1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  58 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  59   // -----------------Table 4.5 -------------------- //
  60   16, 32, 64,  // EVEX_FV(0)
  61   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  62   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  63   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  64   8,  16, 32,  // EVEX_HV(0)
  65   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  66   // -----------------Table 4.6 -------------------- //
  67   16, 32, 64,  // EVEX_FVM(0)
  68   1,  1,  1,   // EVEX_T1S(0)
  69   2,  2,  2,   // EVEX_T1S(1)
  70   4,  4,  4,   // EVEX_T1S(2)
  71   8,  8,  8,   // EVEX_T1S(3)
  72   4,  4,  4,   // EVEX_T1F(0)
  73   8,  8,  8,   // EVEX_T1F(1)
  74   8,  8,  8,   // EVEX_T2(0)
  75   0,  16, 16,  // EVEX_T2(1)
  76   0,  16, 16,  // EVEX_T4(0)
  77   0,  0,  32,  // EVEX_T4(1)
  78   0,  0,  32,  // EVEX_T8(0)
  79   8,  16, 32,  // EVEX_HVM(0)
  80   4,  8,  16,  // EVEX_QVM(0)
  81   2,  4,  8,   // EVEX_OVM(0)
  82   16, 16, 16,  // EVEX_M128(0)
  83   8,  32, 64,  // EVEX_DUP(0)
  84   0,  0,  0    // EVEX_NTUP
  85 };
  86 
  87 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  88   _is_lval = false;
  89   _target = target;
  90   switch (rtype) {
  91   case relocInfo::oop_type:
  92   case relocInfo::metadata_type:
  93     // Oops are a special case. Normally they would be their own section
  94     // but in cases like icBuffer they are literals in the code stream that
  95     // we don't have a section for. We use none so that we get a literal address
  96     // which is always patchable.
  97     break;
  98   case relocInfo::external_word_type:
  99     _rspec = external_word_Relocation::spec(target);
 100     break;
 101   case relocInfo::internal_word_type:
 102     _rspec = internal_word_Relocation::spec(target);
 103     break;
 104   case relocInfo::opt_virtual_call_type:
 105     _rspec = opt_virtual_call_Relocation::spec();
 106     break;
 107   case relocInfo::static_call_type:
 108     _rspec = static_call_Relocation::spec();
 109     break;
 110   case relocInfo::runtime_call_type:
 111     _rspec = runtime_call_Relocation::spec();
 112     break;
 113   case relocInfo::poll_type:
 114   case relocInfo::poll_return_type:
 115     _rspec = Relocation::spec_simple(rtype);
 116     break;
 117   case relocInfo::none:
 118     break;
 119   default:
 120     ShouldNotReachHere();
 121     break;
 122   }
 123 }
 124 
 125 // Implementation of Address
 126 
 127 #ifdef _LP64
 128 
 129 Address Address::make_array(ArrayAddress adr) {
 130   // Not implementable on 64bit machines
 131   // Should have been handled higher up the call chain.
 132   ShouldNotReachHere();
 133   return Address();
 134 }
 135 
 136 // exceedingly dangerous constructor
 137 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 138   _base  = noreg;
 139   _index = noreg;
 140   _scale = no_scale;
 141   _disp  = disp;
 142   switch (rtype) {
 143     case relocInfo::external_word_type:
 144       _rspec = external_word_Relocation::spec(loc);
 145       break;
 146     case relocInfo::internal_word_type:
 147       _rspec = internal_word_Relocation::spec(loc);
 148       break;
 149     case relocInfo::runtime_call_type:
 150       // HMM
 151       _rspec = runtime_call_Relocation::spec();
 152       break;
 153     case relocInfo::poll_type:
 154     case relocInfo::poll_return_type:
 155       _rspec = Relocation::spec_simple(rtype);
 156       break;
 157     case relocInfo::none:
 158       break;
 159     default:
 160       ShouldNotReachHere();
 161   }
 162 }
 163 #else // LP64
 164 
 165 Address Address::make_array(ArrayAddress adr) {
 166   AddressLiteral base = adr.base();
 167   Address index = adr.index();
 168   assert(index._disp == 0, "must not have disp"); // maybe it can?
 169   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 170   array._rspec = base._rspec;
 171   return array;
 172 }
 173 
 174 // exceedingly dangerous constructor
 175 Address::Address(address loc, RelocationHolder spec) {
 176   _base  = noreg;
 177   _index = noreg;
 178   _scale = no_scale;
 179   _disp  = (intptr_t) loc;
 180   _rspec = spec;
 181 }
 182 
 183 #endif // _LP64
 184 
 185 
 186 
 187 // Convert the raw encoding form into the form expected by the constructor for
 188 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 189 // that to noreg for the Address constructor.
 190 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 191   RelocationHolder rspec;
 192   if (disp_reloc != relocInfo::none) {
 193     rspec = Relocation::spec_simple(disp_reloc);
 194   }
 195   bool valid_index = index != rsp->encoding();
 196   if (valid_index) {
 197     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 198     madr._rspec = rspec;
 199     return madr;
 200   } else {
 201     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 202     madr._rspec = rspec;
 203     return madr;
 204   }
 205 }
 206 
 207 // Implementation of Assembler
 208 
 209 int AbstractAssembler::code_fill_byte() {
 210   return (u_char)'\xF4'; // hlt
 211 }
 212 
 213 // make this go away someday
 214 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 215   if (rtype == relocInfo::none)
 216     emit_int32(data);
 217   else
 218     emit_data(data, Relocation::spec_simple(rtype), format);
 219 }
 220 
 221 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 222   assert(imm_operand == 0, "default format must be immediate in this file");
 223   assert(inst_mark() != NULL, "must be inside InstructionMark");
 224   if (rspec.type() !=  relocInfo::none) {
 225     #ifdef ASSERT
 226       check_relocation(rspec, format);
 227     #endif
 228     // Do not use AbstractAssembler::relocate, which is not intended for
 229     // embedded words.  Instead, relocate to the enclosing instruction.
 230 
 231     // hack. call32 is too wide for mask so use disp32
 232     if (format == call32_operand)
 233       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 234     else
 235       code_section()->relocate(inst_mark(), rspec, format);
 236   }
 237   emit_int32(data);
 238 }
 239 
 240 static int encode(Register r) {
 241   int enc = r->encoding();
 242   if (enc >= 8) {
 243     enc -= 8;
 244   }
 245   return enc;
 246 }
 247 
 248 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 249   assert(dst->has_byte_register(), "must have byte register");
 250   assert(isByte(op1) && isByte(op2), "wrong opcode");
 251   assert(isByte(imm8), "not a byte");
 252   assert((op1 & 0x01) == 0, "should be 8bit operation");
 253   emit_int8(op1);
 254   emit_int8(op2 | encode(dst));
 255   emit_int8(imm8);
 256 }
 257 
 258 
 259 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 260   assert(isByte(op1) && isByte(op2), "wrong opcode");
 261   assert((op1 & 0x01) == 1, "should be 32bit operation");
 262   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 263   if (is8bit(imm32)) {
 264     emit_int8(op1 | 0x02); // set sign bit
 265     emit_int8(op2 | encode(dst));
 266     emit_int8(imm32 & 0xFF);
 267   } else {
 268     emit_int8(op1);
 269     emit_int8(op2 | encode(dst));
 270     emit_int32(imm32);
 271   }
 272 }
 273 
 274 // Force generation of a 4 byte immediate value even if it fits into 8bit
 275 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 276   assert(isByte(op1) && isByte(op2), "wrong opcode");
 277   assert((op1 & 0x01) == 1, "should be 32bit operation");
 278   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 279   emit_int8(op1);
 280   emit_int8(op2 | encode(dst));
 281   emit_int32(imm32);
 282 }
 283 
 284 // immediate-to-memory forms
 285 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 286   assert((op1 & 0x01) == 1, "should be 32bit operation");
 287   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 288   if (is8bit(imm32)) {
 289     emit_int8(op1 | 0x02); // set sign bit
 290     emit_operand(rm, adr, 1);
 291     emit_int8(imm32 & 0xFF);
 292   } else {
 293     emit_int8(op1);
 294     emit_operand(rm, adr, 4);
 295     emit_int32(imm32);
 296   }
 297 }
 298 
 299 
 300 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 301   assert(isByte(op1) && isByte(op2), "wrong opcode");
 302   emit_int8(op1);
 303   emit_int8(op2 | encode(dst) << 3 | encode(src));
 304 }
 305 
 306 
 307 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 308                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 309   int mod_idx = 0;
 310   // We will test if the displacement fits the compressed format and if so
 311   // apply the compression to the displacment iff the result is8bit.
 312   if (VM_Version::supports_evex() && is_evex_inst) {
 313     switch (cur_tuple_type) {
 314     case EVEX_FV:
 315       if ((cur_encoding & VEX_W) == VEX_W) {
 316         mod_idx += 2 + ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       } else {
 318         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 319       }
 320       break;
 321 
 322     case EVEX_HV:
 323       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 324       break;
 325 
 326     case EVEX_FVM:
 327       break;
 328 
 329     case EVEX_T1S:
 330       switch (in_size_in_bits) {
 331       case EVEX_8bit:
 332         break;
 333 
 334       case EVEX_16bit:
 335         mod_idx = 1;
 336         break;
 337 
 338       case EVEX_32bit:
 339         mod_idx = 2;
 340         break;
 341 
 342       case EVEX_64bit:
 343         mod_idx = 3;
 344         break;
 345       }
 346       break;
 347 
 348     case EVEX_T1F:
 349     case EVEX_T2:
 350     case EVEX_T4:
 351       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 352       break;
 353 
 354     case EVEX_T8:
 355       break;
 356 
 357     case EVEX_HVM:
 358       break;
 359 
 360     case EVEX_QVM:
 361       break;
 362 
 363     case EVEX_OVM:
 364       break;
 365 
 366     case EVEX_M128:
 367       break;
 368 
 369     case EVEX_DUP:
 370       break;
 371 
 372     default:
 373       assert(0, "no valid evex tuple_table entry");
 374       break;
 375     }
 376 
 377     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 378       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 379       if ((disp % disp_factor) == 0) {
 380         int new_disp = disp / disp_factor;
 381         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 382           disp = new_disp;
 383         }
 384       } else {
 385         return false;
 386       }
 387     }
 388   }
 389   return (-0x80 <= disp && disp < 0x80);
 390 }
 391 
 392 
 393 bool Assembler::emit_compressed_disp_byte(int &disp) {
 394   int mod_idx = 0;
 395   // We will test if the displacement fits the compressed format and if so
 396   // apply the compression to the displacment iff the result is8bit.
 397   if (VM_Version::supports_evex() && is_evex_instruction) {
 398     switch (tuple_type) {
 399     case EVEX_FV:
 400       if ((evex_encoding & VEX_W) == VEX_W) {
 401         mod_idx += 2 + ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 402       } else {
 403         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       }
 405       break;
 406 
 407     case EVEX_HV:
 408       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 409       break;
 410 
 411     case EVEX_FVM:
 412       break;
 413 
 414     case EVEX_T1S:
 415       switch (input_size_in_bits) {
 416       case EVEX_8bit:
 417         break;
 418 
 419       case EVEX_16bit:
 420         mod_idx = 1;
 421         break;
 422 
 423       case EVEX_32bit:
 424         mod_idx = 2;
 425         break;
 426 
 427       case EVEX_64bit:
 428         mod_idx = 3;
 429         break;
 430       }
 431       break;
 432 
 433     case EVEX_T1F:
 434     case EVEX_T2:
 435     case EVEX_T4:
 436       mod_idx = (input_size_in_bits == EVEX_64bit) ? 1 : 0;
 437       break;
 438 
 439     case EVEX_T8:
 440       break;
 441 
 442     case EVEX_HVM:
 443       break;
 444 
 445     case EVEX_QVM:
 446       break;
 447 
 448     case EVEX_OVM:
 449       break;
 450 
 451     case EVEX_M128:
 452       break;
 453 
 454     case EVEX_DUP:
 455       break;
 456 
 457     default:
 458       assert(0, "no valid evex tuple_table entry");
 459       break;
 460     }
 461 
 462     if (avx_vector_len >= AVX_128bit && avx_vector_len <= AVX_512bit) {
 463       int disp_factor = tuple_table[tuple_type + mod_idx][avx_vector_len];
 464       if ((disp % disp_factor) == 0) {
 465         int new_disp = disp / disp_factor;
 466         if (is8bit(new_disp)) {
 467           disp = new_disp;
 468         }
 469       } else {
 470         return false;
 471       }
 472     }
 473   }
 474   return is8bit(disp);
 475 }
 476 
 477 
 478 void Assembler::emit_operand(Register reg, Register base, Register index,
 479                              Address::ScaleFactor scale, int disp,
 480                              RelocationHolder const& rspec,
 481                              int rip_relative_correction) {
 482   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 483 
 484   // Encode the registers as needed in the fields they are used in
 485 
 486   int regenc = encode(reg) << 3;
 487   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 488   int baseenc = base->is_valid() ? encode(base) : 0;
 489 
 490   if (base->is_valid()) {
 491     if (index->is_valid()) {
 492       assert(scale != Address::no_scale, "inconsistent address");
 493       // [base + index*scale + disp]
 494       if (disp == 0 && rtype == relocInfo::none  &&
 495           base != rbp LP64_ONLY(&& base != r13)) {
 496         // [base + index*scale]
 497         // [00 reg 100][ss index base]
 498         assert(index != rsp, "illegal addressing mode");
 499         emit_int8(0x04 | regenc);
 500         emit_int8(scale << 6 | indexenc | baseenc);
 501       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 502         // [base + index*scale + imm8]
 503         // [01 reg 100][ss index base] imm8
 504         assert(index != rsp, "illegal addressing mode");
 505         emit_int8(0x44 | regenc);
 506         emit_int8(scale << 6 | indexenc | baseenc);
 507         emit_int8(disp & 0xFF);
 508       } else {
 509         // [base + index*scale + disp32]
 510         // [10 reg 100][ss index base] disp32
 511         assert(index != rsp, "illegal addressing mode");
 512         emit_int8(0x84 | regenc);
 513         emit_int8(scale << 6 | indexenc | baseenc);
 514         emit_data(disp, rspec, disp32_operand);
 515       }
 516     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 517       // [rsp + disp]
 518       if (disp == 0 && rtype == relocInfo::none) {
 519         // [rsp]
 520         // [00 reg 100][00 100 100]
 521         emit_int8(0x04 | regenc);
 522         emit_int8(0x24);
 523       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 524         // [rsp + imm8]
 525         // [01 reg 100][00 100 100] disp8
 526         emit_int8(0x44 | regenc);
 527         emit_int8(0x24);
 528         emit_int8(disp & 0xFF);
 529       } else {
 530         // [rsp + imm32]
 531         // [10 reg 100][00 100 100] disp32
 532         emit_int8(0x84 | regenc);
 533         emit_int8(0x24);
 534         emit_data(disp, rspec, disp32_operand);
 535       }
 536     } else {
 537       // [base + disp]
 538       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 539       if (disp == 0 && rtype == relocInfo::none &&
 540           base != rbp LP64_ONLY(&& base != r13)) {
 541         // [base]
 542         // [00 reg base]
 543         emit_int8(0x00 | regenc | baseenc);
 544       } else if (emit_compressed_disp_byte(disp) && rtype == relocInfo::none) {
 545         // [base + disp8]
 546         // [01 reg base] disp8
 547         emit_int8(0x40 | regenc | baseenc);
 548         emit_int8(disp & 0xFF);
 549       } else {
 550         // [base + disp32]
 551         // [10 reg base] disp32
 552         emit_int8(0x80 | regenc | baseenc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     }
 556   } else {
 557     if (index->is_valid()) {
 558       assert(scale != Address::no_scale, "inconsistent address");
 559       // [index*scale + disp]
 560       // [00 reg 100][ss index 101] disp32
 561       assert(index != rsp, "illegal addressing mode");
 562       emit_int8(0x04 | regenc);
 563       emit_int8(scale << 6 | indexenc | 0x05);
 564       emit_data(disp, rspec, disp32_operand);
 565     } else if (rtype != relocInfo::none ) {
 566       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 567       // [00 000 101] disp32
 568 
 569       emit_int8(0x05 | regenc);
 570       // Note that the RIP-rel. correction applies to the generated
 571       // disp field, but _not_ to the target address in the rspec.
 572 
 573       // disp was created by converting the target address minus the pc
 574       // at the start of the instruction. That needs more correction here.
 575       // intptr_t disp = target - next_ip;
 576       assert(inst_mark() != NULL, "must be inside InstructionMark");
 577       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 578       int64_t adjusted = disp;
 579       // Do rip-rel adjustment for 64bit
 580       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 581       assert(is_simm32(adjusted),
 582              "must be 32bit offset (RIP relative address)");
 583       emit_data((int32_t) adjusted, rspec, disp32_operand);
 584 
 585     } else {
 586       // 32bit never did this, did everything as the rip-rel/disp code above
 587       // [disp] ABSOLUTE
 588       // [00 reg 100][00 100 101] disp32
 589       emit_int8(0x04 | regenc);
 590       emit_int8(0x25);
 591       emit_data(disp, rspec, disp32_operand);
 592     }
 593   }
 594   is_evex_instruction = false;
 595 }
 596 
 597 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 598                              Address::ScaleFactor scale, int disp,
 599                              RelocationHolder const& rspec) {
 600   if (UseAVX > 2) {
 601     int xreg_enc = reg->encoding();
 602     if (xreg_enc > 15) {
 603       XMMRegister new_reg = as_XMMRegister(xreg_enc & 0xf);
 604       emit_operand((Register)new_reg, base, index, scale, disp, rspec);
 605       return;
 606     }
 607   }
 608   emit_operand((Register)reg, base, index, scale, disp, rspec);
 609 }
 610 
 611 // Secret local extension to Assembler::WhichOperand:
 612 #define end_pc_operand (_WhichOperand_limit)
 613 
 614 address Assembler::locate_operand(address inst, WhichOperand which) {
 615   // Decode the given instruction, and return the address of
 616   // an embedded 32-bit operand word.
 617 
 618   // If "which" is disp32_operand, selects the displacement portion
 619   // of an effective address specifier.
 620   // If "which" is imm64_operand, selects the trailing immediate constant.
 621   // If "which" is call32_operand, selects the displacement of a call or jump.
 622   // Caller is responsible for ensuring that there is such an operand,
 623   // and that it is 32/64 bits wide.
 624 
 625   // If "which" is end_pc_operand, find the end of the instruction.
 626 
 627   address ip = inst;
 628   bool is_64bit = false;
 629 
 630   debug_only(bool has_disp32 = false);
 631   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 632 
 633   again_after_prefix:
 634   switch (0xFF & *ip++) {
 635 
 636   // These convenience macros generate groups of "case" labels for the switch.
 637 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 638 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 639              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 640 #define REP16(x) REP8((x)+0): \
 641               case REP8((x)+8)
 642 
 643   case CS_segment:
 644   case SS_segment:
 645   case DS_segment:
 646   case ES_segment:
 647   case FS_segment:
 648   case GS_segment:
 649     // Seems dubious
 650     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 651     assert(ip == inst+1, "only one prefix allowed");
 652     goto again_after_prefix;
 653 
 654   case 0x67:
 655   case REX:
 656   case REX_B:
 657   case REX_X:
 658   case REX_XB:
 659   case REX_R:
 660   case REX_RB:
 661   case REX_RX:
 662   case REX_RXB:
 663     NOT_LP64(assert(false, "64bit prefixes"));
 664     goto again_after_prefix;
 665 
 666   case REX_W:
 667   case REX_WB:
 668   case REX_WX:
 669   case REX_WXB:
 670   case REX_WR:
 671   case REX_WRB:
 672   case REX_WRX:
 673   case REX_WRXB:
 674     NOT_LP64(assert(false, "64bit prefixes"));
 675     is_64bit = true;
 676     goto again_after_prefix;
 677 
 678   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 679   case 0x88: // movb a, r
 680   case 0x89: // movl a, r
 681   case 0x8A: // movb r, a
 682   case 0x8B: // movl r, a
 683   case 0x8F: // popl a
 684     debug_only(has_disp32 = true);
 685     break;
 686 
 687   case 0x68: // pushq #32
 688     if (which == end_pc_operand) {
 689       return ip + 4;
 690     }
 691     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 692     return ip;                  // not produced by emit_operand
 693 
 694   case 0x66: // movw ... (size prefix)
 695     again_after_size_prefix2:
 696     switch (0xFF & *ip++) {
 697     case REX:
 698     case REX_B:
 699     case REX_X:
 700     case REX_XB:
 701     case REX_R:
 702     case REX_RB:
 703     case REX_RX:
 704     case REX_RXB:
 705     case REX_W:
 706     case REX_WB:
 707     case REX_WX:
 708     case REX_WXB:
 709     case REX_WR:
 710     case REX_WRB:
 711     case REX_WRX:
 712     case REX_WRXB:
 713       NOT_LP64(assert(false, "64bit prefix found"));
 714       goto again_after_size_prefix2;
 715     case 0x8B: // movw r, a
 716     case 0x89: // movw a, r
 717       debug_only(has_disp32 = true);
 718       break;
 719     case 0xC7: // movw a, #16
 720       debug_only(has_disp32 = true);
 721       tail_size = 2;  // the imm16
 722       break;
 723     case 0x0F: // several SSE/SSE2 variants
 724       ip--;    // reparse the 0x0F
 725       goto again_after_prefix;
 726     default:
 727       ShouldNotReachHere();
 728     }
 729     break;
 730 
 731   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 732     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 733     // these asserts are somewhat nonsensical
 734 #ifndef _LP64
 735     assert(which == imm_operand || which == disp32_operand,
 736            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 737 #else
 738     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 739            which == narrow_oop_operand && !is_64bit,
 740            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 741 #endif // _LP64
 742     return ip;
 743 
 744   case 0x69: // imul r, a, #32
 745   case 0xC7: // movl a, #32(oop?)
 746     tail_size = 4;
 747     debug_only(has_disp32 = true); // has both kinds of operands!
 748     break;
 749 
 750   case 0x0F: // movx..., etc.
 751     switch (0xFF & *ip++) {
 752     case 0x3A: // pcmpestri
 753       tail_size = 1;
 754     case 0x38: // ptest, pmovzxbw
 755       ip++; // skip opcode
 756       debug_only(has_disp32 = true); // has both kinds of operands!
 757       break;
 758 
 759     case 0x70: // pshufd r, r/a, #8
 760       debug_only(has_disp32 = true); // has both kinds of operands!
 761     case 0x73: // psrldq r, #8
 762       tail_size = 1;
 763       break;
 764 
 765     case 0x12: // movlps
 766     case 0x28: // movaps
 767     case 0x2E: // ucomiss
 768     case 0x2F: // comiss
 769     case 0x54: // andps
 770     case 0x55: // andnps
 771     case 0x56: // orps
 772     case 0x57: // xorps
 773     case 0x6E: // movd
 774     case 0x7E: // movd
 775     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 776       debug_only(has_disp32 = true);
 777       break;
 778 
 779     case 0xAD: // shrd r, a, %cl
 780     case 0xAF: // imul r, a
 781     case 0xBE: // movsbl r, a (movsxb)
 782     case 0xBF: // movswl r, a (movsxw)
 783     case 0xB6: // movzbl r, a (movzxb)
 784     case 0xB7: // movzwl r, a (movzxw)
 785     case REP16(0x40): // cmovl cc, r, a
 786     case 0xB0: // cmpxchgb
 787     case 0xB1: // cmpxchg
 788     case 0xC1: // xaddl
 789     case 0xC7: // cmpxchg8
 790     case REP16(0x90): // setcc a
 791       debug_only(has_disp32 = true);
 792       // fall out of the switch to decode the address
 793       break;
 794 
 795     case 0xC4: // pinsrw r, a, #8
 796       debug_only(has_disp32 = true);
 797     case 0xC5: // pextrw r, r, #8
 798       tail_size = 1;  // the imm8
 799       break;
 800 
 801     case 0xAC: // shrd r, a, #8
 802       debug_only(has_disp32 = true);
 803       tail_size = 1;  // the imm8
 804       break;
 805 
 806     case REP16(0x80): // jcc rdisp32
 807       if (which == end_pc_operand)  return ip + 4;
 808       assert(which == call32_operand, "jcc has no disp32 or imm");
 809       return ip;
 810     default:
 811       ShouldNotReachHere();
 812     }
 813     break;
 814 
 815   case 0x81: // addl a, #32; addl r, #32
 816     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 817     // on 32bit in the case of cmpl, the imm might be an oop
 818     tail_size = 4;
 819     debug_only(has_disp32 = true); // has both kinds of operands!
 820     break;
 821 
 822   case 0x83: // addl a, #8; addl r, #8
 823     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 824     debug_only(has_disp32 = true); // has both kinds of operands!
 825     tail_size = 1;
 826     break;
 827 
 828   case 0x9B:
 829     switch (0xFF & *ip++) {
 830     case 0xD9: // fnstcw a
 831       debug_only(has_disp32 = true);
 832       break;
 833     default:
 834       ShouldNotReachHere();
 835     }
 836     break;
 837 
 838   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 839   case REP4(0x10): // adc...
 840   case REP4(0x20): // and...
 841   case REP4(0x30): // xor...
 842   case REP4(0x08): // or...
 843   case REP4(0x18): // sbb...
 844   case REP4(0x28): // sub...
 845   case 0xF7: // mull a
 846   case 0x8D: // lea r, a
 847   case 0x87: // xchg r, a
 848   case REP4(0x38): // cmp...
 849   case 0x85: // test r, a
 850     debug_only(has_disp32 = true); // has both kinds of operands!
 851     break;
 852 
 853   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 854   case 0xC6: // movb a, #8
 855   case 0x80: // cmpb a, #8
 856   case 0x6B: // imul r, a, #8
 857     debug_only(has_disp32 = true); // has both kinds of operands!
 858     tail_size = 1; // the imm8
 859     break;
 860 
 861   case 0xC4: // VEX_3bytes
 862   case 0xC5: // VEX_2bytes
 863     assert((UseAVX > 0), "shouldn't have VEX prefix");
 864     assert(ip == inst+1, "no prefixes allowed");
 865     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 866     // but they have prefix 0x0F and processed when 0x0F processed above.
 867     //
 868     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 869     // instructions (these instructions are not supported in 64-bit mode).
 870     // To distinguish them bits [7:6] are set in the VEX second byte since
 871     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 872     // those VEX bits REX and vvvv bits are inverted.
 873     //
 874     // Fortunately C2 doesn't generate these instructions so we don't need
 875     // to check for them in product version.
 876 
 877     // Check second byte
 878     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 879 
 880     // First byte
 881     if ((0xFF & *inst) == VEX_3bytes) {
 882       ip++; // third byte
 883       is_64bit = ((VEX_W & *ip) == VEX_W);
 884     }
 885     ip++; // opcode
 886     // To find the end of instruction (which == end_pc_operand).
 887     switch (0xFF & *ip) {
 888     case 0x61: // pcmpestri r, r/a, #8
 889     case 0x70: // pshufd r, r/a, #8
 890     case 0x73: // psrldq r, #8
 891       tail_size = 1;  // the imm8
 892       break;
 893     default:
 894       break;
 895     }
 896     ip++; // skip opcode
 897     debug_only(has_disp32 = true); // has both kinds of operands!
 898     break;
 899 
 900   case 0x62: // EVEX_4bytes
 901     assert((UseAVX > 0), "shouldn't have EVEX prefix");
 902     assert(ip == inst+1, "no prefixes allowed");
 903     // no EVEX collisions, all instructions that have 0x62 opcodes
 904     // have EVEX versions and are subopcodes of 0x66
 905     ip++; // skip P0 and exmaine W in P1
 906     is_64bit = ((VEX_W & *ip) == VEX_W);
 907     ip++; // move to P2
 908     ip++; // skip P2, move to opcode
 909     // To find the end of instruction (which == end_pc_operand).
 910     switch (0xFF & *ip) {
 911     case 0x61: // pcmpestri r, r/a, #8
 912     case 0x70: // pshufd r, r/a, #8
 913     case 0x73: // psrldq r, #8
 914       tail_size = 1;  // the imm8
 915       break;
 916     default:
 917       break;
 918     }
 919     ip++; // skip opcode
 920     debug_only(has_disp32 = true); // has both kinds of operands!
