dependee
1315 void CodeCache::flush_dependents_on_method(const methodHandle& m_h) {
1316   // --- Compile_lock is not held. However we are at a safepoint.
1317   assert_locked_or_safepoint(Compile_lock);
1318 
1319   // CodeCache can only be updated by a thread_in_VM and they will all be
1320   // stopped dring the safepoint so CodeCache will be safe to update without
1321   // holding the CodeCache_lock.
1322 
1323   // Compute the dependent nmethods
1324   if (mark_for_deoptimization(m_h()) > 0) {
1325     // At least one nmethod has been marked for deoptimization
1326 
1327     // All this already happens inside a VM_Operation, so we'll do all the work here.
1328     // Stuff copied from VM_Deoptimize and modified slightly.
1329 
1330     // We do not want any GCs to happen while we are in the middle of this VM operation
1331     ResourceMark rm;
1332     DeoptimizationMarker dm;
1333 
1334     // Deoptimize all activations depending on marked nmethods
1335     Deoptimization::deoptimize_dependents();
1336 
1337     // Make the dependent methods not entrant
1338     make_marked_nmethods_not_entrant();
1339   }
1340 }
1341 
1342 void CodeCache::verify() {
1343   assert_locked_or_safepoint(CodeCache_lock);
1344   FOR_ALL_HEAPS(heap) {
1345     (*heap)->verify();
1346     FOR_ALL_BLOBS(cb, *heap) {
1347       if (cb->is_alive()) {
1348         cb->verify();
1349       }
1350     }
1351   }
1352 }
1353 
1354 // A CodeHeap is full. Print out warning and report event.
1355 PRAGMA_DIAG_PUSH
1356 PRAGMA_FORMAT_NONLITERAL_IGNORED
1357 void CodeCache::report_codemem_full(int code_blob_type, bool print) {
1358   // Get nmethod heap for the given CodeBlobType and build CodeCacheFull event
1359   CodeHeap* heap = get_code_heap(code_blob_type);
1360   assert(heap != NULL, "heap is null");
1361 
1362   if ((heap->full_count() == 0) || print) {
1363     // Not yet reported for this heap, report
1364     if (SegmentedCodeCache) {
1365       ResourceMark rm;
1366       stringStream msg1_stream, msg2_stream;
1367       msg1_stream.print("%s is full. Compiler has been disabled.",
1368                         get_code_heap_name(code_blob_type));
1369       msg2_stream.print("Try increasing the code heap size using -XX:%s=",
1370                  get_code_heap_flag_name(code_blob_type));
1371       const char *msg1 = msg1_stream.as_string();
1372       const char *msg2 = msg2_stream.as_string();
1373 
1374       log_warning(codecache)("%s", msg1);
1375       log_warning(codecache)("%s", msg2);
1376       warning("%s", msg1);
1377       warning("%s", msg2);
1378     } else {
1379       const char *msg1 = "CodeCache is full. Compiler has been disabled.";
1380       const char *msg2 = "Try increasing the code cache size using -XX:ReservedCodeCacheSize=";
1381 
1382       log_warning(codecache)("%s", msg1);
1383       log_warning(codecache)("%s", msg2);
1384       warning("%s", msg1);
1385       warning("%s", msg2);
1386     }
1387     ResourceMark rm;
1388     stringStream s;
1389     // Dump code cache into a buffer before locking the tty.
1390     {
1391       MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1392       print_summary(&s);
1393     }
1394     {
1395       ttyLocker ttyl;
1396       tty->print("%s", s.as_string());
