1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1ErgoVerbose.hpp"
  38 #include "gc/g1/g1EvacFailure.hpp"
  39 #include "gc/g1/g1GCPhaseTimes.hpp"
  40 #include "gc/g1/g1Log.hpp"
  41 #include "gc/g1/g1MarkSweep.hpp"
  42 #include "gc/g1/g1OopClosures.inline.hpp"
  43 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  44 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  45 #include "gc/g1/g1RemSet.inline.hpp"
  46 #include "gc/g1/g1RootProcessor.hpp"
  47 #include "gc/g1/g1StringDedup.hpp"
  48 #include "gc/g1/g1YCTypes.hpp"
  49 #include "gc/g1/heapRegion.inline.hpp"
  50 #include "gc/g1/heapRegionRemSet.hpp"
  51 #include "gc/g1/heapRegionSet.inline.hpp"
  52 #include "gc/g1/suspendibleThreadSet.hpp"
  53 #include "gc/g1/vm_operations_g1.hpp"
  54 #include "gc/shared/gcHeapSummary.hpp"
  55 #include "gc/shared/gcLocker.inline.hpp"
  56 #include "gc/shared/gcTimer.hpp"
  57 #include "gc/shared/gcTrace.hpp"
  58 #include "gc/shared/gcTraceTime.hpp"
  59 #include "gc/shared/generationSpec.hpp"
  60 #include "gc/shared/isGCActiveMark.hpp"
  61 #include "gc/shared/referenceProcessor.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/iterator.hpp"
  65 #include "oops/oop.inline.hpp"
  66 #include "runtime/atomic.inline.hpp"
  67 #include "runtime/orderAccess.inline.hpp"
  68 #include "runtime/vmThread.hpp"
  69 #include "utilities/globalDefinitions.hpp"
  70 #include "utilities/stack.inline.hpp"
  71 
  72 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  73 
  74 // turn it on so that the contents of the young list (scan-only /
  75 // to-be-collected) are printed at "strategic" points before / during
  76 // / after the collection --- this is useful for debugging
  77 #define YOUNG_LIST_VERBOSE 0
  78 // CURRENT STATUS
  79 // This file is under construction.  Search for "FIXME".
  80 
  81 // INVARIANTS/NOTES
  82 //
  83 // All allocation activity covered by the G1CollectedHeap interface is
  84 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  85 // and allocate_new_tlab, which are the "entry" points to the
  86 // allocation code from the rest of the JVM.  (Note that this does not
  87 // apply to TLAB allocation, which is not part of this interface: it
  88 // is done by clients of this interface.)
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   bool _concurrent;
  94 public:
  95   RefineCardTableEntryClosure() : _concurrent(true) { }
  96 
  97   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  98     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
  99     // This path is executed by the concurrent refine or mutator threads,
 100     // concurrently, and so we do not care if card_ptr contains references
 101     // that point into the collection set.
 102     assert(!oops_into_cset, "should be");
 103 
 104     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 105       // Caller will actually yield.
 106       return false;
 107     }
 108     // Otherwise, we finished successfully; return true.
 109     return true;
 110   }
 111 
 112   void set_concurrent(bool b) { _concurrent = b; }
 113 };
 114 
 115 
 116 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 117  private:
 118   size_t _num_processed;
 119 
 120  public:
 121   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 122 
 123   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 124     *card_ptr = CardTableModRefBS::dirty_card_val();
 125     _num_processed++;
 126     return true;
 127   }
 128 
 129   size_t num_processed() const { return _num_processed; }
 130 };
 131 
 132 YoungList::YoungList(G1CollectedHeap* g1h) :
 133     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 134     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 135   guarantee(check_list_empty(false), "just making sure...");
 136 }
 137 
 138 void YoungList::push_region(HeapRegion *hr) {
 139   assert(!hr->is_young(), "should not already be young");
 140   assert(hr->get_next_young_region() == NULL, "cause it should!");
 141 
 142   hr->set_next_young_region(_head);
 143   _head = hr;
 144 
 145   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 146   ++_length;
 147 }
 148 
 149 void YoungList::add_survivor_region(HeapRegion* hr) {
 150   assert(hr->is_survivor(), "should be flagged as survivor region");
 151   assert(hr->get_next_young_region() == NULL, "cause it should!");
 152 
 153   hr->set_next_young_region(_survivor_head);
 154   if (_survivor_head == NULL) {
 155     _survivor_tail = hr;
 156   }
 157   _survivor_head = hr;
 158   ++_survivor_length;
 159 }
 160 
 161 void YoungList::empty_list(HeapRegion* list) {
 162   while (list != NULL) {
 163     HeapRegion* next = list->get_next_young_region();
 164     list->set_next_young_region(NULL);
 165     list->uninstall_surv_rate_group();
 166     // This is called before a Full GC and all the non-empty /
 167     // non-humongous regions at the end of the Full GC will end up as
 168     // old anyway.
 169     list->set_old();
 170     list = next;
 171   }
 172 }
 173 
 174 void YoungList::empty_list() {
 175   assert(check_list_well_formed(), "young list should be well formed");
 176 
 177   empty_list(_head);
 178   _head = NULL;
 179   _length = 0;
 180 
 181   empty_list(_survivor_head);
 182   _survivor_head = NULL;
 183   _survivor_tail = NULL;
 184   _survivor_length = 0;
 185 
 186   _last_sampled_rs_lengths = 0;
 187 
 188   assert(check_list_empty(false), "just making sure...");
 189 }
 190 
 191 bool YoungList::check_list_well_formed() {
 192   bool ret = true;
 193 
 194   uint length = 0;
 195   HeapRegion* curr = _head;
 196   HeapRegion* last = NULL;
 197   while (curr != NULL) {
 198     if (!curr->is_young()) {
 199       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 200                              "incorrectly tagged (y: %d, surv: %d)",
 201                              p2i(curr->bottom()), p2i(curr->end()),
 202                              curr->is_young(), curr->is_survivor());
 203       ret = false;
 204     }
 205     ++length;
 206     last = curr;
 207     curr = curr->get_next_young_region();
 208   }
 209   ret = ret && (length == _length);
 210 
 211   if (!ret) {
 212     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 213     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 214                            length, _length);
 215   }
 216 
 217   return ret;
 218 }
 219 
 220 bool YoungList::check_list_empty(bool check_sample) {
 221   bool ret = true;
 222 
 223   if (_length != 0) {
 224     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 225                   _length);
 226     ret = false;
 227   }
 228   if (check_sample && _last_sampled_rs_lengths != 0) {
 229     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 230     ret = false;
 231   }
 232   if (_head != NULL) {
 233     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 234     ret = false;
 235   }
 236   if (!ret) {
 237     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 238   }
 239 
 240   return ret;
 241 }
 242 
 243 void
 244 YoungList::rs_length_sampling_init() {
 245   _sampled_rs_lengths = 0;
 246   _curr               = _head;
 247 }
 248 
 249 bool
 250 YoungList::rs_length_sampling_more() {
 251   return _curr != NULL;
 252 }
 253 
 254 void
 255 YoungList::rs_length_sampling_next() {
 256   assert( _curr != NULL, "invariant" );
 257   size_t rs_length = _curr->rem_set()->occupied();
 258 
 259   _sampled_rs_lengths += rs_length;
 260 
 261   // The current region may not yet have been added to the
 262   // incremental collection set (it gets added when it is
 263   // retired as the current allocation region).