 921     break;
 922 
 923   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 924   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 925   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 926   case 0xDD: // fld_d a; fst_d a; fstp_d a
 927   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 928   case 0xDF: // fild_d a; fistp_d a
 929   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 930   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 931   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 932     debug_only(has_disp32 = true);
 933     break;
 934 
 935   case 0xE8: // call rdisp32
 936   case 0xE9: // jmp  rdisp32
 937     if (which == end_pc_operand)  return ip + 4;
 938     assert(which == call32_operand, "call has no disp32 or imm");
 939     return ip;
 940 
 941   case 0xF0:                    // Lock
 942     assert(os::is_MP(), "only on MP");
 943     goto again_after_prefix;
 944 
 945   case 0xF3:                    // For SSE
 946   case 0xF2:                    // For SSE2
 947     switch (0xFF & *ip++) {
 948     case REX:
 949     case REX_B:
 950     case REX_X:
 951     case REX_XB:
 952     case REX_R:
 953     case REX_RB:
 954     case REX_RX:
 955     case REX_RXB:
 956     case REX_W:
 957     case REX_WB:
 958     case REX_WX:
 959     case REX_WXB:
 960     case REX_WR:
 961     case REX_WRB:
 962     case REX_WRX:
 963     case REX_WRXB:
 964       NOT_LP64(assert(false, "found 64bit prefix"));
 965       ip++;
 966     default:
 967       ip++;
 968     }
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   default:
 973     ShouldNotReachHere();
 974 
 975 #undef REP8
 976 #undef REP16
 977   }
 978 
 979   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 980 #ifdef _LP64
 981   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 982 #else
 983   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 984   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 985 #endif // LP64
 986   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 987 
 988   // parse the output of emit_operand
 989   int op2 = 0xFF & *ip++;
 990   int base = op2 & 0x07;
 991   int op3 = -1;
 992   const int b100 = 4;
 993   const int b101 = 5;
 994   if (base == b100 && (op2 >> 6) != 3) {
 995     op3 = 0xFF & *ip++;
 996     base = op3 & 0x07;   // refetch the base
 997   }
 998   // now ip points at the disp (if any)
 999 
1000   switch (op2 >> 6) {
1001   case 0:
1002     // [00 reg  100][ss index base]
1003     // [00 reg  100][00   100  esp]
1004     // [00 reg base]
1005     // [00 reg  100][ss index  101][disp32]
1006     // [00 reg  101]               [disp32]
1007 
1008     if (base == b101) {
1009       if (which == disp32_operand)
1010         return ip;              // caller wants the disp32
1011       ip += 4;                  // skip the disp32
1012     }
1013     break;
1014 
1015   case 1:
1016     // [01 reg  100][ss index base][disp8]
1017     // [01 reg  100][00   100  esp][disp8]
1018     // [01 reg base]               [disp8]
1019     ip += 1;                    // skip the disp8
1020     break;
1021 
1022   case 2:
1023     // [10 reg  100][ss index base][disp32]
1024     // [10 reg  100][00   100  esp][disp32]
1025     // [10 reg base]               [disp32]
1026     if (which == disp32_operand)
1027       return ip;                // caller wants the disp32
1028     ip += 4;                    // skip the disp32
1029     break;
1030 
1031   case 3:
1032     // [11 reg base]  (not a memory addressing mode)
1033     break;
1034   }
1035 
1036   if (which == end_pc_operand) {
1037     return ip + tail_size;
1038   }
1039 
1040 #ifdef _LP64
1041   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1042 #else
1043   assert(which == imm_operand, "instruction has only an imm field");
1044 #endif // LP64
1045   return ip;
1046 }
1047 
1048 address Assembler::locate_next_instruction(address inst) {
1049   // Secretly share code with locate_operand:
1050   return locate_operand(inst, end_pc_operand);
1051 }
1052 
1053 
1054 #ifdef ASSERT
1055 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1056   address inst = inst_mark();
1057   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1058   address opnd;
1059 
1060   Relocation* r = rspec.reloc();
1061   if (r->type() == relocInfo::none) {
1062     return;
1063   } else if (r->is_call() || format == call32_operand) {
1064     // assert(format == imm32_operand, "cannot specify a nonzero format");
1065     opnd = locate_operand(inst, call32_operand);
1066   } else if (r->is_data()) {
1067     assert(format == imm_operand || format == disp32_operand
1068            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1069     opnd = locate_operand(inst, (WhichOperand)format);
1070   } else {
1071     assert(format == imm_operand, "cannot specify a format");
1072     return;
1073   }
1074   assert(opnd == pc(), "must put operand where relocs can find it");
1075 }
1076 #endif // ASSERT
1077 
1078 void Assembler::emit_operand32(Register reg, Address adr) {
1079   assert(reg->encoding() < 8, "no extended registers");
1080   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1081   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1082                adr._rspec);
1083 }
1084 
1085 void Assembler::emit_operand(Register reg, Address adr,
1086                              int rip_relative_correction) {
1087   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1088                adr._rspec,
1089                rip_relative_correction);
1090 }
1091 
1092 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1093   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1094                adr._rspec);
1095 }
1096 
1097 // MMX operations
1098 void Assembler::emit_operand(MMXRegister reg, Address adr) {
1099   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1100   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1101 }
1102 
1103 // work around gcc (3.2.1-7a) bug
1104 void Assembler::emit_operand(Address adr, MMXRegister reg) {
1105   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
1106   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
1107 }
1108 
1109 
1110 void Assembler::emit_farith(int b1, int b2, int i) {
1111   assert(isByte(b1) && isByte(b2), "wrong opcode");
1112   assert(0 <= i &&  i < 8, "illegal stack offset");
1113   emit_int8(b1);
1114   emit_int8(b2 + i);
1115 }
1116 
1117 
1118 // Now the Assembler instructions (identical for 32/64 bits)
1119 
1120 void Assembler::adcl(Address dst, int32_t imm32) {
1121   InstructionMark im(this);
1122   prefix(dst);
1123   emit_arith_operand(0x81, rdx, dst, imm32);
1124 }
1125 
1126 void Assembler::adcl(Address dst, Register src) {
1127   InstructionMark im(this);
1128   prefix(dst, src);
1129   emit_int8(0x11);
1130   emit_operand(src, dst);
1131 }
1132 
1133 void Assembler::adcl(Register dst, int32_t imm32) {
1134   prefix(dst);
1135   emit_arith(0x81, 0xD0, dst, imm32);
1136 }
1137 
1138 void Assembler::adcl(Register dst, Address src) {
1139   InstructionMark im(this);
1140   prefix(src, dst);
1141   emit_int8(0x13);
1142   emit_operand(dst, src);
1143 }
1144 
1145 void Assembler::adcl(Register dst, Register src) {
1146   (void) prefix_and_encode(dst->encoding(), src->encoding());
1147   emit_arith(0x13, 0xC0, dst, src);
1148 }
1149 
1150 void Assembler::addl(Address dst, int32_t imm32) {
1151   InstructionMark im(this);
1152   prefix(dst);
1153   emit_arith_operand(0x81, rax, dst, imm32);
1154 }
1155 
1156 void Assembler::addl(Address dst, Register src) {
1157   InstructionMark im(this);
1158   prefix(dst, src);
1159   emit_int8(0x01);
1160   emit_operand(src, dst);
1161 }
1162 
1163 void Assembler::addl(Register dst, int32_t imm32) {
1164   prefix(dst);
1165   emit_arith(0x81, 0xC0, dst, imm32);
1166 }
1167 
1168 void Assembler::addl(Register dst, Address src) {
1169   InstructionMark im(this);
1170   prefix(src, dst);
1171   emit_int8(0x03);
1172   emit_operand(dst, src);
1173 }
1174 
1175 void Assembler::addl(Register dst, Register src) {
1176   (void) prefix_and_encode(dst->encoding(), src->encoding());
1177   emit_arith(0x03, 0xC0, dst, src);
1178 }
1179 
1180 void Assembler::addr_nop_4() {
1181   assert(UseAddressNop, "no CPU support");
1182   // 4 bytes: NOP DWORD PTR [EAX+0]
1183   emit_int8(0x0F);
1184   emit_int8(0x1F);
1185   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1186   emit_int8(0);    // 8-bits offset (1 byte)
1187 }
1188 
1189 void Assembler::addr_nop_5() {
1190   assert(UseAddressNop, "no CPU support");
1191   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1192   emit_int8(0x0F);
1193   emit_int8(0x1F);
1194   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1195   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1196   emit_int8(0);    // 8-bits offset (1 byte)
1197 }
1198 
1199 void Assembler::addr_nop_7() {
1200   assert(UseAddressNop, "no CPU support");
1201   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1202   emit_int8(0x0F);
1203   emit_int8(0x1F);
1204   emit_int8((unsigned char)0x80);
1205                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1206   emit_int32(0);   // 32-bits offset (4 bytes)
1207 }
1208 
1209 void Assembler::addr_nop_8() {
1210   assert(UseAddressNop, "no CPU support");
1211   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1212   emit_int8(0x0F);
1213   emit_int8(0x1F);
1214   emit_int8((unsigned char)0x84);
1215                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1216   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1217   emit_int32(0);   // 32-bits offset (4 bytes)
1218 }
1219 
1220 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1222   if (VM_Version::supports_evex()) {
1223     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1224   } else {
1225     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1226   }
1227 }
1228 
1229 void Assembler::addsd(XMMRegister dst, Address src) {
1230   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1231   if (VM_Version::supports_evex()) {
1232     tuple_type = EVEX_T1S;
1233     input_size_in_bits = EVEX_64bit;
1234     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_F2);
1235   } else {
1236     emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
1237   }
1238 }
1239 
1240 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1241   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1242   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1243 }
1244 
1245 void Assembler::addss(XMMRegister dst, Address src) {
1246   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1247   if (VM_Version::supports_evex()) {
1248     tuple_type = EVEX_T1S;
1249     input_size_in_bits = EVEX_32bit;
1250   }
1251   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1252 }
1253 
1254 void Assembler::aesdec(XMMRegister dst, Address src) {
1255   assert(VM_Version::supports_aes(), "");
1256   InstructionMark im(this);
1257   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1258               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1259   emit_int8((unsigned char)0xDE);
1260   emit_operand(dst, src);
1261 }
1262 
1263 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1264   assert(VM_Version::supports_aes(), "");
1265   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1266                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1267   emit_int8((unsigned char)0xDE);
1268   emit_int8(0xC0 | encode);
1269 }
1270 
1271 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1272   assert(VM_Version::supports_aes(), "");
1273   InstructionMark im(this);
1274   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1275               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1276   emit_int8((unsigned char)0xDF);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1281   assert(VM_Version::supports_aes(), "");
1282   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1283                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1284   emit_int8((unsigned char)0xDF);
1285   emit_int8((unsigned char)(0xC0 | encode));
1286 }
1287 
1288 void Assembler::aesenc(XMMRegister dst, Address src) {
1289   assert(VM_Version::supports_aes(), "");
1290   InstructionMark im(this);
1291   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1292               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1293   emit_int8((unsigned char)0xDC);
1294   emit_operand(dst, src);
1295 }
1296 
1297 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1298   assert(VM_Version::supports_aes(), "");
1299   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1300                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1301   emit_int8((unsigned char)0xDC);
1302   emit_int8(0xC0 | encode);
1303 }
1304 
1305 void Assembler::aesenclast(XMMRegister dst, Address src) {
1306   assert(VM_Version::supports_aes(), "");
1307   InstructionMark im(this);
1308   simd_prefix(dst, dst, src, VEX_SIMD_66, false,
1309               VEX_OPCODE_0F_38, false, AVX_128bit, true);
1310   emit_int8((unsigned char)0xDD);
1311   emit_operand(dst, src);
1312 }
1313 
1314 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1315   assert(VM_Version::supports_aes(), "");
1316   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
1317                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
1318   emit_int8((unsigned char)0xDD);
1319   emit_int8((unsigned char)(0xC0 | encode));
1320 }
1321 
1322 
1323 void Assembler::andl(Address dst, int32_t imm32) {
1324   InstructionMark im(this);
1325   prefix(dst);
1326   emit_int8((unsigned char)0x81);
1327   emit_operand(rsp, dst, 4);
1328   emit_int32(imm32);
1329 }
1330 
1331 void Assembler::andl(Register dst, int32_t imm32) {
1332   prefix(dst);
1333   emit_arith(0x81, 0xE0, dst, imm32);
1334 }
1335 
1336 void Assembler::andl(Register dst, Address src) {
1337   InstructionMark im(this);
1338   prefix(src, dst);
1339   emit_int8(0x23);
1340   emit_operand(dst, src);
1341 }
1342 
1343 void Assembler::andl(Register dst, Register src) {
1344   (void) prefix_and_encode(dst->encoding(), src->encoding());
1345   emit_arith(0x23, 0xC0, dst, src);
1346 }
1347 
1348 void Assembler::andnl(Register dst, Register src1, Register src2) {
1349   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1350   int encode = vex_prefix_0F38_and_encode_legacy(dst, src1, src2, false);
1351   emit_int8((unsigned char)0xF2);
1352   emit_int8((unsigned char)(0xC0 | encode));
1353 }
1354 
1355 void Assembler::andnl(Register dst, Register src1, Address src2) {
1356   InstructionMark im(this);
1357   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1358   vex_prefix_0F38_legacy(dst, src1, src2, false);
1359   emit_int8((unsigned char)0xF2);
1360   emit_operand(dst, src2);
1361 }
1362 
1363 void Assembler::bsfl(Register dst, Register src) {
1364   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1365   emit_int8(0x0F);
1366   emit_int8((unsigned char)0xBC);
1367   emit_int8((unsigned char)(0xC0 | encode));
1368 }
1369 
1370 void Assembler::bsrl(Register dst, Register src) {
1371   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1372   emit_int8(0x0F);
1373   emit_int8((unsigned char)0xBD);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::bswapl(Register reg) { // bswap
1378   int encode = prefix_and_encode(reg->encoding());
1379   emit_int8(0x0F);
1380   emit_int8((unsigned char)(0xC8 | encode));
1381 }
1382 
1383 void Assembler::blsil(Register dst, Register src) {
1384   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1385   int encode = vex_prefix_0F38_and_encode_legacy(rbx, dst, src, false);
1386   emit_int8((unsigned char)0xF3);
1387   emit_int8((unsigned char)(0xC0 | encode));
1388 }
1389 
1390 void Assembler::blsil(Register dst, Address src) {
1391   InstructionMark im(this);
1392   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1393   vex_prefix_0F38_legacy(rbx, dst, src, false);
1394   emit_int8((unsigned char)0xF3);
1395   emit_operand(rbx, src);
1396 }
1397 
1398 void Assembler::blsmskl(Register dst, Register src) {
1399   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1400   int encode = vex_prefix_0F38_and_encode_legacy(rdx, dst, src, false);
1401   emit_int8((unsigned char)0xF3);
1402   emit_int8((unsigned char)(0xC0 | encode));
1403 }
1404 
1405 void Assembler::blsmskl(Register dst, Address src) {
1406   InstructionMark im(this);
1407   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1408   vex_prefix_0F38(rdx, dst, src, false);
1409   emit_int8((unsigned char)0xF3);
1410   emit_operand(rdx, src);
1411 }
1412 
1413 void Assembler::blsrl(Register dst, Register src) {
1414   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1415   int encode = vex_prefix_0F38_and_encode_legacy(rcx, dst, src, false);
1416   emit_int8((unsigned char)0xF3);
1417   emit_int8((unsigned char)(0xC0 | encode));
1418 }
1419 
1420 void Assembler::blsrl(Register dst, Address src) {
1421   InstructionMark im(this);
1422   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1423   vex_prefix_0F38_legacy(rcx, dst, src, false);
1424   emit_int8((unsigned char)0xF3);
1425   emit_operand(rcx, src);
1426 }
1427 
1428 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1429   // suspect disp32 is always good
1430   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1431 
1432   if (L.is_bound()) {
1433     const int long_size = 5;
1434     int offs = (int)( target(L) - pc() );
1435     assert(offs <= 0, "assembler error");
1436     InstructionMark im(this);
1437     // 1110 1000 #32-bit disp
1438     emit_int8((unsigned char)0xE8);
1439     emit_data(offs - long_size, rtype, operand);
1440   } else {
1441     InstructionMark im(this);
1442     // 1110 1000 #32-bit disp
1443     L.add_patch_at(code(), locator());
1444 
1445     emit_int8((unsigned char)0xE8);
1446     emit_data(int(0), rtype, operand);
1447   }
1448 }
1449 
1450 void Assembler::call(Register dst) {
1451   int encode = prefix_and_encode(dst->encoding());
1452   emit_int8((unsigned char)0xFF);
1453   emit_int8((unsigned char)(0xD0 | encode));
1454 }
1455 
1456 
1457 void Assembler::call(Address adr) {
1458   InstructionMark im(this);
1459   prefix(adr);
1460   emit_int8((unsigned char)0xFF);
1461   emit_operand(rdx, adr);
1462 }
1463 
1464 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1465   assert(entry != NULL, "call most probably wrong");
1466   InstructionMark im(this);
1467   emit_int8((unsigned char)0xE8);
1468   intptr_t disp = entry - (pc() + sizeof(int32_t));
1469   assert(is_simm32(disp), "must be 32bit offset (call2)");
1470   // Technically, should use call32_operand, but this format is
1471   // implied by the fact that we're emitting a call instruction.
1472 
1473   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1474   emit_data((int) disp, rspec, operand);
1475 }
1476 
1477 void Assembler::cdql() {
1478   emit_int8((unsigned char)0x99);
1479 }
1480 
1481 void Assembler::cld() {
1482   emit_int8((unsigned char)0xFC);
1483 }
1484 
1485 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1486   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1487   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1488   emit_int8(0x0F);
1489   emit_int8(0x40 | cc);
1490   emit_int8((unsigned char)(0xC0 | encode));
1491 }
1492 
1493 
1494 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1495   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1496   prefix(src, dst);
1497   emit_int8(0x0F);
1498   emit_int8(0x40 | cc);
1499   emit_operand(dst, src);
1500 }
1501 
1502 void Assembler::cmpb(Address dst, int imm8) {
1503   InstructionMark im(this);
1504   prefix(dst);
1505   emit_int8((unsigned char)0x80);
1506   emit_operand(rdi, dst, 1);
1507   emit_int8(imm8);
1508 }
1509 
1510 void Assembler::cmpl(Address dst, int32_t imm32) {
1511   InstructionMark im(this);
1512   prefix(dst);
1513   emit_int8((unsigned char)0x81);
1514   emit_operand(rdi, dst, 4);
1515   emit_int32(imm32);
1516 }
1517 
1518 void Assembler::cmpl(Register dst, int32_t imm32) {
1519   prefix(dst);
1520   emit_arith(0x81, 0xF8, dst, imm32);
1521 }
1522 
1523 void Assembler::cmpl(Register dst, Register src) {
1524   (void) prefix_and_encode(dst->encoding(), src->encoding());
1525   emit_arith(0x3B, 0xC0, dst, src);
1526 }
1527 
1528 
1529 void Assembler::cmpl(Register dst, Address  src) {
1530   InstructionMark im(this);
1531   prefix(src, dst);
1532   emit_int8((unsigned char)0x3B);
1533   emit_operand(dst, src);
1534 }
1535 
1536 void Assembler::cmpw(Address dst, int imm16) {
1537   InstructionMark im(this);
1538   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1539   emit_int8(0x66);
1540   emit_int8((unsigned char)0x81);
1541   emit_operand(rdi, dst, 2);
1542   emit_int16(imm16);
1543 }
1544 
1545 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1546 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1547 // The ZF is set if the compared values were equal, and cleared otherwise.
1548 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1549   InstructionMark im(this);
1550   prefix(adr, reg);
1551   emit_int8(0x0F);
1552   emit_int8((unsigned char)0xB1);
1553   emit_operand(reg, adr);
1554 }
1555 
1556 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1557 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1558 // The ZF is set if the compared values were equal, and cleared otherwise.
1559 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1560   InstructionMark im(this);
1561   prefix(adr, reg, true);
1562   emit_int8(0x0F);
1563   emit_int8((unsigned char)0xB0);
1564   emit_operand(reg, adr);
1565 }
1566 
1567 void Assembler::comisd(XMMRegister dst, Address src) {
1568   // NOTE: dbx seems to decode this as comiss even though the
1569   // 0x66 is there. Strangly ucomisd comes out correct
1570   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1571   if (VM_Version::supports_evex()) {
1572     tuple_type = EVEX_T1S;
1573     input_size_in_bits = EVEX_64bit;
1574     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1575   } else {
1576     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1577   }
1578 }
1579 
1580 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1581   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1582   if (VM_Version::supports_evex()) {
1583     emit_simd_arith_nonds_q(0x2F, dst, src, VEX_SIMD_66, true);
1584   } else {
1585     emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1586   }
1587 }
1588 
1589 void Assembler::comiss(XMMRegister dst, Address src) {
1590   if (VM_Version::supports_evex()) {
1591     tuple_type = EVEX_T1S;
1592     input_size_in_bits = EVEX_32bit;
1593   }
1594   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1595   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1596 }
1597 
1598 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1599   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1600   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE, true);
1601 }
1602 
1603 void Assembler::cpuid() {
1604   emit_int8(0x0F);
1605   emit_int8((unsigned char)0xA2);
1606 }
1607 
1608 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1609   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1610   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1611 }
1612 
1613 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1614   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1615   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1616 }
1617 
1618 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1620   if (VM_Version::supports_evex()) {
1621     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1622   } else {
1623     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1624   }
1625 }
1626 
1627 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1628   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1629   if (VM_Version::supports_evex()) {
1630     tuple_type = EVEX_T1F;
1631     input_size_in_bits = EVEX_64bit;
1632     emit_simd_arith_q(0x5A, dst, src, VEX_SIMD_F2);
1633   } else {
1634     emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1635   }
1636 }
1637 
1638 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1640   int encode = 0;
1641   if (VM_Version::supports_evex()) {
1642     encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
1643   } else {
1644     encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, false);
1645   }
1646   emit_int8(0x2A);
1647   emit_int8((unsigned char)(0xC0 | encode));
1648 }
1649 
1650 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1651   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1652   if (VM_Version::supports_evex()) {
1653     tuple_type = EVEX_T1S;
1654     input_size_in_bits = EVEX_32bit;
1655     emit_simd_arith_q(0x2A, dst, src, VEX_SIMD_F2, true);
1656   } else {
1657     emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1658   }
1659 }
1660 
1661 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1662   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1663   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, true);
1664   emit_int8(0x2A);
1665   emit_int8((unsigned char)(0xC0 | encode));
1666 }
1667 
1668 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1669   if (VM_Version::supports_evex()) {
1670     tuple_type = EVEX_T1S;
1671     input_size_in_bits = EVEX_32bit;
1672   }
1673   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1674   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3, true);
1675 }
1676 
1677 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1678   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1679   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1680 }
1681 
1682 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1683   if (VM_Version::supports_evex()) {
1684     tuple_type = EVEX_T1S;
1685     input_size_in_bits = EVEX_32bit;
1686   }
1687   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1688   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1689 }
1690 
1691 
1692 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1693   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1694   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
1695   emit_int8(0x2C);
1696   emit_int8((unsigned char)(0xC0 | encode));
1697 }
1698 
1699 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1700   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1701   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
1702   emit_int8(0x2C);
1703   emit_int8((unsigned char)(0xC0 | encode));
1704 }
1705 
1706 void Assembler::decl(Address dst) {
1707   // Don't use it directly. Use MacroAssembler::decrement() instead.
1708   InstructionMark im(this);
1709   prefix(dst);
1710   emit_int8((unsigned char)0xFF);
1711   emit_operand(rcx, dst);
1712 }
1713 
1714 void Assembler::divsd(XMMRegister dst, Address src) {
1715   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1716   if (VM_Version::supports_evex()) {
1717     tuple_type = EVEX_T1S;
1718     input_size_in_bits = EVEX_64bit;
1719     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1720   } else {
1721     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1722   }
1723 }
1724 
1725 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1726   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1727   if (VM_Version::supports_evex()) {
1728     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_F2);
1729   } else {
1730     emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1731   }
1732 }
1733 
1734 void Assembler::divss(XMMRegister dst, Address src) {
1735   if (VM_Version::supports_evex()) {
1736     tuple_type = EVEX_T1S;
1737     input_size_in_bits = EVEX_32bit;
1738   }
1739   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1740   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1741 }
1742 
1743 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1744   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1745   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1746 }
1747 
1748 void Assembler::emms() {
1749   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1750   emit_int8(0x0F);
1751   emit_int8(0x77);
1752 }
1753 
1754 void Assembler::hlt() {
1755   emit_int8((unsigned char)0xF4);
1756 }
1757 
1758 void Assembler::idivl(Register src) {
1759   int encode = prefix_and_encode(src->encoding());
1760   emit_int8((unsigned char)0xF7);
1761   emit_int8((unsigned char)(0xF8 | encode));
1762 }
1763 
1764 void Assembler::divl(Register src) { // Unsigned
1765   int encode = prefix_and_encode(src->encoding());
1766   emit_int8((unsigned char)0xF7);
1767   emit_int8((unsigned char)(0xF0 | encode));
1768 }
1769 
1770 void Assembler::imull(Register dst, Register src) {
1771   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1772   emit_int8(0x0F);
1773   emit_int8((unsigned char)0xAF);
1774   emit_int8((unsigned char)(0xC0 | encode));
1775 }
1776 
1777 
1778 void Assembler::imull(Register dst, Register src, int value) {
1779   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1780   if (is8bit(value)) {
1781     emit_int8(0x6B);
1782     emit_int8((unsigned char)(0xC0 | encode));
1783     emit_int8(value & 0xFF);
1784   } else {
1785     emit_int8(0x69);
1786     emit_int8((unsigned char)(0xC0 | encode));
1787     emit_int32(value);
1788   }
1789 }
1790 
1791 void Assembler::imull(Register dst, Address src) {
1792   InstructionMark im(this);
1793   prefix(src, dst);
1794   emit_int8(0x0F);
1795   emit_int8((unsigned char) 0xAF);
1796   emit_operand(dst, src);
1797 }
1798 
1799 
1800 void Assembler::incl(Address dst) {
1801   // Don't use it directly. Use MacroAssembler::increment() instead.
1802   InstructionMark im(this);
1803   prefix(dst);
1804   emit_int8((unsigned char)0xFF);
1805   emit_operand(rax, dst);
1806 }
1807 
1808 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1809   InstructionMark im(this);
1810   assert((0 <= cc) && (cc < 16), "illegal cc");
1811   if (L.is_bound()) {
1812     address dst = target(L);
1813     assert(dst != NULL, "jcc most probably wrong");
1814 
1815     const int short_size = 2;
1816     const int long_size = 6;
1817     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1818     if (maybe_short && is8bit(offs - short_size)) {
1819       // 0111 tttn #8-bit disp
1820       emit_int8(0x70 | cc);
1821       emit_int8((offs - short_size) & 0xFF);
1822     } else {
1823       // 0000 1111 1000 tttn #32-bit disp
1824       assert(is_simm32(offs - long_size),
1825              "must be 32bit offset (call4)");
1826       emit_int8(0x0F);
1827       emit_int8((unsigned char)(0x80 | cc));
1828       emit_int32(offs - long_size);
1829     }
1830   } else {
1831     // Note: could eliminate cond. jumps to this jump if condition
1832     //       is the same however, seems to be rather unlikely case.
1833     // Note: use jccb() if label to be bound is very close to get
1834     //       an 8-bit displacement
1835     L.add_patch_at(code(), locator());
1836     emit_int8(0x0F);
1837     emit_int8((unsigned char)(0x80 | cc));
1838     emit_int32(0);
1839   }
1840 }
1841 
1842 void Assembler::jccb(Condition cc, Label& L) {
1843   if (L.is_bound()) {
1844     const int short_size = 2;
1845     address entry = target(L);
1846 #ifdef ASSERT
1847     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1848     intptr_t delta = short_branch_delta();
1849     if (delta != 0) {
1850       dist += (dist < 0 ? (-delta) :delta);
1851     }
1852     assert(is8bit(dist), "Dispacement too large for a short jmp");
1853 #endif
1854     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1855     // 0111 tttn #8-bit disp
1856     emit_int8(0x70 | cc);
1857     emit_int8((offs - short_size) & 0xFF);
1858   } else {
1859     InstructionMark im(this);
1860     L.add_patch_at(code(), locator());
1861     emit_int8(0x70 | cc);
1862     emit_int8(0);
1863   }
1864 }
1865 
1866 void Assembler::jmp(Address adr) {
1867   InstructionMark im(this);
1868   prefix(adr);
1869   emit_int8((unsigned char)0xFF);
1870   emit_operand(rsp, adr);
1871 }
1872 
1873 void Assembler::jmp(Label& L, bool maybe_short) {
1874   if (L.is_bound()) {
1875     address entry = target(L);
1876     assert(entry != NULL, "jmp most probably wrong");
1877     InstructionMark im(this);
1878     const int short_size = 2;
1879     const int long_size = 5;
1880     intptr_t offs = entry - pc();
1881     if (maybe_short && is8bit(offs - short_size)) {
1882       emit_int8((unsigned char)0xEB);
1883       emit_int8((offs - short_size) & 0xFF);
1884     } else {
1885       emit_int8((unsigned char)0xE9);
1886       emit_int32(offs - long_size);
1887     }
1888   } else {
1889     // By default, forward jumps are always 32-bit displacements, since
1890     // we can't yet know where the label will be bound.  If you're sure that
1891     // the forward jump will not run beyond 256 bytes, use jmpb to
1892     // force an 8-bit displacement.
