1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "aot/aotLoader.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/compiledIC.hpp"
  33 #include "code/icBuffer.hpp"
  34 #include "code/compiledMethod.inline.hpp"
  35 #include "code/scopeDesc.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/abstractCompiler.hpp"
  38 #include "compiler/compileBroker.hpp"
  39 #include "compiler/disassembler.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/interpreter.hpp"
  43 #include "interpreter/interpreterRuntime.hpp"
  44 #include "jfr/jfrEvents.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/metaspaceShared.hpp"
  47 #include "memory/resourceArea.hpp"
  48 #include "memory/universe.hpp"
  49 #include "oops/klass.hpp"
  50 #include "oops/method.inline.hpp"
  51 #include "oops/objArrayKlass.hpp"
  52 #include "oops/oop.inline.hpp"
  53 #include "prims/forte.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/methodHandles.hpp"
  56 #include "prims/nativeLookup.hpp"
  57 #include "runtime/arguments.hpp"
  58 #include "runtime/atomic.hpp"
  59 #include "runtime/biasedLocking.hpp"
  60 #include "runtime/compilationPolicy.hpp"
  61 #include "runtime/frame.inline.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/init.hpp"
  64 #include "runtime/interfaceSupport.inline.hpp"
  65 #include "runtime/java.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/vframe.inline.hpp"
  70 #include "runtime/vframeArray.hpp"
  71 #include "utilities/copy.hpp"
  72 #include "utilities/dtrace.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/hashtable.inline.hpp"
  75 #include "utilities/macros.hpp"
  76 #include "utilities/xmlstream.hpp"
  77 #ifdef COMPILER1
  78 #include "c1/c1_Runtime1.hpp"
  79 #endif
  80 
  81 // Shared stub locations
  82 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  83 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  84 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  85 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  88 address             SharedRuntime::_resolve_static_call_entry;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  92 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  94 
  95 #ifdef COMPILER2
  96 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  97 #endif // COMPILER2
  98 
  99 
 100 //----------------------------generate_stubs-----------------------------------
 101 void SharedRuntime::generate_stubs() {
 102   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
 103   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 108   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 109 
 110 #if COMPILER2_OR_JVMCI
 111   // Vectors are generated only by C2 and JVMCI.
 112   bool support_wide = is_wide_vector(MaxVectorSize);
 113   if (support_wide) {
 114     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 115   }
 116 #endif // COMPILER2_OR_JVMCI
 117   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 118   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 119 
 120   generate_deopt_blob();
 121 
 122 #ifdef COMPILER2
 123   generate_uncommon_trap_blob();
 124 #endif // COMPILER2
 125 }
 126 
 127 #include <math.h>
 128 
 129 // Implementation of SharedRuntime
 130 
 131 #ifndef PRODUCT
 132 // For statistics
 133 int SharedRuntime::_ic_miss_ctr = 0;
 134 int SharedRuntime::_wrong_method_ctr = 0;
 135 int SharedRuntime::_resolve_static_ctr = 0;
 136 int SharedRuntime::_resolve_virtual_ctr = 0;
 137 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 138 int SharedRuntime::_implicit_null_throws = 0;
 139 int SharedRuntime::_implicit_div0_throws = 0;
 140 int SharedRuntime::_throw_null_ctr = 0;
 141 
 142 int SharedRuntime::_nof_normal_calls = 0;
 143 int SharedRuntime::_nof_optimized_calls = 0;
 144 int SharedRuntime::_nof_inlined_calls = 0;
 145 int SharedRuntime::_nof_megamorphic_calls = 0;
 146 int SharedRuntime::_nof_static_calls = 0;
 147 int SharedRuntime::_nof_inlined_static_calls = 0;
 148 int SharedRuntime::_nof_interface_calls = 0;
 149 int SharedRuntime::_nof_optimized_interface_calls = 0;
 150 int SharedRuntime::_nof_inlined_interface_calls = 0;
 151 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 152 int SharedRuntime::_nof_removable_exceptions = 0;
 153 
 154 int SharedRuntime::_new_instance_ctr=0;
 155 int SharedRuntime::_new_array_ctr=0;
 156 int SharedRuntime::_multi1_ctr=0;
 157 int SharedRuntime::_multi2_ctr=0;
 158 int SharedRuntime::_multi3_ctr=0;
 159 int SharedRuntime::_multi4_ctr=0;
 160 int SharedRuntime::_multi5_ctr=0;
 161 int SharedRuntime::_mon_enter_stub_ctr=0;
 162 int SharedRuntime::_mon_exit_stub_ctr=0;
 163 int SharedRuntime::_mon_enter_ctr=0;
 164 int SharedRuntime::_mon_exit_ctr=0;
 165 int SharedRuntime::_partial_subtype_ctr=0;
 166 int SharedRuntime::_jbyte_array_copy_ctr=0;
 167 int SharedRuntime::_jshort_array_copy_ctr=0;
 168 int SharedRuntime::_jint_array_copy_ctr=0;
 169 int SharedRuntime::_jlong_array_copy_ctr=0;
 170 int SharedRuntime::_oop_array_copy_ctr=0;
 171 int SharedRuntime::_checkcast_array_copy_ctr=0;
 172 int SharedRuntime::_unsafe_array_copy_ctr=0;
 173 int SharedRuntime::_generic_array_copy_ctr=0;
 174 int SharedRuntime::_slow_array_copy_ctr=0;
 175 int SharedRuntime::_find_handler_ctr=0;
 176 int SharedRuntime::_rethrow_ctr=0;
 177 
 178 int     SharedRuntime::_ICmiss_index                    = 0;
 179 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 180 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 181 
 182 
 183 void SharedRuntime::trace_ic_miss(address at) {
 184   for (int i = 0; i < _ICmiss_index; i++) {
 185     if (_ICmiss_at[i] == at) {
 186       _ICmiss_count[i]++;
 187       return;
 188     }
 189   }
 190   int index = _ICmiss_index++;
 191   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 192   _ICmiss_at[index] = at;
 193   _ICmiss_count[index] = 1;
 194 }
 195 
 196 void SharedRuntime::print_ic_miss_histogram() {
 197   if (ICMissHistogram) {
 198     tty->print_cr("IC Miss Histogram:");
 199     int tot_misses = 0;
 200     for (int i = 0; i < _ICmiss_index; i++) {
 201       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 202       tot_misses += _ICmiss_count[i];
 203     }
 204     tty->print_cr("Total IC misses: %7d", tot_misses);
 205   }
 206 }
 207 #endif // PRODUCT
 208 
 209 
 210 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 211   return x * y;
 212 JRT_END
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 216   if (x == min_jlong && y == CONST64(-1)) {
 217     return x;
 218   } else {
 219     return x / y;
 220   }
 221 JRT_END
 222 
 223 
 224 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 225   if (x == min_jlong && y == CONST64(-1)) {
 226     return 0;
 227   } else {
 228     return x % y;
 229   }
 230 JRT_END
 231 
 232 
 233 const juint  float_sign_mask  = 0x7FFFFFFF;
 234 const juint  float_infinity   = 0x7F800000;
 235 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 236 const julong double_infinity  = CONST64(0x7FF0000000000000);
 237 
 238 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 239 #ifdef _WIN64
 240   // 64-bit Windows on amd64 returns the wrong values for
 241   // infinity operands.
 242   union { jfloat f; juint i; } xbits, ybits;
 243   xbits.f = x;
 244   ybits.f = y;
 245   // x Mod Infinity == x unless x is infinity
 246   if (((xbits.i & float_sign_mask) != float_infinity) &&
 247        ((ybits.i & float_sign_mask) == float_infinity) ) {
 248     return x;
 249   }
 250   return ((jfloat)fmod_winx64((double)x, (double)y));
 251 #else
 252   return ((jfloat)fmod((double)x,(double)y));
 253 #endif
 254 JRT_END
 255 
 256 
 257 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 258 #ifdef _WIN64
 259   union { jdouble d; julong l; } xbits, ybits;
 260   xbits.d = x;
 261   ybits.d = y;
 262   // x Mod Infinity == x unless x is infinity
 263   if (((xbits.l & double_sign_mask) != double_infinity) &&
 264        ((ybits.l & double_sign_mask) == double_infinity) ) {
 265     return x;
 266   }
 267   return ((jdouble)fmod_winx64((double)x, (double)y));
 268 #else
 269   return ((jdouble)fmod((double)x,(double)y));
 270 #endif
 271 JRT_END
 272 
 273 #ifdef __SOFTFP__
 274 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 275   return x + y;
 276 JRT_END
 277 
 278 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 279   return x - y;
 280 JRT_END
 281 
 282 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 283   return x * y;
 284 JRT_END
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 287   return x / y;
 288 JRT_END
 289 
 290 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 307   return (jfloat)x;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 311   return (jdouble)x;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 315   return (jdouble)x;
 316 JRT_END
 317 
 318 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 319   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 320 JRT_END
 321 
 322 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 323   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 324 JRT_END
 325 
 326 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 327   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 331   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 332 JRT_END
 333 
 334 // Functions to return the opposite of the aeabi functions for nan.
 335 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 336   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 337 JRT_END
 338 
 339 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 340   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 341 JRT_END
 342 
 343 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 344   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 345 JRT_END
 346 
 347 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 348   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 352   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 356   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 360   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 364   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 // Intrinsics make gcc generate code for these.
 368 float  SharedRuntime::fneg(float f)   {
 369   return -f;
 370 }
 371 
 372 double SharedRuntime::dneg(double f)  {
 373   return -f;
 374 }
 375 
 376 #endif // __SOFTFP__
 377 
 378 #if defined(__SOFTFP__) || defined(E500V2)
 379 // Intrinsics make gcc generate code for these.
 380 double SharedRuntime::dabs(double f)  {
 381   return (f <= (double)0.0) ? (double)0.0 - f : f;
 382 }
 383 
 384 #endif
 385 
 386 #if defined(__SOFTFP__) || defined(PPC)
 387 double SharedRuntime::dsqrt(double f) {
 388   return sqrt(f);
 389 }
 390 #endif
 391 
 392 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 393   if (g_isnan(x))
 394     return 0;
 395   if (x >= (jfloat) max_jint)
 396     return max_jint;
 397   if (x <= (jfloat) min_jint)
 398     return min_jint;
 399   return (jint) x;
 400 JRT_END
 401 
 402 
 403 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 404   if (g_isnan(x))
 405     return 0;
 406   if (x >= (jfloat) max_jlong)
 407     return max_jlong;
 408   if (x <= (jfloat) min_jlong)
 409     return min_jlong;
 410   return (jlong) x;
 411 JRT_END
 412 
 413 
 414 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 415   if (g_isnan(x))
 416     return 0;
 417   if (x >= (jdouble) max_jint)
 418     return max_jint;
 419   if (x <= (jdouble) min_jint)
 420     return min_jint;
 421   return (jint) x;
 422 JRT_END
 423 
 424 
 425 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 426   if (g_isnan(x))
 427     return 0;
 428   if (x >= (jdouble) max_jlong)
 429     return max_jlong;
 430   if (x <= (jdouble) min_jlong)
 431     return min_jlong;
 432   return (jlong) x;
 433 JRT_END
 434 
 435 
 436 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 437   return (jfloat)x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 442   return (jfloat)x;
 443 JRT_END
 444 
 445 
 446 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 447   return (jdouble)x;
 448 JRT_END
 449 
 450 // Exception handling across interpreter/compiler boundaries
 451 //
 452 // exception_handler_for_return_address(...) returns the continuation address.
 453 // The continuation address is the entry point of the exception handler of the
 454 // previous frame depending on the return address.
 455 
 456 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 457   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 458   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463 #if INCLUDE_JVMCI
 464   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 465   // and other exception handler continuations do not read it
 466   thread->set_exception_pc(NULL);
 467 #endif // INCLUDE_JVMCI
 468 
 469   // The fastest case first
 470   CodeBlob* blob = CodeCache::find_blob(return_address);
 471   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 472   if (nm != NULL) {
 473     // Set flag if return address is a method handle call site.
 474     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 475     // native nmethods don't have exception handlers
 476     assert(!nm->is_native_method(), "no exception handler");
 477     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 478     if (nm->is_deopt_pc(return_address)) {
 479       // If we come here because of a stack overflow, the stack may be
 480       // unguarded. Reguard the stack otherwise if we return to the
 481       // deopt blob and the stack bang causes a stack overflow we
 482       // crash.