 264   if (_curr->in_collection_set()) {
 265     // Update the collection set policy information for this region
 266     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 267   }
 268 
 269   _curr = _curr->get_next_young_region();
 270   if (_curr == NULL) {
 271     _last_sampled_rs_lengths = _sampled_rs_lengths;
 272     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 273   }
 274 }
 275 
 276 void
 277 YoungList::reset_auxilary_lists() {
 278   guarantee( is_empty(), "young list should be empty" );
 279   assert(check_list_well_formed(), "young list should be well formed");
 280 
 281   // Add survivor regions to SurvRateGroup.
 282   _g1h->g1_policy()->note_start_adding_survivor_regions();
 283   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 284 
 285   int young_index_in_cset = 0;
 286   for (HeapRegion* curr = _survivor_head;
 287        curr != NULL;
 288        curr = curr->get_next_young_region()) {
 289     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 290 
 291     // The region is a non-empty survivor so let's add it to
 292     // the incremental collection set for the next evacuation
 293     // pause.
 294     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 295     young_index_in_cset += 1;
 296   }
 297   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 298   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 299 
 300   _head   = _survivor_head;
 301   _length = _survivor_length;
 302   if (_survivor_head != NULL) {
 303     assert(_survivor_tail != NULL, "cause it shouldn't be");
 304     assert(_survivor_length > 0, "invariant");
 305     _survivor_tail->set_next_young_region(NULL);
 306   }
 307 
 308   // Don't clear the survivor list handles until the start of
 309   // the next evacuation pause - we need it in order to re-tag
 310   // the survivor regions from this evacuation pause as 'young'
 311   // at the start of the next.
 312 
 313   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 314 
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 }
 317 
 318 void YoungList::print() {
 319   HeapRegion* lists[] = {_head,   _survivor_head};
 320   const char* names[] = {"YOUNG", "SURVIVOR"};
 321 
 322   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 323     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 324     HeapRegion *curr = lists[list];
 325     if (curr == NULL)
 326       gclog_or_tty->print_cr("  empty");
 327     while (curr != NULL) {
 328       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 329                              HR_FORMAT_PARAMS(curr),
 330                              p2i(curr->prev_top_at_mark_start()),
 331                              p2i(curr->next_top_at_mark_start()),
 332                              curr->age_in_surv_rate_group_cond());
 333       curr = curr->get_next_young_region();
 334     }
 335   }
 336 
 337   gclog_or_tty->cr();
 338 }
 339 
 340 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 341   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 342 }
 343 
 344 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 345   // The from card cache is not the memory that is actually committed. So we cannot
 346   // take advantage of the zero_filled parameter.
 347   reset_from_card_cache(start_idx, num_regions);
 348 }
 349 
 350 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 351 {
 352   // Claim the right to put the region on the dirty cards region list
 353   // by installing a self pointer.
 354   HeapRegion* next = hr->get_next_dirty_cards_region();
 355   if (next == NULL) {
 356     HeapRegion* res = (HeapRegion*)
 357       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 358                           NULL);
 359     if (res == NULL) {
 360       HeapRegion* head;
 361       do {
 362         // Put the region to the dirty cards region list.
 363         head = _dirty_cards_region_list;
 364         next = (HeapRegion*)
 365           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 366         if (next == head) {
 367           assert(hr->get_next_dirty_cards_region() == hr,
 368                  "hr->get_next_dirty_cards_region() != hr");
 369           if (next == NULL) {
 370             // The last region in the list points to itself.
 371             hr->set_next_dirty_cards_region(hr);
 372           } else {
 373             hr->set_next_dirty_cards_region(next);
 374           }
 375         }
 376       } while (next != head);
 377     }
 378   }
 379 }
 380 
 381 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 382 {
 383   HeapRegion* head;
 384   HeapRegion* hr;
 385   do {
 386     head = _dirty_cards_region_list;
 387     if (head == NULL) {
 388       return NULL;
 389     }
 390     HeapRegion* new_head = head->get_next_dirty_cards_region();
 391     if (head == new_head) {
 392       // The last region.
 393       new_head = NULL;
 394     }
 395     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 396                                           head);
 397   } while (hr != head);
 398   assert(hr != NULL, "invariant");
 399   hr->set_next_dirty_cards_region(NULL);
 400   return hr;
 401 }
 402 
 403 // Returns true if the reference points to an object that
 404 // can move in an incremental collection.
 405 bool G1CollectedHeap::is_scavengable(const void* p) {
 406   HeapRegion* hr = heap_region_containing(p);
 407   return !hr->is_humongous();
 408 }
 409 
 410 // Private methods.
 411 
 412 HeapRegion*
 413 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 414   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 415   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 416     if (!_secondary_free_list.is_empty()) {
 417       if (G1ConcRegionFreeingVerbose) {
 418         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 419                                "secondary_free_list has %u entries",
 420                                _secondary_free_list.length());
 421       }
 422       // It looks as if there are free regions available on the
 423       // secondary_free_list. Let's move them to the free_list and try
 424       // again to allocate from it.
 425       append_secondary_free_list();
 426 
 427       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 428              "empty we should have moved at least one entry to the free_list");
 429       HeapRegion* res = _hrm.allocate_free_region(is_old);
 430       if (G1ConcRegionFreeingVerbose) {
 431         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 432                                "allocated "HR_FORMAT" from secondary_free_list",
 433                                HR_FORMAT_PARAMS(res));
 434       }
 435       return res;
 436     }
 437 
 438     // Wait here until we get notified either when (a) there are no
 439     // more free regions coming or (b) some regions have been moved on
 440     // the secondary_free_list.