1893     InstructionMark im(this);
1894     L.add_patch_at(code(), locator());
1895     emit_int8((unsigned char)0xE9);
1896     emit_int32(0);
1897   }
1898 }
1899 
1900 void Assembler::jmp(Register entry) {
1901   int encode = prefix_and_encode(entry->encoding());
1902   emit_int8((unsigned char)0xFF);
1903   emit_int8((unsigned char)(0xE0 | encode));
1904 }
1905 
1906 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1907   InstructionMark im(this);
1908   emit_int8((unsigned char)0xE9);
1909   assert(dest != NULL, "must have a target");
1910   intptr_t disp = dest - (pc() + sizeof(int32_t));
1911   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1912   emit_data(disp, rspec.reloc(), call32_operand);
1913 }
1914 
1915 void Assembler::jmpb(Label& L) {
1916   if (L.is_bound()) {
1917     const int short_size = 2;
1918     address entry = target(L);
1919     assert(entry != NULL, "jmp most probably wrong");
1920 #ifdef ASSERT
1921     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1922     intptr_t delta = short_branch_delta();
1923     if (delta != 0) {
1924       dist += (dist < 0 ? (-delta) :delta);
1925     }
1926     assert(is8bit(dist), "Dispacement too large for a short jmp");
1927 #endif
1928     intptr_t offs = entry - pc();
1929     emit_int8((unsigned char)0xEB);
1930     emit_int8((offs - short_size) & 0xFF);
1931   } else {
1932     InstructionMark im(this);
1933     L.add_patch_at(code(), locator());
1934     emit_int8((unsigned char)0xEB);
1935     emit_int8(0);
1936   }
1937 }
1938 
1939 void Assembler::ldmxcsr( Address src) {
1940   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1941   InstructionMark im(this);
1942   prefix(src);
1943   emit_int8(0x0F);
1944   emit_int8((unsigned char)0xAE);
1945   emit_operand(as_Register(2), src);
1946 }
1947 
1948 void Assembler::leal(Register dst, Address src) {
1949   InstructionMark im(this);
1950 #ifdef _LP64
1951   emit_int8(0x67); // addr32
1952   prefix(src, dst);
1953 #endif // LP64
1954   emit_int8((unsigned char)0x8D);
1955   emit_operand(dst, src);
1956 }
1957 
1958 void Assembler::lfence() {
1959   emit_int8(0x0F);
1960   emit_int8((unsigned char)0xAE);
1961   emit_int8((unsigned char)0xE8);
1962 }
1963 
1964 void Assembler::lock() {
1965   emit_int8((unsigned char)0xF0);
1966 }
1967 
1968 void Assembler::lzcntl(Register dst, Register src) {
1969   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1970   emit_int8((unsigned char)0xF3);
1971   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1972   emit_int8(0x0F);
1973   emit_int8((unsigned char)0xBD);
1974   emit_int8((unsigned char)(0xC0 | encode));
1975 }
1976 
1977 // Emit mfence instruction
1978 void Assembler::mfence() {
1979   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1980   emit_int8(0x0F);
1981   emit_int8((unsigned char)0xAE);
1982   emit_int8((unsigned char)0xF0);
1983 }
1984 
1985 void Assembler::mov(Register dst, Register src) {
1986   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1987 }
1988 
1989 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1991   if (VM_Version::supports_evex()) {
1992     emit_simd_arith_nonds_q(0x28, dst, src, VEX_SIMD_66, true);
1993   } else {
1994     emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1995   }
1996 }
1997 
1998 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2000   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
2001 }
2002 
2003 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2004   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2005   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, true, VEX_OPCODE_0F,
2006                                       false, AVX_128bit);
2007   emit_int8(0x16);
2008   emit_int8((unsigned char)(0xC0 | encode));
2009 }
2010 
2011 void Assembler::movb(Register dst, Address src) {
2012   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2013   InstructionMark im(this);
2014   prefix(src, dst, true);
2015   emit_int8((unsigned char)0x8A);
2016   emit_operand(dst, src);
2017 }
2018 
2019 void Assembler::kmovq(KRegister dst, KRegister src) {
2020   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2021   int encode = kreg_prefix_and_encode(dst, knoreg, src, VEX_SIMD_NONE,
2022                                       true, VEX_OPCODE_0F, true);
2023   emit_int8((unsigned char)0x90);
2024   emit_int8((unsigned char)(0xC0 | encode));
2025 }
2026 
2027 void Assembler::kmovq(KRegister dst, Address src) {
2028   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2029   int dst_enc = dst->encoding();
2030   int nds_enc = 0;
2031   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_NONE,
2032              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2033   emit_int8((unsigned char)0x90);
2034   emit_operand((Register)dst, src);
2035 }
2036 
2037 void Assembler::kmovq(Address dst, KRegister src) {
2038   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2039   int src_enc = src->encoding();
2040   int nds_enc = 0;
2041   vex_prefix(dst, nds_enc, src_enc, VEX_SIMD_NONE,
2042              VEX_OPCODE_0F, true, AVX_128bit, true, true);
2043   emit_int8((unsigned char)0x90);
2044   emit_operand((Register)src, dst);
2045 }
2046 
2047 void Assembler::kmovql(KRegister dst, Register src) {
2048   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2049   bool supports_bw = VM_Version::supports_avx512bw();
2050   VexSimdPrefix pre = supports_bw ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2051   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true,
2052                                       VEX_OPCODE_0F, supports_bw);
2053   emit_int8((unsigned char)0x92);
2054   emit_int8((unsigned char)(0xC0 | encode));
2055 }
2056 
2057 void Assembler::kmovdl(KRegister dst, Register src) {
2058   NOT_LP64(assert(VM_Version::supports_evex(), ""));
2059   VexSimdPrefix pre = VM_Version::supports_avx512bw() ? VEX_SIMD_F2 : VEX_SIMD_NONE;
2060   int encode = kreg_prefix_and_encode(dst, knoreg, src, pre, true, VEX_OPCODE_0F, false);
2061   emit_int8((unsigned char)0x92);
2062   emit_int8((unsigned char)(0xC0 | encode));
2063 }
2064 
2065 void Assembler::movb(Address dst, int imm8) {
2066   InstructionMark im(this);
2067    prefix(dst);
2068   emit_int8((unsigned char)0xC6);
2069   emit_operand(rax, dst, 1);
2070   emit_int8(imm8);
2071 }
2072 
2073 
2074 void Assembler::movb(Address dst, Register src) {
2075   assert(src->has_byte_register(), "must have byte register");
2076   InstructionMark im(this);
2077   prefix(dst, src, true);
2078   emit_int8((unsigned char)0x88);
2079   emit_operand(src, dst);
2080 }
2081 
2082 void Assembler::movdl(XMMRegister dst, Register src) {
2083   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2084   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66, true);
2085   emit_int8(0x6E);
2086   emit_int8((unsigned char)(0xC0 | encode));
2087 }
2088 
2089 void Assembler::movdl(Register dst, XMMRegister src) {
2090   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2091   // swap src/dst to get correct prefix
2092   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66, true);
2093   emit_int8(0x7E);
2094   emit_int8((unsigned char)(0xC0 | encode));
2095 }
2096 
2097 void Assembler::movdl(XMMRegister dst, Address src) {
2098   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2099   if (VM_Version::supports_evex()) {
2100     tuple_type = EVEX_T1S;
2101     input_size_in_bits = EVEX_32bit;
2102   }
2103   InstructionMark im(this);
2104   simd_prefix(dst, src, VEX_SIMD_66, true, VEX_OPCODE_0F);
2105   emit_int8(0x6E);
2106   emit_operand(dst, src);
2107 }
2108 
2109 void Assembler::movdl(Address dst, XMMRegister src) {
2110   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2111   if (VM_Version::supports_evex()) {
2112     tuple_type = EVEX_T1S;
2113     input_size_in_bits = EVEX_32bit;
2114   }
2115   InstructionMark im(this);
2116   simd_prefix(dst, src, VEX_SIMD_66, true);
2117   emit_int8(0x7E);
2118   emit_operand(src, dst);
2119 }
2120 
2121 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2122   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2123   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2124 }
2125 
2126 void Assembler::movdqa(XMMRegister dst, Address src) {
2127   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2128   if (VM_Version::supports_evex()) {
2129     tuple_type = EVEX_FVM;
2130   }
2131   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
2132 }
2133 
2134 void Assembler::movdqu(XMMRegister dst, Address src) {
2135   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2136   if (VM_Version::supports_evex()) {
2137     tuple_type = EVEX_FVM;
2138   }
2139   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2140 }
2141 
2142 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2143   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2144   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
2145 }
2146 
2147 void Assembler::movdqu(Address dst, XMMRegister src) {
2148   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2149   if (VM_Version::supports_evex()) {
2150     tuple_type = EVEX_FVM;
2151   }
2152   InstructionMark im(this);
2153   simd_prefix(dst, src, VEX_SIMD_F3, false);
2154   emit_int8(0x7F);
2155   emit_operand(src, dst);
2156 }
2157 
2158 // Move Unaligned 256bit Vector
2159 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2160   assert(UseAVX > 0, "");
2161   if (VM_Version::supports_evex()) {
2162     tuple_type = EVEX_FVM;
2163   }
2164   int vector_len = AVX_256bit;
2165   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector_len);
2166   emit_int8(0x6F);
2167   emit_int8((unsigned char)(0xC0 | encode));
2168 }
2169 
2170 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2171   assert(UseAVX > 0, "");
2172   if (VM_Version::supports_evex()) {
2173     tuple_type = EVEX_FVM;
2174   }
2175   InstructionMark im(this);
2176   int vector_len = AVX_256bit;
2177   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2178   emit_int8(0x6F);
2179   emit_operand(dst, src);
2180 }
2181 
2182 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2183   assert(UseAVX > 0, "");
2184   if (VM_Version::supports_evex()) {
2185     tuple_type = EVEX_FVM;
2186   }
2187   InstructionMark im(this);
2188   int vector_len = AVX_256bit;
2189   // swap src<->dst for encoding
2190   assert(src != xnoreg, "sanity");
2191   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2192   emit_int8(0x7F);
2193   emit_operand(src, dst);
2194 }
2195 
2196 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2197 void Assembler::evmovdqu(XMMRegister dst, XMMRegister src, int vector_len) {
2198   assert(UseAVX > 0, "");
2199   int src_enc = src->encoding();
2200   int dst_enc = dst->encoding();
2201   int encode = vex_prefix_and_encode(dst_enc, 0, src_enc, VEX_SIMD_F3, VEX_OPCODE_0F,
2202                                      true, vector_len, false, false);
2203   emit_int8(0x6F);
2204   emit_int8((unsigned char)(0xC0 | encode));
2205 }
2206 
2207 void Assembler::evmovdqu(XMMRegister dst, Address src, int vector_len) {
2208   assert(UseAVX > 0, "");
2209   InstructionMark im(this);
2210   if (VM_Version::supports_evex()) {
2211     tuple_type = EVEX_FVM;
2212     vex_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2213   } else {
2214     vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector_len, false);
2215   }
2216   emit_int8(0x6F);
2217   emit_operand(dst, src);
2218 }
2219 
2220 void Assembler::evmovdqu(Address dst, XMMRegister src, int vector_len) {
2221   assert(UseAVX > 0, "");
2222   InstructionMark im(this);
2223   assert(src != xnoreg, "sanity");
2224   if (VM_Version::supports_evex()) {
2225     tuple_type = EVEX_FVM;
2226     // swap src<->dst for encoding
2227     vex_prefix_q(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2228   } else {
2229     // swap src<->dst for encoding
2230     vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector_len, false);
2231   }
2232   emit_int8(0x7F);
2233   emit_operand(src, dst);
2234 }
2235 
2236 // Uses zero extension on 64bit
2237 
2238 void Assembler::movl(Register dst, int32_t imm32) {
2239   int encode = prefix_and_encode(dst->encoding());
2240   emit_int8((unsigned char)(0xB8 | encode));
2241   emit_int32(imm32);
2242 }
2243 
2244 void Assembler::movl(Register dst, Register src) {
2245   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2246   emit_int8((unsigned char)0x8B);
2247   emit_int8((unsigned char)(0xC0 | encode));
2248 }
2249 
2250 void Assembler::movl(Register dst, Address src) {
2251   InstructionMark im(this);
2252   prefix(src, dst);
2253   emit_int8((unsigned char)0x8B);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movl(Address dst, int32_t imm32) {
2258   InstructionMark im(this);
2259   prefix(dst);
2260   emit_int8((unsigned char)0xC7);
2261   emit_operand(rax, dst, 4);
2262   emit_int32(imm32);
2263 }
2264 
2265 void Assembler::movl(Address dst, Register src) {
2266   InstructionMark im(this);
2267   prefix(dst, src);
2268   emit_int8((unsigned char)0x89);
2269   emit_operand(src, dst);
2270 }
2271 
2272 // New cpus require to use movsd and movss to avoid partial register stall
2273 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2274 // The selection is done in MacroAssembler::movdbl() and movflt().
2275 void Assembler::movlpd(XMMRegister dst, Address src) {
2276   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2277   if (VM_Version::supports_evex()) {
2278     tuple_type = EVEX_T1S;
2279     input_size_in_bits = EVEX_32bit;
2280   }
2281   emit_simd_arith(0x12, dst, src, VEX_SIMD_66, true);
2282 }
2283 
2284 void Assembler::movq( MMXRegister dst, Address src ) {
2285   assert( VM_Version::supports_mmx(), "" );
2286   emit_int8(0x0F);
2287   emit_int8(0x6F);
2288   emit_operand(dst, src);
2289 }
2290 
2291 void Assembler::movq( Address dst, MMXRegister src ) {
2292   assert( VM_Version::supports_mmx(), "" );
2293   emit_int8(0x0F);
2294   emit_int8(0x7F);
2295   // workaround gcc (3.2.1-7a) bug
2296   // In that version of gcc with only an emit_operand(MMX, Address)
2297   // gcc will tail jump and try and reverse the parameters completely
2298   // obliterating dst in the process. By having a version available
2299   // that doesn't need to swap the args at the tail jump the bug is
2300   // avoided.
2301   emit_operand(dst, src);
2302 }
2303 
2304 void Assembler::movq(XMMRegister dst, Address src) {
2305   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2306   InstructionMark im(this);
2307   if (VM_Version::supports_evex()) {
2308     tuple_type = EVEX_T1S;
2309     input_size_in_bits = EVEX_64bit;
2310     simd_prefix_q(dst, xnoreg, src, VEX_SIMD_F3, true);
2311   } else {
2312     simd_prefix(dst, src, VEX_SIMD_F3, true, VEX_OPCODE_0F);
2313   }
2314   emit_int8(0x7E);
2315   emit_operand(dst, src);
2316 }
2317 
2318 void Assembler::movq(Address dst, XMMRegister src) {
2319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2320   InstructionMark im(this);
2321   if (VM_Version::supports_evex()) {
2322     tuple_type = EVEX_T1S;
2323     input_size_in_bits = EVEX_64bit;
2324     simd_prefix(src, xnoreg, dst, VEX_SIMD_66, true,
2325                 VEX_OPCODE_0F, true, AVX_128bit);
2326   } else {
2327     simd_prefix(dst, src, VEX_SIMD_66, true);
2328   }
2329   emit_int8((unsigned char)0xD6);
2330   emit_operand(src, dst);
2331 }
2332 
2333 void Assembler::movsbl(Register dst, Address src) { // movsxb
2334   InstructionMark im(this);
2335   prefix(src, dst);
2336   emit_int8(0x0F);
2337   emit_int8((unsigned char)0xBE);
2338   emit_operand(dst, src);
2339 }
2340 
2341 void Assembler::movsbl(Register dst, Register src) { // movsxb
2342   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2343   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2344   emit_int8(0x0F);
2345   emit_int8((unsigned char)0xBE);
2346   emit_int8((unsigned char)(0xC0 | encode));
2347 }
2348 
2349 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2350   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2351   if (VM_Version::supports_evex()) {
2352     emit_simd_arith_q(0x10, dst, src, VEX_SIMD_F2, true);
2353   } else {
2354     emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
2355   }
2356 }
2357 
2358 void Assembler::movsd(XMMRegister dst, Address src) {
2359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2360   if (VM_Version::supports_evex()) {
2361     tuple_type = EVEX_T1S;
2362     input_size_in_bits = EVEX_64bit;
2363     emit_simd_arith_nonds_q(0x10, dst, src, VEX_SIMD_F2, true);
2364   } else {
2365     emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
2366   }
2367 }
2368 
2369 void Assembler::movsd(Address dst, XMMRegister src) {
2370   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2371   InstructionMark im(this);
2372   if (VM_Version::supports_evex()) {
2373     tuple_type = EVEX_T1S;
2374     input_size_in_bits = EVEX_64bit;
2375     simd_prefix_q(src, xnoreg, dst, VEX_SIMD_F2);
2376   } else {
2377     simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, false);
2378   }
2379   emit_int8(0x11);
2380   emit_operand(src, dst);
2381 }
2382 
2383 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2384   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2385   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3, true);
2386 }
2387 
2388 void Assembler::movss(XMMRegister dst, Address src) {
2389   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2390   if (VM_Version::supports_evex()) {
2391     tuple_type = EVEX_T1S;
2392     input_size_in_bits = EVEX_32bit;
2393   }
2394   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3, true);
2395 }
2396 
2397 void Assembler::movss(Address dst, XMMRegister src) {
2398   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2399   if (VM_Version::supports_evex()) {
2400     tuple_type = EVEX_T1S;
2401     input_size_in_bits = EVEX_32bit;
2402   }
2403   InstructionMark im(this);
2404   simd_prefix(dst, src, VEX_SIMD_F3, false);
2405   emit_int8(0x11);
2406   emit_operand(src, dst);
2407 }
2408 
2409 void Assembler::movswl(Register dst, Address src) { // movsxw
2410   InstructionMark im(this);
2411   prefix(src, dst);
2412   emit_int8(0x0F);
2413   emit_int8((unsigned char)0xBF);
2414   emit_operand(dst, src);
2415 }
2416 
2417 void Assembler::movswl(Register dst, Register src) { // movsxw
2418   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2419   emit_int8(0x0F);
2420   emit_int8((unsigned char)0xBF);
2421   emit_int8((unsigned char)(0xC0 | encode));
2422 }
2423 
2424 void Assembler::movw(Address dst, int imm16) {
2425   InstructionMark im(this);
2426 
2427   emit_int8(0x66); // switch to 16-bit mode
2428   prefix(dst);
2429   emit_int8((unsigned char)0xC7);
2430   emit_operand(rax, dst, 2);
2431   emit_int16(imm16);
2432 }
2433 
2434 void Assembler::movw(Register dst, Address src) {
2435   InstructionMark im(this);
2436   emit_int8(0x66);
2437   prefix(src, dst);
2438   emit_int8((unsigned char)0x8B);
2439   emit_operand(dst, src);
2440 }
2441 
2442 void Assembler::movw(Address dst, Register src) {
2443   InstructionMark im(this);
2444   emit_int8(0x66);
2445   prefix(dst, src);
2446   emit_int8((unsigned char)0x89);
2447   emit_operand(src, dst);
2448 }
2449 
2450 void Assembler::movzbl(Register dst, Address src) { // movzxb
2451   InstructionMark im(this);
2452   prefix(src, dst);
2453   emit_int8(0x0F);
2454   emit_int8((unsigned char)0xB6);
2455   emit_operand(dst, src);
2456 }
2457 
2458 void Assembler::movzbl(Register dst, Register src) { // movzxb
2459   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2460   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
2461   emit_int8(0x0F);
2462   emit_int8((unsigned char)0xB6);
2463   emit_int8(0xC0 | encode);
2464 }
2465 
2466 void Assembler::movzwl(Register dst, Address src) { // movzxw
2467   InstructionMark im(this);
2468   prefix(src, dst);
2469   emit_int8(0x0F);
2470   emit_int8((unsigned char)0xB7);
2471   emit_operand(dst, src);
2472 }
2473 
2474 void Assembler::movzwl(Register dst, Register src) { // movzxw
2475   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2476   emit_int8(0x0F);
2477   emit_int8((unsigned char)0xB7);
2478   emit_int8(0xC0 | encode);
2479 }
2480 
2481 void Assembler::mull(Address src) {
2482   InstructionMark im(this);
2483   prefix(src);
2484   emit_int8((unsigned char)0xF7);
2485   emit_operand(rsp, src);
2486 }
2487 
2488 void Assembler::mull(Register src) {
2489   int encode = prefix_and_encode(src->encoding());
2490   emit_int8((unsigned char)0xF7);
2491   emit_int8((unsigned char)(0xE0 | encode));
2492 }
2493 
2494 void Assembler::mulsd(XMMRegister dst, Address src) {
2495   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2496   if (VM_Version::supports_evex()) {
2497     tuple_type = EVEX_T1S;
2498     input_size_in_bits = EVEX_64bit;
2499     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2500   } else {
2501     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2502   }
2503 }
2504 
2505 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2506   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2507   if (VM_Version::supports_evex()) {
2508     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_F2);
2509   } else {
2510     emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2511   }
2512 }
2513 
2514 void Assembler::mulss(XMMRegister dst, Address src) {
2515   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2516   if (VM_Version::supports_evex()) {
2517     tuple_type = EVEX_T1S;
2518     input_size_in_bits = EVEX_32bit;
2519   }
2520   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2521 }
2522 
2523 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2524   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2525   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2526 }
2527 
2528 void Assembler::negl(Register dst) {
2529   int encode = prefix_and_encode(dst->encoding());
2530   emit_int8((unsigned char)0xF7);
2531   emit_int8((unsigned char)(0xD8 | encode));
2532 }
2533 
2534 void Assembler::nop(int i) {
2535 #ifdef ASSERT
2536   assert(i > 0, " ");
2537   // The fancy nops aren't currently recognized by debuggers making it a
2538   // pain to disassemble code while debugging. If asserts are on clearly
2539   // speed is not an issue so simply use the single byte traditional nop
2540   // to do alignment.
2541 
2542   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2543   return;
2544 
2545 #endif // ASSERT
2546 
2547   if (UseAddressNop && VM_Version::is_intel()) {
2548     //
2549     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2550     //  1: 0x90
2551     //  2: 0x66 0x90
2552     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2553     //  4: 0x0F 0x1F 0x40 0x00
2554     //  5: 0x0F 0x1F 0x44 0x00 0x00
2555     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2556     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2557     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2558     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2559     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2560     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2561 
2562     // The rest coding is Intel specific - don't use consecutive address nops
2563 
2564     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2565     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2566     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2567     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2568 
2569     while(i >= 15) {
2570       // For Intel don't generate consecutive addess nops (mix with regular nops)
2571       i -= 15;
2572       emit_int8(0x66);   // size prefix
2573       emit_int8(0x66);   // size prefix
2574       emit_int8(0x66);   // size prefix
2575       addr_nop_8();
2576       emit_int8(0x66);   // size prefix
2577       emit_int8(0x66);   // size prefix
2578       emit_int8(0x66);   // size prefix
2579       emit_int8((unsigned char)0x90);
2580                          // nop
2581     }
2582     switch (i) {
2583       case 14:
2584         emit_int8(0x66); // size prefix
2585       case 13:
2586         emit_int8(0x66); // size prefix
2587       case 12:
2588         addr_nop_8();
2589         emit_int8(0x66); // size prefix
2590         emit_int8(0x66); // size prefix
2591         emit_int8(0x66); // size prefix
2592         emit_int8((unsigned char)0x90);
2593                          // nop
2594         break;
2595       case 11:
2596         emit_int8(0x66); // size prefix
2597       case 10:
2598         emit_int8(0x66); // size prefix
2599       case 9:
2600         emit_int8(0x66); // size prefix
2601       case 8:
2602         addr_nop_8();
2603         break;
2604       case 7:
2605         addr_nop_7();
2606         break;
2607       case 6:
2608         emit_int8(0x66); // size prefix
2609       case 5:
2610         addr_nop_5();
2611         break;
2612       case 4:
2613         addr_nop_4();
2614         break;
2615       case 3:
2616         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2617         emit_int8(0x66); // size prefix
2618       case 2:
2619         emit_int8(0x66); // size prefix
2620       case 1:
2621         emit_int8((unsigned char)0x90);
2622                          // nop
2623         break;
2624       default:
2625         assert(i == 0, " ");
2626     }
2627     return;
2628   }
2629   if (UseAddressNop && VM_Version::is_amd()) {
2630     //
2631     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2632     //  1: 0x90
2633     //  2: 0x66 0x90
2634     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2635     //  4: 0x0F 0x1F 0x40 0x00
2636     //  5: 0x0F 0x1F 0x44 0x00 0x00
2637     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2638     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2639     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2640     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2641     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2642     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2643 
2644     // The rest coding is AMD specific - use consecutive address nops
2645 
2646     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2647     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2648     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2649     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2650     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2651     //     Size prefixes (0x66) are added for larger sizes
2652 
2653     while(i >= 22) {
2654       i -= 11;
2655       emit_int8(0x66); // size prefix
2656       emit_int8(0x66); // size prefix
2657       emit_int8(0x66); // size prefix
2658       addr_nop_8();
2659     }
2660     // Generate first nop for size between 21-12
2661     switch (i) {
2662       case 21:
2663         i -= 1;
2664         emit_int8(0x66); // size prefix
2665       case 20:
2666       case 19:
2667         i -= 1;
2668         emit_int8(0x66); // size prefix
2669       case 18:
2670       case 17:
2671         i -= 1;
2672         emit_int8(0x66); // size prefix
2673       case 16:
2674       case 15:
2675         i -= 8;
2676         addr_nop_8();
2677         break;
2678       case 14:
2679       case 13:
2680         i -= 7;
2681         addr_nop_7();
2682         break;
2683       case 12:
2684         i -= 6;
2685         emit_int8(0x66); // size prefix
2686         addr_nop_5();
2687         break;
2688       default:
2689         assert(i < 12, " ");
2690     }
2691 
2692     // Generate second nop for size between 11-1
2693     switch (i) {
2694       case 11:
2695         emit_int8(0x66); // size prefix
2696       case 10:
2697         emit_int8(0x66); // size prefix
2698       case 9:
2699         emit_int8(0x66); // size prefix
2700       case 8:
2701         addr_nop_8();
2702         break;
2703       case 7:
2704         addr_nop_7();
2705         break;
2706       case 6:
2707         emit_int8(0x66); // size prefix
2708       case 5:
2709         addr_nop_5();
2710         break;
2711       case 4:
2712         addr_nop_4();
2713         break;
2714       case 3:
2715         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2716         emit_int8(0x66); // size prefix
2717       case 2:
2718         emit_int8(0x66); // size prefix
2719       case 1:
2720         emit_int8((unsigned char)0x90);
2721                          // nop
2722         break;
2723       default:
2724         assert(i == 0, " ");
2725     }
2726     return;
2727   }
2728 
2729   // Using nops with size prefixes "0x66 0x90".