 483       bool guard_pages_enabled = thread->stack_guards_enabled();
 484       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 485       if (thread->reserved_stack_activation() != thread->stack_base()) {
 486         thread->set_reserved_stack_activation(thread->stack_base());
 487       }
 488       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 489       return SharedRuntime::deopt_blob()->unpack_with_exception();
 490     } else {
 491       return nm->exception_begin();
 492     }
 493   }
 494 
 495   // Entry code
 496   if (StubRoutines::returns_to_call_stub(return_address)) {
 497     return StubRoutines::catch_exception_entry();
 498   }
 499   // Interpreted code
 500   if (Interpreter::contains(return_address)) {
 501     return Interpreter::rethrow_exception_entry();
 502   }
 503 
 504   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 505   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 506 
 507 #ifndef PRODUCT
 508   { ResourceMark rm;
 509     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 510     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 511     tty->print_cr("b) other problem");
 512   }
 513 #endif // PRODUCT
 514 
 515   ShouldNotReachHere();
 516   return NULL;
 517 }
 518 
 519 
 520 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 521   return raw_exception_handler_for_return_address(thread, return_address);
 522 JRT_END
 523 
 524 
 525 address SharedRuntime::get_poll_stub(address pc) {
 526   address stub;
 527   // Look up the code blob
 528   CodeBlob *cb = CodeCache::find_blob(pc);
 529 
 530   // Should be an nmethod
 531   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 532 
 533   // Look up the relocation information
 534   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 535     "safepoint polling: type must be poll");
 536 
 537 #ifdef ASSERT
 538   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 539     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 540     Disassembler::decode(cb);
 541     fatal("Only polling locations are used for safepoint");
 542   }
 543 #endif
 544 
 545   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 546   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 547   if (at_poll_return) {
 548     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 549            "polling page return stub not created yet");
 550     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 551   } else if (has_wide_vectors) {
 552     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 553            "polling page vectors safepoint stub not created yet");
 554     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 555   } else {
 556     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 557            "polling page safepoint stub not created yet");
 558     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 559   }
 560   log_debug(safepoint)("... found polling page %s exception at pc = "
 561                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 562                        at_poll_return ? "return" : "loop",
 563                        (intptr_t)pc, (intptr_t)stub);
 564   return stub;
 565 }
 566 
 567 
 568 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 569   assert(caller.is_interpreted_frame(), "");
 570   int args_size = ArgumentSizeComputer(sig).size() + 1;
 571   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 572   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 573   assert(Universe::heap()->is_in(result) && oopDesc::is_oop(result), "receiver must be an oop");
 574   return result;
 575 }
 576 
 577 
 578 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 579   if (JvmtiExport::can_post_on_exceptions()) {
 580     vframeStream vfst(thread, true);
 581     methodHandle method = methodHandle(thread, vfst.method());
 582     address bcp = method()->bcp_from(vfst.bci());
 583     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 584   }
 585   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 586 }
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 589   Handle h_exception = Exceptions::new_exception(thread, name, message);
 590   throw_and_post_jvmti_exception(thread, h_exception);
 591 }
 592 
 593 // The interpreter code to call this tracing function is only
 594 // called/generated when UL is on for redefine, class and has the right level
 595 // and tags. Since obsolete methods are never compiled, we don't have
 596 // to modify the compilers to generate calls to this function.
 597 //
 598 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 599     JavaThread* thread, Method* method))
 600   if (method->is_obsolete()) {
 601     // We are calling an obsolete method, but this is not necessarily
 602     // an error. Our method could have been redefined just after we
 603     // fetched the Method* from the constant pool.
 604     ResourceMark rm;
 605     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 606   }
 607   return 0;
 608 JRT_END
 609 
 610 // ret_pc points into caller; we are returning caller's exception handler
 611 // for given exception
 612 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 613                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 614   assert(cm != NULL, "must exist");
 615   ResourceMark rm;
 616 
 617 #if INCLUDE_JVMCI
 618   if (cm->is_compiled_by_jvmci()) {
 619     // lookup exception handler for this pc
 620     int catch_pco = ret_pc - cm->code_begin();
 621     ExceptionHandlerTable table(cm);
 622     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 623     if (t != NULL) {
 624       return cm->code_begin() + t->pco();
 625     } else {
 626       return Deoptimization::deoptimize_for_missing_exception_handler(cm);
 627     }
 628   }
 629 #endif // INCLUDE_JVMCI
 630 
 631   nmethod* nm = cm->as_nmethod();
 632   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 633   // determine handler bci, if any
 634   EXCEPTION_MARK;
 635 
 636   int handler_bci = -1;
 637   int scope_depth = 0;
 638   if (!force_unwind) {
 639     int bci = sd->bci();
 640     bool recursive_exception = false;
 641     do {
 642       bool skip_scope_increment = false;
 643       // exception handler lookup
 644       Klass* ek = exception->klass();
 645       methodHandle mh(THREAD, sd->method());
 646       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 647       if (HAS_PENDING_EXCEPTION) {
 648         recursive_exception = true;
 649         // We threw an exception while trying to find the exception handler.
 650         // Transfer the new exception to the exception handle which will
 651         // be set into thread local storage, and do another lookup for an
 652         // exception handler for this exception, this time starting at the
 653         // BCI of the exception handler which caused the exception to be
 654         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 655         // argument to ensure that the correct exception is thrown (4870175).
 656         recursive_exception_occurred = true;
 657         exception = Handle(THREAD, PENDING_EXCEPTION);
 658         CLEAR_PENDING_EXCEPTION;
 659         if (handler_bci >= 0) {
 660           bci = handler_bci;
 661           handler_bci = -1;
 662           skip_scope_increment = true;
 663         }
 664       }
 665       else {
 666         recursive_exception = false;
 667       }
 668       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 669         sd = sd->sender();
 670         if (sd != NULL) {
 671           bci = sd->bci();
 672         }
 673         ++scope_depth;
 674       }
 675     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 676   }
 677 
 678   // found handling method => lookup exception handler
 679   int catch_pco = ret_pc - nm->code_begin();
 680 
 681   ExceptionHandlerTable table(nm);
 682   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 683   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 684     // Allow abbreviated catch tables.  The idea is to allow a method
 685     // to materialize its exceptions without committing to the exact
 686     // routing of exceptions.  In particular this is needed for adding
 687     // a synthetic handler to unlock monitors when inlining
 688     // synchronized methods since the unlock path isn't represented in
 689     // the bytecodes.
 690     t = table.entry_for(catch_pco, -1, 0);
 691   }
 692 
 693 #ifdef COMPILER1
 694   if (t == NULL && nm->is_compiled_by_c1()) {
 695     assert(nm->unwind_handler_begin() != NULL, "");
 696     return nm->unwind_handler_begin();
 697   }
 698 #endif
 699 
 700   if (t == NULL) {
 701     ttyLocker ttyl;
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   throw_StackOverflowError_common(thread, false);
 742 JRT_END
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 745   throw_StackOverflowError_common(thread, true);
 746 JRT_END
 747 
 748 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 749   // We avoid using the normal exception construction in this case because
 750   // it performs an upcall to Java, and we're already out of stack space.
 751   Thread* THREAD = thread;
 752   Klass* k = SystemDictionary::StackOverflowError_klass();
 753   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 754   if (delayed) {
 755     java_lang_Throwable::set_message(exception_oop,
 756                                      Universe::delayed_stack_overflow_error_message());
 757   }
 758   Handle exception (thread, exception_oop);
 759   if (StackTraceInThrowable) {
 760     java_lang_Throwable::fill_in_stack_trace(exception);
 761   }
 762   // Increment counter for hs_err file reporting
 763   Atomic::inc(&Exceptions::_stack_overflow_errors);
 764   throw_and_post_jvmti_exception(thread, exception);
 765 }
 766 
 767 #if INCLUDE_JVMCI
 768 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 769   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 770   thread->set_jvmci_implicit_exception_pc(pc);
 771   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 772   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 773 }
 774 #endif // INCLUDE_JVMCI
 775 
 776 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 777                                                            address pc,
 778                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 779 {
 780   address target_pc = NULL;
 781 
 782   if (Interpreter::contains(pc)) {
 783 #ifdef CC_INTERP
 784     // C++ interpreter doesn't throw implicit exceptions
 785     ShouldNotReachHere();
 786 #else
 787     switch (exception_kind) {
 788       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 789       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 790       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 791       default:                      ShouldNotReachHere();
 792     }
 793 #endif // !CC_INTERP
 794   } else {
 795     switch (exception_kind) {
 796       case STACK_OVERFLOW: {
 797         // Stack overflow only occurs upon frame setup; the callee is
 798         // going to be unwound. Dispatch to a shared runtime stub
 799         // which will cause the StackOverflowError to be fabricated
 800         // and processed.
 801         // Stack overflow should never occur during deoptimization:
 802         // the compiled method bangs the stack by as much as the
 803         // interpreter would need in case of a deoptimization. The
 804         // deoptimization blob and uncommon trap blob bang the stack
 805         // in a debug VM to verify the correctness of the compiled
 806         // method stack banging.
 807         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 808         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 809         return StubRoutines::throw_StackOverflowError_entry();
 810       }
 811 
 812       case IMPLICIT_NULL: {
 813         if (VtableStubs::contains(pc)) {
 814           // We haven't yet entered the callee frame. Fabricate an
 815           // exception and begin dispatching it in the caller. Since
 816           // the caller was at a call site, it's safe to destroy all
 817           // caller-saved registers, as these entry points do.
 818           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 819 
 820           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 821           if (vt_stub == NULL) return NULL;
 822 
 823           if (vt_stub->is_abstract_method_error(pc)) {
 824             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 825             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 826             // Instead of throwing the abstract method error here directly, we re-resolve
 827             // and will throw the AbstractMethodError during resolve. As a result, we'll
 828             // get a more detailed error message.
 829             return SharedRuntime::get_handle_wrong_method_stub();
 830           } else {
 831             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 832             // Assert that the signal comes from the expected location in stub code.
 833             assert(vt_stub->is_null_pointer_exception(pc),
 834                    "obtained signal from unexpected location in stub code");
 835             return StubRoutines::throw_NullPointerException_at_call_entry();
 836           }
 837         } else {
 838           CodeBlob* cb = CodeCache::find_blob(pc);
 839 
 840           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 841           if (cb == NULL) return NULL;
 842 
 843           // Exception happened in CodeCache. Must be either:
 844           // 1. Inline-cache check in C2I handler blob,
 845           // 2. Inline-cache check in nmethod, or
 846           // 3. Implicit null exception in nmethod
 847 
 848           if (!cb->is_compiled()) {
 849             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 850             if (!is_in_blob) {
 851               // Allow normal crash reporting to handle this
 852               return NULL;
 853             }
 854             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 855             // There is no handler here, so we will simply unwind.
 856             return StubRoutines::throw_NullPointerException_at_call_entry();
 857           }
 858 
 859           // Otherwise, it's a compiled method.  Consult its exception handlers.
 860           CompiledMethod* cm = (CompiledMethod*)cb;
 861           if (cm->inlinecache_check_contains(pc)) {
 862             // exception happened inside inline-cache check code
 863             // => the nmethod is not yet active (i.e., the frame
 864             // is not set up yet) => use return address pushed by
 865             // caller => don't push another return address
 866             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 867             return StubRoutines::throw_NullPointerException_at_call_entry();
 868           }
 869 
 870           if (cm->method()->is_method_handle_intrinsic()) {
 871             // exception happened inside MH dispatch code, similar to a vtable stub
 872             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 873             return StubRoutines::throw_NullPointerException_at_call_entry();
 874           }
 875 
 876 #ifndef PRODUCT
 877           _implicit_null_throws++;
 878 #endif
 879 #if INCLUDE_JVMCI
 880           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 881             // If there's no PcDesc then we'll die way down inside of
 882             // deopt instead of just getting normal error reporting,
 883             // so only go there if it will succeed.
 884             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 885           } else {
 886 #endif // INCLUDE_JVMCI
 887           assert (cm->is_nmethod(), "Expect nmethod");
 888           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 889 #if INCLUDE_JVMCI
 890           }
 891 #endif // INCLUDE_JVMCI
 892           // If there's an unexpected fault, target_pc might be NULL,
 893           // in which case we want to fall through into the normal
 894           // error handling code.