 441     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 442   }
 443 
 444   if (G1ConcRegionFreeingVerbose) {
 445     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 446                            "could not allocate from secondary_free_list");
 447   }
 448   return NULL;
 449 }
 450 
 451 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 452   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 453          "the only time we use this to allocate a humongous region is "
 454          "when we are allocating a single humongous region");
 455 
 456   HeapRegion* res;
 457   if (G1StressConcRegionFreeing) {
 458     if (!_secondary_free_list.is_empty()) {
 459       if (G1ConcRegionFreeingVerbose) {
 460         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 461                                "forced to look at the secondary_free_list");
 462       }
 463       res = new_region_try_secondary_free_list(is_old);
 464       if (res != NULL) {
 465         return res;
 466       }
 467     }
 468   }
 469 
 470   res = _hrm.allocate_free_region(is_old);
 471 
 472   if (res == NULL) {
 473     if (G1ConcRegionFreeingVerbose) {
 474       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 475                              "res == NULL, trying the secondary_free_list");
 476     }
 477     res = new_region_try_secondary_free_list(is_old);
 478   }
 479   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 480     // Currently, only attempts to allocate GC alloc regions set
 481     // do_expand to true. So, we should only reach here during a
 482     // safepoint. If this assumption changes we might have to
 483     // reconsider the use of _expand_heap_after_alloc_failure.
 484     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 485 
 486     ergo_verbose1(ErgoHeapSizing,
 487                   "attempt heap expansion",
 488                   ergo_format_reason("region allocation request failed")
 489                   ergo_format_byte("allocation request"),
 490                   word_size * HeapWordSize);
 491     if (expand(word_size * HeapWordSize)) {
 492       // Given that expand() succeeded in expanding the heap, and we
 493       // always expand the heap by an amount aligned to the heap
 494       // region size, the free list should in theory not be empty.
 495       // In either case allocate_free_region() will check for NULL.
 496       res = _hrm.allocate_free_region(is_old);
 497     } else {
 498       _expand_heap_after_alloc_failure = false;
 499     }
 500   }
 501   return res;
 502 }
 503 
 504 HeapWord*
 505 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 506                                                            uint num_regions,
 507                                                            size_t word_size,
 508                                                            AllocationContext_t context) {
 509   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 510   assert(is_humongous(word_size), "word_size should be humongous");
 511   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 512 
 513   // Index of last region in the series + 1.
 514   uint last = first + num_regions;
 515 
 516   // We need to initialize the region(s) we just discovered. This is
 517   // a bit tricky given that it can happen concurrently with
 518   // refinement threads refining cards on these regions and
 519   // potentially wanting to refine the BOT as they are scanning
 520   // those cards (this can happen shortly after a cleanup; see CR
 521   // 6991377). So we have to set up the region(s) carefully and in
 522   // a specific order.
 523 
 524   // The word size sum of all the regions we will allocate.
 525   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 526   assert(word_size <= word_size_sum, "sanity");
 527 
 528   // This will be the "starts humongous" region.
 529   HeapRegion* first_hr = region_at(first);
 530   // The header of the new object will be placed at the bottom of
 531   // the first region.
 532   HeapWord* new_obj = first_hr->bottom();
 533   // This will be the new end of the first region in the series that
 534   // should also match the end of the last region in the series.
 535   HeapWord* new_end = new_obj + word_size_sum;
 536   // This will be the new top of the first region that will reflect
 537   // this allocation.
 538   HeapWord* new_top = new_obj + word_size;
 539 
 540   // First, we need to zero the header of the space that we will be
 541   // allocating. When we update top further down, some refinement
 542   // threads might try to scan the region. By zeroing the header we
 543   // ensure that any thread that will try to scan the region will
 544   // come across the zero klass word and bail out.
 545   //
 546   // NOTE: It would not have been correct to have used
 547   // CollectedHeap::fill_with_object() and make the space look like
 548   // an int array. The thread that is doing the allocation will
 549   // later update the object header to a potentially different array
 550   // type and, for a very short period of time, the klass and length
 551   // fields will be inconsistent. This could cause a refinement
 552   // thread to calculate the object size incorrectly.
 553   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 554 
 555   // We will set up the first region as "starts humongous". This
 556   // will also update the BOT covering all the regions to reflect
 557   // that there is a single object that starts at the bottom of the
 558   // first region.
 559   first_hr->set_starts_humongous(new_top, new_end);
 560   first_hr->set_allocation_context(context);
 561   // Then, if there are any, we will set up the "continues
 562   // humongous" regions.
 563   HeapRegion* hr = NULL;
 564   for (uint i = first + 1; i < last; ++i) {
 565     hr = region_at(i);
 566     hr->set_continues_humongous(first_hr);
 567     hr->set_allocation_context(context);
 568   }
 569   // If we have "continues humongous" regions (hr != NULL), then the
 570   // end of the last one should match new_end.
 571   assert(hr == NULL || hr->end() == new_end, "sanity");
 572 
 573   // Up to this point no concurrent thread would have been able to
 574   // do any scanning on any region in this series. All the top
 575   // fields still point to bottom, so the intersection between
 576   // [bottom,top] and [card_start,card_end] will be empty. Before we
 577   // update the top fields, we'll do a storestore to make sure that
 578   // no thread sees the update to top before the zeroing of the
 579   // object header and the BOT initialization.
 580   OrderAccess::storestore();
 581 
 582   // Now that the BOT and the object header have been initialized,
 583   // we can update top of the "starts humongous" region.
 584   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 585          "new_top should be in this region");
 586   first_hr->set_top(new_top);
 587   if (_hr_printer.is_active()) {
 588     HeapWord* bottom = first_hr->bottom();
 589     HeapWord* end = first_hr->orig_end();
 590     if ((first + 1) == last) {
 591       // the series has a single humongous region
 592       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 593     } else {
 594       // the series has more than one humongous regions
 595       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 596     }
 597   }
 598 
 599   // Now, we will update the top fields of the "continues humongous"
 600   // regions. The reason we need to do this is that, otherwise,
 601   // these regions would look empty and this will confuse parts of
 602   // G1. For example, the code that looks for a consecutive number
 603   // of empty regions will consider them empty and try to
 604   // re-allocate them. We can extend is_empty() to also include
 605   // !is_continues_humongous(), but it is easier to just update the top
 606   // fields here. The way we set top for all regions (i.e., top ==
 607   // end for all regions but the last one, top == new_top for the
 608   // last one) is actually used when we will free up the humongous
 609   // region in free_humongous_region().