2730   // From AMD Optimization Guide:
2731   //  1: 0x90
2732   //  2: 0x66 0x90
2733   //  3: 0x66 0x66 0x90
2734   //  4: 0x66 0x66 0x66 0x90
2735   //  5: 0x66 0x66 0x90 0x66 0x90
2736   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2737   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2738   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2739   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2740   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2741   //
2742   while(i > 12) {
2743     i -= 4;
2744     emit_int8(0x66); // size prefix
2745     emit_int8(0x66);
2746     emit_int8(0x66);
2747     emit_int8((unsigned char)0x90);
2748                      // nop
2749   }
2750   // 1 - 12 nops
2751   if(i > 8) {
2752     if(i > 9) {
2753       i -= 1;
2754       emit_int8(0x66);
2755     }
2756     i -= 3;
2757     emit_int8(0x66);
2758     emit_int8(0x66);
2759     emit_int8((unsigned char)0x90);
2760   }
2761   // 1 - 8 nops
2762   if(i > 4) {
2763     if(i > 6) {
2764       i -= 1;
2765       emit_int8(0x66);
2766     }
2767     i -= 3;
2768     emit_int8(0x66);
2769     emit_int8(0x66);
2770     emit_int8((unsigned char)0x90);
2771   }
2772   switch (i) {
2773     case 4:
2774       emit_int8(0x66);
2775     case 3:
2776       emit_int8(0x66);
2777     case 2:
2778       emit_int8(0x66);
2779     case 1:
2780       emit_int8((unsigned char)0x90);
2781       break;
2782     default:
2783       assert(i == 0, " ");
2784   }
2785 }
2786 
2787 void Assembler::notl(Register dst) {
2788   int encode = prefix_and_encode(dst->encoding());
2789   emit_int8((unsigned char)0xF7);
2790   emit_int8((unsigned char)(0xD0 | encode));
2791 }
2792 
2793 void Assembler::orl(Address dst, int32_t imm32) {
2794   InstructionMark im(this);
2795   prefix(dst);
2796   emit_arith_operand(0x81, rcx, dst, imm32);
2797 }
2798 
2799 void Assembler::orl(Register dst, int32_t imm32) {
2800   prefix(dst);
2801   emit_arith(0x81, 0xC8, dst, imm32);
2802 }
2803 
2804 void Assembler::orl(Register dst, Address src) {
2805   InstructionMark im(this);
2806   prefix(src, dst);
2807   emit_int8(0x0B);
2808   emit_operand(dst, src);
2809 }
2810 
2811 void Assembler::orl(Register dst, Register src) {
2812   (void) prefix_and_encode(dst->encoding(), src->encoding());
2813   emit_arith(0x0B, 0xC0, dst, src);
2814 }
2815 
2816 void Assembler::orl(Address dst, Register src) {
2817   InstructionMark im(this);
2818   prefix(dst, src);
2819   emit_int8(0x09);
2820   emit_operand(src, dst);
2821 }
2822 
2823 void Assembler::packuswb(XMMRegister dst, Address src) {
2824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2825   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2826   if (VM_Version::supports_evex()) {
2827     tuple_type = EVEX_FV;
2828     input_size_in_bits = EVEX_32bit;
2829   }
2830   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2831                   false, (VM_Version::supports_avx512dq() == false));
2832 }
2833 
2834 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2835   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2836   emit_simd_arith(0x67, dst, src, VEX_SIMD_66,
2837                   false, (VM_Version::supports_avx512dq() == false));
2838 }
2839 
2840 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
2841   assert(UseAVX > 0, "some form of AVX must be enabled");
2842   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector_len,
2843                  false, (VM_Version::supports_avx512dq() == false));
2844 }
2845 
2846 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
2847   assert(VM_Version::supports_avx2(), "");
2848   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2849                                       VEX_OPCODE_0F_3A, true, vector_len);
2850   emit_int8(0x00);
2851   emit_int8(0xC0 | encode);
2852   emit_int8(imm8);
2853 }
2854 
2855 void Assembler::pause() {
2856   emit_int8((unsigned char)0xF3);
2857   emit_int8((unsigned char)0x90);
2858 }
2859 
2860 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2861   assert(VM_Version::supports_sse4_2(), "");
2862   InstructionMark im(this);
2863   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_3A,
2864               false, AVX_128bit, true);
2865   emit_int8(0x61);
2866   emit_operand(dst, src);
2867   emit_int8(imm8);
2868 }
2869 
2870 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2871   assert(VM_Version::supports_sse4_2(), "");
2872   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
2873                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
2874   emit_int8(0x61);
2875   emit_int8((unsigned char)(0xC0 | encode));
2876   emit_int8(imm8);
2877 }
2878 
2879 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2880   assert(VM_Version::supports_sse4_1(), "");
2881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2882                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2883   emit_int8(0x16);
2884   emit_int8((unsigned char)(0xC0 | encode));
2885   emit_int8(imm8);
2886 }
2887 
2888 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2889   assert(VM_Version::supports_sse4_1(), "");
2890   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2891                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2892   emit_int8(0x16);
2893   emit_int8((unsigned char)(0xC0 | encode));
2894   emit_int8(imm8);
2895 }
2896 
2897 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2898   assert(VM_Version::supports_sse4_1(), "");
2899   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2900                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2901   emit_int8(0x22);
2902   emit_int8((unsigned char)(0xC0 | encode));
2903   emit_int8(imm8);
2904 }
2905 
2906 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2907   assert(VM_Version::supports_sse4_1(), "");
2908   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, true, VEX_OPCODE_0F_3A,
2909                                       false, AVX_128bit, (VM_Version::supports_avx512dq() == false));
2910   emit_int8(0x22);
2911   emit_int8((unsigned char)(0xC0 | encode));
2912   emit_int8(imm8);
2913 }
2914 
2915 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2916   assert(VM_Version::supports_sse4_1(), "");
2917   if (VM_Version::supports_evex()) {
2918     tuple_type = EVEX_HVM;
2919   }
2920   InstructionMark im(this);
2921   simd_prefix(dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2922   emit_int8(0x30);
2923   emit_operand(dst, src);
2924 }
2925 
2926 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2927   assert(VM_Version::supports_sse4_1(), "");
2928   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38);
2929   emit_int8(0x30);
2930   emit_int8((unsigned char)(0xC0 | encode));
2931 }
2932 
2933 // generic
2934 void Assembler::pop(Register dst) {
2935   int encode = prefix_and_encode(dst->encoding());
2936   emit_int8(0x58 | encode);
2937 }
2938 
2939 void Assembler::popcntl(Register dst, Address src) {
2940   assert(VM_Version::supports_popcnt(), "must support");
2941   InstructionMark im(this);
2942   emit_int8((unsigned char)0xF3);
2943   prefix(src, dst);
2944   emit_int8(0x0F);
2945   emit_int8((unsigned char)0xB8);
2946   emit_operand(dst, src);
2947 }
2948 
2949 void Assembler::popcntl(Register dst, Register src) {
2950   assert(VM_Version::supports_popcnt(), "must support");
2951   emit_int8((unsigned char)0xF3);
2952   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2953   emit_int8(0x0F);
2954   emit_int8((unsigned char)0xB8);
2955   emit_int8((unsigned char)(0xC0 | encode));
2956 }
2957 
2958 void Assembler::popf() {
2959   emit_int8((unsigned char)0x9D);
2960 }
2961 
2962 #ifndef _LP64 // no 32bit push/pop on amd64
2963 void Assembler::popl(Address dst) {
2964   // NOTE: this will adjust stack by 8byte on 64bits
2965   InstructionMark im(this);
2966   prefix(dst);
2967   emit_int8((unsigned char)0x8F);
2968   emit_operand(rax, dst);
2969 }
2970 #endif
2971 
2972 void Assembler::prefetch_prefix(Address src) {
2973   prefix(src);
2974   emit_int8(0x0F);
2975 }
2976 
2977 void Assembler::prefetchnta(Address src) {
2978   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2979   InstructionMark im(this);
2980   prefetch_prefix(src);
2981   emit_int8(0x18);
2982   emit_operand(rax, src); // 0, src
2983 }
2984 
2985 void Assembler::prefetchr(Address src) {
2986   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2987   InstructionMark im(this);
2988   prefetch_prefix(src);
2989   emit_int8(0x0D);
2990   emit_operand(rax, src); // 0, src
2991 }
2992 
2993 void Assembler::prefetcht0(Address src) {
2994   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2995   InstructionMark im(this);
2996   prefetch_prefix(src);
2997   emit_int8(0x18);
2998   emit_operand(rcx, src); // 1, src
2999 }
3000 
3001 void Assembler::prefetcht1(Address src) {
3002   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3003   InstructionMark im(this);
3004   prefetch_prefix(src);
3005   emit_int8(0x18);
3006   emit_operand(rdx, src); // 2, src
3007 }
3008 
3009 void Assembler::prefetcht2(Address src) {
3010   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3011   InstructionMark im(this);
3012   prefetch_prefix(src);
3013   emit_int8(0x18);
3014   emit_operand(rbx, src); // 3, src
3015 }
3016 
3017 void Assembler::prefetchw(Address src) {
3018   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3019   InstructionMark im(this);
3020   prefetch_prefix(src);
3021   emit_int8(0x0D);
3022   emit_operand(rcx, src); // 1, src
3023 }
3024 
3025 void Assembler::prefix(Prefix p) {
3026   emit_int8(p);
3027 }
3028 
3029 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3030   assert(VM_Version::supports_ssse3(), "");
3031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3032                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3033   emit_int8(0x00);
3034   emit_int8((unsigned char)(0xC0 | encode));
3035 }
3036 
3037 void Assembler::pshufb(XMMRegister dst, Address src) {
3038   assert(VM_Version::supports_ssse3(), "");
3039   if (VM_Version::supports_evex()) {
3040     tuple_type = EVEX_FVM;
3041   }
3042   InstructionMark im(this);
3043   simd_prefix(dst, dst, src, VEX_SIMD_66, false, VEX_OPCODE_0F_38,
3044               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3045   emit_int8(0x00);
3046   emit_operand(dst, src);
3047 }
3048 
3049 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
3050   assert(isByte(mode), "invalid value");
3051   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3052   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
3053   emit_int8(mode & 0xFF);
3054 
3055 }
3056 
3057 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
3058   assert(isByte(mode), "invalid value");
3059   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3060   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3061   if (VM_Version::supports_evex()) {
3062     tuple_type = EVEX_FV;
3063     input_size_in_bits = EVEX_32bit;
3064   }
3065   InstructionMark im(this);
3066   simd_prefix(dst, src, VEX_SIMD_66, false);
3067   emit_int8(0x70);
3068   emit_operand(dst, src);
3069   emit_int8(mode & 0xFF);
3070 }
3071 
3072 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
3073   assert(isByte(mode), "invalid value");
3074   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3075   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2, false,
3076                         (VM_Version::supports_avx512bw() == false));
3077   emit_int8(mode & 0xFF);
3078 }
3079 
3080 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
3081   assert(isByte(mode), "invalid value");
3082   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3083   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3084   if (VM_Version::supports_evex()) {
3085     tuple_type = EVEX_FVM;
3086   }
3087   InstructionMark im(this);
3088   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, false, VEX_OPCODE_0F,
3089               false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3090   emit_int8(0x70);
3091   emit_operand(dst, src);
3092   emit_int8(mode & 0xFF);
3093 }
3094 
3095 void Assembler::psrldq(XMMRegister dst, int shift) {
3096   // Shift 128 bit value in xmm register by number of bytes.
3097   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3098   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3099   emit_int8(0x73);
3100   emit_int8((unsigned char)(0xC0 | encode));
3101   emit_int8(shift);
3102 }
3103 
3104 void Assembler::pslldq(XMMRegister dst, int shift) {
3105   // Shift left 128 bit value in xmm register by number of bytes.
3106   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3107   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
3108   emit_int8(0x73);
3109   emit_int8((unsigned char)(0xC0 | encode));
3110   emit_int8(shift);
3111 }
3112 
3113 void Assembler::ptest(XMMRegister dst, Address src) {
3114   assert(VM_Version::supports_sse4_1(), "");
3115   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3116   InstructionMark im(this);
3117   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, false,
3118               VEX_OPCODE_0F_38, false, AVX_128bit, true);
3119   emit_int8(0x17);
3120   emit_operand(dst, src);
3121 }
3122 
3123 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
3124   assert(VM_Version::supports_sse4_1(), "");
3125   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, false,
3126                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
3127   emit_int8(0x17);
3128   emit_int8((unsigned char)(0xC0 | encode));
3129 }
3130 
3131 void Assembler::vptest(XMMRegister dst, Address src) {
3132   assert(VM_Version::supports_avx(), "");
3133   InstructionMark im(this);
3134   int vector_len = AVX_256bit;
3135   assert(dst != xnoreg, "sanity");
3136   int dst_enc = dst->encoding();
3137   // swap src<->dst for encoding
3138   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len, true, false);
3139   emit_int8(0x17);
3140   emit_operand(dst, src);
3141 }
3142 
3143 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
3144   assert(VM_Version::supports_avx(), "");
3145   int vector_len = AVX_256bit;
3146   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
3147                                      vector_len, VEX_OPCODE_0F_38, true, false);
3148   emit_int8(0x17);
3149   emit_int8((unsigned char)(0xC0 | encode));
3150 }
3151 
3152 void Assembler::punpcklbw(XMMRegister dst, Address src) {
3153   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3154   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3155   if (VM_Version::supports_evex()) {
3156     tuple_type = EVEX_FVM;
3157   }
3158   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3159 }
3160 
3161 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
3162   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3163   emit_simd_arith(0x60, dst, src, VEX_SIMD_66, false, (VM_Version::supports_avx512vlbw() == false));
3164 }
3165 
3166 void Assembler::punpckldq(XMMRegister dst, Address src) {
3167   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3168   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3169   if (VM_Version::supports_evex()) {
3170     tuple_type = EVEX_FV;
3171     input_size_in_bits = EVEX_32bit;
3172   }
3173   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3174 }
3175 
3176 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
3177   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3178   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
3179 }
3180 
3181 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
3182   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3183   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
3184 }
3185 
3186 void Assembler::push(int32_t imm32) {
3187   // in 64bits we push 64bits onto the stack but only
3188   // take a 32bit immediate
3189   emit_int8(0x68);
3190   emit_int32(imm32);
3191 }
3192 
3193 void Assembler::push(Register src) {
3194   int encode = prefix_and_encode(src->encoding());
3195 
3196   emit_int8(0x50 | encode);
3197 }
3198 
3199 void Assembler::pushf() {
3200   emit_int8((unsigned char)0x9C);
3201 }
3202 
3203 #ifndef _LP64 // no 32bit push/pop on amd64
3204 void Assembler::pushl(Address src) {
3205   // Note this will push 64bit on 64bit
3206   InstructionMark im(this);
3207   prefix(src);
3208   emit_int8((unsigned char)0xFF);
3209   emit_operand(rsi, src);
3210 }
3211 #endif
3212 
3213 void Assembler::rcll(Register dst, int imm8) {
3214   assert(isShiftCount(imm8), "illegal shift count");
3215   int encode = prefix_and_encode(dst->encoding());
3216   if (imm8 == 1) {
3217     emit_int8((unsigned char)0xD1);
3218     emit_int8((unsigned char)(0xD0 | encode));
3219   } else {
3220     emit_int8((unsigned char)0xC1);
3221     emit_int8((unsigned char)0xD0 | encode);
3222     emit_int8(imm8);
3223   }
3224 }
3225 
3226 void Assembler::rdtsc() {
3227   emit_int8((unsigned char)0x0F);
3228   emit_int8((unsigned char)0x31);
3229 }
3230 
3231 // copies data from [esi] to [edi] using rcx pointer sized words
3232 // generic
3233 void Assembler::rep_mov() {
3234   emit_int8((unsigned char)0xF3);
3235   // MOVSQ
3236   LP64_ONLY(prefix(REX_W));
3237   emit_int8((unsigned char)0xA5);
3238 }
3239 
3240 // sets rcx bytes with rax, value at [edi]
3241 void Assembler::rep_stosb() {
3242   emit_int8((unsigned char)0xF3); // REP
3243   LP64_ONLY(prefix(REX_W));
3244   emit_int8((unsigned char)0xAA); // STOSB
3245 }
3246 
3247 // sets rcx pointer sized words with rax, value at [edi]
3248 // generic
3249 void Assembler::rep_stos() {
3250   emit_int8((unsigned char)0xF3); // REP
3251   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
3252   emit_int8((unsigned char)0xAB);
3253 }
3254 
3255 // scans rcx pointer sized words at [edi] for occurance of rax,
3256 // generic
3257 void Assembler::repne_scan() { // repne_scan
3258   emit_int8((unsigned char)0xF2);
3259   // SCASQ
3260   LP64_ONLY(prefix(REX_W));
3261   emit_int8((unsigned char)0xAF);
3262 }
3263 
3264 #ifdef _LP64
3265 // scans rcx 4 byte words at [edi] for occurance of rax,
3266 // generic
3267 void Assembler::repne_scanl() { // repne_scan
3268   emit_int8((unsigned char)0xF2);
3269   // SCASL
3270   emit_int8((unsigned char)0xAF);
3271 }
3272 #endif
3273 
3274 void Assembler::ret(int imm16) {
3275   if (imm16 == 0) {
3276     emit_int8((unsigned char)0xC3);
3277   } else {
3278     emit_int8((unsigned char)0xC2);
3279     emit_int16(imm16);
3280   }
3281 }
3282 
3283 void Assembler::sahf() {
3284 #ifdef _LP64
3285   // Not supported in 64bit mode
3286   ShouldNotReachHere();
3287 #endif
3288   emit_int8((unsigned char)0x9E);
3289 }
3290 
3291 void Assembler::sarl(Register dst, int imm8) {
3292   int encode = prefix_and_encode(dst->encoding());
3293   assert(isShiftCount(imm8), "illegal shift count");
3294   if (imm8 == 1) {
3295     emit_int8((unsigned char)0xD1);
3296     emit_int8((unsigned char)(0xF8 | encode));
3297   } else {
3298     emit_int8((unsigned char)0xC1);
3299     emit_int8((unsigned char)(0xF8 | encode));
3300     emit_int8(imm8);
3301   }
3302 }
3303 
3304 void Assembler::sarl(Register dst) {
3305   int encode = prefix_and_encode(dst->encoding());
3306   emit_int8((unsigned char)0xD3);
3307   emit_int8((unsigned char)(0xF8 | encode));
3308 }
3309 
3310 void Assembler::sbbl(Address dst, int32_t imm32) {
3311   InstructionMark im(this);
3312   prefix(dst);
3313   emit_arith_operand(0x81, rbx, dst, imm32);
3314 }
3315 
3316 void Assembler::sbbl(Register dst, int32_t imm32) {
3317   prefix(dst);
3318   emit_arith(0x81, 0xD8, dst, imm32);
3319 }
3320 
3321 
3322 void Assembler::sbbl(Register dst, Address src) {
3323   InstructionMark im(this);
3324   prefix(src, dst);
3325   emit_int8(0x1B);
3326   emit_operand(dst, src);
3327 }
3328 
3329 void Assembler::sbbl(Register dst, Register src) {
3330   (void) prefix_and_encode(dst->encoding(), src->encoding());
3331   emit_arith(0x1B, 0xC0, dst, src);
3332 }
3333 
3334 void Assembler::setb(Condition cc, Register dst) {
3335   assert(0 <= cc && cc < 16, "illegal cc");
3336   int encode = prefix_and_encode(dst->encoding(), true);
3337   emit_int8(0x0F);
3338   emit_int8((unsigned char)0x90 | cc);
3339   emit_int8((unsigned char)(0xC0 | encode));
3340 }
3341 
3342 void Assembler::shll(Register dst, int imm8) {
3343   assert(isShiftCount(imm8), "illegal shift count");
3344   int encode = prefix_and_encode(dst->encoding());
3345   if (imm8 == 1 ) {
3346     emit_int8((unsigned char)0xD1);
3347     emit_int8((unsigned char)(0xE0 | encode));
3348   } else {
3349     emit_int8((unsigned char)0xC1);
3350     emit_int8((unsigned char)(0xE0 | encode));
3351     emit_int8(imm8);
3352   }
3353 }
3354 
3355 void Assembler::shll(Register dst) {
3356   int encode = prefix_and_encode(dst->encoding());
3357   emit_int8((unsigned char)0xD3);
3358   emit_int8((unsigned char)(0xE0 | encode));
3359 }
3360 
3361 void Assembler::shrl(Register dst, int imm8) {
3362   assert(isShiftCount(imm8), "illegal shift count");
3363   int encode = prefix_and_encode(dst->encoding());
3364   emit_int8((unsigned char)0xC1);
3365   emit_int8((unsigned char)(0xE8 | encode));
3366   emit_int8(imm8);
3367 }
3368 
3369 void Assembler::shrl(Register dst) {
3370   int encode = prefix_and_encode(dst->encoding());
3371   emit_int8((unsigned char)0xD3);
3372   emit_int8((unsigned char)(0xE8 | encode));
3373 }
3374 
3375 // copies a single word from [esi] to [edi]
3376 void Assembler::smovl() {
3377   emit_int8((unsigned char)0xA5);
3378 }
3379 
3380 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
3381   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3382   if (VM_Version::supports_evex()) {
3383     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3384   } else {
3385     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3386   }
3387 }
3388 
3389 void Assembler::sqrtsd(XMMRegister dst, Address src) {
3390   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3391   if (VM_Version::supports_evex()) {
3392     tuple_type = EVEX_T1S;
3393     input_size_in_bits = EVEX_64bit;
3394     emit_simd_arith_q(0x51, dst, src, VEX_SIMD_F2);
3395   } else {
3396     emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
3397   }
3398 }
3399 
3400 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
3401   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3402   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3403 }
3404 
3405 void Assembler::std() {
3406   emit_int8((unsigned char)0xFD);
3407 }
3408 
3409 void Assembler::sqrtss(XMMRegister dst, Address src) {
3410   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3411   if (VM_Version::supports_evex()) {
3412     tuple_type = EVEX_T1S;
3413     input_size_in_bits = EVEX_32bit;
3414   }
3415   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
3416 }
3417 
3418 void Assembler::stmxcsr( Address dst) {
3419   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3420   InstructionMark im(this);
3421   prefix(dst);
3422   emit_int8(0x0F);
3423   emit_int8((unsigned char)0xAE);
3424   emit_operand(as_Register(3), dst);
3425 }
3426 
3427 void Assembler::subl(Address dst, int32_t imm32) {
3428   InstructionMark im(this);
3429   prefix(dst);
3430   emit_arith_operand(0x81, rbp, dst, imm32);
3431 }
3432 
3433 void Assembler::subl(Address dst, Register src) {
3434   InstructionMark im(this);
3435   prefix(dst, src);
3436   emit_int8(0x29);
3437   emit_operand(src, dst);
3438 }
3439 
3440 void Assembler::subl(Register dst, int32_t imm32) {
3441   prefix(dst);
3442   emit_arith(0x81, 0xE8, dst, imm32);
3443 }
3444 
3445 // Force generation of a 4 byte immediate value even if it fits into 8bit
3446 void Assembler::subl_imm32(Register dst, int32_t imm32) {
3447   prefix(dst);
3448   emit_arith_imm32(0x81, 0xE8, dst, imm32);
3449 }
3450 
3451 void Assembler::subl(Register dst, Address src) {
3452   InstructionMark im(this);
3453   prefix(src, dst);
3454   emit_int8(0x2B);
3455   emit_operand(dst, src);
3456 }
3457 
3458 void Assembler::subl(Register dst, Register src) {
3459   (void) prefix_and_encode(dst->encoding(), src->encoding());
3460   emit_arith(0x2B, 0xC0, dst, src);
3461 }
3462 
3463 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
3464   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3465   if (VM_Version::supports_evex()) {
3466     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3467   } else {
3468     emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
3469   }
3470 }
3471 
3472 void Assembler::subsd(XMMRegister dst, Address src) {
3473   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3474   if (VM_Version::supports_evex()) {
3475     tuple_type = EVEX_T1S;
3476     input_size_in_bits = EVEX_64bit;
3477   }
3478   emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_F2);
3479 }
3480 
3481 void Assembler::subss(XMMRegister dst, XMMRegister src) {
3482   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3483   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3484 }
3485 
3486 void Assembler::subss(XMMRegister dst, Address src) {
3487   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3488   if (VM_Version::supports_evex()) {
3489     tuple_type = EVEX_T1S;
3490     input_size_in_bits = EVEX_32bit;
3491   }
3492   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
3493 }
3494 
3495 void Assembler::testb(Register dst, int imm8) {
3496   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
3497   (void) prefix_and_encode(dst->encoding(), true);
3498   emit_arith_b(0xF6, 0xC0, dst, imm8);
3499 }
3500 
3501 void Assembler::testl(Register dst, int32_t imm32) {
3502   // not using emit_arith because test
3503   // doesn't support sign-extension of
3504   // 8bit operands
3505   int encode = dst->encoding();
3506   if (encode == 0) {
3507     emit_int8((unsigned char)0xA9);
3508   } else {
3509     encode = prefix_and_encode(encode);
3510     emit_int8((unsigned char)0xF7);
3511     emit_int8((unsigned char)(0xC0 | encode));
3512   }
3513   emit_int32(imm32);
3514 }
3515 
3516 void Assembler::testl(Register dst, Register src) {
3517   (void) prefix_and_encode(dst->encoding(), src->encoding());
3518   emit_arith(0x85, 0xC0, dst, src);
3519 }
3520 
3521 void Assembler::testl(Register dst, Address  src) {
3522   InstructionMark im(this);
3523   prefix(src, dst);
3524   emit_int8((unsigned char)0x85);
3525   emit_operand(dst, src);
3526 }
3527 
3528 void Assembler::tzcntl(Register dst, Register src) {
3529   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3530   emit_int8((unsigned char)0xF3);
3531   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3532   emit_int8(0x0F);
3533   emit_int8((unsigned char)0xBC);
3534   emit_int8((unsigned char)0xC0 | encode);
3535 }
3536 
3537 void Assembler::tzcntq(Register dst, Register src) {
3538   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
3539   emit_int8((unsigned char)0xF3);
3540   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
3541   emit_int8(0x0F);
3542   emit_int8((unsigned char)0xBC);
3543   emit_int8((unsigned char)(0xC0 | encode));
3544 }
3545 
3546 void Assembler::ucomisd(XMMRegister dst, Address src) {
3547   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3548   if (VM_Version::supports_evex()) {
3549     tuple_type = EVEX_T1S;
3550     input_size_in_bits = EVEX_64bit;
3551     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3552   } else {
3553     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3554   }
3555 }
3556 
3557 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
3558   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3559   if (VM_Version::supports_evex()) {
3560     emit_simd_arith_nonds_q(0x2E, dst, src, VEX_SIMD_66, true);
3561   } else {
3562     emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
3563   }
3564 }
3565 
3566 void Assembler::ucomiss(XMMRegister dst, Address src) {
3567   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3568   if (VM_Version::supports_evex()) {
3569     tuple_type = EVEX_T1S;
3570     input_size_in_bits = EVEX_32bit;
3571   }
3572   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3573 }
3574 
3575 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
3576   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3577   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE, true);
3578 }
3579 
3580 void Assembler::xabort(int8_t imm8) {
3581   emit_int8((unsigned char)0xC6);
3582   emit_int8((unsigned char)0xF8);
3583   emit_int8((unsigned char)(imm8 & 0xFF));
3584 }
3585 
3586 void Assembler::xaddl(Address dst, Register src) {
3587   InstructionMark im(this);
3588   prefix(dst, src);
3589   emit_int8(0x0F);
3590   emit_int8((unsigned char)0xC1);
3591   emit_operand(src, dst);
3592 }
3593 
3594 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3595   InstructionMark im(this);
3596   relocate(rtype);
3597   if (abort.is_bound()) {
3598     address entry = target(abort);
3599     assert(entry != NULL, "abort entry NULL");
3600     intptr_t offset = entry - pc();
3601     emit_int8((unsigned char)0xC7);
3602     emit_int8((unsigned char)0xF8);
3603     emit_int32(offset - 6); // 2 opcode + 4 address
3604   } else {
3605     abort.add_patch_at(code(), locator());
3606     emit_int8((unsigned char)0xC7);
3607     emit_int8((unsigned char)0xF8);
3608     emit_int32(0);
3609   }
3610 }
3611 
3612 void Assembler::xchgl(Register dst, Address src) { // xchg
3613   InstructionMark im(this);
3614   prefix(src, dst);
3615   emit_int8((unsigned char)0x87);
3616   emit_operand(dst, src);
3617 }
3618 
3619 void Assembler::xchgl(Register dst, Register src) {
3620   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3621   emit_int8((unsigned char)0x87);
3622   emit_int8((unsigned char)(0xC0 | encode));
3623 }
3624 
3625 void Assembler::xend() {
3626   emit_int8((unsigned char)0x0F);
3627   emit_int8((unsigned char)0x01);
3628   emit_int8((unsigned char)0xD5);
3629 }
3630 
3631 void Assembler::xgetbv() {
3632   emit_int8(0x0F);
3633   emit_int8(0x01);
3634   emit_int8((unsigned char)0xD0);
3635 }
3636 
3637 void Assembler::xorl(Register dst, int32_t imm32) {
3638   prefix(dst);
3639   emit_arith(0x81, 0xF0, dst, imm32);
3640 }
3641 
3642 void Assembler::xorl(Register dst, Address src) {
3643   InstructionMark im(this);
3644   prefix(src, dst);
3645   emit_int8(0x33);
3646   emit_operand(dst, src);
3647 }
3648 
3649 void Assembler::xorl(Register dst, Register src) {
3650   (void) prefix_and_encode(dst->encoding(), src->encoding());
3651   emit_arith(0x33, 0xC0, dst, src);
3652 }
3653 
3654 
3655 // AVX 3-operands scalar float-point arithmetic instructions
3656 
3657 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3658   assert(VM_Version::supports_avx(), "");
3659   if (VM_Version::supports_evex()) {
3660     tuple_type = EVEX_T1S;
3661     input_size_in_bits = EVEX_64bit;
3662     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3663   } else {
3664     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3665   }
3666 }
3667 
3668 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3669   assert(VM_Version::supports_avx(), "");
3670   if (VM_Version::supports_evex()) {
3671     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3672   } else {
3673     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3674   }
3675 }
3676 
3677 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3678   assert(VM_Version::supports_avx(), "");
3679   if (VM_Version::supports_evex()) {
3680     tuple_type = EVEX_T1S;
3681     input_size_in_bits = EVEX_32bit;
3682   }
3683   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3684 }
3685 
3686 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3687   assert(VM_Version::supports_avx(), "");
3688   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3689 }
3690 
3691 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3692   assert(VM_Version::supports_avx(), "");
3693   if (VM_Version::supports_evex()) {
3694     tuple_type = EVEX_T1S;
3695     input_size_in_bits = EVEX_64bit;
3696     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3697   } else {
3698     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3699   }
3700 }
3701 
3702 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3703   assert(VM_Version::supports_avx(), "");
3704   if (VM_Version::supports_evex()) {
3705     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3706   } else {
3707     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3708   }
3709 }
3710 
3711 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3712   assert(VM_Version::supports_avx(), "");
3713   if (VM_Version::supports_evex()) {
3714     tuple_type = EVEX_T1S;
3715     input_size_in_bits = EVEX_32bit;
3716   }
3717   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3718 }
3719 
3720 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3721   assert(VM_Version::supports_avx(), "");
3722   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3723 }
3724 
3725 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3726   assert(VM_Version::supports_avx(), "");
3727   if (VM_Version::supports_evex()) {
3728     tuple_type = EVEX_T1S;
3729     input_size_in_bits = EVEX_64bit;
3730     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3731   } else {
3732     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3733   }
3734 }
3735 
3736 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3737   assert(VM_Version::supports_avx(), "");
3738   if (VM_Version::supports_evex()) {
3739     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3740   } else {
3741     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3742   }