 895         }
 896 
 897         break; // fall through
 898       }
 899 
 900 
 901       case IMPLICIT_DIVIDE_BY_ZERO: {
 902         CompiledMethod* cm = CodeCache::find_compiled(pc);
 903         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 904 #ifndef PRODUCT
 905         _implicit_div0_throws++;
 906 #endif
 907 #if INCLUDE_JVMCI
 908         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 909           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 910         } else {
 911 #endif // INCLUDE_JVMCI
 912         target_pc = cm->continuation_for_implicit_exception(pc);
 913 #if INCLUDE_JVMCI
 914         }
 915 #endif // INCLUDE_JVMCI
 916         // If there's an unexpected fault, target_pc might be NULL,
 917         // in which case we want to fall through into the normal
 918         // error handling code.
 919         break; // fall through
 920       }
 921 
 922       default: ShouldNotReachHere();
 923     }
 924 
 925     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 926 
 927     if (exception_kind == IMPLICIT_NULL) {
 928 #ifndef PRODUCT
 929       // for AbortVMOnException flag
 930       Exceptions::debug_check_abort("java.lang.NullPointerException");
 931 #endif //PRODUCT
 932       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 933     } else {
 934 #ifndef PRODUCT
 935       // for AbortVMOnException flag
 936       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 937 #endif //PRODUCT
 938       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 939     }
 940     return target_pc;
 941   }
 942 
 943   ShouldNotReachHere();
 944   return NULL;
 945 }
 946 
 947 
 948 /**
 949  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 950  * installed in the native function entry of all native Java methods before
 951  * they get linked to their actual native methods.
 952  *
 953  * \note
 954  * This method actually never gets called!  The reason is because
 955  * the interpreter's native entries call NativeLookup::lookup() which
 956  * throws the exception when the lookup fails.  The exception is then
 957  * caught and forwarded on the return from NativeLookup::lookup() call
 958  * before the call to the native function.  This might change in the future.
 959  */
 960 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 961 {
 962   // We return a bad value here to make sure that the exception is
 963   // forwarded before we look at the return value.
 964   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress);
 965 }
 966 JNI_END
 967 
 968 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 969   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 970 }
 971 
 972 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 973 #if INCLUDE_JVMCI
 974   if (!obj->klass()->has_finalizer()) {
 975     return;
 976   }
 977 #endif // INCLUDE_JVMCI
 978   assert(oopDesc::is_oop(obj), "must be a valid oop");
 979   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 980   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 981 JRT_END
 982 
 983 
 984 jlong SharedRuntime::get_java_tid(Thread* thread) {
 985   if (thread != NULL) {
 986     if (thread->is_Java_thread()) {
 987       oop obj = ((JavaThread*)thread)->threadObj();
 988       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 989     }
 990   }
 991   return 0;
 992 }
 993 
 994 /**
 995  * This function ought to be a void function, but cannot be because
 996  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 997  * 6254741.  Once that is fixed we can remove the dummy return value.
 998  */
 999 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1000   return dtrace_object_alloc_base(Thread::current(), o, size);
1001 }
1002 
1003 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1004   assert(DTraceAllocProbes, "wrong call");
1005   Klass* klass = o->klass();
1006   Symbol* name = klass->name();
1007   HOTSPOT_OBJECT_ALLOC(
1008                    get_java_tid(thread),
1009                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1010   return 0;
1011 }
1012 
1013 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1014     JavaThread* thread, Method* method))
1015   assert(DTraceMethodProbes, "wrong call");
1016   Symbol* kname = method->klass_name();
1017   Symbol* name = method->name();
1018   Symbol* sig = method->signature();
1019   HOTSPOT_METHOD_ENTRY(
1020       get_java_tid(thread),
1021       (char *) kname->bytes(), kname->utf8_length(),
1022       (char *) name->bytes(), name->utf8_length(),
1023       (char *) sig->bytes(), sig->utf8_length());
1024   return 0;
1025 JRT_END
1026 
1027 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1028     JavaThread* thread, Method* method))
1029   assert(DTraceMethodProbes, "wrong call");
1030   Symbol* kname = method->klass_name();
1031   Symbol* name = method->name();
1032   Symbol* sig = method->signature();
1033   HOTSPOT_METHOD_RETURN(
1034       get_java_tid(thread),
1035       (char *) kname->bytes(), kname->utf8_length(),
1036       (char *) name->bytes(), name->utf8_length(),
1037       (char *) sig->bytes(), sig->utf8_length());
1038   return 0;
1039 JRT_END
1040 
1041 
1042 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1043 // for a call current in progress, i.e., arguments has been pushed on stack
1044 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1045 // vtable updates, etc.  Caller frame must be compiled.
1046 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1047   ResourceMark rm(THREAD);
1048 
1049   // last java frame on stack (which includes native call frames)
1050   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1051 
1052   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1053 }
1054 
1055 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1056   CompiledMethod* caller = vfst.nm();
1057 
1058   nmethodLocker caller_lock(caller);
1059 
1060   address pc = vfst.frame_pc();
1061   { // Get call instruction under lock because another thread may be busy patching it.
1062     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1063     return caller->attached_method_before_pc(pc);
1064   }
1065   return NULL;
1066 }
1067 
1068 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1069 // for a call current in progress, i.e., arguments has been pushed on stack
1070 // but callee has not been invoked yet.  Caller frame must be compiled.
1071 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1072                                               vframeStream& vfst,
1073                                               Bytecodes::Code& bc,
1074                                               CallInfo& callinfo, TRAPS) {
1075   Handle receiver;
1076   Handle nullHandle;  //create a handy null handle for exception returns
1077 
1078   assert(!vfst.at_end(), "Java frame must exist");
1079 
1080   // Find caller and bci from vframe
1081   methodHandle caller(THREAD, vfst.method());
1082   int          bci   = vfst.bci();
1083 
1084   Bytecode_invoke bytecode(caller, bci);
1085   int bytecode_index = bytecode.index();
1086   bc = bytecode.invoke_code();
1087 
1088   methodHandle attached_method = extract_attached_method(vfst);
1089   if (attached_method.not_null()) {
1090     methodHandle callee = bytecode.static_target(CHECK_NH);
1091     vmIntrinsics::ID id = callee->intrinsic_id();
1092     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1093     // it attaches statically resolved method to the call site.
1094     if (MethodHandles::is_signature_polymorphic(id) &&
1095         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1096       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1097 
1098       // Adjust invocation mode according to the attached method.
1099       switch (bc) {
1100         case Bytecodes::_invokevirtual:
1101           if (attached_method->method_holder()->is_interface()) {
1102             bc = Bytecodes::_invokeinterface;
1103           }
1104           break;
1105         case Bytecodes::_invokeinterface:
1106           if (!attached_method->method_holder()->is_interface()) {
1107             bc = Bytecodes::_invokevirtual;
1108           }
1109           break;
1110         case Bytecodes::_invokehandle:
1111           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1112             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1113                                               : Bytecodes::_invokevirtual;
1114           }
1115           break;
1116         default:
1117           break;
1118       }
1119     }
1120   }
1121 
1122   assert(bc != Bytecodes::_illegal, "not initialized");
1123 
1124   bool has_receiver = bc != Bytecodes::_invokestatic &&
1125                       bc != Bytecodes::_invokedynamic &&
1126                       bc != Bytecodes::_invokehandle;
1127 
1128   // Find receiver for non-static call
1129   if (has_receiver) {
1130     // This register map must be update since we need to find the receiver for
1131     // compiled frames. The receiver might be in a register.
1132     RegisterMap reg_map2(thread);
1133     frame stubFrame   = thread->last_frame();
1134     // Caller-frame is a compiled frame
1135     frame callerFrame = stubFrame.sender(&reg_map2);
1136 
1137     if (attached_method.is_null()) {
1138       methodHandle callee = bytecode.static_target(CHECK_NH);
1139       if (callee.is_null()) {
1140         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1141       }
1142     }
1143 
1144     // Retrieve from a compiled argument list
1145     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1146 
1147     if (receiver.is_null()) {
1148       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1149     }
1150   }
1151 
1152   // Resolve method
1153   if (attached_method.not_null()) {
1154     // Parameterized by attached method.
1155     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1156   } else {
1157     // Parameterized by bytecode.
1158     constantPoolHandle constants(THREAD, caller->constants());
1159     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1160   }
1161 
1162 #ifdef ASSERT
1163   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1164   if (has_receiver) {
1165     assert(receiver.not_null(), "should have thrown exception");
1166     Klass* receiver_klass = receiver->klass();
1167     Klass* rk = NULL;
1168     if (attached_method.not_null()) {
1169       // In case there's resolved method attached, use its holder during the check.
1170       rk = attached_method->method_holder();
1171     } else {
1172       // Klass is already loaded.
1173       constantPoolHandle constants(THREAD, caller->constants());
1174       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1175     }
1176     Klass* static_receiver_klass = rk;
1177     methodHandle callee = callinfo.selected_method();
1178     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1179            "actual receiver must be subclass of static receiver klass");
1180     if (receiver_klass->is_instance_klass()) {
1181       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1182         tty->print_cr("ERROR: Klass not yet initialized!!");
1183         receiver_klass->print();
1184       }
1185       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1186     }
1187   }
1188 #endif
1189 
1190   return receiver;
1191 }
1192 
1193 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1194   ResourceMark rm(THREAD);
1195   // We need first to check if any Java activations (compiled, interpreted)
1196   // exist on the stack since last JavaCall.  If not, we need
1197   // to get the target method from the JavaCall wrapper.
1198   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1199   methodHandle callee_method;
1200   if (vfst.at_end()) {
1201     // No Java frames were found on stack since we did the JavaCall.
1202     // Hence the stack can only contain an entry_frame.  We need to
1203     // find the target method from the stub frame.
1204     RegisterMap reg_map(thread, false);
1205     frame fr = thread->last_frame();
1206     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1207     fr = fr.sender(&reg_map);
1208     assert(fr.is_entry_frame(), "must be");
1209     // fr is now pointing to the entry frame.
1210     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1211   } else {
1212     Bytecodes::Code bc;
1213     CallInfo callinfo;
1214     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1215     callee_method = callinfo.selected_method();
1216   }
1217   assert(callee_method()->is_method(), "must be");
1218   return callee_method;
1219 }
1220 
1221 // Resolves a call.
1222 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1223                                            bool is_virtual,
1224                                            bool is_optimized, TRAPS) {
1225   methodHandle callee_method;
1226   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1227   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1228     int retry_count = 0;
1229     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1230            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1231       // If has a pending exception then there is no need to re-try to
1232       // resolve this method.
1233       // If the method has been redefined, we need to try again.
1234       // Hack: we have no way to update the vtables of arrays, so don't
1235       // require that java.lang.Object has been updated.
1236 
1237       // It is very unlikely that method is redefined more than 100 times
1238       // in the middle of resolve. If it is looping here more than 100 times
1239       // means then there could be a bug here.
1240       guarantee((retry_count++ < 100),
1241                 "Could not resolve to latest version of redefined method");
1242       // method is redefined in the middle of resolve so re-try.
1243       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1244     }
1245   }
1246   return callee_method;
1247 }
1248 
1249 // Resolves a call.  The compilers generate code for calls that go here
1250 // and are patched with the real destination of the call.
1251 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1252                                            bool is_virtual,
1253                                            bool is_optimized, TRAPS) {
1254 
1255   ResourceMark rm(thread);
1256   RegisterMap cbl_map(thread, false);
1257   frame caller_frame = thread->last_frame().sender(&cbl_map);
1258 
1259   CodeBlob* caller_cb = caller_frame.cb();
1260   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1261   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1262 
1263   // make sure caller is not getting deoptimized
1264   // and removed before we are done with it.