 610   hr = NULL;
 611   for (uint i = first + 1; i < last; ++i) {
 612     hr = region_at(i);
 613     if ((i + 1) == last) {
 614       // last continues humongous region
 615       assert(hr->bottom() < new_top && new_top <= hr->end(),
 616              "new_top should fall on this region");
 617       hr->set_top(new_top);
 618       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 619     } else {
 620       // not last one
 621       assert(new_top > hr->end(), "new_top should be above this region");
 622       hr->set_top(hr->end());
 623       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 624     }
 625   }
 626   // If we have continues humongous regions (hr != NULL), then the
 627   // end of the last one should match new_end and its top should
 628   // match new_top.
 629   assert(hr == NULL ||
 630          (hr->end() == new_end && hr->top() == new_top), "sanity");
 631   check_bitmaps("Humongous Region Allocation", first_hr);
 632 
 633   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 634   _allocator->increase_used(first_hr->used());
 635   _humongous_set.add(first_hr);
 636 
 637   return new_obj;
 638 }
 639 
 640 // If could fit into free regions w/o expansion, try.
 641 // Otherwise, if can expand, do so.
 642 // Otherwise, if using ex regions might help, try with ex given back.
 643 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 644   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 645 
 646   verify_region_sets_optional();
 647 
 648   uint first = G1_NO_HRM_INDEX;
 649   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 650 
 651   if (obj_regions == 1) {
 652     // Only one region to allocate, try to use a fast path by directly allocating
 653     // from the free lists. Do not try to expand here, we will potentially do that
 654     // later.
 655     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 656     if (hr != NULL) {
 657       first = hr->hrm_index();
 658     }
 659   } else {
 660     // We can't allocate humongous regions spanning more than one region while
 661     // cleanupComplete() is running, since some of the regions we find to be
 662     // empty might not yet be added to the free list. It is not straightforward
 663     // to know in which list they are on so that we can remove them. We only
 664     // need to do this if we need to allocate more than one region to satisfy the
 665     // current humongous allocation request. If we are only allocating one region
 666     // we use the one-region region allocation code (see above), that already
 667     // potentially waits for regions from the secondary free list.
 668     wait_while_free_regions_coming();
 669     append_secondary_free_list_if_not_empty_with_lock();
 670 
 671     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 672     // are lucky enough to find some.
 673     first = _hrm.find_contiguous_only_empty(obj_regions);
 674     if (first != G1_NO_HRM_INDEX) {
 675       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 676     }
 677   }
 678 
 679   if (first == G1_NO_HRM_INDEX) {
 680     // Policy: We could not find enough regions for the humongous object in the
 681     // free list. Look through the heap to find a mix of free and uncommitted regions.
 682     // If so, try expansion.
 683     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 684     if (first != G1_NO_HRM_INDEX) {
 685       // We found something. Make sure these regions are committed, i.e. expand
 686       // the heap. Alternatively we could do a defragmentation GC.
 687       ergo_verbose1(ErgoHeapSizing,
 688                     "attempt heap expansion",
 689                     ergo_format_reason("humongous allocation request failed")
 690                     ergo_format_byte("allocation request"),
 691                     word_size * HeapWordSize);
 692 
 693       _hrm.expand_at(first, obj_regions);
 694       g1_policy()->record_new_heap_size(num_regions());
 695 
 696 #ifdef ASSERT
 697       for (uint i = first; i < first + obj_regions; ++i) {
 698         HeapRegion* hr = region_at(i);
 699         assert(hr->is_free(), "sanity");
 700         assert(hr->is_empty(), "sanity");
 701         assert(is_on_master_free_list(hr), "sanity");
 702       }
 703 #endif
 704       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 705     } else {
 706       // Policy: Potentially trigger a defragmentation GC.
 707     }
 708   }
 709 
 710   HeapWord* result = NULL;
 711   if (first != G1_NO_HRM_INDEX) {
 712     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 713                                                        word_size, context);
 714     assert(result != NULL, "it should always return a valid result");
 715 
 716     // A successful humongous object allocation changes the used space
 717     // information of the old generation so we need to recalculate the
 718     // sizes and update the jstat counters here.
 719     g1mm()->update_sizes();
 720   }
 721 
 722   verify_region_sets_optional();
 723 
 724   return result;
 725 }
 726 
 727 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 728   assert_heap_not_locked_and_not_at_safepoint();
 729   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 730 
 731   uint dummy_gc_count_before;
 732   uint dummy_gclocker_retry_count = 0;
 733   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 734 }
 735 
 736 HeapWord*
 737 G1CollectedHeap::mem_allocate(size_t word_size,
 738                               bool*  gc_overhead_limit_was_exceeded) {
 739   assert_heap_not_locked_and_not_at_safepoint();
 740 
 741   // Loop until the allocation is satisfied, or unsatisfied after GC.
 742   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 743     uint gc_count_before;
 744 
 745     HeapWord* result = NULL;
 746     if (!is_humongous(word_size)) {
 747       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 748     } else {
 749       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 750     }
 751     if (result != NULL) {
 752       return result;
 753     }
 754 
 755     // Create the garbage collection operation...
 756     VM_G1CollectForAllocation op(gc_count_before, word_size);
 757     op.set_allocation_context(AllocationContext::current());
 758 
 759     // ...and get the VM thread to execute it.
 760     VMThread::execute(&op);
 761 
 762     if (op.prologue_succeeded() && op.pause_succeeded()) {
 763       // If the operation was successful we'll return the result even
 764       // if it is NULL. If the allocation attempt failed immediately
 765       // after a Full GC, it's unlikely we'll be able to allocate now.
 766       HeapWord* result = op.result();
 767       if (result != NULL && !is_humongous(word_size)) {
 768         // Allocations that take place on VM operations do not do any
 769         // card dirtying and we have to do it here. We only have to do
 770         // this for non-humongous allocations, though.
 771         dirty_young_block(result, word_size);
 772       }
 773       return result;
 774     } else {
 775       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 776         return NULL;
 777       }
 778       assert(op.result() == NULL,
 779              "the result should be NULL if the VM op did not succeed");
 780     }
 781 
 782     // Give a warning if we seem to be looping forever.
 783     if ((QueuedAllocationWarningCount > 0) &&
 784         (try_count % QueuedAllocationWarningCount == 0)) {
 785       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 786     }
 787   }
 788 
 789   ShouldNotReachHere();
 790   return NULL;
 791 }
 792 
 793 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 794                                                    AllocationContext_t context,
 795                                                    uint* gc_count_before_ret,
 796                                                    uint* gclocker_retry_count_ret) {
 797   // Make sure you read the note in attempt_allocation_humongous().