3743 }
3744 
3745 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3746   assert(VM_Version::supports_avx(), "");
3747   if (VM_Version::supports_evex()) {
3748     tuple_type = EVEX_T1S;
3749     input_size_in_bits = EVEX_32bit;
3750   }
3751   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3752 }
3753 
3754 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3755   assert(VM_Version::supports_avx(), "");
3756   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3757 }
3758 
3759 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3760   assert(VM_Version::supports_avx(), "");
3761   if (VM_Version::supports_evex()) {
3762     tuple_type = EVEX_T1S;
3763     input_size_in_bits = EVEX_64bit;
3764     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3765   } else {
3766     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3767   }
3768 }
3769 
3770 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3771   assert(VM_Version::supports_avx(), "");
3772   if (VM_Version::supports_evex()) {
3773     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3774   } else {
3775     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, AVX_128bit);
3776   }
3777 }
3778 
3779 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3780   assert(VM_Version::supports_avx(), "");
3781   if (VM_Version::supports_evex()) {
3782     tuple_type = EVEX_T1S;
3783     input_size_in_bits = EVEX_32bit;
3784   }
3785   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3786 }
3787 
3788 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3789   assert(VM_Version::supports_avx(), "");
3790   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, AVX_128bit);
3791 }
3792 
3793 //====================VECTOR ARITHMETIC=====================================
3794 
3795 // Float-point vector arithmetic
3796 
3797 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3798   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3799   if (VM_Version::supports_evex()) {
3800     emit_simd_arith_q(0x58, dst, src, VEX_SIMD_66);
3801   } else {
3802     emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3803   }
3804 }
3805 
3806 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3807   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3808   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3809 }
3810 
3811 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3812   assert(VM_Version::supports_avx(), "");
3813   if (VM_Version::supports_evex()) {
3814     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3815   } else {
3816     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3817   }
3818 }
3819 
3820 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3821   assert(VM_Version::supports_avx(), "");
3822   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3823 }
3824 
3825 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3826   assert(VM_Version::supports_avx(), "");
3827   if (VM_Version::supports_evex()) {
3828     tuple_type = EVEX_FV;
3829     input_size_in_bits = EVEX_64bit;
3830     emit_vex_arith_q(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3831   } else {
3832     emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector_len);
3833   }
3834 }
3835 
3836 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3837   assert(VM_Version::supports_avx(), "");
3838   if (VM_Version::supports_evex()) {
3839     tuple_type = EVEX_FV;
3840     input_size_in_bits = EVEX_32bit;
3841   }
3842   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector_len);
3843 }
3844 
3845 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3846   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3847   if (VM_Version::supports_evex()) {
3848     emit_simd_arith_q(0x5C, dst, src, VEX_SIMD_66);
3849   } else {
3850     emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3851   }
3852 }
3853 
3854 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3855   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3856   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3857 }
3858 
3859 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3860   assert(VM_Version::supports_avx(), "");
3861   if (VM_Version::supports_evex()) {
3862     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3863   } else {
3864     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3865   }
3866 }
3867 
3868 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3869   assert(VM_Version::supports_avx(), "");
3870   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3871 }
3872 
3873 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3874   assert(VM_Version::supports_avx(), "");
3875   if (VM_Version::supports_evex()) {
3876     tuple_type = EVEX_FV;
3877     input_size_in_bits = EVEX_64bit;
3878     emit_vex_arith_q(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3879   } else {
3880     emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector_len);
3881   }
3882 }
3883 
3884 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3885   assert(VM_Version::supports_avx(), "");
3886   if (VM_Version::supports_evex()) {
3887     tuple_type = EVEX_FV;
3888     input_size_in_bits = EVEX_32bit;
3889   }
3890   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector_len);
3891 }
3892 
3893 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3894   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3895   if (VM_Version::supports_evex()) {
3896     emit_simd_arith_q(0x59, dst, src, VEX_SIMD_66);
3897   } else {
3898     emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3899   }
3900 }
3901 
3902 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3904   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3905 }
3906 
3907 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3908   assert(VM_Version::supports_avx(), "");
3909   if (VM_Version::supports_evex()) {
3910     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3911   } else {
3912     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3913   }
3914 }
3915 
3916 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3917   assert(VM_Version::supports_avx(), "");
3918   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3919 }
3920 
3921 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3922   assert(VM_Version::supports_avx(), "");
3923   if (VM_Version::supports_evex()) {
3924     tuple_type = EVEX_FV;
3925     input_size_in_bits = EVEX_64bit;
3926     emit_vex_arith_q(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3927   } else {
3928     emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector_len);
3929   }
3930 }
3931 
3932 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3933   assert(VM_Version::supports_avx(), "");
3934   if (VM_Version::supports_evex()) {
3935     tuple_type = EVEX_FV;
3936     input_size_in_bits = EVEX_32bit;
3937   }
3938   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector_len);
3939 }
3940 
3941 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3942   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3943   if (VM_Version::supports_evex()) {
3944     emit_simd_arith_q(0x5E, dst, src, VEX_SIMD_66);
3945   } else {
3946     emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3947   }
3948 }
3949 
3950 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3951   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3952   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3953 }
3954 
3955 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3956   assert(VM_Version::supports_avx(), "");
3957   if (VM_Version::supports_evex()) {
3958     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3959   } else {
3960     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3961   }
3962 }
3963 
3964 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3965   assert(VM_Version::supports_avx(), "");
3966   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3967 }
3968 
3969 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3970   assert(VM_Version::supports_avx(), "");
3971   if (VM_Version::supports_evex()) {
3972     tuple_type = EVEX_FV;
3973     input_size_in_bits = EVEX_64bit;
3974     emit_vex_arith_q(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3975   } else {
3976     emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector_len);
3977   }
3978 }
3979 
3980 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
3981   assert(VM_Version::supports_avx(), "");
3982   if (VM_Version::supports_evex()) {
3983     tuple_type = EVEX_FV;
3984     input_size_in_bits = EVEX_32bit;
3985   }
3986   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector_len);
3987 }
3988 
3989 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3990   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3991   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
3992     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
3993   } else {
3994     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
3995   }
3996 }
3997 
3998 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3999   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4000   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE, false,
4001                   (VM_Version::supports_avx512dq() == false));
4002 }
4003 
4004 void Assembler::andps(XMMRegister dst, Address src) {
4005   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4006   if (VM_Version::supports_evex()) {
4007     tuple_type = EVEX_FV;
4008     input_size_in_bits = EVEX_32bit;
4009   }
4010   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE,
4011                   false, (VM_Version::supports_avx512dq() == false));
4012 }
4013 
4014 void Assembler::andpd(XMMRegister dst, Address src) {
4015   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4016   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4017     tuple_type = EVEX_FV;
4018     input_size_in_bits = EVEX_64bit;
4019     emit_simd_arith_q(0x54, dst, src, VEX_SIMD_66);
4020   } else {
4021     emit_simd_arith(0x54, dst, src, VEX_SIMD_66, false, true);
4022   }
4023 }
4024 
4025 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4026   assert(VM_Version::supports_avx(), "");
4027   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4028     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4029   } else {
4030     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4031   }
4032 }
4033 
4034 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4035   assert(VM_Version::supports_avx(), "");
4036   bool legacy_mode = (VM_Version::supports_avx512dq() == false);
4037   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len, legacy_mode);
4038 }
4039 
4040 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4041   assert(VM_Version::supports_avx(), "");
4042   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4043     tuple_type = EVEX_FV;
4044     input_size_in_bits = EVEX_64bit;
4045     emit_vex_arith_q(0x54, dst, nds, src, VEX_SIMD_66, vector_len);
4046   } else {
4047     emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector_len, true);
4048   }
4049 }
4050 
4051 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4052   assert(VM_Version::supports_avx(), "");
4053   if (VM_Version::supports_evex()) {
4054     tuple_type = EVEX_FV;
4055     input_size_in_bits = EVEX_32bit;
4056   }
4057   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector_len,
4058                  (VM_Version::supports_avx512dq() == false));
4059 }
4060 
4061 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
4062   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4063   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4064     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4065   } else {
4066     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4067   }
4068 }
4069 
4070 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
4071   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4072   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE,
4073                   false, (VM_Version::supports_avx512dq() == false));
4074 }
4075 
4076 void Assembler::xorpd(XMMRegister dst, Address src) {
4077   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4078   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4079     tuple_type = EVEX_FV;
4080     input_size_in_bits = EVEX_64bit;
4081     emit_simd_arith_q(0x57, dst, src, VEX_SIMD_66);
4082   } else {
4083     emit_simd_arith(0x57, dst, src, VEX_SIMD_66, false, true);
4084   }
4085 }
4086 
4087 void Assembler::xorps(XMMRegister dst, Address src) {
4088   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4089   if (VM_Version::supports_evex()) {
4090     tuple_type = EVEX_FV;
4091     input_size_in_bits = EVEX_32bit;
4092   }
4093   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE, false,
4094                   (VM_Version::supports_avx512dq() == false));
4095 }
4096 
4097 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4098   assert(VM_Version::supports_avx(), "");
4099   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4100     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4101   } else {
4102     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4103   }
4104 }
4105 
4106 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4107   assert(VM_Version::supports_avx(), "");
4108   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4109                  (VM_Version::supports_avx512dq() == false));
4110 }
4111 
4112 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4113   assert(VM_Version::supports_avx(), "");
4114   if (VM_Version::supports_evex() && VM_Version::supports_avx512dq()) {
4115     tuple_type = EVEX_FV;
4116     input_size_in_bits = EVEX_64bit;
4117     emit_vex_arith_q(0x57, dst, nds, src, VEX_SIMD_66, vector_len);
4118   } else {
4119     emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector_len, true);
4120   }
4121 }
4122 
4123 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4124   assert(VM_Version::supports_avx(), "");
4125   if (VM_Version::supports_evex()) {
4126     tuple_type = EVEX_FV;
4127     input_size_in_bits = EVEX_32bit;
4128   }
4129   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector_len,
4130                  (VM_Version::supports_avx512dq() == false));
4131 }
4132 
4133 // Integer vector arithmetic
4134 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4135   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4136          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4137   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4138                                      VEX_OPCODE_0F_38, true, false);
4139   emit_int8(0x01);
4140   emit_int8((unsigned char)(0xC0 | encode));
4141 }
4142 
4143 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4144   assert(VM_Version::supports_avx() && (vector_len == 0) ||
4145          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
4146   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len,
4147                                      VEX_OPCODE_0F_38, true, false);
4148   emit_int8(0x02);
4149   emit_int8((unsigned char)(0xC0 | encode));
4150 }
4151 
4152 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
4153   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4154   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
4155 }
4156 
4157 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
4158   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4159   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
4160 }
4161 
4162 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
4163   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4164   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
4165 }
4166 
4167 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
4168   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4169   if (VM_Version::supports_evex()) {
4170     emit_simd_arith_q(0xD4, dst, src, VEX_SIMD_66);
4171   } else {
4172     emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
4173   }
4174 }
4175 
4176 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
4177   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4178   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4179                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4180   emit_int8(0x01);
4181   emit_int8((unsigned char)(0xC0 | encode));
4182 }
4183 
4184 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
4185   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
4186   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
4187                                       VEX_OPCODE_0F_38, false, AVX_128bit, true);
4188   emit_int8(0x02);
4189   emit_int8((unsigned char)(0xC0 | encode));
4190 }
4191 
4192 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4193   assert(UseAVX > 0, "requires some form of AVX");
4194   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len,
4195                  (VM_Version::supports_avx512bw() == false));
4196 }
4197 
4198 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4199   assert(UseAVX > 0, "requires some form of AVX");
4200   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len,
4201                  (VM_Version::supports_avx512bw() == false));
4202 }
4203 
4204 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4205   assert(UseAVX > 0, "requires some form of AVX");
4206   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4207 }
4208 
4209 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4210   assert(UseAVX > 0, "requires some form of AVX");
4211   if (VM_Version::supports_evex()) {
4212     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4213   } else {
4214     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4215   }
4216 }
4217 
4218 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4219   assert(UseAVX > 0, "requires some form of AVX");
4220   if (VM_Version::supports_evex()) {
4221     tuple_type = EVEX_FVM;
4222   }
4223   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector_len);
4224 }
4225 
4226 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4227   assert(UseAVX > 0, "requires some form of AVX");
4228   if (VM_Version::supports_evex()) {
4229     tuple_type = EVEX_FVM;
4230   }
4231   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector_len);
4232 }
4233 
4234 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4235   assert(UseAVX > 0, "requires some form of AVX");
4236   if (VM_Version::supports_evex()) {
4237     tuple_type = EVEX_FV;
4238     input_size_in_bits = EVEX_32bit;
4239   }
4240   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector_len);
4241 }
4242 
4243 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4244   assert(UseAVX > 0, "requires some form of AVX");
4245   if (VM_Version::supports_evex()) {
4246     tuple_type = EVEX_FV;
4247     input_size_in_bits = EVEX_64bit;
4248     emit_vex_arith_q(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4249   } else {
4250     emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector_len);
4251   }
4252 }
4253 
4254 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
4255   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4256   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
4257 }
4258 
4259 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
4260   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4261   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
4262 }
4263 
4264 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
4265   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4266   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
4267 }
4268 
4269 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
4270   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4271   if (VM_Version::supports_evex()) {
4272     emit_simd_arith_q(0xFB, dst, src, VEX_SIMD_66);
4273   } else {
4274     emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
4275   }
4276 }
4277 
4278 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4279   assert(UseAVX > 0, "requires some form of AVX");
4280   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4281                  (VM_Version::supports_avx512bw() == false));
4282 }
4283 
4284 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4285   assert(UseAVX > 0, "requires some form of AVX");
4286   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4287                  (VM_Version::supports_avx512bw() == false));
4288 }
4289 
4290 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4291   assert(UseAVX > 0, "requires some form of AVX");
4292   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4293 }
4294 
4295 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4296   assert(UseAVX > 0, "requires some form of AVX");
4297   if (VM_Version::supports_evex()) {
4298     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4299   } else {
4300     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4301   }
4302 }
4303 
4304 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4305   assert(UseAVX > 0, "requires some form of AVX");
4306   if (VM_Version::supports_evex()) {
4307     tuple_type = EVEX_FVM;
4308   }
4309   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector_len,
4310                  (VM_Version::supports_avx512bw() == false));
4311 }
4312 
4313 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4314   assert(UseAVX > 0, "requires some form of AVX");
4315   if (VM_Version::supports_evex()) {
4316     tuple_type = EVEX_FVM;
4317   }
4318   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector_len,
4319                  (VM_Version::supports_avx512bw() == false));
4320 }
4321 
4322 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4323   assert(UseAVX > 0, "requires some form of AVX");
4324   if (VM_Version::supports_evex()) {
4325     tuple_type = EVEX_FV;
4326     input_size_in_bits = EVEX_32bit;
4327   }
4328   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector_len);
4329 }
4330 
4331 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4332   assert(UseAVX > 0, "requires some form of AVX");
4333   if (VM_Version::supports_evex()) {
4334     tuple_type = EVEX_FV;
4335     input_size_in_bits = EVEX_64bit;
4336     emit_vex_arith_q(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4337   } else {
4338     emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector_len);
4339   }
4340 }
4341 
4342 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
4343   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4344   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66,
4345                   (VM_Version::supports_avx512bw() == false));
4346 }
4347 
4348 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
4349   assert(VM_Version::supports_sse4_1(), "");
4350   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66,
4351                                       false, VEX_OPCODE_0F_38);
4352   emit_int8(0x40);
4353   emit_int8((unsigned char)(0xC0 | encode));
4354 }
4355 
4356 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4357   assert(UseAVX > 0, "requires some form of AVX");
4358   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len,
4359                  (VM_Version::supports_avx512bw() == false));
4360 }
4361 
4362 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4363   assert(UseAVX > 0, "requires some form of AVX");
4364   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
4365                                      vector_len, VEX_OPCODE_0F_38);
4366   emit_int8(0x40);
4367   emit_int8((unsigned char)(0xC0 | encode));
4368 }
4369 
4370 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4371   assert(UseAVX > 2, "requires some form of AVX");
4372   int src_enc = src->encoding();
4373   int dst_enc = dst->encoding();
4374   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4375   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4376                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
4377   emit_int8(0x40);
4378   emit_int8((unsigned char)(0xC0 | encode));
4379 }
4380 
4381 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4382   assert(UseAVX > 0, "requires some form of AVX");
4383   if (VM_Version::supports_evex()) {
4384     tuple_type = EVEX_FVM;
4385   }
4386   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector_len);
4387 }
4388 
4389 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4390   assert(UseAVX > 0, "requires some form of AVX");
4391   if (VM_Version::supports_evex()) {
4392     tuple_type = EVEX_FV;
4393     input_size_in_bits = EVEX_32bit;
4394   }
4395   InstructionMark im(this);
4396   int dst_enc = dst->encoding();
4397   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4398   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66,
4399              VEX_OPCODE_0F_38, false, vector_len);
4400   emit_int8(0x40);
4401   emit_operand(dst, src);
4402 }
4403 
4404 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4405   assert(UseAVX > 0, "requires some form of AVX");
4406   if (VM_Version::supports_evex()) {
4407     tuple_type = EVEX_FV;
4408     input_size_in_bits = EVEX_64bit;
4409   }
4410   InstructionMark im(this);
4411   int dst_enc = dst->encoding();
4412   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4413   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
4414   emit_int8(0x40);
4415   emit_operand(dst, src);
4416 }
4417 
4418 // Shift packed integers left by specified number of bits.
4419 void Assembler::psllw(XMMRegister dst, int shift) {
4420   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4421   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4422   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4423                                       false, AVX_128bit, (VM_Version::supports_avx512bw() == false));
4424   emit_int8(0x71);
4425   emit_int8((unsigned char)(0xC0 | encode));
4426   emit_int8(shift & 0xFF);
4427 }
4428 
4429 void Assembler::pslld(XMMRegister dst, int shift) {
4430   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4431   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4432   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false);
4433   emit_int8(0x72);
4434   emit_int8((unsigned char)(0xC0 | encode));
4435   emit_int8(shift & 0xFF);
4436 }
4437 
4438 void Assembler::psllq(XMMRegister dst, int shift) {
4439   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4440   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4441   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4442   emit_int8(0x73);
4443   emit_int8((unsigned char)(0xC0 | encode));
4444   emit_int8(shift & 0xFF);
4445 }
4446 
4447 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
4448   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4449   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66, false,
4450                   (VM_Version::supports_avx512bw() == false));
4451 }
4452 
4453 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
4454   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4455   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
4456 }
4457 
4458 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
4459   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4460   if (VM_Version::supports_evex()) {
4461     emit_simd_arith_q(0xF3, dst, shift, VEX_SIMD_66);
4462   } else {
4463     emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
4464   }
4465 }
4466 
4467 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4468   assert(UseAVX > 0, "requires some form of AVX");
4469   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
4470   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector_len,
4471                  (VM_Version::supports_avx512bw() == false));
4472   emit_int8(shift & 0xFF);
4473 }
4474 
4475 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4476   assert(UseAVX > 0, "requires some form of AVX");
4477   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
4478   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector_len);
4479   emit_int8(shift & 0xFF);
4480 }
4481 
4482 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4483   assert(UseAVX > 0, "requires some form of AVX");
4484   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
4485   if (VM_Version::supports_evex()) {
4486     emit_vex_arith_q(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4487   } else {
4488     emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector_len);
4489   }
4490   emit_int8(shift & 0xFF);
4491 }
4492 
4493 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4494   assert(UseAVX > 0, "requires some form of AVX");
4495   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector_len,
4496                  (VM_Version::supports_avx512bw() == false));
4497 }
4498 
4499 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4500   assert(UseAVX > 0, "requires some form of AVX");
4501   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector_len);
4502 }
4503 
4504 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4505   assert(UseAVX > 0, "requires some form of AVX");
4506   if (VM_Version::supports_evex()) {
4507     emit_vex_arith_q(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4508   } else {
4509     emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector_len);
4510   }
4511 }
4512 
4513 // Shift packed integers logically right by specified number of bits.
4514 void Assembler::psrlw(XMMRegister dst, int shift) {
4515   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4516   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
4517   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4518                                       (VM_Version::supports_avx512bw() == false));
4519   emit_int8(0x71);
4520   emit_int8((unsigned char)(0xC0 | encode));
4521   emit_int8(shift & 0xFF);
4522 }
4523 
4524 void Assembler::psrld(XMMRegister dst, int shift) {
4525   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4526   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
4527   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false);
4528   emit_int8(0x72);
4529   emit_int8((unsigned char)(0xC0 | encode));
4530   emit_int8(shift & 0xFF);
4531 }
4532 
4533 void Assembler::psrlq(XMMRegister dst, int shift) {
4534   // Do not confuse it with psrldq SSE2 instruction which
4535   // shifts 128 bit value in xmm register by number of bytes.
4536   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4537   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4538   int encode = 0;
4539   if (VM_Version::supports_evex() && VM_Version::supports_avx512bw()) {
4540     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, true, VEX_OPCODE_0F, false);
4541   } else {
4542     encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F, true);
4543   }
4544   emit_int8(0x73);
4545   emit_int8((unsigned char)(0xC0 | encode));
4546   emit_int8(shift & 0xFF);
4547 }
4548 
4549 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
4550   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4551   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66, false,
4552                   (VM_Version::supports_avx512bw() == false));
4553 }
4554 
4555 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
4556   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4557   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
4558 }
4559 
4560 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
4561   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4562   if (VM_Version::supports_evex()) {
4563     emit_simd_arith_q(0xD3, dst, shift, VEX_SIMD_66);
4564   } else {
4565     emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
4566   }
4567 }
4568 
4569 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4570   assert(UseAVX > 0, "requires some form of AVX");
4571   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4572   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector_len,
4573                  (VM_Version::supports_avx512bw() == false));
4574   emit_int8(shift & 0xFF);
4575 }
4576 
4577 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4578   assert(UseAVX > 0, "requires some form of AVX");
4579   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4580   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector_len);
4581   emit_int8(shift & 0xFF);
4582 }
4583 
4584 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4585   assert(UseAVX > 0, "requires some form of AVX");
4586   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
4587   if (VM_Version::supports_evex()) {
4588     emit_vex_arith_q(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4589   } else {
4590     emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector_len);
4591   }
4592   emit_int8(shift & 0xFF);
4593 }
4594 
4595 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4596   assert(UseAVX > 0, "requires some form of AVX");
4597   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector_len,
4598                  (VM_Version::supports_avx512bw() == false));
4599 }
4600 
4601 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4602   assert(UseAVX > 0, "requires some form of AVX");
4603   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector_len);
4604 }
4605 
4606 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4607   assert(UseAVX > 0, "requires some form of AVX");
4608   if (VM_Version::supports_evex()) {
4609     emit_vex_arith_q(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4610   } else {
4611     emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector_len);
4612   }
4613 }
4614 
4615 // Shift packed integers arithmetically right by specified number of bits.