1265   // CLEANUP - with lazy deopt shouldn't need this lock
1266   nmethodLocker caller_lock(caller_nm);
1267 
1268   // determine call info & receiver
1269   // note: a) receiver is NULL for static calls
1270   //       b) an exception is thrown if receiver is NULL for non-static calls
1271   CallInfo call_info;
1272   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1273   Handle receiver = find_callee_info(thread, invoke_code,
1274                                      call_info, CHECK_(methodHandle()));
1275   methodHandle callee_method = call_info.selected_method();
1276 
1277   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1278          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1279          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1280          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1281          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1282 
1283   assert(caller_nm->is_alive() && !caller_nm->is_unloading(), "It should be alive");
1284 
1285 #ifndef PRODUCT
1286   // tracing/debugging/statistics
1287   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1288                 (is_virtual) ? (&_resolve_virtual_ctr) :
1289                                (&_resolve_static_ctr);
1290   Atomic::inc(addr);
1291 
1292   if (TraceCallFixup) {
1293     ResourceMark rm(thread);
1294     tty->print("resolving %s%s (%s) call to",
1295       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1296       Bytecodes::name(invoke_code));
1297     callee_method->print_short_name(tty);
1298     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1299                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1300   }
1301 #endif
1302 
1303   // JSR 292 key invariant:
1304   // If the resolved method is a MethodHandle invoke target, the call
1305   // site must be a MethodHandle call site, because the lambda form might tail-call
1306   // leaving the stack in a state unknown to either caller or callee
1307   // TODO detune for now but we might need it again
1308 //  assert(!callee_method->is_compiled_lambda_form() ||
1309 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1310 
1311   // Compute entry points. This might require generation of C2I converter
1312   // frames, so we cannot be holding any locks here. Furthermore, the
1313   // computation of the entry points is independent of patching the call.  We
1314   // always return the entry-point, but we only patch the stub if the call has
1315   // not been deoptimized.  Return values: For a virtual call this is an
1316   // (cached_oop, destination address) pair. For a static call/optimized
1317   // virtual this is just a destination address.
1318 
1319   bool first_try = true;
1320   for (;;) {
1321     if (!first_try) {
1322       // Patching IC caches may fail if we run out if transition stubs.
1323       // We refill the ic stubs then.
1324       InlineCacheBuffer::refill_ic_stubs();
1325     }
1326     first_try = false;
1327 
1328     StaticCallInfo static_call_info;
1329     CompiledICInfo virtual_call_info;
1330 
1331     // Make sure the callee nmethod does not get deoptimized and removed before
1332     // we are done patching the code.
1333     CompiledMethod* callee = callee_method->code();
1334 
1335     if (callee != NULL) {
1336       assert(callee->is_compiled(), "must be nmethod for patching");
1337     }
1338 
1339     if (callee != NULL && !callee->is_in_use()) {
1340       // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1341       callee = NULL;
1342     }
1343     nmethodLocker nl_callee(callee);
1344 #ifdef ASSERT
1345     address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1346 #endif
1347 
1348     bool is_nmethod = caller_nm->is_nmethod();
1349 
1350     if (is_virtual) {
1351       assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1352       bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1353       Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1354       CompiledIC::compute_monomorphic_entry(callee_method, klass,
1355                        is_optimized, static_bound, is_nmethod, virtual_call_info,
1356                        CHECK_(methodHandle()));
1357     } else {
1358       // static call
1359       CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1360     }
1361 
1362     // grab lock, check for deoptimization and potentially patch caller
1363     {
1364       CompiledICLocker ml(caller_nm);
1365 
1366       // Lock blocks for safepoint during which both nmethods can change state.
1367 
1368       // Now that we are ready to patch if the Method* was redefined then
1369       // don't update call site and let the caller retry.
1370       // Don't update call site if callee nmethod was unloaded or deoptimized.
1371       // Don't update call site if callee nmethod was replaced by an other nmethod
1372       // which may happen when multiply alive nmethod (tiered compilation)
1373       // will be supported.
1374       if (!callee_method->is_old() &&
1375           (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1376 #ifdef ASSERT
1377         // We must not try to patch to jump to an already unloaded method.
1378         if (dest_entry_point != 0) {
1379           CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1380           assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1381                  "should not call unloaded nmethod");
1382         }
1383 #endif
1384         if (is_virtual) {
1385           CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1386           if (inline_cache->is_clean()) {
1387             if (!inline_cache->set_to_monomorphic(virtual_call_info)) {
1388               continue;
1389             }
1390           }
1391         } else {
1392           CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1393           if (ssc->is_clean()) ssc->set(static_call_info);
1394         }
1395       }
1396     } // unlock CompiledICLocker
1397     break;
1398   }
1399 
1400   return callee_method;
1401 }
1402 
1403 
1404 // Inline caches exist only in compiled code
1405 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1406 #ifdef ASSERT
1407   RegisterMap reg_map(thread, false);
1408   frame stub_frame = thread->last_frame();
1409   assert(stub_frame.is_runtime_frame(), "sanity check");
1410   frame caller_frame = stub_frame.sender(&reg_map);
1411   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1412 #endif /* ASSERT */
1413 
1414   methodHandle callee_method;
1415   JRT_BLOCK
1416     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1417     // Return Method* through TLS
1418     thread->set_vm_result_2(callee_method());
1419   JRT_BLOCK_END
1420   // return compiled code entry point after potential safepoints
1421   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1422   return callee_method->verified_code_entry();
1423 JRT_END
1424 
1425 
1426 // Handle call site that has been made non-entrant
1427 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1428   // 6243940 We might end up in here if the callee is deoptimized
1429   // as we race to call it.  We don't want to take a safepoint if
1430   // the caller was interpreted because the caller frame will look
1431   // interpreted to the stack walkers and arguments are now
1432   // "compiled" so it is much better to make this transition
1433   // invisible to the stack walking code. The i2c path will
1434   // place the callee method in the callee_target. It is stashed
1435   // there because if we try and find the callee by normal means a
1436   // safepoint is possible and have trouble gc'ing the compiled args.
1437   RegisterMap reg_map(thread, false);
1438   frame stub_frame = thread->last_frame();
1439   assert(stub_frame.is_runtime_frame(), "sanity check");
1440   frame caller_frame = stub_frame.sender(&reg_map);
1441 
1442   if (caller_frame.is_interpreted_frame() ||
1443       caller_frame.is_entry_frame()) {
1444     Method* callee = thread->callee_target();
1445     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1446     thread->set_vm_result_2(callee);
1447     thread->set_callee_target(NULL);
1448     return callee->get_c2i_entry();
1449   }
1450 
1451   // Must be compiled to compiled path which is safe to stackwalk
1452   methodHandle callee_method;
1453   JRT_BLOCK
1454     // Force resolving of caller (if we called from compiled frame)
1455     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1456     thread->set_vm_result_2(callee_method());
1457   JRT_BLOCK_END
1458   // return compiled code entry point after potential safepoints
1459   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1460   return callee_method->verified_code_entry();
1461 JRT_END
1462 
1463 // Handle abstract method call
1464 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1465   // Verbose error message for AbstractMethodError.
1466   // Get the called method from the invoke bytecode.
1467   vframeStream vfst(thread, true);
1468   assert(!vfst.at_end(), "Java frame must exist");
1469   methodHandle caller(vfst.method());
1470   Bytecode_invoke invoke(caller, vfst.bci());
1471   DEBUG_ONLY( invoke.verify(); )
1472 
1473   // Find the compiled caller frame.
1474   RegisterMap reg_map(thread);
1475   frame stubFrame = thread->last_frame();
1476   assert(stubFrame.is_runtime_frame(), "must be");
1477   frame callerFrame = stubFrame.sender(&reg_map);
1478   assert(callerFrame.is_compiled_frame(), "must be");
1479 
1480   // Install exception and return forward entry.
1481   address res = StubRoutines::throw_AbstractMethodError_entry();
1482   JRT_BLOCK
1483     methodHandle callee = invoke.static_target(thread);
1484     if (!callee.is_null()) {
1485       oop recv = callerFrame.retrieve_receiver(&reg_map);
1486       Klass *recv_klass = (recv != NULL) ? recv->klass() : NULL;
1487       LinkResolver::throw_abstract_method_error(callee, recv_klass, thread);
1488       res = StubRoutines::forward_exception_entry();
1489     }
1490   JRT_BLOCK_END
1491   return res;
1492 JRT_END
1493 
1494 
1495 // resolve a static call and patch code
1496 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1497   methodHandle callee_method;
1498   JRT_BLOCK
1499     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1500     thread->set_vm_result_2(callee_method());
1501   JRT_BLOCK_END
1502   // return compiled code entry point after potential safepoints
1503   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1504   return callee_method->verified_code_entry();
1505 JRT_END
1506 
1507 
1508 // resolve virtual call and update inline cache to monomorphic
1509 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1510   methodHandle callee_method;
1511   JRT_BLOCK
1512     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1513     thread->set_vm_result_2(callee_method());
1514   JRT_BLOCK_END
1515   // return compiled code entry point after potential safepoints
1516   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1517   return callee_method->verified_code_entry();
1518 JRT_END
1519 
1520 
1521 // Resolve a virtual call that can be statically bound (e.g., always
1522 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1523 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1524   methodHandle callee_method;
1525   JRT_BLOCK
1526     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1527     thread->set_vm_result_2(callee_method());
1528   JRT_BLOCK_END
1529   // return compiled code entry point after potential safepoints
1530   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1531   return callee_method->verified_code_entry();
1532 JRT_END
1533 
1534 
1535 
1536 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1537   ResourceMark rm(thread);
1538   CallInfo call_info;
1539   Bytecodes::Code bc;
1540 
1541   // receiver is NULL for static calls. An exception is thrown for NULL
1542   // receivers for non-static calls
1543   Handle receiver = find_callee_info(thread, bc, call_info,
1544                                      CHECK_(methodHandle()));
1545   // Compiler1 can produce virtual call sites that can actually be statically bound
1546   // If we fell thru to below we would think that the site was going megamorphic
1547   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1548   // we'd try and do a vtable dispatch however methods that can be statically bound
1549   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1550   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1551   // plain ic_miss) and the site will be converted to an optimized virtual call site
1552   // never to miss again. I don't believe C2 will produce code like this but if it
1553   // did this would still be the correct thing to do for it too, hence no ifdef.
1554   //
1555   if (call_info.resolved_method()->can_be_statically_bound()) {
1556     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1557     if (TraceCallFixup) {
1558       RegisterMap reg_map(thread, false);
1559       frame caller_frame = thread->last_frame().sender(&reg_map);
1560       ResourceMark rm(thread);
1561       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1562       callee_method->print_short_name(tty);
1563       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1564       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1565     }
1566     return callee_method;
1567   }
1568 
1569   methodHandle callee_method = call_info.selected_method();
1570 
1571 #ifndef PRODUCT
1572   Atomic::inc(&_ic_miss_ctr);
1573 
1574   // Statistics & Tracing
1575   if (TraceCallFixup) {
1576     ResourceMark rm(thread);
1577     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1578     callee_method->print_short_name(tty);
1579     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1580   }
1581 
1582   if (ICMissHistogram) {
1583     MutexLocker m(VMStatistic_lock);
1584     RegisterMap reg_map(thread, false);
1585     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1586     // produce statistics under the lock
1587     trace_ic_miss(f.pc());
1588   }
1589 #endif
1590 
1591   // install an event collector so that when a vtable stub is created the
1592   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1593   // event can't be posted when the stub is created as locks are held
1594   // - instead the event will be deferred until the event collector goes
1595   // out of scope.
1596   JvmtiDynamicCodeEventCollector event_collector;
1597 
1598   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1599   bool first_try = true;
1600   for (;;) {
1601     if (!first_try) {
1602       // Transitioning IC caches may require transition stubs. If we run out
1603       // of transition stubs, we have to drop locks and perform a safepoint
1604       // that refills them.
1605       InlineCacheBuffer::refill_ic_stubs();
1606     }
1607     first_try = false;
1608     RegisterMap reg_map(thread, false);
1609     frame caller_frame = thread->last_frame().sender(&reg_map);
1610     CodeBlob* cb = caller_frame.cb();
1611     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1612     CompiledICLocker ml(caller_nm);
1613 
1614     if (!cb->is_compiled()) {
1615       Unimplemented();
1616     }
1617     CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1618     bool should_be_mono = false;
1619     if (inline_cache->is_optimized()) {
1620       if (TraceCallFixup) {
1621         ResourceMark rm(thread);
1622         tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1623         callee_method->print_short_name(tty);
1624         tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1625       }
1626       should_be_mono = true;
1627     } else if (inline_cache->is_icholder_call()) {
1628       CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1629       if (ic_oop != NULL) {
1630         if (!ic_oop->is_loader_alive()) {
1631           // Deferred IC cleaning due to concurrent class unloading
1632           inline_cache->set_to_clean();
1633         } else if (receiver()->klass() == ic_oop->holder_klass()) {
1634           // This isn't a real miss. We must have seen that compiled code
1635           // is now available and we want the call site converted to a
1636           // monomorphic compiled call site.