 798 
 799   assert_heap_not_locked_and_not_at_safepoint();
 800   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 801          "be called for humongous allocation requests");
 802 
 803   // We should only get here after the first-level allocation attempt
 804   // (attempt_allocation()) failed to allocate.
 805 
 806   // We will loop until a) we manage to successfully perform the
 807   // allocation or b) we successfully schedule a collection which
 808   // fails to perform the allocation. b) is the only case when we'll
 809   // return NULL.
 810   HeapWord* result = NULL;
 811   for (int try_count = 1; /* we'll return */; try_count += 1) {
 812     bool should_try_gc;
 813     uint gc_count_before;
 814 
 815     {
 816       MutexLockerEx x(Heap_lock);
 817       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 818                                                                                     false /* bot_updates */);
 819       if (result != NULL) {
 820         return result;
 821       }
 822 
 823       // If we reach here, attempt_allocation_locked() above failed to
 824       // allocate a new region. So the mutator alloc region should be NULL.
 825       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 826 
 827       if (GC_locker::is_active_and_needs_gc()) {
 828         if (g1_policy()->can_expand_young_list()) {
 829           // No need for an ergo verbose message here,
 830           // can_expand_young_list() does this when it returns true.
 831           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 832                                                                                        false /* bot_updates */);
 833           if (result != NULL) {
 834             return result;
 835           }
 836         }
 837         should_try_gc = false;
 838       } else {
 839         // The GCLocker may not be active but the GCLocker initiated
 840         // GC may not yet have been performed (GCLocker::needs_gc()
 841         // returns true). In this case we do not try this GC and
 842         // wait until the GCLocker initiated GC is performed, and
 843         // then retry the allocation.
 844         if (GC_locker::needs_gc()) {
 845           should_try_gc = false;
 846         } else {
 847           // Read the GC count while still holding the Heap_lock.
 848           gc_count_before = total_collections();
 849           should_try_gc = true;
 850         }
 851       }
 852     }
 853 
 854     if (should_try_gc) {
 855       bool succeeded;
 856       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 857                                    GCCause::_g1_inc_collection_pause);
 858       if (result != NULL) {
 859         assert(succeeded, "only way to get back a non-NULL result");
 860         return result;
 861       }
 862 
 863       if (succeeded) {
 864         // If we get here we successfully scheduled a collection which
 865         // failed to allocate. No point in trying to allocate
 866         // further. We'll just return NULL.
 867         MutexLockerEx x(Heap_lock);
 868         *gc_count_before_ret = total_collections();
 869         return NULL;
 870       }
 871     } else {
 872       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 873         MutexLockerEx x(Heap_lock);
 874         *gc_count_before_ret = total_collections();
 875         return NULL;
 876       }
 877       // The GCLocker is either active or the GCLocker initiated
 878       // GC has not yet been performed. Stall until it is and
 879       // then retry the allocation.
 880       GC_locker::stall_until_clear();
 881       (*gclocker_retry_count_ret) += 1;
 882     }
 883 
 884     // We can reach here if we were unsuccessful in scheduling a
 885     // collection (because another thread beat us to it) or if we were
 886     // stalled due to the GC locker. In either can we should retry the
 887     // allocation attempt in case another thread successfully
 888     // performed a collection and reclaimed enough space. We do the
 889     // first attempt (without holding the Heap_lock) here and the
 890     // follow-on attempt will be at the start of the next loop
 891     // iteration (after taking the Heap_lock).
 892     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 893                                                                            false /* bot_updates */);
 894     if (result != NULL) {
 895       return result;
 896     }
 897 
 898     // Give a warning if we seem to be looping forever.
 899     if ((QueuedAllocationWarningCount > 0) &&
 900         (try_count % QueuedAllocationWarningCount == 0)) {
 901       warning("G1CollectedHeap::attempt_allocation_slow() "
 902               "retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 911                                                         uint* gc_count_before_ret,
 912                                                         uint* gclocker_retry_count_ret) {
 913   // The structure of this method has a lot of similarities to
 914   // attempt_allocation_slow(). The reason these two were not merged
 915   // into a single one is that such a method would require several "if
 916   // allocation is not humongous do this, otherwise do that"
 917   // conditional paths which would obscure its flow. In fact, an early
 918   // version of this code did use a unified method which was harder to
 919   // follow and, as a result, it had subtle bugs that were hard to
 920   // track down. So keeping these two methods separate allows each to
 921   // be more readable. It will be good to keep these two in sync as
 922   // much as possible.
 923 
 924   assert_heap_not_locked_and_not_at_safepoint();
 925   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 926          "should only be called for humongous allocations");
 927 
 928   // Humongous objects can exhaust the heap quickly, so we should check if we
 929   // need to start a marking cycle at each humongous object allocation. We do
 930   // the check before we do the actual allocation. The reason for doing it
 931   // before the allocation is that we avoid having to keep track of the newly
 932   // allocated memory while we do a GC.
 933   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 934                                            word_size)) {
 935     collect(GCCause::_g1_humongous_allocation);
 936   }
 937 
 938   // We will loop until a) we manage to successfully perform the
 939   // allocation or b) we successfully schedule a collection which
 940   // fails to perform the allocation. b) is the only case when we'll
 941   // return NULL.
 942   HeapWord* result = NULL;
 943   for (int try_count = 1; /* we'll return */; try_count += 1) {
 944     bool should_try_gc;
 945     uint gc_count_before;
 946 
 947     {
 948       MutexLockerEx x(Heap_lock);
 949 
 950       // Given that humongous objects are not allocated in young
 951       // regions, we'll first try to do the allocation without doing a
 952       // collection hoping that there's enough space in the heap.
 953       result = humongous_obj_allocate(word_size, AllocationContext::current());
 954       if (result != NULL) {
 955         return result;
 956       }
 957 
 958       if (GC_locker::is_active_and_needs_gc()) {
 959         should_try_gc = false;
 960       } else {
 961          // The GCLocker may not be active but the GCLocker initiated
 962         // GC may not yet have been performed (GCLocker::needs_gc()
 963         // returns true). In this case we do not try this GC and
 964         // wait until the GCLocker initiated GC is performed, and
 965         // then retry the allocation.
 966         if (GC_locker::needs_gc()) {
 967           should_try_gc = false;
 968         } else {
 969           // Read the GC count while still holding the Heap_lock.
 970           gc_count_before = total_collections();
 971           should_try_gc = true;
 972         }
 973       }
 974     }
 975 
 976     if (should_try_gc) {
 977       // If we failed to allocate the humongous object, we should try to
 978       // do a collection pause (if we're allowed) in case it reclaims
 979       // enough space for the allocation to succeed after the pause.