4616 void Assembler::psraw(XMMRegister dst, int shift) {
4617   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4618   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4619   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false, VEX_OPCODE_0F,
4620                                       (VM_Version::supports_avx512bw() == false));
4621   emit_int8(0x71);
4622   emit_int8((unsigned char)(0xC0 | encode));
4623   emit_int8(shift & 0xFF);
4624 }
4625 
4626 void Assembler::psrad(XMMRegister dst, int shift) {
4627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4628   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
4629   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, false);
4630   emit_int8(0x72);
4631   emit_int8((unsigned char)(0xC0 | encode));
4632   emit_int8(shift & 0xFF);
4633 }
4634 
4635 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
4636   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4637   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66,
4638                   (VM_Version::supports_avx512bw() == false));
4639 }
4640 
4641 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
4642   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4643   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
4644 }
4645 
4646 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4647   assert(UseAVX > 0, "requires some form of AVX");
4648   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4649   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector_len,
4650                  (VM_Version::supports_avx512bw() == false));
4651   emit_int8(shift & 0xFF);
4652 }
4653 
4654 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4655   assert(UseAVX > 0, "requires some form of AVX");
4656   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
4657   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector_len);
4658   emit_int8(shift & 0xFF);
4659 }
4660 
4661 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4662   assert(UseAVX > 0, "requires some form of AVX");
4663   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector_len,
4664                  (VM_Version::supports_avx512bw() == false));
4665 }
4666 
4667 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
4668   assert(UseAVX > 0, "requires some form of AVX");
4669   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector_len);
4670 }
4671 
4672 
4673 // AND packed integers
4674 void Assembler::pand(XMMRegister dst, XMMRegister src) {
4675   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4676   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
4677 }
4678 
4679 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4680   assert(UseAVX > 0, "requires some form of AVX");
4681   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4682 }
4683 
4684 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4685   assert(UseAVX > 0, "requires some form of AVX");
4686   if (VM_Version::supports_evex()) {
4687     tuple_type = EVEX_FV;
4688     input_size_in_bits = EVEX_32bit;
4689   }
4690   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector_len);
4691 }
4692 
4693 void Assembler::por(XMMRegister dst, XMMRegister src) {
4694   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4695   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
4696 }
4697 
4698 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4699   assert(UseAVX > 0, "requires some form of AVX");
4700   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4701 }
4702 
4703 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4704   assert(UseAVX > 0, "requires some form of AVX");
4705   if (VM_Version::supports_evex()) {
4706     tuple_type = EVEX_FV;
4707     input_size_in_bits = EVEX_32bit;
4708   }
4709   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector_len);
4710 }
4711 
4712 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
4713   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4714   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
4715 }
4716 
4717 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4718   assert(UseAVX > 0, "requires some form of AVX");
4719   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4720 }
4721 
4722 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4723   assert(UseAVX > 0, "requires some form of AVX");
4724   if (VM_Version::supports_evex()) {
4725     tuple_type = EVEX_FV;
4726     input_size_in_bits = EVEX_32bit;
4727   }
4728   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector_len);
4729 }
4730 
4731 
4732 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4733   assert(VM_Version::supports_avx(), "");
4734   int vector_len = AVX_256bit;
4735   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4736   emit_int8(0x18);
4737   emit_int8((unsigned char)(0xC0 | encode));
4738   // 0x00 - insert into lower 128 bits
4739   // 0x01 - insert into upper 128 bits
4740   emit_int8(0x01);
4741 }
4742 
4743 void Assembler::vinsertf64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4744   assert(VM_Version::supports_evex(), "");
4745   int vector_len = AVX_512bit;
4746   int src_enc = src->encoding();
4747   int dst_enc = dst->encoding();
4748   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4749   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66,
4750                                      VEX_OPCODE_0F_3A, true, vector_len, false, false);
4751   emit_int8(0x1A);
4752   emit_int8((unsigned char)(0xC0 | encode));
4753   // 0x00 - insert into lower 256 bits
4754   // 0x01 - insert into upper 256 bits
4755   emit_int8(0x01);
4756 }
4757 
4758 void Assembler::vinsertf64x4h(XMMRegister dst, Address src) {
4759   assert(VM_Version::supports_avx(), "");
4760   if (VM_Version::supports_evex()) {
4761     tuple_type = EVEX_T4;
4762     input_size_in_bits = EVEX_64bit;
4763   }
4764   InstructionMark im(this);
4765   int vector_len = AVX_512bit;
4766   assert(dst != xnoreg, "sanity");
4767   int dst_enc = dst->encoding();
4768   // swap src<->dst for encoding
4769   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector_len);
4770   emit_int8(0x1A);
4771   emit_operand(dst, src);
4772   // 0x01 - insert into upper 128 bits
4773   emit_int8(0x01);
4774 }
4775 
4776 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
4777   assert(VM_Version::supports_avx(), "");
4778   if (VM_Version::supports_evex()) {
4779     tuple_type = EVEX_T4;
4780     input_size_in_bits = EVEX_32bit;
4781   }
4782   InstructionMark im(this);
4783   int vector_len = AVX_256bit;
4784   assert(dst != xnoreg, "sanity");
4785   int dst_enc = dst->encoding();
4786   // swap src<->dst for encoding
4787   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4788   emit_int8(0x18);
4789   emit_operand(dst, src);
4790   // 0x01 - insert into upper 128 bits
4791   emit_int8(0x01);
4792 }
4793 
4794 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
4795   assert(VM_Version::supports_avx(), "");
4796   int vector_len = AVX_256bit;
4797   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4798   emit_int8(0x19);
4799   emit_int8((unsigned char)(0xC0 | encode));
4800   // 0x00 - insert into lower 128 bits
4801   // 0x01 - insert into upper 128 bits
4802   emit_int8(0x01);
4803 }
4804 
4805 void Assembler::vextractf128h(Address dst, XMMRegister src) {
4806   assert(VM_Version::supports_avx(), "");
4807   if (VM_Version::supports_evex()) {
4808     tuple_type = EVEX_T4;
4809     input_size_in_bits = EVEX_32bit;
4810   }
4811   InstructionMark im(this);
4812   int vector_len = AVX_256bit;
4813   assert(src != xnoreg, "sanity");
4814   int src_enc = src->encoding();
4815   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4816   emit_int8(0x19);
4817   emit_operand(src, dst);
4818   // 0x01 - extract from upper 128 bits
4819   emit_int8(0x01);
4820 }
4821 
4822 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4823   assert(VM_Version::supports_avx2(), "");
4824   int vector_len = AVX_256bit;
4825   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4826   emit_int8(0x38);
4827   emit_int8((unsigned char)(0xC0 | encode));
4828   // 0x00 - insert into lower 128 bits
4829   // 0x01 - insert into upper 128 bits
4830   emit_int8(0x01);
4831 }
4832 
4833 void Assembler::vinserti64x4h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4834   assert(VM_Version::supports_evex(), "");
4835   int vector_len = AVX_512bit;
4836   int src_enc = src->encoding();
4837   int dst_enc = dst->encoding();
4838   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4839   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4840                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4841   emit_int8(0x38);
4842   emit_int8((unsigned char)(0xC0 | encode));
4843   // 0x00 - insert into lower 256 bits
4844   // 0x01 - insert into upper 256 bits
4845   emit_int8(0x01);
4846 }
4847 
4848 void Assembler::vinserti128h(XMMRegister dst, Address src) {
4849   assert(VM_Version::supports_avx2(), "");
4850   if (VM_Version::supports_evex()) {
4851     tuple_type = EVEX_T4;
4852     input_size_in_bits = EVEX_32bit;
4853   }
4854   InstructionMark im(this);
4855   int vector_len = AVX_256bit;
4856   assert(dst != xnoreg, "sanity");
4857   int dst_enc = dst->encoding();
4858   // swap src<->dst for encoding
4859   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4860   emit_int8(0x38);
4861   emit_operand(dst, src);
4862   // 0x01 - insert into upper 128 bits
4863   emit_int8(0x01);
4864 }
4865 
4866 void Assembler::vextracti128h(XMMRegister dst, XMMRegister src) {
4867   assert(VM_Version::supports_avx(), "");
4868   int vector_len = AVX_256bit;
4869   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector_len, VEX_OPCODE_0F_3A);
4870   emit_int8(0x39);
4871   emit_int8((unsigned char)(0xC0 | encode));
4872   // 0x00 - insert into lower 128 bits
4873   // 0x01 - insert into upper 128 bits
4874   emit_int8(0x01);
4875 }
4876 
4877 void Assembler::vextracti128h(Address dst, XMMRegister src) {
4878   assert(VM_Version::supports_avx2(), "");
4879   if (VM_Version::supports_evex()) {
4880     tuple_type = EVEX_T4;
4881     input_size_in_bits = EVEX_32bit;
4882   }
4883   InstructionMark im(this);
4884   int vector_len = AVX_256bit;
4885   assert(src != xnoreg, "sanity");
4886   int src_enc = src->encoding();
4887   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector_len);
4888   emit_int8(0x39);
4889   emit_operand(src, dst);
4890   // 0x01 - extract from upper 128 bits
4891   emit_int8(0x01);
4892 }
4893 
4894 void Assembler::vextracti64x4h(XMMRegister dst, XMMRegister src) {
4895   assert(VM_Version::supports_evex(), "");
4896   int vector_len = AVX_512bit;
4897   int src_enc = src->encoding();
4898   int dst_enc = dst->encoding();
4899   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4900                                      true, vector_len, false, false);
4901   emit_int8(0x3B);
4902   emit_int8((unsigned char)(0xC0 | encode));
4903   // 0x01 - extract from upper 256 bits
4904   emit_int8(0x01);
4905 }
4906 
4907 void Assembler::vextracti64x2h(XMMRegister dst, XMMRegister src, int value) {
4908   assert(VM_Version::supports_evex(), "");
4909   int vector_len = AVX_512bit;
4910   int src_enc = src->encoding();
4911   int dst_enc = dst->encoding();
4912   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4913                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4914   emit_int8(0x39);
4915   emit_int8((unsigned char)(0xC0 | encode));
4916   // 0x01 - extract from bits 255:128
4917   // 0x02 - extract from bits 383:256
4918   // 0x03 - extract from bits 511:384
4919   emit_int8(value & 0x3);
4920 }
4921 
4922 void Assembler::vextractf64x4h(XMMRegister dst, XMMRegister src) {
4923   assert(VM_Version::supports_evex(), "");
4924   int vector_len = AVX_512bit;
4925   int src_enc = src->encoding();
4926   int dst_enc = dst->encoding();
4927   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4928                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4929   emit_int8(0x1B);
4930   emit_int8((unsigned char)(0xC0 | encode));
4931   // 0x01 - extract from upper 256 bits
4932   emit_int8(0x01);
4933 }
4934 
4935 void Assembler::vextractf64x4h(Address dst, XMMRegister src) {
4936   assert(VM_Version::supports_avx2(), "");
4937   tuple_type = EVEX_T4;
4938   input_size_in_bits = EVEX_64bit;
4939   InstructionMark im(this);
4940   int vector_len = AVX_512bit;
4941   assert(src != xnoreg, "sanity");
4942   int src_enc = src->encoding();
4943   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4944              VM_Version::supports_avx512dq(), vector_len);
4945   emit_int8(0x1B);
4946   emit_operand(src, dst);
4947   // 0x01 - extract from upper 128 bits
4948   emit_int8(0x01);
4949 }
4950 
4951 void Assembler::vextractf32x4h(XMMRegister dst, XMMRegister src, int value) {
4952   assert(VM_Version::supports_evex(), "");
4953   int vector_len = AVX_512bit;
4954   int src_enc = src->encoding();
4955   int dst_enc = dst->encoding();
4956   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66,
4957                                      VEX_OPCODE_0F_3A, false, vector_len, false, false);
4958   emit_int8(0x19);
4959   emit_int8((unsigned char)(0xC0 | encode));
4960   // 0x01 - extract from bits 255:128
4961   // 0x02 - extract from bits 383:256
4962   // 0x03 - extract from bits 511:384
4963   emit_int8(value & 0x3);
4964 }
4965 
4966 void Assembler::vextractf64x2h(XMMRegister dst, XMMRegister src, int value) {
4967   assert(VM_Version::supports_evex(), "");
4968   int vector_len = AVX_512bit;
4969   int src_enc = src->encoding();
4970   int dst_enc = dst->encoding();
4971   int encode = vex_prefix_and_encode(src_enc, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A,
4972                                      VM_Version::supports_avx512dq(), vector_len, false, false);
4973   emit_int8(0x19);
4974   emit_int8((unsigned char)(0xC0 | encode));
4975   // 0x01 - extract from bits 255:128
4976   // 0x02 - extract from bits 383:256
4977   // 0x03 - extract from bits 511:384
4978   emit_int8(value & 0x3);
4979 }
4980 
4981 // duplicate 4-bytes integer data from src into 8 locations in dest
4982 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
4983   assert(VM_Version::supports_avx2(), "");
4984   int vector_len = AVX_256bit;
4985   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4986                                      vector_len, VEX_OPCODE_0F_38, false);
4987   emit_int8(0x58);
4988   emit_int8((unsigned char)(0xC0 | encode));
4989 }
4990 
4991 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
4992 void Assembler::evpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
4993   assert(VM_Version::supports_evex(), "");
4994   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
4995                                      vector_len, VEX_OPCODE_0F_38, false);
4996   emit_int8(0x78);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998 }
4999 
5000 void Assembler::evpbroadcastb(XMMRegister dst, Address src, int vector_len) {
5001   assert(VM_Version::supports_evex(), "");
5002   tuple_type = EVEX_T1S;
5003   input_size_in_bits = EVEX_8bit;
5004   InstructionMark im(this);
5005   assert(dst != xnoreg, "sanity");
5006   int dst_enc = dst->encoding();
5007   // swap src<->dst for encoding
5008   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5009   emit_int8(0x78);
5010   emit_operand(dst, src);
5011 }
5012 
5013 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5014 void Assembler::evpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
5015   assert(VM_Version::supports_evex(), "");
5016   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5017                                      vector_len, VEX_OPCODE_0F_38, false);
5018   emit_int8(0x79);
5019   emit_int8((unsigned char)(0xC0 | encode));
5020 }
5021 
5022 void Assembler::evpbroadcastw(XMMRegister dst, Address src, int vector_len) {
5023   assert(VM_Version::supports_evex(), "");
5024   tuple_type = EVEX_T1S;
5025   input_size_in_bits = EVEX_16bit;
5026   InstructionMark im(this);
5027   assert(dst != xnoreg, "sanity");
5028   int dst_enc = dst->encoding();
5029   // swap src<->dst for encoding
5030   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5031   emit_int8(0x79);
5032   emit_operand(dst, src);
5033 }
5034 
5035 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5036 void Assembler::evpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
5037   assert(VM_Version::supports_evex(), "");
5038   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66,
5039                                      vector_len, VEX_OPCODE_0F_38, false);
5040   emit_int8(0x58);
5041   emit_int8((unsigned char)(0xC0 | encode));
5042 }
5043 
5044 void Assembler::evpbroadcastd(XMMRegister dst, Address src, int vector_len) {
5045   assert(VM_Version::supports_evex(), "");
5046   tuple_type = EVEX_T1S;
5047   input_size_in_bits = EVEX_32bit;
5048   InstructionMark im(this);
5049   assert(dst != xnoreg, "sanity");
5050   int dst_enc = dst->encoding();
5051   // swap src<->dst for encoding
5052   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5053   emit_int8(0x58);
5054   emit_operand(dst, src);
5055 }
5056 
5057 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5058 void Assembler::evpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
5059   assert(VM_Version::supports_evex(), "");
5060   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5061                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5062   emit_int8(0x59);
5063   emit_int8((unsigned char)(0xC0 | encode));
5064 }
5065 
5066 void Assembler::evpbroadcastq(XMMRegister dst, Address src, int vector_len) {
5067   assert(VM_Version::supports_evex(), "");
5068   tuple_type = EVEX_T1S;
5069   input_size_in_bits = EVEX_64bit;
5070   InstructionMark im(this);
5071   assert(dst != xnoreg, "sanity");
5072   int dst_enc = dst->encoding();
5073   // swap src<->dst for encoding
5074   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5075   emit_int8(0x59);
5076   emit_operand(dst, src);
5077 }
5078 
5079 // duplicate single precision fp from src into 4|8|16 locations in dest : requires AVX512VL
5080 void Assembler::evpbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
5081   assert(VM_Version::supports_evex(), "");
5082   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5083                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5084   emit_int8(0x18);
5085   emit_int8((unsigned char)(0xC0 | encode));
5086 }
5087 
5088 void Assembler::evpbroadcastss(XMMRegister dst, Address src, int vector_len) {
5089   assert(VM_Version::supports_evex(), "");
5090   tuple_type = EVEX_T1S;
5091   input_size_in_bits = EVEX_32bit;
5092   InstructionMark im(this);
5093   assert(dst != xnoreg, "sanity");
5094   int dst_enc = dst->encoding();
5095   // swap src<->dst for encoding
5096   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector_len);
5097   emit_int8(0x18);
5098   emit_operand(dst, src);
5099 }
5100 
5101 // duplicate double precision fp from src into 2|4|8 locations in dest : requires AVX512VL
5102 void Assembler::evpbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
5103   assert(VM_Version::supports_evex(), "");
5104   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5105                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5106   emit_int8(0x19);
5107   emit_int8((unsigned char)(0xC0 | encode));
5108 }
5109 
5110 void Assembler::evpbroadcastsd(XMMRegister dst, Address src, int vector_len) {
5111   assert(VM_Version::supports_evex(), "");
5112   tuple_type = EVEX_T1S;
5113   input_size_in_bits = EVEX_64bit;
5114   InstructionMark im(this);
5115   assert(dst != xnoreg, "sanity");
5116   int dst_enc = dst->encoding();
5117   // swap src<->dst for encoding
5118   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, true, vector_len);
5119   emit_int8(0x19);
5120   emit_operand(dst, src);
5121 }
5122 
5123 // duplicate 1-byte integer data from src into 16||32|64 locations in dest : requires AVX512BW and AVX512VL
5124 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
5125   assert(VM_Version::supports_evex(), "");
5126   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5127                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5128   emit_int8(0x7A);
5129   emit_int8((unsigned char)(0xC0 | encode));
5130 }
5131 
5132 // duplicate 2-byte integer data from src into 8|16||32 locations in dest : requires AVX512BW and AVX512VL
5133 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
5134   assert(VM_Version::supports_evex(), "");
5135   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5136                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5137   emit_int8(0x7B);
5138   emit_int8((unsigned char)(0xC0 | encode));
5139 }
5140 
5141 // duplicate 4-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5142 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
5143   assert(VM_Version::supports_evex(), "");
5144   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5145                                      VEX_OPCODE_0F_38, false, vector_len, false, false);
5146   emit_int8(0x7C);
5147   emit_int8((unsigned char)(0xC0 | encode));
5148 }
5149 
5150 // duplicate 8-byte integer data from src into 4|8|16 locations in dest : requires AVX512VL
5151 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
5152   assert(VM_Version::supports_evex(), "");
5153   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66,
5154                                      VEX_OPCODE_0F_38, true, vector_len, false, false);
5155   emit_int8(0x7C);
5156   emit_int8((unsigned char)(0xC0 | encode));
5157 }
5158 
5159 // Carry-Less Multiplication Quadword
5160 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
5161   assert(VM_Version::supports_clmul(), "");
5162   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, false,
5163                                       VEX_OPCODE_0F_3A, false, AVX_128bit, true);
5164   emit_int8(0x44);
5165   emit_int8((unsigned char)(0xC0 | encode));
5166   emit_int8((unsigned char)mask);
5167 }
5168 
5169 // Carry-Less Multiplication Quadword
5170 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
5171   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
5172   int vector_len = AVX_128bit;
5173   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66,
5174                                      vector_len, VEX_OPCODE_0F_3A, true);
5175   emit_int8(0x44);
5176   emit_int8((unsigned char)(0xC0 | encode));
5177   emit_int8((unsigned char)mask);
5178 }
5179 
5180 void Assembler::vzeroupper() {
5181   assert(VM_Version::supports_avx(), "");
5182   if (UseAVX < 3)
5183   {
5184     (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
5185     emit_int8(0x77);
5186   }
5187 }
5188 
5189 
5190 #ifndef _LP64
5191 // 32bit only pieces of the assembler
5192 
5193 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5194   // NO PREFIX AS NEVER 64BIT
5195   InstructionMark im(this);
5196   emit_int8((unsigned char)0x81);
5197   emit_int8((unsigned char)(0xF8 | src1->encoding()));
5198   emit_data(imm32, rspec, 0);
5199 }
5200 
5201 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5202   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
5203   InstructionMark im(this);
5204   emit_int8((unsigned char)0x81);
5205   emit_operand(rdi, src1);
5206   emit_data(imm32, rspec, 0);
5207 }
5208 
5209 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
5210 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
5211 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
5212 void Assembler::cmpxchg8(Address adr) {
5213   InstructionMark im(this);
5214   emit_int8(0x0F);
5215   emit_int8((unsigned char)0xC7);
5216   emit_operand(rcx, adr);
5217 }
5218 
5219 void Assembler::decl(Register dst) {
5220   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5221  emit_int8(0x48 | dst->encoding());
5222 }
5223 
5224 #endif // _LP64
5225 
5226 // 64bit typically doesn't use the x87 but needs to for the trig funcs
5227 
5228 void Assembler::fabs() {
5229   emit_int8((unsigned char)0xD9);
5230   emit_int8((unsigned char)0xE1);
5231 }
5232 
5233 void Assembler::fadd(int i) {
5234   emit_farith(0xD8, 0xC0, i);
5235 }
5236 
5237 void Assembler::fadd_d(Address src) {
5238   InstructionMark im(this);
5239   emit_int8((unsigned char)0xDC);
5240   emit_operand32(rax, src);
5241 }
5242 
5243 void Assembler::fadd_s(Address src) {
5244   InstructionMark im(this);
5245   emit_int8((unsigned char)0xD8);
5246   emit_operand32(rax, src);
5247 }
5248 
5249 void Assembler::fadda(int i) {
5250   emit_farith(0xDC, 0xC0, i);
5251 }
5252 
5253 void Assembler::faddp(int i) {
5254   emit_farith(0xDE, 0xC0, i);
5255 }
5256 
5257 void Assembler::fchs() {
5258   emit_int8((unsigned char)0xD9);
5259   emit_int8((unsigned char)0xE0);
5260 }
5261 
5262 void Assembler::fcom(int i) {
5263   emit_farith(0xD8, 0xD0, i);
5264 }
5265 
5266 void Assembler::fcomp(int i) {
5267   emit_farith(0xD8, 0xD8, i);
5268 }
5269 
5270 void Assembler::fcomp_d(Address src) {
5271   InstructionMark im(this);
5272   emit_int8((unsigned char)0xDC);
5273   emit_operand32(rbx, src);
5274 }
5275 
5276 void Assembler::fcomp_s(Address src) {
5277   InstructionMark im(this);
5278   emit_int8((unsigned char)0xD8);
5279   emit_operand32(rbx, src);
5280 }
5281 
5282 void Assembler::fcompp() {
5283   emit_int8((unsigned char)0xDE);
5284   emit_int8((unsigned char)0xD9);
5285 }
5286 
5287 void Assembler::fcos() {
5288   emit_int8((unsigned char)0xD9);
5289   emit_int8((unsigned char)0xFF);
5290 }
5291 
5292 void Assembler::fdecstp() {
5293   emit_int8((unsigned char)0xD9);
5294   emit_int8((unsigned char)0xF6);
5295 }
5296 
5297 void Assembler::fdiv(int i) {
5298   emit_farith(0xD8, 0xF0, i);
5299 }
5300 
5301 void Assembler::fdiv_d(Address src) {
5302   InstructionMark im(this);
5303   emit_int8((unsigned char)0xDC);
5304   emit_operand32(rsi, src);
5305 }
5306 
5307 void Assembler::fdiv_s(Address src) {
5308   InstructionMark im(this);
5309   emit_int8((unsigned char)0xD8);
5310   emit_operand32(rsi, src);
5311 }
5312 
5313 void Assembler::fdiva(int i) {
5314   emit_farith(0xDC, 0xF8, i);
5315 }
5316 
5317 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
5318 //       is erroneous for some of the floating-point instructions below.
5319 
5320 void Assembler::fdivp(int i) {
5321   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
5322 }
5323 
5324 void Assembler::fdivr(int i) {
5325   emit_farith(0xD8, 0xF8, i);
5326 }
5327 
5328 void Assembler::fdivr_d(Address src) {
5329   InstructionMark im(this);
5330   emit_int8((unsigned char)0xDC);
5331   emit_operand32(rdi, src);
5332 }
5333 
5334 void Assembler::fdivr_s(Address src) {
5335   InstructionMark im(this);
5336   emit_int8((unsigned char)0xD8);
5337   emit_operand32(rdi, src);
5338 }
5339 
5340 void Assembler::fdivra(int i) {
5341   emit_farith(0xDC, 0xF0, i);
5342 }
5343 
5344 void Assembler::fdivrp(int i) {
5345   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
5346 }
5347 
5348 void Assembler::ffree(int i) {
5349   emit_farith(0xDD, 0xC0, i);
5350 }
5351 
5352 void Assembler::fild_d(Address adr) {
5353   InstructionMark im(this);
5354   emit_int8((unsigned char)0xDF);
5355   emit_operand32(rbp, adr);
5356 }
5357 
5358 void Assembler::fild_s(Address adr) {
5359   InstructionMark im(this);
5360   emit_int8((unsigned char)0xDB);
5361   emit_operand32(rax, adr);
5362 }
5363 
5364 void Assembler::fincstp() {
5365   emit_int8((unsigned char)0xD9);
5366   emit_int8((unsigned char)0xF7);
5367 }
5368 
5369 void Assembler::finit() {
5370   emit_int8((unsigned char)0x9B);
5371   emit_int8((unsigned char)0xDB);
5372   emit_int8((unsigned char)0xE3);
5373 }
5374 
5375 void Assembler::fist_s(Address adr) {
5376   InstructionMark im(this);
5377   emit_int8((unsigned char)0xDB);
5378   emit_operand32(rdx, adr);
5379 }
5380 
5381 void Assembler::fistp_d(Address adr) {
5382   InstructionMark im(this);
5383   emit_int8((unsigned char)0xDF);
5384   emit_operand32(rdi, adr);
5385 }
5386 
5387 void Assembler::fistp_s(Address adr) {
5388   InstructionMark im(this);
5389   emit_int8((unsigned char)0xDB);
5390   emit_operand32(rbx, adr);
5391 }
5392 
5393 void Assembler::fld1() {
5394   emit_int8((unsigned char)0xD9);
5395   emit_int8((unsigned char)0xE8);
5396 }
5397 
5398 void Assembler::fld_d(Address adr) {
5399   InstructionMark im(this);
5400   emit_int8((unsigned char)0xDD);
5401   emit_operand32(rax, adr);
5402 }
5403 
5404 void Assembler::fld_s(Address adr) {
5405   InstructionMark im(this);
5406   emit_int8((unsigned char)0xD9);
5407   emit_operand32(rax, adr);
5408 }
5409 
5410 
5411 void Assembler::fld_s(int index) {
5412   emit_farith(0xD9, 0xC0, index);
5413 }
5414 
5415 void Assembler::fld_x(Address adr) {
5416   InstructionMark im(this);
5417   emit_int8((unsigned char)0xDB);
5418   emit_operand32(rbp, adr);
5419 }
5420 
5421 void Assembler::fldcw(Address src) {
5422   InstructionMark im(this);
5423   emit_int8((unsigned char)0xD9);
5424   emit_operand32(rbp, src);
5425 }
5426 
5427 void Assembler::fldenv(Address src) {
5428   InstructionMark im(this);
5429   emit_int8((unsigned char)0xD9);
5430   emit_operand32(rsp, src);
5431 }
5432 
5433 void Assembler::fldlg2() {
5434   emit_int8((unsigned char)0xD9);
5435   emit_int8((unsigned char)0xEC);
5436 }
5437 
5438 void Assembler::fldln2() {
5439   emit_int8((unsigned char)0xD9);
5440   emit_int8((unsigned char)0xED);
5441 }
5442 
5443 void Assembler::fldz() {
5444   emit_int8((unsigned char)0xD9);
5445   emit_int8((unsigned char)0xEE);
5446 }
5447 
5448 void Assembler::flog() {
5449   fldln2();
5450   fxch();
5451   fyl2x();
5452 }
5453 
5454 void Assembler::flog10() {
5455   fldlg2();
5456   fxch();
5457   fyl2x();
5458 }
5459 
5460 void Assembler::fmul(int i) {
5461   emit_farith(0xD8, 0xC8, i);
5462 }
5463 
5464 void Assembler::fmul_d(Address src) {
5465   InstructionMark im(this);
5466   emit_int8((unsigned char)0xDC);
5467   emit_operand32(rcx, src);
5468 }
5469 
5470 void Assembler::fmul_s(Address src) {
5471   InstructionMark im(this);
5472   emit_int8((unsigned char)0xD8);
5473   emit_operand32(rcx, src);
5474 }
5475 
5476 void Assembler::fmula(int i) {
5477   emit_farith(0xDC, 0xC8, i);
5478 }
5479 
5480 void Assembler::fmulp(int i) {
5481   emit_farith(0xDE, 0xC8, i);
5482 }
5483 
5484 void Assembler::fnsave(Address dst) {
5485   InstructionMark im(this);
5486   emit_int8((unsigned char)0xDD);
5487   emit_operand32(rsi, dst);
5488 }
5489 
5490 void Assembler::fnstcw(Address src) {
5491   InstructionMark im(this);
5492   emit_int8((unsigned char)0x9B);
5493   emit_int8((unsigned char)0xD9);
5494   emit_operand32(rdi, src);
5495 }
5496 
5497 void Assembler::fnstsw_ax() {
5498   emit_int8((unsigned char)0xDF);
5499   emit_int8((unsigned char)0xE0);
5500 }
5501 
5502 void Assembler::fprem() {
5503   emit_int8((unsigned char)0xD9);
5504   emit_int8((unsigned char)0xF8);
5505 }
5506 
5507 void Assembler::fprem1() {
5508   emit_int8((unsigned char)0xD9);
5509   emit_int8((unsigned char)0xF5);
5510 }
5511 
5512 void Assembler::frstor(Address src) {
5513   InstructionMark im(this);
5514   emit_int8((unsigned char)0xDD);
5515   emit_operand32(rsp, src);
5516 }
5517 
5518 void Assembler::fsin() {
5519   emit_int8((unsigned char)0xD9);
5520   emit_int8((unsigned char)0xFE);
5521 }
5522 
5523 void Assembler::fsqrt() {
5524   emit_int8((unsigned char)0xD9);
5525   emit_int8((unsigned char)0xFA);
5526 }
5527 
5528 void Assembler::fst_d(Address adr) {
5529   InstructionMark im(this);
5530   emit_int8((unsigned char)0xDD);
5531   emit_operand32(rdx, adr);
5532 }
5533 
5534 void Assembler::fst_s(Address adr) {
5535   InstructionMark im(this);
5536   emit_int8((unsigned char)0xD9);
5537   emit_operand32(rdx, adr);
5538 }
5539 
5540 void Assembler::fstp_d(Address adr) {
5541   InstructionMark im(this);
5542   emit_int8((unsigned char)0xDD);
5543   emit_operand32(rbx, adr);
5544 }
5545 
5546 void Assembler::fstp_d(int index) {
5547   emit_farith(0xDD, 0xD8, index);
5548 }
5549 
5550 void Assembler::fstp_s(Address adr) {
5551   InstructionMark im(this);
5552   emit_int8((unsigned char)0xD9);
5553   emit_operand32(rbx, adr);
5554 }
5555 
5556 void Assembler::fstp_x(Address adr) {
5557   InstructionMark im(this);
5558   emit_int8((unsigned char)0xDB);
5559   emit_operand32(rdi, adr);
5560 }
5561 
5562 void Assembler::fsub(int i) {
5563   emit_farith(0xD8, 0xE0, i);
5564 }
5565 
5566 void Assembler::fsub_d(Address src) {
5567   InstructionMark im(this);
5568   emit_int8((unsigned char)0xDC);
5569   emit_operand32(rsp, src);
5570 }
5571 
5572 void Assembler::fsub_s(Address src) {
5573   InstructionMark im(this);
5574   emit_int8((unsigned char)0xD8);
5575   emit_operand32(rsp, src);
5576 }
5577 
5578 void Assembler::fsuba(int i) {
5579   emit_farith(0xDC, 0xE8, i);
5580 }
5581 
5582 void Assembler::fsubp(int i) {
5583   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
5584 }
5585 
5586 void Assembler::fsubr(int i) {
5587   emit_farith(0xD8, 0xE8, i);
5588 }
5589 
5590 void Assembler::fsubr_d(Address src) {
5591   InstructionMark im(this);
5592   emit_int8((unsigned char)0xDC);
5593   emit_operand32(rbp, src);
5594 }
5595 
5596 void Assembler::fsubr_s(Address src) {
5597   InstructionMark im(this);
5598   emit_int8((unsigned char)0xD8);
5599   emit_operand32(rbp, src);
5600 }
5601 
5602 void Assembler::fsubra(int i) {
5603   emit_farith(0xDC, 0xE0, i);
5604 }
5605 
5606 void Assembler::fsubrp(int i) {
5607   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
5608 }
5609 
5610 void Assembler::ftan() {
5611   emit_int8((unsigned char)0xD9);
5612   emit_int8((unsigned char)0xF2);
5613   emit_int8((unsigned char)0xDD);
5614   emit_int8((unsigned char)0xD8);
5615 }
5616 
5617 void Assembler::ftst() {
5618   emit_int8((unsigned char)0xD9);
5619   emit_int8((unsigned char)0xE4);
5620 }
5621 
5622 void Assembler::fucomi(int i) {
5623   // make sure the instruction is supported (introduced for P6, together with cmov)
5624   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5625   emit_farith(0xDB, 0xE8, i);
5626 }
5627 
5628 void Assembler::fucomip(int i) {
5629   // make sure the instruction is supported (introduced for P6, together with cmov)