1397     }
1398 
1399     if (heap->full_count() == 0) {
1400       LogTarget(Debug, codecache) lt;
1401       if (lt.is_enabled()) {
1402         CompileBroker::print_heapinfo(tty, "all", "4096"); // details, may be a lot!
1403       }
1404     }
1405   }
1406 
1407   heap->report_full();
1408 
1409   EventCodeCacheFull event;
1410   if (event.should_commit()) {
1411     event.set_codeBlobType((u1)code_blob_type);
1412     event.set_startAddress((u8)heap->low_boundary());
1413     event.set_commitedTopAddress((u8)heap->high());
1414     event.set_reservedTopAddress((u8)heap->high_boundary());
1415     event.set_entryCount(heap->blob_count());
1416     event.set_methodCount(heap->nmethod_count());
1417     event.set_adaptorCount(heap->adapter_count());
1418     event.set_unallocatedCapacity(heap->unallocated_capacity());
1419     event.set_fullCount(heap->full_count());
1420     event.commit();
1421   }
1422 }
1423 PRAGMA_DIAG_POP
1424 
1425 void CodeCache::print_memory_overhead() {
1426   size_t wasted_bytes = 0;
1427   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1428       CodeHeap* curr_heap = *heap;
1429       for (CodeBlob* cb = (CodeBlob*)curr_heap->first(); cb != NULL; cb = (CodeBlob*)curr_heap->next(cb)) {
1430         HeapBlock* heap_block = ((HeapBlock*)cb) - 1;
1431         wasted_bytes += heap_block->length() * CodeCacheSegmentSize - cb->size();
1432       }
1433   }
1434   // Print bytes that are allocated in the freelist
1435   ttyLocker ttl;
1436   tty->print_cr("Number of elements in freelist: " SSIZE_FORMAT,       freelists_length());
1437   tty->print_cr("Allocated in freelist:          " SSIZE_FORMAT "kB",  bytes_allocated_in_freelists()/K);
1438   tty->print_cr("Unused bytes in CodeBlobs:      " SSIZE_FORMAT "kB",  (wasted_bytes/K));
1439   tty->print_cr("Segment map size:               " SSIZE_FORMAT "kB",  allocated_segments()/K); // 1 byte per segment
1440 }
1441 
1442 //------------------------------------------------------------------------------------------------
1443 // Non-product version
1444 
1445 #ifndef PRODUCT
1446 
1447 void CodeCache::print_trace(const char* event, CodeBlob* cb, int size) {
1448   if (PrintCodeCache2) {  // Need to add a new flag
1449     ResourceMark rm;
1450     if (size == 0)  size = cb->size();
1451     tty->print_cr("CodeCache %s:  addr: " INTPTR_FORMAT ", size: 0x%x", event, p2i(cb), size);
1452   }
1453 }
1454 
1455 void CodeCache::print_internals() {
1456   int nmethodCount = 0;
1457   int runtimeStubCount = 0;
1458   int adapterCount = 0;
1459   int deoptimizationStubCount = 0;
1460   int uncommonTrapStubCount = 0;
1461   int bufferBlobCount = 0;
1462   int total = 0;
1463   int nmethodAlive = 0;
1464   int nmethodNotEntrant = 0;
1465   int nmethodZombie = 0;
1466   int nmethodUnloaded = 0;
1467   int nmethodJava = 0;
1468   int nmethodNative = 0;
1469   int max_nm_size = 0;
1470   ResourceMark rm;
1471 
1472   int i = 0;
1473   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1474     if ((_nmethod_heaps->length() >= 1) && Verbose) {
1475       tty->print_cr("-- %s --", (*heap)->name());
1476     }
1477     FOR_ALL_BLOBS(cb, *heap) {
1478       total++;
1479       if (cb->is_nmethod()) {
1480         nmethod* nm = (nmethod*)cb;
1481 
1482         if (Verbose && nm->method() != NULL) {
1483           ResourceMark rm;
1484           char *method_name = nm->method()->name_and_sig_as_C_string();
1485           tty->print("%s", method_name);
1486           if(nm->is_alive()) { tty->print_cr(" alive"); }
1487           if(nm->is_not_entrant()) { tty->print_cr(" not-entrant"); }
1488           if(nm->is_zombie()) { tty->print_cr(" zombie"); }
1489         }
1490 
1491         nmethodCount++;
1492 
1493         if(nm->is_alive()) { nmethodAlive++; }
1494         if(nm->is_not_entrant()) { nmethodNotEntrant++; }
1495         if(nm->is_zombie()) { nmethodZombie++; }
1496         if(nm->is_unloaded()) { nmethodUnloaded++; }
1497         if(nm->method() != NULL && nm->is_native_method()) { nmethodNative++; }
1498 
1499         if(nm->method() != NULL && nm->is_java_method()) {
1500           nmethodJava++;
1501           max_nm_size = MAX2(max_nm_size, nm->size());
1502         }
1503       } else if (cb->is_runtime_stub()) {
1504         runtimeStubCount++;
1505       } else if (cb->is_deoptimization_stub()) {
1506         deoptimizationStubCount++;
1507       } else if (cb->is_uncommon_trap_stub()) {
1508         uncommonTrapStubCount++;
1509       } else if (cb->is_adapter_blob()) {
1510         adapterCount++;
1511       } else if (cb->is_buffer_blob()) {
1512         bufferBlobCount++;
1513       }
1514     }
1515   }
1516 
1517   int bucketSize = 512;
1518   int bucketLimit = max_nm_size / bucketSize + 1;