 980 
 981       bool succeeded;
 982       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 983                                    GCCause::_g1_humongous_allocation);
 984       if (result != NULL) {
 985         assert(succeeded, "only way to get back a non-NULL result");
 986         return result;
 987       }
 988 
 989       if (succeeded) {
 990         // If we get here we successfully scheduled a collection which
 991         // failed to allocate. No point in trying to allocate
 992         // further. We'll just return NULL.
 993         MutexLockerEx x(Heap_lock);
 994         *gc_count_before_ret = total_collections();
 995         return NULL;
 996       }
 997     } else {
 998       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 999         MutexLockerEx x(Heap_lock);
1000         *gc_count_before_ret = total_collections();
1001         return NULL;
1002       }
1003       // The GCLocker is either active or the GCLocker initiated
1004       // GC has not yet been performed. Stall until it is and
1005       // then retry the allocation.
1006       GC_locker::stall_until_clear();
1007       (*gclocker_retry_count_ret) += 1;
1008     }
1009 
1010     // We can reach here if we were unsuccessful in scheduling a
1011     // collection (because another thread beat us to it) or if we were
1012     // stalled due to the GC locker. In either can we should retry the
1013     // allocation attempt in case another thread successfully
1014     // performed a collection and reclaimed enough space.  Give a
1015     // warning if we seem to be looping forever.
1016 
1017     if ((QueuedAllocationWarningCount > 0) &&
1018         (try_count % QueuedAllocationWarningCount == 0)) {
1019       warning("G1CollectedHeap::attempt_allocation_humongous() "
1020               "retries %d times", try_count);
1021     }
1022   }
1023 
1024   ShouldNotReachHere();
1025   return NULL;
1026 }
1027 
1028 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1029                                                            AllocationContext_t context,
1030                                                            bool expect_null_mutator_alloc_region) {
1031   assert_at_safepoint(true /* should_be_vm_thread */);
1032   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1033                                              !expect_null_mutator_alloc_region,
1034          "the current alloc region was unexpectedly found to be non-NULL");
1035 
1036   if (!is_humongous(word_size)) {
1037     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1038                                                       false /* bot_updates */);
1039   } else {
1040     HeapWord* result = humongous_obj_allocate(word_size, context);
1041     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1042       g1_policy()->set_initiate_conc_mark_if_possible();
1043     }
1044     return result;
1045   }
1046 
1047   ShouldNotReachHere();
1048 }
1049 
1050 class PostMCRemSetClearClosure: public HeapRegionClosure {
1051   G1CollectedHeap* _g1h;
1052   ModRefBarrierSet* _mr_bs;
1053 public:
1054   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1055     _g1h(g1h), _mr_bs(mr_bs) {}
1056 
1057   bool doHeapRegion(HeapRegion* r) {
1058     HeapRegionRemSet* hrrs = r->rem_set();
1059 
1060     if (r->is_continues_humongous()) {
1061       // We'll assert that the strong code root list and RSet is empty
1062       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1063       assert(hrrs->occupied() == 0, "RSet should be empty");
1064       return false;
1065     }
1066 
1067     _g1h->reset_gc_time_stamps(r);
1068     hrrs->clear();
1069     // You might think here that we could clear just the cards
1070     // corresponding to the used region.  But no: if we leave a dirty card
1071     // in a region we might allocate into, then it would prevent that card
1072     // from being enqueued, and cause it to be missed.
1073     // Re: the performance cost: we shouldn't be doing full GC anyway!
1074     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1075 
1076     return false;
1077   }
1078 };
1079 
1080 void G1CollectedHeap::clear_rsets_post_compaction() {
1081   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1082   heap_region_iterate(&rs_clear);
1083 }
1084 
1085 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1086   G1CollectedHeap*   _g1h;
1087   UpdateRSOopClosure _cl;
1088 public:
1089   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1090     _cl(g1->g1_rem_set(), worker_i),
1091     _g1h(g1)
1092   { }
1093 
1094   bool doHeapRegion(HeapRegion* r) {
1095     if (!r->is_continues_humongous()) {
1096       _cl.set_from(r);
1097       r->oop_iterate(&_cl);
1098     }
1099     return false;
1100   }
1101 };
1102 
1103 class ParRebuildRSTask: public AbstractGangTask {
1104   G1CollectedHeap* _g1;
1105   HeapRegionClaimer _hrclaimer;
1106 
1107 public:
1108   ParRebuildRSTask(G1CollectedHeap* g1) :
1109       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1110 
1111   void work(uint worker_id) {
1112     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1113     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1114   }
1115 };
1116 
1117 class PostCompactionPrinterClosure: public HeapRegionClosure {
1118 private:
1119   G1HRPrinter* _hr_printer;
1120 public:
1121   bool doHeapRegion(HeapRegion* hr) {
1122     assert(!hr->is_young(), "not expecting to find young regions");
1123     if (hr->is_free()) {
1124       // We only generate output for non-empty regions.
1125     } else if (hr->is_starts_humongous()) {
1126       if (hr->region_num() == 1) {
1127         // single humongous region
1128         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1129       } else {
1130         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1131       }
1132     } else if (hr->is_continues_humongous()) {
1133       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1134     } else if (hr->is_old()) {
1135       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1136     } else {
1137       ShouldNotReachHere();
1138     }
1139     return false;
1140   }
1141 
1142   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1143     : _hr_printer(hr_printer) { }
1144 };
1145 
1146 void G1CollectedHeap::print_hrm_post_compaction() {
1147   PostCompactionPrinterClosure cl(hr_printer());
1148   heap_region_iterate(&cl);
1149 }
1150 
1151 bool G1CollectedHeap::do_collection(bool explicit_gc,
1152                                     bool clear_all_soft_refs,
1153                                     size_t word_size) {
1154   assert_at_safepoint(true /* should_be_vm_thread */);
1155 
1156   if (GC_locker::check_active_before_gc()) {
1157     return false;
1158   }
1159 
1160   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1161   gc_timer->register_gc_start();
1162 
1163   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1164   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1165 
1166   SvcGCMarker sgcm(SvcGCMarker::FULL);
1167   ResourceMark rm;
1168 
1169   G1Log::update_level();
1170   print_heap_before_gc();
1171   trace_heap_before_gc(gc_tracer);
1172 
1173   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1174 
1175   verify_region_sets_optional();
1176 
1177   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1178                            collector_policy()->should_clear_all_soft_refs();
1179 
1180   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1181 
1182   {
1183     IsGCActiveMark x;
1184 
1185     // Timing
1186     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1187     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1188 
1189     {
1190       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1191       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1192       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1193 
1194       g1_policy()->record_full_collection_start();
1195 
1196       // Note: When we have a more flexible GC logging framework that
1197       // allows us to add optional attributes to a GC log record we
1198       // could consider timing and reporting how long we wait in the
1199       // following two methods.