5630   guarantee(VM_Version::supports_cmov(), "illegal instruction");
5631   emit_farith(0xDF, 0xE8, i);
5632 }
5633 
5634 void Assembler::fwait() {
5635   emit_int8((unsigned char)0x9B);
5636 }
5637 
5638 void Assembler::fxch(int i) {
5639   emit_farith(0xD9, 0xC8, i);
5640 }
5641 
5642 void Assembler::fyl2x() {
5643   emit_int8((unsigned char)0xD9);
5644   emit_int8((unsigned char)0xF1);
5645 }
5646 
5647 void Assembler::frndint() {
5648   emit_int8((unsigned char)0xD9);
5649   emit_int8((unsigned char)0xFC);
5650 }
5651 
5652 void Assembler::f2xm1() {
5653   emit_int8((unsigned char)0xD9);
5654   emit_int8((unsigned char)0xF0);
5655 }
5656 
5657 void Assembler::fldl2e() {
5658   emit_int8((unsigned char)0xD9);
5659   emit_int8((unsigned char)0xEA);
5660 }
5661 
5662 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
5663 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
5664 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
5665 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
5666 
5667 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
5668 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5669   if (pre > 0) {
5670     emit_int8(simd_pre[pre]);
5671   }
5672   if (rex_w) {
5673     prefixq(adr, xreg);
5674   } else {
5675     prefix(adr, xreg);
5676   }
5677   if (opc > 0) {
5678     emit_int8(0x0F);
5679     int opc2 = simd_opc[opc];
5680     if (opc2 > 0) {
5681       emit_int8(opc2);
5682     }
5683   }
5684 }
5685 
5686 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
5687   if (pre > 0) {
5688     emit_int8(simd_pre[pre]);
5689   }
5690   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
5691                           prefix_and_encode(dst_enc, src_enc);
5692   if (opc > 0) {
5693     emit_int8(0x0F);
5694     int opc2 = simd_opc[opc];
5695     if (opc2 > 0) {
5696       emit_int8(opc2);
5697     }
5698   }
5699   return encode;
5700 }
5701 
5702 
5703 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, int vector_len) {
5704   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
5705     prefix(VEX_3bytes);
5706 
5707     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
5708     byte1 = (~byte1) & 0xE0;
5709     byte1 |= opc;
5710     emit_int8(byte1);
5711 
5712     int byte2 = ((~nds_enc) & 0xf) << 3;
5713     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
5714     emit_int8(byte2);
5715   } else {
5716     prefix(VEX_2bytes);
5717 
5718     int byte1 = vex_r ? VEX_R : 0;
5719     byte1 = (~byte1) & 0x80;
5720     byte1 |= ((~nds_enc) & 0xf) << 3;
5721     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
5722     emit_int8(byte1);
5723   }
5724 }
5725 
5726 // This is a 4 byte encoding
5727 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, bool evex_r, bool evex_v,
5728                             int nds_enc, VexSimdPrefix pre, VexOpcode opc,
5729                             bool is_extended_context, bool is_merge_context,
5730                             int vector_len, bool no_mask_reg ){
5731   // EVEX 0x62 prefix
5732   prefix(EVEX_4bytes);
5733   evex_encoding = (vex_w ? VEX_W : 0) | (evex_r ? EVEX_Rb : 0);
5734 
5735   // P0: byte 2, initialized to RXBR`00mm
5736   // instead of not'd
5737   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
5738   byte2 = (~byte2) & 0xF0;
5739   // confine opc opcode extensions in mm bits to lower two bits
5740   // of form {0F, 0F_38, 0F_3A}
5741   byte2 |= opc;
5742   emit_int8(byte2);
5743 
5744   // P1: byte 3 as Wvvvv1pp
5745   int byte3 = ((~nds_enc) & 0xf) << 3;
5746   // p[10] is always 1
5747   byte3 |= EVEX_F;
5748   byte3 |= (vex_w & 1) << 7;
5749   // confine pre opcode extensions in pp bits to lower two bits
5750   // of form {66, F3, F2}
5751   byte3 |= pre;
5752   emit_int8(byte3);
5753 
5754   // P2: byte 4 as zL'Lbv'aaa
5755   int byte4 = (no_mask_reg) ? 0 : 1; // kregs are implemented in the low 3 bits as aaa (hard code k1, it will be initialized for now)
5756   // EVEX.v` for extending EVEX.vvvv or VIDX
5757   byte4 |= (evex_v ? 0: EVEX_V);
5758   // third EXEC.b for broadcast actions
5759   byte4 |= (is_extended_context ? EVEX_Rb : 0);
5760   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
5761   byte4 |= ((vector_len) & 0x3) << 5;
5762   // last is EVEX.z for zero/merge actions
5763   byte4 |= (is_merge_context ? EVEX_Z : 0);
5764   emit_int8(byte4);
5765 }
5766 
5767 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre,
5768                            VexOpcode opc, bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg) {
5769   bool vex_r = ((xreg_enc & 8) == 8) ? 1 : 0;
5770   bool vex_b = adr.base_needs_rex();
5771   bool vex_x = adr.index_needs_rex();
5772   avx_vector_len = vector_len;
5773 
5774   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5775   if (VM_Version::supports_avx512vl() == false) {
5776     switch (vector_len) {
5777     case AVX_128bit:
5778     case AVX_256bit:
5779       legacy_mode = true;
5780       break;
5781     }
5782   }
5783 
5784   if ((UseAVX > 2) && (legacy_mode == false))
5785   {
5786     bool evex_r = (xreg_enc >= 16);
5787     bool evex_v = (nds_enc >= 16);
5788     is_evex_instruction = true;
5789     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5790   } else {
5791     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5792   }
5793 }
5794 
5795 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc,
5796                                      bool vex_w, int vector_len, bool legacy_mode, bool no_mask_reg ) {
5797   bool vex_r = ((dst_enc & 8) == 8) ? 1 : 0;
5798   bool vex_b = ((src_enc & 8) == 8) ? 1 : 0;
5799   bool vex_x = false;
5800   avx_vector_len = vector_len;
5801 
5802   // if vector length is turned off, revert to AVX for vectors smaller than AVX_512bit
5803   if (VM_Version::supports_avx512vl() == false) {
5804     switch (vector_len) {
5805     case AVX_128bit:
5806     case AVX_256bit:
5807       legacy_mode = true;
5808       break;
5809     }
5810   }
5811 
5812   if ((UseAVX > 2) && (legacy_mode == false))
5813   {
5814     bool evex_r = (dst_enc >= 16);
5815     bool evex_v = (nds_enc >= 16);
5816     // can use vex_x as bank extender on rm encoding
5817     vex_x = (src_enc >= 16);
5818     evex_prefix(vex_r, vex_b, vex_x, vex_w, evex_r, evex_v, nds_enc, pre, opc, false, false, vector_len, no_mask_reg);
5819   } else {
5820     vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector_len);
5821   }
5822 
5823   // return modrm byte components for operands
5824   return (((dst_enc & 7) << 3) | (src_enc & 7));
5825 }
5826 
5827 
5828 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
5829                             bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5830   if (UseAVX > 0) {
5831     int xreg_enc = xreg->encoding();
5832     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
5833     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5834   } else {
5835     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
5836     rex_prefix(adr, xreg, pre, opc, rex_w);
5837   }
5838 }
5839 
5840 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
5841                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len, bool legacy_mode) {
5842   int dst_enc = dst->encoding();
5843   int src_enc = src->encoding();
5844   if (UseAVX > 0) {
5845     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5846     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, legacy_mode, no_mask_reg);
5847   } else {
5848     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
5849     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
5850   }
5851 }
5852 
5853 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, KRegister src, VexSimdPrefix pre,
5854                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5855   int dst_enc = dst->encoding();
5856   int src_enc = src->encoding();
5857   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5858   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5859 }
5860 
5861 int Assembler::kreg_prefix_and_encode(KRegister dst, KRegister nds, Register src, VexSimdPrefix pre,
5862                                       bool no_mask_reg, VexOpcode opc, bool rex_w, int vector_len) {
5863   int dst_enc = dst->encoding();
5864   int src_enc = src->encoding();
5865   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5866   return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector_len, true, no_mask_reg);
5867 }
5868 
5869 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5870   InstructionMark im(this);
5871   simd_prefix(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5872   emit_int8(opcode);
5873   emit_operand(dst, src);
5874 }
5875 
5876 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool no_mask_reg) {
5877   InstructionMark im(this);
5878   simd_prefix_q(dst, dst, src, pre, no_mask_reg);
5879   emit_int8(opcode);
5880   emit_operand(dst, src);
5881 }
5882 
5883 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5884   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, false, AVX_128bit, legacy_mode);
5885   emit_int8(opcode);
5886   emit_int8((unsigned char)(0xC0 | encode));
5887 }
5888 
5889 void Assembler::emit_simd_arith_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5890   int encode = simd_prefix_and_encode(dst, dst, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5891   emit_int8(opcode);
5892   emit_int8((unsigned char)(0xC0 | encode));
5893 }
5894 
5895 // Versions with no second source register (non-destructive source).
5896 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5897   InstructionMark im(this);
5898   simd_prefix(dst, xnoreg, src, pre, opNoRegMask);
5899   emit_int8(opcode);
5900   emit_operand(dst, src);
5901 }
5902 
5903 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre, bool opNoRegMask) {
5904   InstructionMark im(this);
5905   simd_prefix_q(dst, xnoreg, src, pre, opNoRegMask);
5906   emit_int8(opcode);
5907   emit_operand(dst, src);
5908 }
5909 
5910 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg, bool legacy_mode) {
5911   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, legacy_mode, AVX_128bit);
5912   emit_int8(opcode);
5913   emit_int8((unsigned char)(0xC0 | encode));
5914 }
5915 
5916 void Assembler::emit_simd_arith_nonds_q(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre, bool no_mask_reg) {
5917   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre, no_mask_reg, VEX_OPCODE_0F, true, AVX_128bit);
5918   emit_int8(opcode);
5919   emit_int8((unsigned char)(0xC0 | encode));
5920 }
5921 
5922 // 3-operands AVX instructions
5923 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, Address src,
5924                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5925   InstructionMark im(this);
5926   vex_prefix(dst, nds, src, pre, vector_len, no_mask_reg, legacy_mode);
5927   emit_int8(opcode);
5928   emit_operand(dst, src);
5929 }
5930 
5931 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds,
5932                                  Address src, VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5933   InstructionMark im(this);
5934   vex_prefix_q(dst, nds, src, pre, vector_len, no_mask_reg);
5935   emit_int8(opcode);
5936   emit_operand(dst, src);
5937 }
5938 
5939 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5940                                VexSimdPrefix pre, int vector_len, bool no_mask_reg, bool legacy_mode) {
5941   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector_len, VEX_OPCODE_0F, false, no_mask_reg);
5942   emit_int8(opcode);
5943   emit_int8((unsigned char)(0xC0 | encode));
5944 }
5945 
5946 void Assembler::emit_vex_arith_q(int opcode, XMMRegister dst, XMMRegister nds, XMMRegister src,
5947                                  VexSimdPrefix pre, int vector_len, bool no_mask_reg) {
5948   int src_enc = src->encoding();
5949   int dst_enc = dst->encoding();
5950   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
5951   int encode = vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, VEX_OPCODE_0F, true, vector_len, false, no_mask_reg);
5952   emit_int8(opcode);
5953   emit_int8((unsigned char)(0xC0 | encode));
5954 }
5955 
5956 #ifndef _LP64
5957 
5958 void Assembler::incl(Register dst) {
5959   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5960   emit_int8(0x40 | dst->encoding());
5961 }
5962 
5963 void Assembler::lea(Register dst, Address src) {
5964   leal(dst, src);
5965 }
5966 
5967 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5968   InstructionMark im(this);
5969   emit_int8((unsigned char)0xC7);
5970   emit_operand(rax, dst);
5971   emit_data((int)imm32, rspec, 0);
5972 }
5973 
5974 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5975   InstructionMark im(this);
5976   int encode = prefix_and_encode(dst->encoding());
5977   emit_int8((unsigned char)(0xB8 | encode));
5978   emit_data((int)imm32, rspec, 0);
5979 }
5980 
5981 void Assembler::popa() { // 32bit
5982   emit_int8(0x61);
5983 }
5984 
5985 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
5986   InstructionMark im(this);
5987   emit_int8(0x68);
5988   emit_data(imm32, rspec, 0);
5989 }
5990 
5991 void Assembler::pusha() { // 32bit
5992   emit_int8(0x60);
5993 }
5994 
5995 void Assembler::set_byte_if_not_zero(Register dst) {
5996   emit_int8(0x0F);
5997   emit_int8((unsigned char)0x95);
5998   emit_int8((unsigned char)(0xE0 | dst->encoding()));
5999 }
6000 
6001 void Assembler::shldl(Register dst, Register src) {
6002   emit_int8(0x0F);
6003   emit_int8((unsigned char)0xA5);
6004   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6005 }
6006 
6007 void Assembler::shrdl(Register dst, Register src) {
6008   emit_int8(0x0F);
6009   emit_int8((unsigned char)0xAD);
6010   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
6011 }
6012 
6013 #else // LP64
6014 
6015 void Assembler::set_byte_if_not_zero(Register dst) {
6016   int enc = prefix_and_encode(dst->encoding(), true);
6017   emit_int8(0x0F);
6018   emit_int8((unsigned char)0x95);
6019   emit_int8((unsigned char)(0xE0 | enc));
6020 }
6021 
6022 // 64bit only pieces of the assembler
6023 // This should only be used by 64bit instructions that can use rip-relative
6024 // it cannot be used by instructions that want an immediate value.
6025 
6026 bool Assembler::reachable(AddressLiteral adr) {
6027   int64_t disp;
6028   // None will force a 64bit literal to the code stream. Likely a placeholder
6029   // for something that will be patched later and we need to certain it will
6030   // always be reachable.
6031   if (adr.reloc() == relocInfo::none) {
6032     return false;
6033   }
6034   if (adr.reloc() == relocInfo::internal_word_type) {
6035     // This should be rip relative and easily reachable.
6036     return true;
6037   }
6038   if (adr.reloc() == relocInfo::virtual_call_type ||
6039       adr.reloc() == relocInfo::opt_virtual_call_type ||
6040       adr.reloc() == relocInfo::static_call_type ||
6041       adr.reloc() == relocInfo::static_stub_type ) {
6042     // This should be rip relative within the code cache and easily
6043     // reachable until we get huge code caches. (At which point
6044     // ic code is going to have issues).
6045     return true;
6046   }
6047   if (adr.reloc() != relocInfo::external_word_type &&
6048       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
6049       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
6050       adr.reloc() != relocInfo::runtime_call_type ) {
6051     return false;
6052   }
6053 
6054   // Stress the correction code
6055   if (ForceUnreachable) {
6056     // Must be runtimecall reloc, see if it is in the codecache
6057     // Flipping stuff in the codecache to be unreachable causes issues
6058     // with things like inline caches where the additional instructions
6059     // are not handled.
6060     if (CodeCache::find_blob(adr._target) == NULL) {
6061       return false;
6062     }
6063   }
6064   // For external_word_type/runtime_call_type if it is reachable from where we
6065   // are now (possibly a temp buffer) and where we might end up
6066   // anywhere in the codeCache then we are always reachable.
6067   // This would have to change if we ever save/restore shared code
6068   // to be more pessimistic.
6069   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
6070   if (!is_simm32(disp)) return false;
6071   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
6072   if (!is_simm32(disp)) return false;
6073 
6074   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
6075 
6076   // Because rip relative is a disp + address_of_next_instruction and we
6077   // don't know the value of address_of_next_instruction we apply a fudge factor
6078   // to make sure we will be ok no matter the size of the instruction we get placed into.
6079   // We don't have to fudge the checks above here because they are already worst case.
6080 
6081   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
6082   // + 4 because better safe than sorry.
6083   const int fudge = 12 + 4;
6084   if (disp < 0) {
6085     disp -= fudge;
6086   } else {
6087     disp += fudge;
6088   }
6089   return is_simm32(disp);
6090 }
6091 
6092 // Check if the polling page is not reachable from the code cache using rip-relative
6093 // addressing.
6094 bool Assembler::is_polling_page_far() {
6095   intptr_t addr = (intptr_t)os::get_polling_page();
6096   return ForceUnreachable ||
6097          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
6098          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
6099 }
6100 
6101 void Assembler::emit_data64(jlong data,
6102                             relocInfo::relocType rtype,
6103                             int format) {
6104   if (rtype == relocInfo::none) {
6105     emit_int64(data);
6106   } else {
6107     emit_data64(data, Relocation::spec_simple(rtype), format);
6108   }
6109 }
6110 
6111 void Assembler::emit_data64(jlong data,
6112                             RelocationHolder const& rspec,
6113                             int format) {
6114   assert(imm_operand == 0, "default format must be immediate in this file");
6115   assert(imm_operand == format, "must be immediate");
6116   assert(inst_mark() != NULL, "must be inside InstructionMark");
6117   // Do not use AbstractAssembler::relocate, which is not intended for
6118   // embedded words.  Instead, relocate to the enclosing instruction.
6119   code_section()->relocate(inst_mark(), rspec, format);
6120 #ifdef ASSERT
6121   check_relocation(rspec, format);
6122 #endif
6123   emit_int64(data);
6124 }
6125 
6126 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
6127   if (reg_enc >= 8) {
6128     prefix(REX_B);
6129     reg_enc -= 8;
6130   } else if (byteinst && reg_enc >= 4) {
6131     prefix(REX);
6132   }
6133   return reg_enc;
6134 }
6135 
6136 int Assembler::prefixq_and_encode(int reg_enc) {
6137   if (reg_enc < 8) {
6138     prefix(REX_W);
6139   } else {
6140     prefix(REX_WB);
6141     reg_enc -= 8;
6142   }
6143   return reg_enc;
6144 }
6145 
6146 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
6147   if (dst_enc < 8) {
6148     if (src_enc >= 8) {
6149       prefix(REX_B);
6150       src_enc -= 8;
6151     } else if (byteinst && src_enc >= 4) {
6152       prefix(REX);
6153     }
6154   } else {
6155     if (src_enc < 8) {
6156       prefix(REX_R);
6157     } else {
6158       prefix(REX_RB);
6159       src_enc -= 8;
6160     }
6161     dst_enc -= 8;
6162   }
6163   return dst_enc << 3 | src_enc;
6164 }
6165 
6166 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
6167   if (dst_enc < 8) {
6168     if (src_enc < 8) {
6169       prefix(REX_W);
6170     } else {
6171       prefix(REX_WB);
6172       src_enc -= 8;
6173     }
6174   } else {
6175     if (src_enc < 8) {
6176       prefix(REX_WR);
6177     } else {
6178       prefix(REX_WRB);
6179       src_enc -= 8;
6180     }
6181     dst_enc -= 8;
6182   }
6183   return dst_enc << 3 | src_enc;
6184 }
6185 
6186 void Assembler::prefix(Register reg) {
6187   if (reg->encoding() >= 8) {
6188     prefix(REX_B);
6189   }
6190 }
6191 
6192 void Assembler::prefix(Address adr) {
6193   if (adr.base_needs_rex()) {
6194     if (adr.index_needs_rex()) {
6195       prefix(REX_XB);
6196     } else {
6197       prefix(REX_B);
6198     }
6199   } else {
6200     if (adr.index_needs_rex()) {
6201       prefix(REX_X);
6202     }
6203   }
6204 }
6205 
6206 void Assembler::prefixq(Address adr) {
6207   if (adr.base_needs_rex()) {
6208     if (adr.index_needs_rex()) {
6209       prefix(REX_WXB);
6210     } else {
6211       prefix(REX_WB);
6212     }
6213   } else {
6214     if (adr.index_needs_rex()) {
6215       prefix(REX_WX);
6216     } else {
6217       prefix(REX_W);
6218     }
6219   }
6220 }
6221 
6222 
6223 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
6224   if (reg->encoding() < 8) {
6225     if (adr.base_needs_rex()) {
6226       if (adr.index_needs_rex()) {
6227         prefix(REX_XB);
6228       } else {
6229         prefix(REX_B);
6230       }
6231     } else {
6232       if (adr.index_needs_rex()) {
6233         prefix(REX_X);
6234       } else if (byteinst && reg->encoding() >= 4 ) {
6235         prefix(REX);
6236       }
6237     }
6238   } else {
6239     if (adr.base_needs_rex()) {
6240       if (adr.index_needs_rex()) {
6241         prefix(REX_RXB);
6242       } else {
6243         prefix(REX_RB);
6244       }
6245     } else {
6246       if (adr.index_needs_rex()) {
6247         prefix(REX_RX);
6248       } else {
6249         prefix(REX_R);
6250       }
6251     }
6252   }
6253 }
6254 
6255 void Assembler::prefixq(Address adr, Register src) {
6256   if (src->encoding() < 8) {
6257     if (adr.base_needs_rex()) {
6258       if (adr.index_needs_rex()) {
6259         prefix(REX_WXB);
6260       } else {
6261         prefix(REX_WB);
6262       }
6263     } else {
6264       if (adr.index_needs_rex()) {
6265         prefix(REX_WX);
6266       } else {
6267         prefix(REX_W);
6268       }
6269     }
6270   } else {
6271     if (adr.base_needs_rex()) {
6272       if (adr.index_needs_rex()) {
6273         prefix(REX_WRXB);
6274       } else {
6275         prefix(REX_WRB);
6276       }
6277     } else {
6278       if (adr.index_needs_rex()) {
6279         prefix(REX_WRX);
6280       } else {
6281         prefix(REX_WR);
6282       }
6283     }
6284   }
6285 }
6286 
6287 void Assembler::prefix(Address adr, XMMRegister reg) {
6288   if (reg->encoding() < 8) {
6289     if (adr.base_needs_rex()) {
6290       if (adr.index_needs_rex()) {
6291         prefix(REX_XB);
6292       } else {
6293         prefix(REX_B);
6294       }
6295     } else {
6296       if (adr.index_needs_rex()) {
6297         prefix(REX_X);
6298       }
6299     }
6300   } else {
6301     if (adr.base_needs_rex()) {
6302       if (adr.index_needs_rex()) {
6303         prefix(REX_RXB);
6304       } else {
6305         prefix(REX_RB);
6306       }
6307     } else {
6308       if (adr.index_needs_rex()) {
6309         prefix(REX_RX);
6310       } else {
6311         prefix(REX_R);
6312       }
6313     }
6314   }
6315 }
6316 
6317 void Assembler::prefixq(Address adr, XMMRegister src) {
6318   if (src->encoding() < 8) {
6319     if (adr.base_needs_rex()) {
6320       if (adr.index_needs_rex()) {
6321         prefix(REX_WXB);
6322       } else {
6323         prefix(REX_WB);
6324       }
6325     } else {
6326       if (adr.index_needs_rex()) {
6327         prefix(REX_WX);
6328       } else {
6329         prefix(REX_W);
6330       }
6331     }
6332   } else {
6333     if (adr.base_needs_rex()) {
6334       if (adr.index_needs_rex()) {
6335         prefix(REX_WRXB);
6336       } else {
6337         prefix(REX_WRB);
6338       }
6339     } else {
6340       if (adr.index_needs_rex()) {
6341         prefix(REX_WRX);
6342       } else {
6343         prefix(REX_WR);
6344       }
6345     }
6346   }
6347 }
6348 
6349 void Assembler::adcq(Register dst, int32_t imm32) {
6350   (void) prefixq_and_encode(dst->encoding());
6351   emit_arith(0x81, 0xD0, dst, imm32);
6352 }
6353 
6354 void Assembler::adcq(Register dst, Address src) {
6355   InstructionMark im(this);
6356   prefixq(src, dst);
6357   emit_int8(0x13);
6358   emit_operand(dst, src);
6359 }
6360 
6361 void Assembler::adcq(Register dst, Register src) {
6362   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6363   emit_arith(0x13, 0xC0, dst, src);
6364 }
6365 
6366 void Assembler::addq(Address dst, int32_t imm32) {
6367   InstructionMark im(this);
6368   prefixq(dst);
6369   emit_arith_operand(0x81, rax, dst,imm32);
6370 }
6371 
6372 void Assembler::addq(Address dst, Register src) {
6373   InstructionMark im(this);
6374   prefixq(dst, src);
6375   emit_int8(0x01);
6376   emit_operand(src, dst);
6377 }
6378 
6379 void Assembler::addq(Register dst, int32_t imm32) {
6380   (void) prefixq_and_encode(dst->encoding());
6381   emit_arith(0x81, 0xC0, dst, imm32);
6382 }
6383 
6384 void Assembler::addq(Register dst, Address src) {
6385   InstructionMark im(this);
6386   prefixq(src, dst);
6387   emit_int8(0x03);
6388   emit_operand(dst, src);
6389 }
6390 
6391 void Assembler::addq(Register dst, Register src) {
6392   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6393   emit_arith(0x03, 0xC0, dst, src);
6394 }
6395 
6396 void Assembler::adcxq(Register dst, Register src) {
6397   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6398   emit_int8((unsigned char)0x66);
6399   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6400   emit_int8(0x0F);
6401   emit_int8(0x38);
6402   emit_int8((unsigned char)0xF6);
6403   emit_int8((unsigned char)(0xC0 | encode));
6404 }
6405 
6406 void Assembler::adoxq(Register dst, Register src) {
6407   //assert(VM_Version::supports_adx(), "adx instructions not supported");
6408   emit_int8((unsigned char)0xF3);
6409   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6410   emit_int8(0x0F);
6411   emit_int8(0x38);
6412   emit_int8((unsigned char)0xF6);
6413   emit_int8((unsigned char)(0xC0 | encode));
6414 }
6415 
6416 void Assembler::andq(Address dst, int32_t imm32) {
6417   InstructionMark im(this);
6418   prefixq(dst);
6419   emit_int8((unsigned char)0x81);
6420   emit_operand(rsp, dst, 4);
6421   emit_int32(imm32);
6422 }
6423 
6424 void Assembler::andq(Register dst, int32_t imm32) {
6425   (void) prefixq_and_encode(dst->encoding());
6426   emit_arith(0x81, 0xE0, dst, imm32);
6427 }
6428 
6429 void Assembler::andq(Register dst, Address src) {
6430   InstructionMark im(this);
6431   prefixq(src, dst);
6432   emit_int8(0x23);
6433   emit_operand(dst, src);
6434 }
6435 
6436 void Assembler::andq(Register dst, Register src) {
6437   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6438   emit_arith(0x23, 0xC0, dst, src);
6439 }
6440 
6441 void Assembler::andnq(Register dst, Register src1, Register src2) {
6442   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6443   int encode = vex_prefix_0F38_and_encode_q_legacy(dst, src1, src2);
6444   emit_int8((unsigned char)0xF2);
6445   emit_int8((unsigned char)(0xC0 | encode));
6446 }
6447 
6448 void Assembler::andnq(Register dst, Register src1, Address src2) {
6449   InstructionMark im(this);
6450   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6451   vex_prefix_0F38_q_legacy(dst, src1, src2);
6452   emit_int8((unsigned char)0xF2);
6453   emit_operand(dst, src2);
6454 }
6455 
6456 void Assembler::bsfq(Register dst, Register src) {
6457   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6458   emit_int8(0x0F);
6459   emit_int8((unsigned char)0xBC);
6460   emit_int8((unsigned char)(0xC0 | encode));
6461 }
6462 
6463 void Assembler::bsrq(Register dst, Register src) {
6464   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6465   emit_int8(0x0F);
6466   emit_int8((unsigned char)0xBD);
6467   emit_int8((unsigned char)(0xC0 | encode));
6468 }
6469 
6470 void Assembler::bswapq(Register reg) {
6471   int encode = prefixq_and_encode(reg->encoding());
6472   emit_int8(0x0F);
6473   emit_int8((unsigned char)(0xC8 | encode));
6474 }
6475 
6476 void Assembler::blsiq(Register dst, Register src) {
6477   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6478   int encode = vex_prefix_0F38_and_encode_q_legacy(rbx, dst, src);
6479   emit_int8((unsigned char)0xF3);
6480   emit_int8((unsigned char)(0xC0 | encode));
6481 }
6482 
6483 void Assembler::blsiq(Register dst, Address src) {
6484   InstructionMark im(this);
6485   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6486   vex_prefix_0F38_q_legacy(rbx, dst, src);
6487   emit_int8((unsigned char)0xF3);
6488   emit_operand(rbx, src);
6489 }
6490 
6491 void Assembler::blsmskq(Register dst, Register src) {
6492   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6493   int encode = vex_prefix_0F38_and_encode_q_legacy(rdx, dst, src);
6494   emit_int8((unsigned char)0xF3);
6495   emit_int8((unsigned char)(0xC0 | encode));
6496 }
6497 
6498 void Assembler::blsmskq(Register dst, Address src) {
6499   InstructionMark im(this);
6500   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6501   vex_prefix_0F38_q_legacy(rdx, dst, src);
6502   emit_int8((unsigned char)0xF3);
6503   emit_operand(rdx, src);
6504 }
6505 
6506 void Assembler::blsrq(Register dst, Register src) {
6507   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6508   int encode = vex_prefix_0F38_and_encode_q_legacy(rcx, dst, src);
6509   emit_int8((unsigned char)0xF3);
6510   emit_int8((unsigned char)(0xC0 | encode));
6511 }
6512 
6513 void Assembler::blsrq(Register dst, Address src) {
6514   InstructionMark im(this);
6515   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
6516   vex_prefix_0F38_q_legacy(rcx, dst, src);
6517   emit_int8((unsigned char)0xF3);
6518   emit_operand(rcx, src);
6519 }
6520 
6521 void Assembler::cdqq() {
6522   prefix(REX_W);
6523   emit_int8((unsigned char)0x99);
6524 }
6525 
6526 void Assembler::clflush(Address adr) {
6527   prefix(adr);
6528   emit_int8(0x0F);
6529   emit_int8((unsigned char)0xAE);
6530   emit_operand(rdi, adr);
6531 }
6532 
6533 void Assembler::cmovq(Condition cc, Register dst, Register src) {
6534   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6535   emit_int8(0x0F);
6536   emit_int8(0x40 | cc);
6537   emit_int8((unsigned char)(0xC0 | encode));
6538 }
6539 
6540 void Assembler::cmovq(Condition cc, Register dst, Address src) {
6541   InstructionMark im(this);
6542   prefixq(src, dst);
6543   emit_int8(0x0F);
6544   emit_int8(0x40 | cc);
6545   emit_operand(dst, src);
6546 }
6547 
6548 void Assembler::cmpq(Address dst, int32_t imm32) {
6549   InstructionMark im(this);
6550   prefixq(dst);
6551   emit_int8((unsigned char)0x81);
6552   emit_operand(rdi, dst, 4);
6553   emit_int32(imm32);
6554 }
6555 
6556 void Assembler::cmpq(Register dst, int32_t imm32) {
6557   (void) prefixq_and_encode(dst->encoding());
6558   emit_arith(0x81, 0xF8, dst, imm32);
6559 }
6560 
6561 void Assembler::cmpq(Address dst, Register src) {
6562   InstructionMark im(this);
6563   prefixq(dst, src);
6564   emit_int8(0x3B);
6565   emit_operand(src, dst);
6566 }
6567 
6568 void Assembler::cmpq(Register dst, Register src) {
6569   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6570   emit_arith(0x3B, 0xC0, dst, src);
6571 }
6572 
6573 void Assembler::cmpq(Register dst, Address  src) {
6574   InstructionMark im(this);
6575   prefixq(src, dst);
6576   emit_int8(0x3B);
6577   emit_operand(dst, src);
6578 }
6579 
6580 void Assembler::cmpxchgq(Register reg, Address adr) {
6581   InstructionMark im(this);
6582   prefixq(adr, reg);
6583   emit_int8(0x0F);
6584   emit_int8((unsigned char)0xB1);
6585   emit_operand(reg, adr);
6586 }
6587 
6588 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
6589   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6590   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2, true);
6591   emit_int8(0x2A);
6592   emit_int8((unsigned char)(0xC0 | encode));
6593 }
6594 
6595 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
6596   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6597   if (VM_Version::supports_evex()) {
6598     tuple_type = EVEX_T1S;
6599     input_size_in_bits = EVEX_32bit;
6600   }
6601   InstructionMark im(this);
6602   simd_prefix_q(dst, dst, src, VEX_SIMD_F2, true);
6603   emit_int8(0x2A);
6604   emit_operand(dst, src);
6605 }
6606 
6607 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
6608   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6609   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3, true);
6610   emit_int8(0x2A);
6611   emit_int8((unsigned char)(0xC0 | encode));
6612 }
6613 
6614 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
6615   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6616   if (VM_Version::supports_evex()) {
6617     tuple_type = EVEX_T1S;
6618     input_size_in_bits = EVEX_32bit;
6619   }
6620   InstructionMark im(this);
6621   simd_prefix_q(dst, dst, src, VEX_SIMD_F3, true);
6622   emit_int8(0x2A);
6623   emit_operand(dst, src);
6624 }
6625 
6626 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
6627   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6628   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, true);
6629   emit_int8(0x2C);
6630   emit_int8((unsigned char)(0xC0 | encode));
6631 }
6632 
6633 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
6634   NOT_LP64(assert(VM_Version::supports_sse(), ""));
6635   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, true);
6636   emit_int8(0x2C);
6637   emit_int8((unsigned char)(0xC0 | encode));
6638 }
6639 
6640 void Assembler::decl(Register dst) {
6641   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6642   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
6643   int encode = prefix_and_encode(dst->encoding());
6644   emit_int8((unsigned char)0xFF);
6645   emit_int8((unsigned char)(0xC8 | encode));
6646 }
6647 
6648 void Assembler::decq(Register dst) {
6649   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6650   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6651   int encode = prefixq_and_encode(dst->encoding());
6652   emit_int8((unsigned char)0xFF);
6653   emit_int8(0xC8 | encode);
6654 }
6655 
6656 void Assembler::decq(Address dst) {
6657   // Don't use it directly. Use MacroAssembler::decrementq() instead.