1637           // We can't assert for callee_method->code() != NULL because it
1638           // could have been deoptimized in the meantime
1639           if (TraceCallFixup) {
1640             ResourceMark rm(thread);
1641             tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1642             callee_method->print_short_name(tty);
1643             tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1644           }
1645           should_be_mono = true;
1646         }
1647       }
1648     }
1649 
1650     if (should_be_mono) {
1651       // We have a path that was monomorphic but was going interpreted
1652       // and now we have (or had) a compiled entry. We correct the IC
1653       // by using a new icBuffer.
1654       CompiledICInfo info;
1655       Klass* receiver_klass = receiver()->klass();
1656       inline_cache->compute_monomorphic_entry(callee_method,
1657                                               receiver_klass,
1658                                               inline_cache->is_optimized(),
1659                                               false, caller_nm->is_nmethod(),
1660                                               info, CHECK_(methodHandle()));
1661       if (!inline_cache->set_to_monomorphic(info)) {
1662         continue;
1663       }
1664     } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1665       // Potential change to megamorphic
1666       bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1667       if (!successful) {
1668         if (!inline_cache->set_to_clean()) {
1669           continue;
1670         }
1671       }
1672     } else {
1673       // Either clean or megamorphic
1674     }
1675     break;
1676   } // Release CompiledICLocker
1677 
1678   return callee_method;
1679 }
1680 
1681 //
1682 // Resets a call-site in compiled code so it will get resolved again.
1683 // This routines handles both virtual call sites, optimized virtual call
1684 // sites, and static call sites. Typically used to change a call sites
1685 // destination from compiled to interpreted.
1686 //
1687 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1688   ResourceMark rm(thread);
1689   RegisterMap reg_map(thread, false);
1690   frame stub_frame = thread->last_frame();
1691   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1692   frame caller = stub_frame.sender(&reg_map);
1693 
1694   // Do nothing if the frame isn't a live compiled frame.
1695   // nmethod could be deoptimized by the time we get here
1696   // so no update to the caller is needed.
1697 
1698   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1699 
1700     address pc = caller.pc();
1701 
1702     // Check for static or virtual call
1703     bool is_static_call = false;
1704     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1705 
1706     // Default call_addr is the location of the "basic" call.
1707     // Determine the address of the call we a reresolving. With
1708     // Inline Caches we will always find a recognizable call.
1709     // With Inline Caches disabled we may or may not find a
1710     // recognizable call. We will always find a call for static
1711     // calls and for optimized virtual calls. For vanilla virtual
1712     // calls it depends on the state of the UseInlineCaches switch.
1713     //
1714     // With Inline Caches disabled we can get here for a virtual call
1715     // for two reasons:
1716     //   1 - calling an abstract method. The vtable for abstract methods
1717     //       will run us thru handle_wrong_method and we will eventually
1718     //       end up in the interpreter to throw the ame.
1719     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1720     //       call and between the time we fetch the entry address and
1721     //       we jump to it the target gets deoptimized. Similar to 1
1722     //       we will wind up in the interprter (thru a c2i with c2).
1723     //
1724     address call_addr = NULL;
1725     {
1726       // Get call instruction under lock because another thread may be
1727       // busy patching it.
1728       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1729       // Location of call instruction
1730       call_addr = caller_nm->call_instruction_address(pc);
1731     }
1732     // Make sure nmethod doesn't get deoptimized and removed until
1733     // this is done with it.
1734     // CLEANUP - with lazy deopt shouldn't need this lock
1735     nmethodLocker nmlock(caller_nm);
1736 
1737     if (call_addr != NULL) {
1738       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1739       int ret = iter.next(); // Get item
1740       if (ret) {
1741         assert(iter.addr() == call_addr, "must find call");
1742         if (iter.type() == relocInfo::static_call_type) {
1743           is_static_call = true;
1744         } else {
1745           assert(iter.type() == relocInfo::virtual_call_type ||
1746                  iter.type() == relocInfo::opt_virtual_call_type
1747                 , "unexpected relocInfo. type");
1748         }
1749       } else {
1750         assert(!UseInlineCaches, "relocation info. must exist for this address");
1751       }
1752 
1753       // Cleaning the inline cache will force a new resolve. This is more robust
1754       // than directly setting it to the new destination, since resolving of calls
1755       // is always done through the same code path. (experience shows that it
1756       // leads to very hard to track down bugs, if an inline cache gets updated
1757       // to a wrong method). It should not be performance critical, since the
1758       // resolve is only done once.
1759 
1760       CompiledICLocker ml(caller_nm);
1761       if (is_static_call) {
1762         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1763         if (!ssc->is_clean()) {
1764           ssc->set_to_clean();
1765         }
1766       } else {
1767         // compiled, dispatched call (which used to call an interpreted method)
1768         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1769         if (!inline_cache->is_clean()) {
1770           inline_cache->set_to_clean();
1771         }
1772       }
1773     }
1774   }
1775 
1776   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1777 
1778 
1779 #ifndef PRODUCT
1780   Atomic::inc(&_wrong_method_ctr);
1781 
1782   if (TraceCallFixup) {
1783     ResourceMark rm(thread);
1784     tty->print("handle_wrong_method reresolving call to");
1785     callee_method->print_short_name(tty);
1786     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1787   }
1788 #endif
1789 
1790   return callee_method;
1791 }
1792 
1793 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1794   // The faulting unsafe accesses should be changed to throw the error
1795   // synchronously instead. Meanwhile the faulting instruction will be
1796   // skipped over (effectively turning it into a no-op) and an
1797   // asynchronous exception will be raised which the thread will
1798   // handle at a later point. If the instruction is a load it will
1799   // return garbage.
1800 
1801   // Request an async exception.
1802   thread->set_pending_unsafe_access_error();
1803 
1804   // Return address of next instruction to execute.
1805   return next_pc;
1806 }
1807 
1808 #ifdef ASSERT
1809 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1810                                                                 const BasicType* sig_bt,
1811                                                                 const VMRegPair* regs) {
1812   ResourceMark rm;
1813   const int total_args_passed = method->size_of_parameters();
1814   const VMRegPair*    regs_with_member_name = regs;
1815         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1816 
1817   const int member_arg_pos = total_args_passed - 1;
1818   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1819   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1820 
1821   const bool is_outgoing = method->is_method_handle_intrinsic();
1822   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1823 
1824   for (int i = 0; i < member_arg_pos; i++) {
1825     VMReg a =    regs_with_member_name[i].first();
1826     VMReg b = regs_without_member_name[i].first();
1827     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1828   }
1829   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1830 }
1831 #endif
1832 
1833 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1834   if (destination != entry_point) {
1835     CodeBlob* callee = CodeCache::find_blob(destination);
1836     // callee == cb seems weird. It means calling interpreter thru stub.
1837     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1838       // static call or optimized virtual
1839       if (TraceCallFixup) {
1840         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1841         moop->print_short_name(tty);
1842         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1843       }
1844       return true;
1845     } else {
1846       if (TraceCallFixup) {
1847         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1848         moop->print_short_name(tty);
1849         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1850       }
1851       // assert is too strong could also be resolve destinations.
1852       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1853     }
1854   } else {
1855     if (TraceCallFixup) {
1856       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1857       moop->print_short_name(tty);
1858       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1859     }
1860   }
1861   return false;
1862 }
1863 
1864 // ---------------------------------------------------------------------------
1865 // We are calling the interpreter via a c2i. Normally this would mean that
1866 // we were called by a compiled method. However we could have lost a race
1867 // where we went int -> i2c -> c2i and so the caller could in fact be
1868 // interpreted. If the caller is compiled we attempt to patch the caller
1869 // so he no longer calls into the interpreter.
1870 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1871   Method* moop(method);
1872 
1873   address entry_point = moop->from_compiled_entry_no_trampoline();
1874 
1875   // It's possible that deoptimization can occur at a call site which hasn't
1876   // been resolved yet, in which case this function will be called from
1877   // an nmethod that has been patched for deopt and we can ignore the
1878   // request for a fixup.
1879   // Also it is possible that we lost a race in that from_compiled_entry
1880   // is now back to the i2c in that case we don't need to patch and if
1881   // we did we'd leap into space because the callsite needs to use
1882   // "to interpreter" stub in order to load up the Method*. Don't
1883   // ask me how I know this...
1884 
1885   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1886   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1887     return;
1888   }
1889 
1890   // The check above makes sure this is a nmethod.
1891   CompiledMethod* nm = cb->as_compiled_method_or_null();
1892   assert(nm, "must be");
1893 
1894   // Get the return PC for the passed caller PC.
1895   address return_pc = caller_pc + frame::pc_return_offset;
1896 
1897   // There is a benign race here. We could be attempting to patch to a compiled
1898   // entry point at the same time the callee is being deoptimized. If that is
1899   // the case then entry_point may in fact point to a c2i and we'd patch the
1900   // call site with the same old data. clear_code will set code() to NULL
1901   // at the end of it. If we happen to see that NULL then we can skip trying
1902   // to patch. If we hit the window where the callee has a c2i in the
1903   // from_compiled_entry and the NULL isn't present yet then we lose the race
1904   // and patch the code with the same old data. Asi es la vida.
1905 
1906   if (moop->code() == NULL) return;
1907 
1908   if (nm->is_in_use()) {
1909 
1910     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1911     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1912     if (NativeCall::is_call_before(return_pc)) {
1913       ResourceMark mark;
1914       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1915       //
1916       // bug 6281185. We might get here after resolving a call site to a vanilla
1917       // virtual call. Because the resolvee uses the verified entry it may then
1918       // see compiled code and attempt to patch the site by calling us. This would
1919       // then incorrectly convert the call site to optimized and its downhill from
1920       // there. If you're lucky you'll get the assert in the bugid, if not you've
1921       // just made a call site that could be megamorphic into a monomorphic site
1922       // for the rest of its life! Just another racing bug in the life of
1923       // fixup_callers_callsite ...
1924       //
1925       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1926       iter.next();
1927       assert(iter.has_current(), "must have a reloc at java call site");
1928       relocInfo::relocType typ = iter.reloc()->type();
1929       if (typ != relocInfo::static_call_type &&
1930            typ != relocInfo::opt_virtual_call_type &&
1931            typ != relocInfo::static_stub_type) {
1932         return;
1933       }
1934       address destination = call->destination();
1935       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1936         call->set_destination_mt_safe(entry_point);
1937       }
1938     }
1939   }
1940 IRT_END
1941 
1942 
1943 // same as JVM_Arraycopy, but called directly from compiled code
1944 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1945                                                 oopDesc* dest, jint dest_pos,
1946                                                 jint length,
1947                                                 JavaThread* thread)) {
1948 #ifndef PRODUCT
1949   _slow_array_copy_ctr++;
1950 #endif
1951   // Check if we have null pointers
1952   if (src == NULL || dest == NULL) {
1953     THROW(vmSymbols::java_lang_NullPointerException());
1954   }
1955   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1956   // even though the copy_array API also performs dynamic checks to ensure
1957   // that src and dest are truly arrays (and are conformable).
1958   // The copy_array mechanism is awkward and could be removed, but
1959   // the compilers don't call this function except as a last resort,
1960   // so it probably doesn't matter.
1961   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1962                                         (arrayOopDesc*)dest, dest_pos,
1963                                         length, thread);
1964 }
1965 JRT_END
1966 
1967 // The caller of generate_class_cast_message() (or one of its callers)
1968 // must use a ResourceMark in order to correctly free the result.
1969 char* SharedRuntime::generate_class_cast_message(
1970     JavaThread* thread, Klass* caster_klass) {
1971 
1972   // Get target class name from the checkcast instruction
1973   vframeStream vfst(thread, true);
1974   assert(!vfst.at_end(), "Java frame must exist");
1975   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1976   constantPoolHandle cpool(thread, vfst.method()->constants());
1977   Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index());
1978   Symbol* target_klass_name = NULL;
1979   if (target_klass == NULL) {
1980     // This klass should be resolved, but just in case, get the name in the klass slot.