1200       wait_while_free_regions_coming();
1201       // If we start the compaction before the CM threads finish
1202       // scanning the root regions we might trip them over as we'll
1203       // be moving objects / updating references. So let's wait until
1204       // they are done. By telling them to abort, they should complete
1205       // early.
1206       _cm->root_regions()->abort();
1207       _cm->root_regions()->wait_until_scan_finished();
1208       append_secondary_free_list_if_not_empty_with_lock();
1209 
1210       gc_prologue(true);
1211       increment_total_collections(true /* full gc */);
1212       increment_old_marking_cycles_started();
1213 
1214       assert(used() == recalculate_used(), "Should be equal");
1215 
1216       verify_before_gc();
1217 
1218       check_bitmaps("Full GC Start");
1219       pre_full_gc_dump(gc_timer);
1220 
1221       COMPILER2_PRESENT(DerivedPointerTable::clear());
1222 
1223       // Disable discovery and empty the discovered lists
1224       // for the CM ref processor.
1225       ref_processor_cm()->disable_discovery();
1226       ref_processor_cm()->abandon_partial_discovery();
1227       ref_processor_cm()->verify_no_references_recorded();
1228 
1229       // Abandon current iterations of concurrent marking and concurrent
1230       // refinement, if any are in progress. We have to do this before
1231       // wait_until_scan_finished() below.
1232       concurrent_mark()->abort();
1233 
1234       // Make sure we'll choose a new allocation region afterwards.
1235       _allocator->release_mutator_alloc_region();
1236       _allocator->abandon_gc_alloc_regions();
1237       g1_rem_set()->cleanupHRRS();
1238 
1239       // We should call this after we retire any currently active alloc
1240       // regions so that all the ALLOC / RETIRE events are generated
1241       // before the start GC event.
1242       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1243 
1244       // We may have added regions to the current incremental collection
1245       // set between the last GC or pause and now. We need to clear the
1246       // incremental collection set and then start rebuilding it afresh
1247       // after this full GC.
1248       abandon_collection_set(g1_policy()->inc_cset_head());
1249       g1_policy()->clear_incremental_cset();
1250       g1_policy()->stop_incremental_cset_building();
1251 
1252       tear_down_region_sets(false /* free_list_only */);
1253       g1_policy()->set_gcs_are_young(true);
1254 
1255       // See the comments in g1CollectedHeap.hpp and
1256       // G1CollectedHeap::ref_processing_init() about
1257       // how reference processing currently works in G1.
1258 
1259       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1260       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1261 
1262       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1263       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1264 
1265       ref_processor_stw()->enable_discovery();
1266       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1267 
1268       // Do collection work
1269       {
1270         HandleMark hm;  // Discard invalid handles created during gc
1271         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1272       }
1273 
1274       assert(num_free_regions() == 0, "we should not have added any free regions");
1275       rebuild_region_sets(false /* free_list_only */);
1276 
1277       // Enqueue any discovered reference objects that have
1278       // not been removed from the discovered lists.
1279       ref_processor_stw()->enqueue_discovered_references();
1280 
1281       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1282 
1283       MemoryService::track_memory_usage();
1284 
1285       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1286       ref_processor_stw()->verify_no_references_recorded();
1287 
1288       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1289       ClassLoaderDataGraph::purge();
1290       MetaspaceAux::verify_metrics();
1291 
1292       // Note: since we've just done a full GC, concurrent
1293       // marking is no longer active. Therefore we need not
1294       // re-enable reference discovery for the CM ref processor.
1295       // That will be done at the start of the next marking cycle.
1296       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1297       ref_processor_cm()->verify_no_references_recorded();
1298 
1299       reset_gc_time_stamp();
1300       // Since everything potentially moved, we will clear all remembered
1301       // sets, and clear all cards.  Later we will rebuild remembered
1302       // sets. We will also reset the GC time stamps of the regions.
1303       clear_rsets_post_compaction();
1304       check_gc_time_stamps();
1305 
1306       // Resize the heap if necessary.
1307       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1308 
1309       if (_hr_printer.is_active()) {
1310         // We should do this after we potentially resize the heap so
1311         // that all the COMMIT / UNCOMMIT events are generated before
1312         // the end GC event.
1313 
1314         print_hrm_post_compaction();
1315         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1316       }
1317 
1318       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1319       if (hot_card_cache->use_cache()) {
1320         hot_card_cache->reset_card_counts();
1321         hot_card_cache->reset_hot_cache();
1322       }
1323 
1324       // Rebuild remembered sets of all regions.
1325       uint n_workers =
1326         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1327                                                 workers()->active_workers(),
1328                                                 Threads::number_of_non_daemon_threads());
1329       workers()->set_active_workers(n_workers);
1330 
1331       ParRebuildRSTask rebuild_rs_task(this);
1332       workers()->run_task(&rebuild_rs_task);
1333 
1334       // Rebuild the strong code root lists for each region
1335       rebuild_strong_code_roots();
1336 
1337       if (true) { // FIXME
1338         MetaspaceGC::compute_new_size();
1339       }
1340 
1341 #ifdef TRACESPINNING
1342       ParallelTaskTerminator::print_termination_counts();
1343 #endif
1344 
1345       // Discard all rset updates
1346       JavaThread::dirty_card_queue_set().abandon_logs();
1347       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1348 
1349       _young_list->reset_sampled_info();
1350       // At this point there should be no regions in the
1351       // entire heap tagged as young.
1352       assert(check_young_list_empty(true /* check_heap */),
1353              "young list should be empty at this point");
1354 
1355       // Update the number of full collections that have been completed.
1356       increment_old_marking_cycles_completed(false /* concurrent */);
1357 
1358       _hrm.verify_optional();
1359       verify_region_sets_optional();
1360 
1361       verify_after_gc();
1362 
1363       // Clear the previous marking bitmap, if needed for bitmap verification.
1364       // Note we cannot do this when we clear the next marking bitmap in
1365       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1366       // objects marked during a full GC against the previous bitmap.
1367       // But we need to clear it before calling check_bitmaps below since
1368       // the full GC has compacted objects and updated TAMS but not updated
1369       // the prev bitmap.