1519   int *buckets = NEW_C_HEAP_ARRAY(int, bucketLimit, mtCode);
1520   memset(buckets, 0, sizeof(int) * bucketLimit);
1521 
1522   NMethodIterator iter;
1523   while(iter.next()) {
1524     nmethod* nm = iter.method();
1525     if(nm->method() != NULL && nm->is_java_method()) {
1526       buckets[nm->size() / bucketSize]++;
1527     }
1528   }
1529 
1530   tty->print_cr("Code Cache Entries (total of %d)",total);
1531   tty->print_cr("-------------------------------------------------");
1532   tty->print_cr("nmethods: %d",nmethodCount);
1533   tty->print_cr("\talive: %d",nmethodAlive);
1534   tty->print_cr("\tnot_entrant: %d",nmethodNotEntrant);
1535   tty->print_cr("\tzombie: %d",nmethodZombie);
1536   tty->print_cr("\tunloaded: %d",nmethodUnloaded);
1537   tty->print_cr("\tjava: %d",nmethodJava);
1538   tty->print_cr("\tnative: %d",nmethodNative);
1539   tty->print_cr("runtime_stubs: %d",runtimeStubCount);
1540   tty->print_cr("adapters: %d",adapterCount);
1541   tty->print_cr("buffer blobs: %d",bufferBlobCount);
1542   tty->print_cr("deoptimization_stubs: %d",deoptimizationStubCount);
1543   tty->print_cr("uncommon_traps: %d",uncommonTrapStubCount);
1544   tty->print_cr("\nnmethod size distribution (non-zombie java)");
1545   tty->print_cr("-------------------------------------------------");
1546 
1547   for(int i=0; i<bucketLimit; i++) {
1548     if(buckets[i] != 0) {
1549       tty->print("%d - %d bytes",i*bucketSize,(i+1)*bucketSize);
1550       tty->fill_to(40);
1551       tty->print_cr("%d",buckets[i]);
1552     }
1553   }
1554 
1555   FREE_C_HEAP_ARRAY(int, buckets);
1556   print_memory_overhead();
1557 }
1558 
1559 #endif // !PRODUCT
1560 
1561 void CodeCache::print() {
1562   print_summary(tty);
1563 
1564 #ifndef PRODUCT
1565   if (!Verbose) return;
1566 
1567   CodeBlob_sizes live;
1568   CodeBlob_sizes dead;
1569 
1570   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1571     FOR_ALL_BLOBS(cb, *heap) {
1572       if (!cb->is_alive()) {
1573         dead.add(cb);
1574       } else {
1575         live.add(cb);
1576       }
1577     }
1578   }
1579 
1580   tty->print_cr("CodeCache:");
1581   tty->print_cr("nmethod dependency checking time %fs", dependentCheckTime.seconds());
1582 
1583   if (!live.is_empty()) {
1584     live.print("live");
1585   }
1586   if (!dead.is_empty()) {
1587     dead.print("dead");
1588   }
1589 
1590   if (WizardMode) {
1591      // print the oop_map usage
1592     int code_size = 0;
1593     int number_of_blobs = 0;
1594     int number_of_oop_maps = 0;
1595     int map_size = 0;
1596     FOR_ALL_ALLOCABLE_HEAPS(heap) {
1597       FOR_ALL_BLOBS(cb, *heap) {
1598         if (cb->is_alive()) {
1599           number_of_blobs++;
1600           code_size += cb->code_size();
1601           ImmutableOopMapSet* set = cb->oop_maps();
1602           if (set != NULL) {
1603             number_of_oop_maps += set->count();
1604             map_size           += set->nr_of_bytes();
1605           }
1606         }
1607       }
1608     }
1609     tty->print_cr("OopMaps");
1610     tty->print_cr("  #blobs    = %d", number_of_blobs);
1611     tty->print_cr("  code size = %d", code_size);
1612     tty->print_cr("  #oop_maps = %d", number_of_oop_maps);
1613     tty->print_cr("  map size  = %d", map_size);
1614   }
1615 
1616 #endif // !PRODUCT
1617 }
1618 
1619 void CodeCache::print_summary(outputStream* st, bool detailed) {
1620   int full_count = 0;
1621   FOR_ALL_HEAPS(heap_iterator) {
1622     CodeHeap* heap = (*heap_iterator);
1623     size_t total = (heap->high_boundary() - heap->low_boundary());
1624     if (_heaps->length() >= 1) {
1625       st->print("%s:", heap->name());
1626     } else {
1627       st->print("CodeCache:");
1628     }
1629     st->print_cr(" size=" SIZE_FORMAT "Kb used=" SIZE_FORMAT
1630                  "Kb max_used=" SIZE_FORMAT "Kb free=" SIZE_FORMAT "Kb",
1631                  total/K, (total - heap->unallocated_capacity())/K,
1632                  heap->max_allocated_capacity()/K, heap->unallocated_capacity()/K);
1633 
1634     if (detailed) {
1635       st->print_cr(" bounds [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT "]",
1636                    p2i(heap->low_boundary()),
1637                    p2i(heap->high()),
1638                    p2i(heap->high_boundary()));
1639 
1640       full_count += get_codemem_full_count(heap->code_blob_type());
1641     }
1642   }
1643 
1644   if (detailed) {
1645     st->print_cr(" total_blobs=" UINT32_FORMAT " nmethods=" UINT32_FORMAT
1646                        " adapters=" UINT32_FORMAT,
1647                        blob_count(), nmethod_count(), adapter_count());
1648     st->print_cr(" compilation: %s", CompileBroker::should_compile_new_jobs() ?