1981     target_klass_name = cpool->klass_name_at(cc.index());
1982   }
1983   return generate_class_cast_message(caster_klass, target_klass, target_klass_name);
1984 }
1985 
1986 
1987 // The caller of generate_class_cast_message() (or one of its callers)
1988 // must use a ResourceMark in order to correctly free the result.
1989 char* SharedRuntime::generate_class_cast_message(
1990     Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) {
1991   const char* caster_name = caster_klass->external_name();
1992 
1993   assert(target_klass != NULL || target_klass_name != NULL, "one must be provided");
1994   const char* target_name = target_klass == NULL ? target_klass_name->as_C_string() :
1995                                                    target_klass->external_name();
1996 
1997   size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1;
1998 
1999   const char* caster_klass_description = "";
2000   const char* target_klass_description = "";
2001   const char* klass_separator = "";
2002   if (target_klass != NULL && caster_klass->module() == target_klass->module()) {
2003     caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass);
2004   } else {
2005     caster_klass_description = caster_klass->class_in_module_of_loader();
2006     target_klass_description = (target_klass != NULL) ? target_klass->class_in_module_of_loader() : "";
2007     klass_separator = (target_klass != NULL) ? "; " : "";
2008   }
2009 
2010   // add 3 for parenthesis and preceeding space
2011   msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3;
2012 
2013   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2014   if (message == NULL) {
2015     // Shouldn't happen, but don't cause even more problems if it does
2016     message = const_cast<char*>(caster_klass->external_name());
2017   } else {
2018     jio_snprintf(message,
2019                  msglen,
2020                  "class %s cannot be cast to class %s (%s%s%s)",
2021                  caster_name,
2022                  target_name,
2023                  caster_klass_description,
2024                  klass_separator,
2025                  target_klass_description
2026                  );
2027   }
2028   return message;
2029 }
2030 
2031 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2032   (void) JavaThread::current()->reguard_stack();
2033 JRT_END
2034 
2035 
2036 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2037 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2038   if (!SafepointSynchronize::is_synchronizing()) {
2039     // Only try quick_enter() if we're not trying to reach a safepoint
2040     // so that the calling thread reaches the safepoint more quickly.
2041     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2042   }
2043   // NO_ASYNC required because an async exception on the state transition destructor
2044   // would leave you with the lock held and it would never be released.
2045   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2046   // and the model is that an exception implies the method failed.
2047   JRT_BLOCK_NO_ASYNC
2048   oop obj(_obj);
2049   if (PrintBiasedLockingStatistics) {
2050     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2051   }
2052   Handle h_obj(THREAD, obj);
2053   if (UseBiasedLocking) {
2054     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2055     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2056   } else {
2057     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2058   }
2059   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2060   JRT_BLOCK_END
2061 JRT_END
2062 
2063 // Handles the uncommon cases of monitor unlocking in compiled code
2064 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2065    oop obj(_obj);
2066   assert(JavaThread::current() == THREAD, "invariant");
2067   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2068   // testing was unable to ever fire the assert that guarded it so I have removed it.
2069   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2070 #undef MIGHT_HAVE_PENDING
2071 #ifdef MIGHT_HAVE_PENDING
2072   // Save and restore any pending_exception around the exception mark.
2073   // While the slow_exit must not throw an exception, we could come into
2074   // this routine with one set.
2075   oop pending_excep = NULL;
2076   const char* pending_file;
2077   int pending_line;
2078   if (HAS_PENDING_EXCEPTION) {
2079     pending_excep = PENDING_EXCEPTION;
2080     pending_file  = THREAD->exception_file();
2081     pending_line  = THREAD->exception_line();
2082     CLEAR_PENDING_EXCEPTION;
2083   }
2084 #endif /* MIGHT_HAVE_PENDING */
2085 
2086   {
2087     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2088     EXCEPTION_MARK;
2089     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2090   }
2091 
2092 #ifdef MIGHT_HAVE_PENDING
2093   if (pending_excep != NULL) {
2094     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2095   }
2096 #endif /* MIGHT_HAVE_PENDING */
2097 JRT_END
2098 
2099 #ifndef PRODUCT
2100 
2101 void SharedRuntime::print_statistics() {
2102   ttyLocker ttyl;
2103   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2104 
2105   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2106 
2107   SharedRuntime::print_ic_miss_histogram();
2108 
2109   if (CountRemovableExceptions) {
2110     if (_nof_removable_exceptions > 0) {
2111       Unimplemented(); // this counter is not yet incremented
2112       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2113     }
2114   }
2115 
2116   // Dump the JRT_ENTRY counters
2117   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2118   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2119   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2120   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2121   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2122   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2123   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2124 
2125   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2126   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2127   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2128   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2129   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2130 
2131   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2132   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2133   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2134   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2135   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2136   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2137   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2138   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2139   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2140   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2141   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2142   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2143   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2144   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2145   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2146   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2147 
2148   AdapterHandlerLibrary::print_statistics();
2149 
2150   if (xtty != NULL)  xtty->tail("statistics");
2151 }
2152 
2153 inline double percent(int x, int y) {
2154   return 100.0 * x / MAX2(y, 1);
2155 }
2156 
2157 class MethodArityHistogram {
2158  public:
2159   enum { MAX_ARITY = 256 };
2160  private:
2161   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2162   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2163   static int _max_arity;                      // max. arity seen
2164   static int _max_size;                       // max. arg size seen
2165 
2166   static void add_method_to_histogram(nmethod* nm) {
2167     if (CompiledMethod::nmethod_access_is_safe(nm)) {
2168       Method* method = nm->method();
2169       ArgumentCount args(method->signature());
2170       int arity   = args.size() + (method->is_static() ? 0 : 1);
2171       int argsize = method->size_of_parameters();
2172       arity   = MIN2(arity, MAX_ARITY-1);
2173       argsize = MIN2(argsize, MAX_ARITY-1);
2174       int count = method->compiled_invocation_count();
2175       _arity_histogram[arity]  += count;
2176       _size_histogram[argsize] += count;
2177       _max_arity = MAX2(_max_arity, arity);
2178       _max_size  = MAX2(_max_size, argsize);
2179     }
2180   }
2181 
2182   void print_histogram_helper(int n, int* histo, const char* name) {
2183     const int N = MIN2(5, n);
2184     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2185     double sum = 0;
2186     double weighted_sum = 0;
2187     int i;
2188     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2189     double rest = sum;
2190     double percent = sum / 100;
2191     for (i = 0; i <= N; i++) {
2192       rest -= histo[i];
2193       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2194     }
2195     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2196     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2197   }
2198 
2199   void print_histogram() {
2200     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2201     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2202     tty->print_cr("\nSame for parameter size (in words):");
2203     print_histogram_helper(_max_size, _size_histogram, "size");
2204     tty->cr();
2205   }
2206 
2207  public:
2208   MethodArityHistogram() {
2209     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2210     _max_arity = _max_size = 0;
2211     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2212     CodeCache::nmethods_do(add_method_to_histogram);
2213     print_histogram();
2214   }
2215 };
2216 
2217 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2218 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2219 int MethodArityHistogram::_max_arity;
2220 int MethodArityHistogram::_max_size;
2221 
2222 void SharedRuntime::print_call_statistics(int comp_total) {
2223   tty->print_cr("Calls from compiled code:");
2224   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2225   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2226   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2227   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2228   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2229   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2230   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2231   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2232   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2233   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2234   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2235   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2236   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2237   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2238   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2239   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2240   tty->cr();
2241   tty->print_cr("Note 1: counter updates are not MT-safe.");
2242   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2243   tty->print_cr("        %% in nested categories are relative to their category");
2244   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2245   tty->cr();
2246 
2247   MethodArityHistogram h;
2248 }
2249 #endif
2250 
2251 
2252 // A simple wrapper class around the calling convention information
2253 // that allows sharing of adapters for the same calling convention.
2254 class AdapterFingerPrint : public CHeapObj<mtCode> {
2255  private:
2256   enum {
2257     _basic_type_bits = 4,
2258     _basic_type_mask = right_n_bits(_basic_type_bits),
2259     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2260     _compact_int_count = 3
2261   };
2262   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2263   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2264 
2265   union {
2266     int  _compact[_compact_int_count];
2267     int* _fingerprint;
2268   } _value;
2269   int _length; // A negative length indicates the fingerprint is in the compact form,
2270                // Otherwise _value._fingerprint is the array.
2271 
2272   // Remap BasicTypes that are handled equivalently by the adapters.
2273   // These are correct for the current system but someday it might be
2274   // necessary to make this mapping platform dependent.
2275   static int adapter_encoding(BasicType in) {
2276     switch (in) {
2277       case T_BOOLEAN:
2278       case T_BYTE:
2279       case T_SHORT:
2280       case T_CHAR:
2281         // There are all promoted to T_INT in the calling convention
2282         return T_INT;
2283 
2284       case T_OBJECT:
2285       case T_ARRAY:
2286         // In other words, we assume that any register good enough for
2287         // an int or long is good enough for a managed pointer.
2288 #ifdef _LP64
2289         return T_LONG;
2290 #else
2291         return T_INT;
2292 #endif
2293 
2294       case T_INT:
2295       case T_LONG:
2296       case T_FLOAT:
2297       case T_DOUBLE:
2298       case T_VOID:
2299         return in;
2300 
2301       default:
2302         ShouldNotReachHere();
2303         return T_CONFLICT;
2304     }
2305   }
2306 
2307  public:
2308   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2309     // The fingerprint is based on the BasicType signature encoded
2310     // into an array of ints with eight entries per int.
2311     int* ptr;
2312     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2313     if (len <= _compact_int_count) {
2314       assert(_compact_int_count == 3, "else change next line");
2315       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2316       // Storing the signature encoded as signed chars hits about 98%
2317       // of the time.