6658   InstructionMark im(this);
6659   prefixq(dst);
6660   emit_int8((unsigned char)0xFF);
6661   emit_operand(rcx, dst);
6662 }
6663 
6664 void Assembler::fxrstor(Address src) {
6665   prefixq(src);
6666   emit_int8(0x0F);
6667   emit_int8((unsigned char)0xAE);
6668   emit_operand(as_Register(1), src);
6669 }
6670 
6671 void Assembler::fxsave(Address dst) {
6672   prefixq(dst);
6673   emit_int8(0x0F);
6674   emit_int8((unsigned char)0xAE);
6675   emit_operand(as_Register(0), dst);
6676 }
6677 
6678 void Assembler::idivq(Register src) {
6679   int encode = prefixq_and_encode(src->encoding());
6680   emit_int8((unsigned char)0xF7);
6681   emit_int8((unsigned char)(0xF8 | encode));
6682 }
6683 
6684 void Assembler::imulq(Register dst, Register src) {
6685   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6686   emit_int8(0x0F);
6687   emit_int8((unsigned char)0xAF);
6688   emit_int8((unsigned char)(0xC0 | encode));
6689 }
6690 
6691 void Assembler::imulq(Register dst, Register src, int value) {
6692   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6693   if (is8bit(value)) {
6694     emit_int8(0x6B);
6695     emit_int8((unsigned char)(0xC0 | encode));
6696     emit_int8(value & 0xFF);
6697   } else {
6698     emit_int8(0x69);
6699     emit_int8((unsigned char)(0xC0 | encode));
6700     emit_int32(value);
6701   }
6702 }
6703 
6704 void Assembler::imulq(Register dst, Address src) {
6705   InstructionMark im(this);
6706   prefixq(src, dst);
6707   emit_int8(0x0F);
6708   emit_int8((unsigned char) 0xAF);
6709   emit_operand(dst, src);
6710 }
6711 
6712 void Assembler::incl(Register dst) {
6713   // Don't use it directly. Use MacroAssembler::incrementl() instead.
6714   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6715   int encode = prefix_and_encode(dst->encoding());
6716   emit_int8((unsigned char)0xFF);
6717   emit_int8((unsigned char)(0xC0 | encode));
6718 }
6719 
6720 void Assembler::incq(Register dst) {
6721   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6722   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
6723   int encode = prefixq_and_encode(dst->encoding());
6724   emit_int8((unsigned char)0xFF);
6725   emit_int8((unsigned char)(0xC0 | encode));
6726 }
6727 
6728 void Assembler::incq(Address dst) {
6729   // Don't use it directly. Use MacroAssembler::incrementq() instead.
6730   InstructionMark im(this);
6731   prefixq(dst);
6732   emit_int8((unsigned char)0xFF);
6733   emit_operand(rax, dst);
6734 }
6735 
6736 void Assembler::lea(Register dst, Address src) {
6737   leaq(dst, src);
6738 }
6739 
6740 void Assembler::leaq(Register dst, Address src) {
6741   InstructionMark im(this);
6742   prefixq(src, dst);
6743   emit_int8((unsigned char)0x8D);
6744   emit_operand(dst, src);
6745 }
6746 
6747 void Assembler::mov64(Register dst, int64_t imm64) {
6748   InstructionMark im(this);
6749   int encode = prefixq_and_encode(dst->encoding());
6750   emit_int8((unsigned char)(0xB8 | encode));
6751   emit_int64(imm64);
6752 }
6753 
6754 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
6755   InstructionMark im(this);
6756   int encode = prefixq_and_encode(dst->encoding());
6757   emit_int8(0xB8 | encode);
6758   emit_data64(imm64, rspec);
6759 }
6760 
6761 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
6762   InstructionMark im(this);
6763   int encode = prefix_and_encode(dst->encoding());
6764   emit_int8((unsigned char)(0xB8 | encode));
6765   emit_data((int)imm32, rspec, narrow_oop_operand);
6766 }
6767 
6768 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
6769   InstructionMark im(this);
6770   prefix(dst);
6771   emit_int8((unsigned char)0xC7);
6772   emit_operand(rax, dst, 4);
6773   emit_data((int)imm32, rspec, narrow_oop_operand);
6774 }
6775 
6776 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6777   InstructionMark im(this);
6778   int encode = prefix_and_encode(src1->encoding());
6779   emit_int8((unsigned char)0x81);
6780   emit_int8((unsigned char)(0xF8 | encode));
6781   emit_data((int)imm32, rspec, narrow_oop_operand);
6782 }
6783 
6784 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6785   InstructionMark im(this);
6786   prefix(src1);
6787   emit_int8((unsigned char)0x81);
6788   emit_operand(rax, src1, 4);
6789   emit_data((int)imm32, rspec, narrow_oop_operand);
6790 }
6791 
6792 void Assembler::lzcntq(Register dst, Register src) {
6793   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
6794   emit_int8((unsigned char)0xF3);
6795   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6796   emit_int8(0x0F);
6797   emit_int8((unsigned char)0xBD);
6798   emit_int8((unsigned char)(0xC0 | encode));
6799 }
6800 
6801 void Assembler::movdq(XMMRegister dst, Register src) {
6802   // table D-1 says MMX/SSE2
6803   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6804   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66, true);
6805   emit_int8(0x6E);
6806   emit_int8((unsigned char)(0xC0 | encode));
6807 }
6808 
6809 void Assembler::movdq(Register dst, XMMRegister src) {
6810   // table D-1 says MMX/SSE2
6811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6812   // swap src/dst to get correct prefix
6813   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66, true);
6814   emit_int8(0x7E);
6815   emit_int8((unsigned char)(0xC0 | encode));
6816 }
6817 
6818 void Assembler::movq(Register dst, Register src) {
6819   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6820   emit_int8((unsigned char)0x8B);
6821   emit_int8((unsigned char)(0xC0 | encode));
6822 }
6823 
6824 void Assembler::movq(Register dst, Address src) {
6825   InstructionMark im(this);
6826   prefixq(src, dst);
6827   emit_int8((unsigned char)0x8B);
6828   emit_operand(dst, src);
6829 }
6830 
6831 void Assembler::movq(Address dst, Register src) {
6832   InstructionMark im(this);
6833   prefixq(dst, src);
6834   emit_int8((unsigned char)0x89);
6835   emit_operand(src, dst);
6836 }
6837 
6838 void Assembler::movsbq(Register dst, Address src) {
6839   InstructionMark im(this);
6840   prefixq(src, dst);
6841   emit_int8(0x0F);
6842   emit_int8((unsigned char)0xBE);
6843   emit_operand(dst, src);
6844 }
6845 
6846 void Assembler::movsbq(Register dst, Register src) {
6847   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6848   emit_int8(0x0F);
6849   emit_int8((unsigned char)0xBE);
6850   emit_int8((unsigned char)(0xC0 | encode));
6851 }
6852 
6853 void Assembler::movslq(Register dst, int32_t imm32) {
6854   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
6855   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
6856   // as a result we shouldn't use until tested at runtime...
6857   ShouldNotReachHere();
6858   InstructionMark im(this);
6859   int encode = prefixq_and_encode(dst->encoding());
6860   emit_int8((unsigned char)(0xC7 | encode));
6861   emit_int32(imm32);
6862 }
6863 
6864 void Assembler::movslq(Address dst, int32_t imm32) {
6865   assert(is_simm32(imm32), "lost bits");
6866   InstructionMark im(this);
6867   prefixq(dst);
6868   emit_int8((unsigned char)0xC7);
6869   emit_operand(rax, dst, 4);
6870   emit_int32(imm32);
6871 }
6872 
6873 void Assembler::movslq(Register dst, Address src) {
6874   InstructionMark im(this);
6875   prefixq(src, dst);
6876   emit_int8(0x63);
6877   emit_operand(dst, src);
6878 }
6879 
6880 void Assembler::movslq(Register dst, Register src) {
6881   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6882   emit_int8(0x63);
6883   emit_int8((unsigned char)(0xC0 | encode));
6884 }
6885 
6886 void Assembler::movswq(Register dst, Address src) {
6887   InstructionMark im(this);
6888   prefixq(src, dst);
6889   emit_int8(0x0F);
6890   emit_int8((unsigned char)0xBF);
6891   emit_operand(dst, src);
6892 }
6893 
6894 void Assembler::movswq(Register dst, Register src) {
6895   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6896   emit_int8((unsigned char)0x0F);
6897   emit_int8((unsigned char)0xBF);
6898   emit_int8((unsigned char)(0xC0 | encode));
6899 }
6900 
6901 void Assembler::movzbq(Register dst, Address src) {
6902   InstructionMark im(this);
6903   prefixq(src, dst);
6904   emit_int8((unsigned char)0x0F);
6905   emit_int8((unsigned char)0xB6);
6906   emit_operand(dst, src);
6907 }
6908 
6909 void Assembler::movzbq(Register dst, Register src) {
6910   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6911   emit_int8(0x0F);
6912   emit_int8((unsigned char)0xB6);
6913   emit_int8(0xC0 | encode);
6914 }
6915 
6916 void Assembler::movzwq(Register dst, Address src) {
6917   InstructionMark im(this);
6918   prefixq(src, dst);
6919   emit_int8((unsigned char)0x0F);
6920   emit_int8((unsigned char)0xB7);
6921   emit_operand(dst, src);
6922 }
6923 
6924 void Assembler::movzwq(Register dst, Register src) {
6925   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
6926   emit_int8((unsigned char)0x0F);
6927   emit_int8((unsigned char)0xB7);
6928   emit_int8((unsigned char)(0xC0 | encode));
6929 }
6930 
6931 void Assembler::mulq(Address src) {
6932   InstructionMark im(this);
6933   prefixq(src);
6934   emit_int8((unsigned char)0xF7);
6935   emit_operand(rsp, src);
6936 }
6937 
6938 void Assembler::mulq(Register src) {
6939   int encode = prefixq_and_encode(src->encoding());
6940   emit_int8((unsigned char)0xF7);
6941   emit_int8((unsigned char)(0xE0 | encode));
6942 }
6943 
6944 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
6945   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
6946   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(),
6947                                      VEX_SIMD_F2, VEX_OPCODE_0F_38, true, AVX_128bit, true, false);
6948   emit_int8((unsigned char)0xF6);
6949   emit_int8((unsigned char)(0xC0 | encode));
6950 }
6951 
6952 void Assembler::negq(Register dst) {
6953   int encode = prefixq_and_encode(dst->encoding());
6954   emit_int8((unsigned char)0xF7);
6955   emit_int8((unsigned char)(0xD8 | encode));
6956 }
6957 
6958 void Assembler::notq(Register dst) {
6959   int encode = prefixq_and_encode(dst->encoding());
6960   emit_int8((unsigned char)0xF7);
6961   emit_int8((unsigned char)(0xD0 | encode));
6962 }
6963 
6964 void Assembler::orq(Address dst, int32_t imm32) {
6965   InstructionMark im(this);
6966   prefixq(dst);
6967   emit_int8((unsigned char)0x81);
6968   emit_operand(rcx, dst, 4);
6969   emit_int32(imm32);
6970 }
6971 
6972 void Assembler::orq(Register dst, int32_t imm32) {
6973   (void) prefixq_and_encode(dst->encoding());
6974   emit_arith(0x81, 0xC8, dst, imm32);
6975 }
6976 
6977 void Assembler::orq(Register dst, Address src) {
6978   InstructionMark im(this);
6979   prefixq(src, dst);
6980   emit_int8(0x0B);
6981   emit_operand(dst, src);
6982 }
6983 
6984 void Assembler::orq(Register dst, Register src) {
6985   (void) prefixq_and_encode(dst->encoding(), src->encoding());
6986   emit_arith(0x0B, 0xC0, dst, src);
6987 }
6988 
6989 void Assembler::popa() { // 64bit
6990   movq(r15, Address(rsp, 0));
6991   movq(r14, Address(rsp, wordSize));
6992   movq(r13, Address(rsp, 2 * wordSize));
6993   movq(r12, Address(rsp, 3 * wordSize));
6994   movq(r11, Address(rsp, 4 * wordSize));
6995   movq(r10, Address(rsp, 5 * wordSize));
6996   movq(r9,  Address(rsp, 6 * wordSize));
6997   movq(r8,  Address(rsp, 7 * wordSize));
6998   movq(rdi, Address(rsp, 8 * wordSize));
6999   movq(rsi, Address(rsp, 9 * wordSize));
7000   movq(rbp, Address(rsp, 10 * wordSize));
7001   // skip rsp
7002   movq(rbx, Address(rsp, 12 * wordSize));
7003   movq(rdx, Address(rsp, 13 * wordSize));
7004   movq(rcx, Address(rsp, 14 * wordSize));
7005   movq(rax, Address(rsp, 15 * wordSize));
7006 
7007   addq(rsp, 16 * wordSize);
7008 }
7009 
7010 void Assembler::popcntq(Register dst, Address src) {
7011   assert(VM_Version::supports_popcnt(), "must support");
7012   InstructionMark im(this);
7013   emit_int8((unsigned char)0xF3);
7014   prefixq(src, dst);
7015   emit_int8((unsigned char)0x0F);
7016   emit_int8((unsigned char)0xB8);
7017   emit_operand(dst, src);
7018 }
7019 
7020 void Assembler::popcntq(Register dst, Register src) {
7021   assert(VM_Version::supports_popcnt(), "must support");
7022   emit_int8((unsigned char)0xF3);
7023   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7024   emit_int8((unsigned char)0x0F);
7025   emit_int8((unsigned char)0xB8);
7026   emit_int8((unsigned char)(0xC0 | encode));
7027 }
7028 
7029 void Assembler::popq(Address dst) {
7030   InstructionMark im(this);
7031   prefixq(dst);
7032   emit_int8((unsigned char)0x8F);
7033   emit_operand(rax, dst);
7034 }
7035 
7036 void Assembler::pusha() { // 64bit
7037   // we have to store original rsp.  ABI says that 128 bytes
7038   // below rsp are local scratch.
7039   movq(Address(rsp, -5 * wordSize), rsp);
7040 
7041   subq(rsp, 16 * wordSize);
7042 
7043   movq(Address(rsp, 15 * wordSize), rax);
7044   movq(Address(rsp, 14 * wordSize), rcx);
7045   movq(Address(rsp, 13 * wordSize), rdx);
7046   movq(Address(rsp, 12 * wordSize), rbx);
7047   // skip rsp
7048   movq(Address(rsp, 10 * wordSize), rbp);
7049   movq(Address(rsp, 9 * wordSize), rsi);
7050   movq(Address(rsp, 8 * wordSize), rdi);
7051   movq(Address(rsp, 7 * wordSize), r8);
7052   movq(Address(rsp, 6 * wordSize), r9);
7053   movq(Address(rsp, 5 * wordSize), r10);
7054   movq(Address(rsp, 4 * wordSize), r11);
7055   movq(Address(rsp, 3 * wordSize), r12);
7056   movq(Address(rsp, 2 * wordSize), r13);
7057   movq(Address(rsp, wordSize), r14);
7058   movq(Address(rsp, 0), r15);
7059 }
7060 
7061 void Assembler::pushq(Address src) {
7062   InstructionMark im(this);
7063   prefixq(src);
7064   emit_int8((unsigned char)0xFF);
7065   emit_operand(rsi, src);
7066 }
7067 
7068 void Assembler::rclq(Register dst, int imm8) {
7069   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7070   int encode = prefixq_and_encode(dst->encoding());
7071   if (imm8 == 1) {
7072     emit_int8((unsigned char)0xD1);
7073     emit_int8((unsigned char)(0xD0 | encode));
7074   } else {
7075     emit_int8((unsigned char)0xC1);
7076     emit_int8((unsigned char)(0xD0 | encode));
7077     emit_int8(imm8);
7078   }
7079 }
7080 
7081 void Assembler::rcrq(Register dst, int imm8) {
7082   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7083   int encode = prefixq_and_encode(dst->encoding());
7084   if (imm8 == 1) {
7085     emit_int8((unsigned char)0xD1);
7086     emit_int8((unsigned char)(0xD8 | encode));
7087   } else {
7088     emit_int8((unsigned char)0xC1);
7089     emit_int8((unsigned char)(0xD8 | encode));
7090     emit_int8(imm8);
7091   }
7092 }
7093 
7094 void Assembler::rorq(Register dst, int imm8) {
7095   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7096   int encode = prefixq_and_encode(dst->encoding());
7097   if (imm8 == 1) {
7098     emit_int8((unsigned char)0xD1);
7099     emit_int8((unsigned char)(0xC8 | encode));
7100   } else {
7101     emit_int8((unsigned char)0xC1);
7102     emit_int8((unsigned char)(0xc8 | encode));
7103     emit_int8(imm8);
7104   }
7105 }
7106 
7107 void Assembler::rorxq(Register dst, Register src, int imm8) {
7108   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
7109   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2,
7110                                      VEX_OPCODE_0F_3A, true, AVX_128bit, true, false);
7111   emit_int8((unsigned char)0xF0);
7112   emit_int8((unsigned char)(0xC0 | encode));
7113   emit_int8(imm8);
7114 }
7115 
7116 void Assembler::sarq(Register dst, int imm8) {
7117   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7118   int encode = prefixq_and_encode(dst->encoding());
7119   if (imm8 == 1) {
7120     emit_int8((unsigned char)0xD1);
7121     emit_int8((unsigned char)(0xF8 | encode));
7122   } else {
7123     emit_int8((unsigned char)0xC1);
7124     emit_int8((unsigned char)(0xF8 | encode));
7125     emit_int8(imm8);
7126   }
7127 }
7128 
7129 void Assembler::sarq(Register dst) {
7130   int encode = prefixq_and_encode(dst->encoding());
7131   emit_int8((unsigned char)0xD3);
7132   emit_int8((unsigned char)(0xF8 | encode));
7133 }
7134 
7135 void Assembler::sbbq(Address dst, int32_t imm32) {
7136   InstructionMark im(this);
7137   prefixq(dst);
7138   emit_arith_operand(0x81, rbx, dst, imm32);
7139 }
7140 
7141 void Assembler::sbbq(Register dst, int32_t imm32) {
7142   (void) prefixq_and_encode(dst->encoding());
7143   emit_arith(0x81, 0xD8, dst, imm32);
7144 }
7145 
7146 void Assembler::sbbq(Register dst, Address src) {
7147   InstructionMark im(this);
7148   prefixq(src, dst);
7149   emit_int8(0x1B);
7150   emit_operand(dst, src);
7151 }
7152 
7153 void Assembler::sbbq(Register dst, Register src) {
7154   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7155   emit_arith(0x1B, 0xC0, dst, src);
7156 }
7157 
7158 void Assembler::shlq(Register dst, int imm8) {
7159   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7160   int encode = prefixq_and_encode(dst->encoding());
7161   if (imm8 == 1) {
7162     emit_int8((unsigned char)0xD1);
7163     emit_int8((unsigned char)(0xE0 | encode));
7164   } else {
7165     emit_int8((unsigned char)0xC1);
7166     emit_int8((unsigned char)(0xE0 | encode));
7167     emit_int8(imm8);
7168   }
7169 }
7170 
7171 void Assembler::shlq(Register dst) {
7172   int encode = prefixq_and_encode(dst->encoding());
7173   emit_int8((unsigned char)0xD3);
7174   emit_int8((unsigned char)(0xE0 | encode));
7175 }
7176 
7177 void Assembler::shrq(Register dst, int imm8) {
7178   assert(isShiftCount(imm8 >> 1), "illegal shift count");
7179   int encode = prefixq_and_encode(dst->encoding());
7180   emit_int8((unsigned char)0xC1);
7181   emit_int8((unsigned char)(0xE8 | encode));
7182   emit_int8(imm8);
7183 }
7184 
7185 void Assembler::shrq(Register dst) {
7186   int encode = prefixq_and_encode(dst->encoding());
7187   emit_int8((unsigned char)0xD3);
7188   emit_int8(0xE8 | encode);
7189 }
7190 
7191 void Assembler::subq(Address dst, int32_t imm32) {
7192   InstructionMark im(this);
7193   prefixq(dst);
7194   emit_arith_operand(0x81, rbp, dst, imm32);
7195 }
7196 
7197 void Assembler::subq(Address dst, Register src) {
7198   InstructionMark im(this);
7199   prefixq(dst, src);
7200   emit_int8(0x29);
7201   emit_operand(src, dst);
7202 }
7203 
7204 void Assembler::subq(Register dst, int32_t imm32) {
7205   (void) prefixq_and_encode(dst->encoding());
7206   emit_arith(0x81, 0xE8, dst, imm32);
7207 }
7208 
7209 // Force generation of a 4 byte immediate value even if it fits into 8bit
7210 void Assembler::subq_imm32(Register dst, int32_t imm32) {
7211   (void) prefixq_and_encode(dst->encoding());
7212   emit_arith_imm32(0x81, 0xE8, dst, imm32);
7213 }
7214 
7215 void Assembler::subq(Register dst, Address src) {
7216   InstructionMark im(this);
7217   prefixq(src, dst);
7218   emit_int8(0x2B);
7219   emit_operand(dst, src);
7220 }
7221 
7222 void Assembler::subq(Register dst, Register src) {
7223   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7224   emit_arith(0x2B, 0xC0, dst, src);
7225 }
7226 
7227 void Assembler::testq(Register dst, int32_t imm32) {
7228   // not using emit_arith because test
7229   // doesn't support sign-extension of
7230   // 8bit operands
7231   int encode = dst->encoding();
7232   if (encode == 0) {
7233     prefix(REX_W);
7234     emit_int8((unsigned char)0xA9);
7235   } else {
7236     encode = prefixq_and_encode(encode);
7237     emit_int8((unsigned char)0xF7);
7238     emit_int8((unsigned char)(0xC0 | encode));
7239   }
7240   emit_int32(imm32);
7241 }
7242 
7243 void Assembler::testq(Register dst, Register src) {
7244   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7245   emit_arith(0x85, 0xC0, dst, src);
7246 }
7247 
7248 void Assembler::xaddq(Address dst, Register src) {
7249   InstructionMark im(this);
7250   prefixq(dst, src);
7251   emit_int8(0x0F);
7252   emit_int8((unsigned char)0xC1);
7253   emit_operand(src, dst);
7254 }
7255 
7256 void Assembler::xchgq(Register dst, Address src) {
7257   InstructionMark im(this);
7258   prefixq(src, dst);
7259   emit_int8((unsigned char)0x87);
7260   emit_operand(dst, src);
7261 }
7262 
7263 void Assembler::xchgq(Register dst, Register src) {
7264   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
7265   emit_int8((unsigned char)0x87);
7266   emit_int8((unsigned char)(0xc0 | encode));
7267 }
7268 
7269 void Assembler::xorq(Register dst, Register src) {
7270   (void) prefixq_and_encode(dst->encoding(), src->encoding());
7271   emit_arith(0x33, 0xC0, dst, src);
7272 }
7273 
7274 void Assembler::xorq(Register dst, Address src) {
7275   InstructionMark im(this);
7276   prefixq(src, dst);
7277   emit_int8(0x33);
7278   emit_operand(dst, src);
7279 }
7280 
7281 #endif // !LP64