1649                  "enabled" : Arguments::mode() == Arguments::_int ?
1650                  "disabled (interpreter mode)" :
1651                  "disabled (not enough contiguous free space left)");
1652     st->print_cr("              stopped_count=%d, restarted_count=%d",
1653                  CompileBroker::get_total_compiler_stopped_count(),
1654                  CompileBroker::get_total_compiler_restarted_count());
1655     st->print_cr(" full_count=%d", full_count);
1656   }
1657 }
1658 
1659 void CodeCache::print_codelist(outputStream* st) {
1660   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1661 
1662   CompiledMethodIterator iter;
1663   while (iter.next_alive()) {
1664     CompiledMethod* cm = iter.method();
1665     ResourceMark rm;
1666     char* method_name = cm->method()->name_and_sig_as_C_string();
1667     st->print_cr("%d %d %d %s [" INTPTR_FORMAT ", " INTPTR_FORMAT " - " INTPTR_FORMAT "]",
1668                  cm->compile_id(), cm->comp_level(), cm->get_state(),
1669                  method_name,
1670                  (intptr_t)cm->header_begin(), (intptr_t)cm->code_begin(), (intptr_t)cm->code_end());
1671   }
1672 }
1673 
1674 void CodeCache::print_layout(outputStream* st) {
1675   MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1676   ResourceMark rm;
1677   print_summary(st, true);
1678 }
1679 
1680 void CodeCache::log_state(outputStream* st) {
1681   st->print(" total_blobs='" UINT32_FORMAT "' nmethods='" UINT32_FORMAT "'"
1682             " adapters='" UINT32_FORMAT "' free_code_cache='" SIZE_FORMAT "'",
1683             blob_count(), nmethod_count(), adapter_count(),
1684             unallocated_capacity());
1685 }
1686 
1687 //---<  BEGIN  >--- CodeHeap State Analytics.
1688 
1689 void CodeCache::aggregate(outputStream *out, const char* granularity) {
1690   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1691     CodeHeapState::aggregate(out, (*heap), granularity);
1692   }
1693 }
1694 
1695 void CodeCache::discard(outputStream *out) {
1696   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1697     CodeHeapState::discard(out, (*heap));
1698   }
1699 }
1700 
1701 void CodeCache::print_usedSpace(outputStream *out) {
1702   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1703     CodeHeapState::print_usedSpace(out, (*heap));
1704   }
1705 }
1706 
1707 void CodeCache::print_freeSpace(outputStream *out) {
1708   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1709     CodeHeapState::print_freeSpace(out, (*heap));
1710   }
1711 }
1712 
1713 void CodeCache::print_count(outputStream *out) {
1714   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1715     CodeHeapState::print_count(out, (*heap));
1716   }
1717 }
1718 
1719 void CodeCache::print_space(outputStream *out) {
1720   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1721     CodeHeapState::print_space(out, (*heap));
1722   }
1723 }
1724 
1725 void CodeCache::print_age(outputStream *out) {
1726   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1727     CodeHeapState::print_age(out, (*heap));
1728   }
1729 }
1730 
1731 void CodeCache::print_names(outputStream *out) {
1732   FOR_ALL_ALLOCABLE_HEAPS(heap) {
1733     CodeHeapState::print_names(out, (*heap));
1734   }
1735 }
1736 //---<  END  >--- CodeHeap State Analytics.