2318       _length = -len;
2319       ptr = _value._compact;
2320     } else {
2321       _length = len;
2322       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2323       ptr = _value._fingerprint;
2324     }
2325 
2326     // Now pack the BasicTypes with 8 per int
2327     int sig_index = 0;
2328     for (int index = 0; index < len; index++) {
2329       int value = 0;
2330       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2331         int bt = ((sig_index < total_args_passed)
2332                   ? adapter_encoding(sig_bt[sig_index++])
2333                   : 0);
2334         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2335         value = (value << _basic_type_bits) | bt;
2336       }
2337       ptr[index] = value;
2338     }
2339   }
2340 
2341   ~AdapterFingerPrint() {
2342     if (_length > 0) {
2343       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2344     }
2345   }
2346 
2347   int value(int index) {
2348     if (_length < 0) {
2349       return _value._compact[index];
2350     }
2351     return _value._fingerprint[index];
2352   }
2353   int length() {
2354     if (_length < 0) return -_length;
2355     return _length;
2356   }
2357 
2358   bool is_compact() {
2359     return _length <= 0;
2360   }
2361 
2362   unsigned int compute_hash() {
2363     int hash = 0;
2364     for (int i = 0; i < length(); i++) {
2365       int v = value(i);
2366       hash = (hash << 8) ^ v ^ (hash >> 5);
2367     }
2368     return (unsigned int)hash;
2369   }
2370 
2371   const char* as_string() {
2372     stringStream st;
2373     st.print("0x");
2374     for (int i = 0; i < length(); i++) {
2375       st.print("%08x", value(i));
2376     }
2377     return st.as_string();
2378   }
2379 
2380   bool equals(AdapterFingerPrint* other) {
2381     if (other->_length != _length) {
2382       return false;
2383     }
2384     if (_length < 0) {
2385       assert(_compact_int_count == 3, "else change next line");
2386       return _value._compact[0] == other->_value._compact[0] &&
2387              _value._compact[1] == other->_value._compact[1] &&
2388              _value._compact[2] == other->_value._compact[2];
2389     } else {
2390       for (int i = 0; i < _length; i++) {
2391         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2392           return false;
2393         }
2394       }
2395     }
2396     return true;
2397   }
2398 };
2399 
2400 
2401 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2402 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2403   friend class AdapterHandlerTableIterator;
2404 
2405  private:
2406 
2407 #ifndef PRODUCT
2408   static int _lookups; // number of calls to lookup
2409   static int _buckets; // number of buckets checked
2410   static int _equals;  // number of buckets checked with matching hash
2411   static int _hits;    // number of successful lookups
2412   static int _compact; // number of equals calls with compact signature
2413 #endif
2414 
2415   AdapterHandlerEntry* bucket(int i) {
2416     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2417   }
2418 
2419  public:
2420   AdapterHandlerTable()
2421     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2422 
2423   // Create a new entry suitable for insertion in the table
2424   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2425     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2426     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2427     if (DumpSharedSpaces) {
2428       ((CDSAdapterHandlerEntry*)entry)->init();
2429     }
2430     return entry;
2431   }
2432 
2433   // Insert an entry into the table
2434   void add(AdapterHandlerEntry* entry) {
2435     int index = hash_to_index(entry->hash());
2436     add_entry(index, entry);
2437   }
2438 
2439   void free_entry(AdapterHandlerEntry* entry) {
2440     entry->deallocate();
2441     BasicHashtable<mtCode>::free_entry(entry);
2442   }
2443 
2444   // Find a entry with the same fingerprint if it exists
2445   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2446     NOT_PRODUCT(_lookups++);
2447     AdapterFingerPrint fp(total_args_passed, sig_bt);
2448     unsigned int hash = fp.compute_hash();
2449     int index = hash_to_index(hash);
2450     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2451       NOT_PRODUCT(_buckets++);
2452       if (e->hash() == hash) {
2453         NOT_PRODUCT(_equals++);
2454         if (fp.equals(e->fingerprint())) {
2455 #ifndef PRODUCT
2456           if (fp.is_compact()) _compact++;
2457           _hits++;
2458 #endif
2459           return e;
2460         }
2461       }
2462     }
2463     return NULL;
2464   }
2465 
2466 #ifndef PRODUCT
2467   void print_statistics() {
2468     ResourceMark rm;
2469     int longest = 0;
2470     int empty = 0;
2471     int total = 0;
2472     int nonempty = 0;
2473     for (int index = 0; index < table_size(); index++) {
2474       int count = 0;
2475       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2476         count++;
2477       }
2478       if (count != 0) nonempty++;
2479       if (count == 0) empty++;
2480       if (count > longest) longest = count;
2481       total += count;
2482     }
2483     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2484                   empty, longest, total, total / (double)nonempty);
2485     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2486                   _lookups, _buckets, _equals, _hits, _compact);
2487   }
2488 #endif
2489 };
2490 
2491 
2492 #ifndef PRODUCT
2493 
2494 int AdapterHandlerTable::_lookups;
2495 int AdapterHandlerTable::_buckets;
2496 int AdapterHandlerTable::_equals;
2497 int AdapterHandlerTable::_hits;
2498 int AdapterHandlerTable::_compact;
2499 
2500 #endif
2501 
2502 class AdapterHandlerTableIterator : public StackObj {
2503  private:
2504   AdapterHandlerTable* _table;
2505   int _index;
2506   AdapterHandlerEntry* _current;
2507 
2508   void scan() {
2509     while (_index < _table->table_size()) {
2510       AdapterHandlerEntry* a = _table->bucket(_index);
2511       _index++;
2512       if (a != NULL) {
2513         _current = a;
2514         return;
2515       }
2516     }
2517   }
2518 
2519  public:
2520   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2521     scan();
2522   }
2523   bool has_next() {
2524     return _current != NULL;
2525   }
2526   AdapterHandlerEntry* next() {
2527     if (_current != NULL) {
2528       AdapterHandlerEntry* result = _current;
2529       _current = _current->next();
2530       if (_current == NULL) scan();
2531       return result;
2532     } else {
2533       return NULL;
2534     }
2535   }
2536 };
2537 
2538 
2539 // ---------------------------------------------------------------------------
2540 // Implementation of AdapterHandlerLibrary
2541 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2542 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2543 const int AdapterHandlerLibrary_size = 16*K;
2544 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2545 
2546 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2547   // Should be called only when AdapterHandlerLibrary_lock is active.
2548   if (_buffer == NULL) // Initialize lazily
2549       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2550   return _buffer;
2551 }
2552 
2553 extern "C" void unexpected_adapter_call() {
2554   ShouldNotCallThis();
2555 }
2556 
2557 void AdapterHandlerLibrary::initialize() {
2558   if (_adapters != NULL) return;
2559   _adapters = new AdapterHandlerTable();
2560 
2561   // Create a special handler for abstract methods.  Abstract methods
2562   // are never compiled so an i2c entry is somewhat meaningless, but
2563   // throw AbstractMethodError just in case.
2564   // Pass wrong_method_abstract for the c2i transitions to return
2565   // AbstractMethodError for invalid invocations.
2566   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2567   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2568                                                               StubRoutines::throw_AbstractMethodError_entry(),
2569                                                               wrong_method_abstract, wrong_method_abstract);
2570 }
2571 
2572 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2573                                                       address i2c_entry,
2574                                                       address c2i_entry,
2575                                                       address c2i_unverified_entry) {
2576   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2577 }
2578 
2579 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2580   AdapterHandlerEntry* entry = get_adapter0(method);
2581   if (method->is_shared()) {
2582     // See comments around Method::link_method()
2583     MutexLocker mu(AdapterHandlerLibrary_lock);
2584     if (method->adapter() == NULL) {
2585       method->update_adapter_trampoline(entry);
2586     }
2587     address trampoline = method->from_compiled_entry();
2588     if (*(int*)trampoline == 0) {
2589       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2590       MacroAssembler _masm(&buffer);
2591       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2592       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2593 
2594       if (PrintInterpreter) {
2595         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2596       }
2597     }
2598   }
2599 
2600   return entry;
2601 }
2602 
2603 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2604   // Use customized signature handler.  Need to lock around updates to
2605   // the AdapterHandlerTable (it is not safe for concurrent readers
2606   // and a single writer: this could be fixed if it becomes a
2607   // problem).
2608 
2609   ResourceMark rm;
2610 
2611   NOT_PRODUCT(int insts_size);
2612   AdapterBlob* new_adapter = NULL;
2613   AdapterHandlerEntry* entry = NULL;
2614   AdapterFingerPrint* fingerprint = NULL;
2615   {
2616     MutexLocker mu(AdapterHandlerLibrary_lock);
2617     // make sure data structure is initialized
2618     initialize();
2619 
2620     if (method->is_abstract()) {
2621       return _abstract_method_handler;
2622     }
2623 
2624     // Fill in the signature array, for the calling-convention call.
2625     int total_args_passed = method->size_of_parameters(); // All args on stack
2626 
2627     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2628     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2629     int i = 0;
2630     if (!method->is_static())  // Pass in receiver first
2631       sig_bt[i++] = T_OBJECT;
2632     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2633       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2634       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2635         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2636     }
2637     assert(i == total_args_passed, "");
2638 
2639     // Lookup method signature's fingerprint
2640     entry = _adapters->lookup(total_args_passed, sig_bt);
2641 
2642 #ifdef ASSERT
2643     AdapterHandlerEntry* shared_entry = NULL;
2644     // Start adapter sharing verification only after the VM is booted.
2645     if (VerifyAdapterSharing && (entry != NULL)) {
2646       shared_entry = entry;
2647       entry = NULL;
2648     }
2649 #endif
2650 
2651     if (entry != NULL) {
2652       return entry;
2653     }
2654 
2655     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2656     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2657 
2658     // Make a C heap allocated version of the fingerprint to store in the adapter
2659     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2660 
2661     // StubRoutines::code2() is initialized after this function can be called. As a result,
2662     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2663     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2664     // stub that ensure that an I2C stub is called from an interpreter frame.
2665     bool contains_all_checks = StubRoutines::code2() != NULL;
2666 
2667     // Create I2C & C2I handlers
2668     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2669     if (buf != NULL) {
2670       CodeBuffer buffer(buf);
2671       short buffer_locs[20];
2672       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2673                                              sizeof(buffer_locs)/sizeof(relocInfo));
2674 
2675       MacroAssembler _masm(&buffer);
2676       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2677                                                      total_args_passed,
2678                                                      comp_args_on_stack,
2679                                                      sig_bt,
2680                                                      regs,
2681                                                      fingerprint);
2682 #ifdef ASSERT
2683       if (VerifyAdapterSharing) {
2684         if (shared_entry != NULL) {
2685           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2686           // Release the one just created and return the original
2687           _adapters->free_entry(entry);
2688           return shared_entry;
2689         } else  {
2690           entry->save_code(buf->code_begin(), buffer.insts_size());
2691         }
2692       }
2693 #endif
2694 
2695       new_adapter = AdapterBlob::create(&buffer);
2696       NOT_PRODUCT(insts_size = buffer.insts_size());
2697     }
2698     if (new_adapter == NULL) {
2699       // CodeCache is full, disable compilation
2700       // Ought to log this but compile log is only per compile thread
2701       // and we're some non descript Java thread.
2702       return NULL; // Out of CodeCache space
2703     }
2704     entry->relocate(new_adapter->content_begin());
2705 #ifndef PRODUCT
2706     // debugging suppport
2707     if (PrintAdapterHandlers || PrintStubCode) {
2708       ttyLocker ttyl;
2709       entry->print_adapter_on(tty);
2710       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2711                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2712                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2713       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2714       if (Verbose || PrintStubCode) {
2715         address first_pc = entry->base_address();
2716         if (first_pc != NULL) {
2717           Disassembler::decode(first_pc, first_pc + insts_size);
2718           tty->cr();
2719         }
2720       }
2721     }
2722 #endif
2723     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2724     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2725     if (contains_all_checks || !VerifyAdapterCalls) {
2726       _adapters->add(entry);
2727     }
2728   }
2729   // Outside of the lock
2730   if (new_adapter != NULL) {
2731     char blob_id[256];
2732     jio_snprintf(blob_id,
2733                  sizeof(blob_id),
2734                  "%s(%s)@" PTR_FORMAT,
2735                  new_adapter->name(),
2736                  fingerprint->as_string(),
2737                  new_adapter->content_begin());
2738     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2739 
2740     if (JvmtiExport::should_post_dynamic_code_generated()) {
2741       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2742     }
2743   }
2744   return entry;
2745 }
2746 
2747 address AdapterHandlerEntry::base_address() {
2748   address base = _i2c_entry;
2749   if (base == NULL)  base = _c2i_entry;
2750   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2751   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2752   return base;
2753 }
2754 
2755 void AdapterHandlerEntry::relocate(address new_base) {
2756   address old_base = base_address();
2757   assert(old_base != NULL, "");
2758   ptrdiff_t delta = new_base - old_base;
2759   if (_i2c_entry != NULL)
2760     _i2c_entry += delta;
2761   if (_c2i_entry != NULL)
2762     _c2i_entry += delta;
2763   if (_c2i_unverified_entry != NULL)
2764     _c2i_unverified_entry += delta;
2765   assert(base_address() == new_base, "");
2766 }
2767 
2768 
2769 void AdapterHandlerEntry::deallocate() {
2770   delete _fingerprint;
2771 #ifdef ASSERT
2772   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2773 #endif
2774 }
2775 
2776 
2777 #ifdef ASSERT
2778 // Capture the code before relocation so that it can be compared
2779 // against other versions.  If the code is captured after relocation
2780 // then relative instructions won't be equivalent.
2781 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2782   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2783   _saved_code_length = length;
2784   memcpy(_saved_code, buffer, length);
2785 }
2786 
2787 
2788 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2789   if (length != _saved_code_length) {
2790     return false;
2791   }
2792 
2793   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2794 }
2795 #endif
2796 
2797 
2798 /**
2799  * Create a native wrapper for this native method.  The wrapper converts the
2800  * Java-compiled calling convention to the native convention, handles
2801  * arguments, and transitions to native.  On return from the native we transition
2802  * back to java blocking if a safepoint is in progress.
2803  */
2804 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2805   ResourceMark rm;
2806   nmethod* nm = NULL;
2807 
2808   assert(method->is_native(), "must be native");
2809   assert(method->is_method_handle_intrinsic() ||
2810          method->has_native_function(), "must have something valid to call!");
2811 
2812   {
2813     // Perform the work while holding the lock, but perform any printing outside the lock
2814     MutexLocker mu(AdapterHandlerLibrary_lock);
2815     // See if somebody beat us to it
2816     if (method->code() != NULL) {
2817       return;
2818     }
2819 
2820     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2821     assert(compile_id > 0, "Must generate native wrapper");
2822 
2823 
2824     ResourceMark rm;
2825     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2826     if (buf != NULL) {
2827       CodeBuffer buffer(buf);
2828       double locs_buf[20];
2829       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2830       MacroAssembler _masm(&buffer);
2831 
2832       // Fill in the signature array, for the calling-convention call.
2833       const int total_args_passed = method->size_of_parameters();
2834 
2835       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2836       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2837       int i=0;
2838       if (!method->is_static())  // Pass in receiver first
2839         sig_bt[i++] = T_OBJECT;
2840       SignatureStream ss(method->signature());
2841       for (; !ss.at_return_type(); ss.next()) {
2842         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2843         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2844           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2845       }
2846       assert(i == total_args_passed, "");
2847       BasicType ret_type = ss.type();
2848 
2849       // Now get the compiled-Java layout as input (or output) arguments.
2850       // NOTE: Stubs for compiled entry points of method handle intrinsics
2851       // are just trampolines so the argument registers must be outgoing ones.
2852       const bool is_outgoing = method->is_method_handle_intrinsic();
2853       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2854 
2855       // Generate the compiled-to-native wrapper code
2856       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2857 
2858       if (nm != NULL) {
2859         method->set_code(method, nm);
2860 
2861         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2862         if (directive->PrintAssemblyOption) {
2863           nm->print_code();
2864         }
2865         DirectivesStack::release(directive);
2866       }
2867     }
2868   } // Unlock AdapterHandlerLibrary_lock
2869 
2870 
2871   // Install the generated code.
2872   if (nm != NULL) {
2873     const char *msg = method->is_static() ? "(static)" : "";
2874     CompileTask::print_ul(nm, msg);
2875     if (PrintCompilation) {
2876       ttyLocker ttyl;
2877       CompileTask::print(tty, nm, msg);
2878     }
2879     nm->post_compiled_method_load_event();
2880   }
2881 }
2882 
2883 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2884   assert(thread == JavaThread::current(), "must be");
2885   // The code is about to enter a JNI lazy critical native method and
2886   // _needs_gc is true, so if this thread is already in a critical
2887   // section then just return, otherwise this thread should block
2888   // until needs_gc has been cleared.
2889   if (thread->in_critical()) {
2890     return;
2891   }
2892   // Lock and unlock a critical section to give the system a chance to block
2893   GCLocker::lock_critical(thread);
2894   GCLocker::unlock_critical(thread);
2895 JRT_END
2896 
2897 JRT_LEAF(oopDesc*, SharedRuntime::pin_object(JavaThread* thread, oopDesc* obj))
2898   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2899   assert(obj != NULL, "Should not be null");
2900   oop o(obj);
2901   o = Universe::heap()->pin_object(thread, o);
2902   assert(o != NULL, "Should not be null");
2903   return o;
2904 JRT_END
2905 
2906 JRT_LEAF(void, SharedRuntime::unpin_object(JavaThread* thread, oopDesc* obj))
2907   assert(Universe::heap()->supports_object_pinning(), "Why we are here?");
2908   assert(obj != NULL, "Should not be null");
2909   oop o(obj);
2910   Universe::heap()->unpin_object(thread, o);
2911 JRT_END
2912 
2913 // -------------------------------------------------------------------------
2914 // Java-Java calling convention
2915 // (what you use when Java calls Java)
2916 
2917 //------------------------------name_for_receiver----------------------------------
2918 // For a given signature, return the VMReg for parameter 0.
2919 VMReg SharedRuntime::name_for_receiver() {
2920   VMRegPair regs;
2921   BasicType sig_bt = T_OBJECT;
2922   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2923   // Return argument 0 register.  In the LP64 build pointers
2924   // take 2 registers, but the VM wants only the 'main' name.
2925   return regs.first();
2926 }
2927 
2928 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2929   // This method is returning a data structure allocating as a
2930   // ResourceObject, so do not put any ResourceMarks in here.
2931   char *s = sig->as_C_string();
2932   int len = (int)strlen(s);
2933   s++; len--;                   // Skip opening paren
2934 
2935   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2936   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2937   int cnt = 0;
2938   if (has_receiver) {
2939     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2940   }
2941 
2942   while (*s != ')') {          // Find closing right paren
2943     switch (*s++) {            // Switch on signature character
2944     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2945     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2946     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2947     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2948     case 'I': sig_bt[cnt++] = T_INT;     break;
2949     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2950     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2951     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2952     case 'V': sig_bt[cnt++] = T_VOID;    break;
2953     case 'L':                   // Oop
2954       while (*s++ != ';');   // Skip signature
2955       sig_bt[cnt++] = T_OBJECT;
2956       break;
2957     case '[': {                 // Array
2958       do {                      // Skip optional size
2959         while (*s >= '0' && *s <= '9') s++;
2960       } while (*s++ == '[');   // Nested arrays?
2961       // Skip element type
2962       if (s[-1] == 'L')
2963         while (*s++ != ';'); // Skip signature
2964       sig_bt[cnt++] = T_ARRAY;
2965       break;
2966     }
2967     default : ShouldNotReachHere();
2968     }
2969   }
2970 
2971   if (has_appendix) {
2972     sig_bt[cnt++] = T_OBJECT;
2973   }
2974 
2975   assert(cnt < 256, "grow table size");
2976 
2977   int comp_args_on_stack;
2978   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2979 
2980   // the calling convention doesn't count out_preserve_stack_slots so
2981   // we must add that in to get "true" stack offsets.
2982 
2983   if (comp_args_on_stack) {
2984     for (int i = 0; i < cnt; i++) {
2985       VMReg reg1 = regs[i].first();
2986       if (reg1->is_stack()) {
2987         // Yuck
2988         reg1 = reg1->bias(out_preserve_stack_slots());
2989       }
2990       VMReg reg2 = regs[i].second();
2991       if (reg2->is_stack()) {
2992         // Yuck
2993         reg2 = reg2->bias(out_preserve_stack_slots());
2994       }
2995       regs[i].set_pair(reg2, reg1);
2996     }
2997   }
2998 
2999   // results
3000   *arg_size = cnt;
3001   return regs;
3002 }
3003 
3004 // OSR Migration Code
3005 //
3006 // This code is used convert interpreter frames into compiled frames.  It is
3007 // called from very start of a compiled OSR nmethod.  A temp array is
3008 // allocated to hold the interesting bits of the interpreter frame.  All
3009 // active locks are inflated to allow them to move.  The displaced headers and
3010 // active interpreter locals are copied into the temp buffer.  Then we return
3011 // back to the compiled code.  The compiled code then pops the current
3012 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3013 // copies the interpreter locals and displaced headers where it wants.
3014 // Finally it calls back to free the temp buffer.
3015 //
3016 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3017 
3018 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3019 
3020   //
3021   // This code is dependent on the memory layout of the interpreter local
3022   // array and the monitors. On all of our platforms the layout is identical
3023   // so this code is shared. If some platform lays the their arrays out
3024   // differently then this code could move to platform specific code or
3025   // the code here could be modified to copy items one at a time using
3026   // frame accessor methods and be platform independent.
3027 
3028   frame fr = thread->last_frame();
3029   assert(fr.is_interpreted_frame(), "");
3030   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3031 
3032   // Figure out how many monitors are active.
3033   int active_monitor_count = 0;
3034   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3035        kptr < fr.interpreter_frame_monitor_begin();
3036        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3037     if (kptr->obj() != NULL) active_monitor_count++;
3038   }
3039 
3040   // QQQ we could place number of active monitors in the array so that compiled code
3041   // could double check it.
3042 
3043   Method* moop = fr.interpreter_frame_method();
3044   int max_locals = moop->max_locals();
3045   // Allocate temp buffer, 1 word per local & 2 per active monitor
3046   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3047   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3048 
3049   // Copy the locals.  Order is preserved so that loading of longs works.
3050   // Since there's no GC I can copy the oops blindly.
3051   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3052   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3053                        (HeapWord*)&buf[0],
3054                        max_locals);
3055 
3056   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3057   int i = max_locals;
3058   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3059        kptr2 < fr.interpreter_frame_monitor_begin();
3060        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3061     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3062       BasicLock *lock = kptr2->lock();
3063       // Inflate so the displaced header becomes position-independent
3064       if (lock->displaced_header()->is_unlocked())
3065         ObjectSynchronizer::inflate_helper(kptr2->obj());
3066       // Now the displaced header is free to move
3067       buf[i++] = (intptr_t)lock->displaced_header();
3068       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3069     }
3070   }
3071   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3072 
3073   return buf;
3074 JRT_END
3075 
3076 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3077   FREE_C_HEAP_ARRAY(intptr_t, buf);
3078 JRT_END
3079 
3080 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3081   AdapterHandlerTableIterator iter(_adapters);
3082   while (iter.has_next()) {
3083     AdapterHandlerEntry* a = iter.next();
3084     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3085   }
3086   return false;
3087 }
3088 
3089 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3090   AdapterHandlerTableIterator iter(_adapters);
3091   while (iter.has_next()) {
3092     AdapterHandlerEntry* a = iter.next();
3093     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3094       st->print("Adapter for signature: ");
3095       a->print_adapter_on(tty);
3096       return;
3097     }
3098   }
3099   assert(false, "Should have found handler");
3100 }
3101 
3102 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3103   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3104                p2i(this), fingerprint()->as_string(),
3105                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3106 
3107 }
3108 
3109 #if INCLUDE_CDS
3110 
3111 void CDSAdapterHandlerEntry::init() {
3112   assert(DumpSharedSpaces, "used during dump time only");
3113   _c2i_entry_trampoline = (address)MetaspaceShared::misc_code_space_alloc(SharedRuntime::trampoline_size());
3114   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_code_space_alloc(sizeof(AdapterHandlerEntry*));
3115 };
3116 
3117 #endif // INCLUDE_CDS
3118 
3119 
3120 #ifndef PRODUCT
3121 
3122 void AdapterHandlerLibrary::print_statistics() {
3123   _adapters->print_statistics();
3124 }
3125 
3126 #endif /* PRODUCT */
3127 
3128 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3129   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3130   if (thread->stack_reserved_zone_disabled()) {
3131   thread->enable_stack_reserved_zone();
3132   }
3133   thread->set_reserved_stack_activation(thread->stack_base());
3134 JRT_END
3135 
3136 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3137   ResourceMark rm(thread);
3138   frame activation;
3139   CompiledMethod* nm = NULL;
3140   int count = 1;
3141 
3142   assert(fr.is_java_frame(), "Must start on Java frame");
3143 
3144   while (true) {
3145     Method* method = NULL;
3146     bool found = false;
3147     if (fr.is_interpreted_frame()) {
3148       method = fr.interpreter_frame_method();
3149       if (method != NULL && method->has_reserved_stack_access()) {
3150         found = true;
3151       }
3152     } else {
3153       CodeBlob* cb = fr.cb();
3154       if (cb != NULL && cb->is_compiled()) {
3155         nm = cb->as_compiled_method();
3156         method = nm->method();
3157         // scope_desc_near() must be used, instead of scope_desc_at() because on
3158         // SPARC, the pcDesc can be on the delay slot after the call instruction.
3159         for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != NULL; sd = sd->sender()) {
3160           method = sd->method();
3161           if (method != NULL && method->has_reserved_stack_access()) {
3162             found = true;
3163       }
3164     }
3165       }
3166     }
3167     if (found) {
3168       activation = fr;
3169       warning("Potentially dangerous stack overflow in "
3170               "ReservedStackAccess annotated method %s [%d]",
3171               method->name_and_sig_as_C_string(), count++);
3172       EventReservedStackActivation event;
3173       if (event.should_commit()) {
3174         event.set_method(method);
3175         event.commit();
3176       }
3177     }
3178     if (fr.is_first_java_frame()) {
3179       break;
3180     } else {
3181       fr = fr.java_sender();
3182     }
3183   }
3184   return activation;
3185 }
3186 
3187 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* thread) {
3188   // After any safepoint, just before going back to compiled code,
3189   // we inform the GC that we will be doing initializing writes to
3190   // this object in the future without emitting card-marks, so
3191   // GC may take any compensating steps.
3192 
3193   oop new_obj = thread->vm_result();
3194   if (new_obj == NULL) return;
3195 
3196   BarrierSet *bs = BarrierSet::barrier_set();
3197   bs->on_slowpath_allocation_exit(thread, new_obj);
3198 }