1370       if (G1VerifyBitmaps) {
1371         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1372       }
1373       check_bitmaps("Full GC End");
1374 
1375       // Start a new incremental collection set for the next pause
1376       assert(g1_policy()->collection_set() == NULL, "must be");
1377       g1_policy()->start_incremental_cset_building();
1378 
1379       clear_cset_fast_test();
1380 
1381       _allocator->init_mutator_alloc_region();
1382 
1383       g1_policy()->record_full_collection_end();
1384 
1385       if (G1Log::fine()) {
1386         g1_policy()->print_heap_transition();
1387       }
1388 
1389       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1390       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1391       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1392       // before any GC notifications are raised.
1393       g1mm()->update_sizes();
1394 
1395       gc_epilogue(true);
1396     }
1397 
1398     if (G1Log::finer()) {
1399       g1_policy()->print_detailed_heap_transition(true /* full */);
1400     }
1401 
1402     print_heap_after_gc();
1403     trace_heap_after_gc(gc_tracer);
1404 
1405     post_full_gc_dump(gc_timer);
1406 
1407     gc_timer->register_gc_end();
1408     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1409   }
1410 
1411   return true;
1412 }
1413 
1414 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1415   // do_collection() will return whether it succeeded in performing
1416   // the GC. Currently, there is no facility on the
1417   // do_full_collection() API to notify the caller than the collection
1418   // did not succeed (e.g., because it was locked out by the GC
1419   // locker). So, right now, we'll ignore the return value.
1420   bool dummy = do_collection(true,                /* explicit_gc */
1421                              clear_all_soft_refs,
1422                              0                    /* word_size */);
1423 }
1424 
1425 // This code is mostly copied from TenuredGeneration.
1426 void
1427 G1CollectedHeap::
1428 resize_if_necessary_after_full_collection(size_t word_size) {
1429   // Include the current allocation, if any, and bytes that will be
1430   // pre-allocated to support collections, as "used".
1431   const size_t used_after_gc = used();
1432   const size_t capacity_after_gc = capacity();
1433   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1434 
1435   // This is enforced in arguments.cpp.
1436   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1437          "otherwise the code below doesn't make sense");
1438 
1439   // We don't have floating point command-line arguments
1440   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1441   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1442   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1443   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1444 
1445   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1446   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1447 
1448   // We have to be careful here as these two calculations can overflow
1449   // 32-bit size_t's.
1450   double used_after_gc_d = (double) used_after_gc;
1451   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1452   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1453 
1454   // Let's make sure that they are both under the max heap size, which
1455   // by default will make them fit into a size_t.
1456   double desired_capacity_upper_bound = (double) max_heap_size;
1457   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1458                                     desired_capacity_upper_bound);
1459   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1460                                     desired_capacity_upper_bound);
1461 
1462   // We can now safely turn them into size_t's.
1463   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1464   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1465 
1466   // This assert only makes sense here, before we adjust them
1467   // with respect to the min and max heap size.
1468   assert(minimum_desired_capacity <= maximum_desired_capacity,
1469          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1470                  "maximum_desired_capacity = "SIZE_FORMAT,
1471                  minimum_desired_capacity, maximum_desired_capacity));
1472 
1473   // Should not be greater than the heap max size. No need to adjust
1474   // it with respect to the heap min size as it's a lower bound (i.e.,
1475   // we'll try to make the capacity larger than it, not smaller).
1476   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1477   // Should not be less than the heap min size. No need to adjust it
1478   // with respect to the heap max size as it's an upper bound (i.e.,
1479   // we'll try to make the capacity smaller than it, not greater).
1480   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1481 
1482   if (capacity_after_gc < minimum_desired_capacity) {
1483     // Don't expand unless it's significant
1484     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1485     ergo_verbose4(ErgoHeapSizing,
1486                   "attempt heap expansion",
1487                   ergo_format_reason("capacity lower than "
1488                                      "min desired capacity after Full GC")
1489                   ergo_format_byte("capacity")
1490                   ergo_format_byte("occupancy")
1491                   ergo_format_byte_perc("min desired capacity"),
1492                   capacity_after_gc, used_after_gc,
1493                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1494     expand(expand_bytes);
1495 
1496     // No expansion, now see if we want to shrink
1497   } else if (capacity_after_gc > maximum_desired_capacity) {
1498     // Capacity too large, compute shrinking size
1499     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1500     ergo_verbose4(ErgoHeapSizing,
1501                   "attempt heap shrinking",
1502                   ergo_format_reason("capacity higher than "
1503                                      "max desired capacity after Full GC")
1504                   ergo_format_byte("capacity")
1505                   ergo_format_byte("occupancy")
1506                   ergo_format_byte_perc("max desired capacity"),
1507                   capacity_after_gc, used_after_gc,
1508                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1509     shrink(shrink_bytes);
1510   }
1511 }
1512 
1513 
1514 HeapWord*
1515 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1516                                            AllocationContext_t context,
1517                                            bool* succeeded) {
1518   assert_at_safepoint(true /* should_be_vm_thread */);
1519 
1520   *succeeded = true;
1521   // Let's attempt the allocation first.
1522   HeapWord* result =
1523     attempt_allocation_at_safepoint(word_size,
1524                                     context,
1525                                     false /* expect_null_mutator_alloc_region */);
1526   if (result != NULL) {
1527     assert(*succeeded, "sanity");
1528     return result;
1529   }
1530 
1531   // In a G1 heap, we're supposed to keep allocation from failing by
1532   // incremental pauses.  Therefore, at least for now, we'll favor
1533   // expansion over collection.  (This might change in the future if we can
1534   // do something smarter than full collection to satisfy a failed alloc.)
1535   result = expand_and_allocate(word_size, context);
1536   if (result != NULL) {
1537     assert(*succeeded, "sanity");
1538     return result;
1539   }
1540 
1541   // Expansion didn't work, we'll try to do a Full GC.
1542   bool gc_succeeded = do_collection(false, /* explicit_gc */
1543                                     false, /* clear_all_soft_refs */
1544                                     word_size);
1545   if (!gc_succeeded) {
1546     *succeeded = false;
1547     return NULL;
1548   }
1549 
1550   // Retry the allocation
1551   result = attempt_allocation_at_safepoint(word_size,
1552                                            context,
1553                                            true /* expect_null_mutator_alloc_region */);
1554   if (result != NULL) {
1555     assert(*succeeded, "sanity");
1556     return result;
1557   }
1558 
1559   // Then, try a Full GC that will collect all soft references.
1560   gc_succeeded = do_collection(false, /* explicit_gc */
1561                                true,  /* clear_all_soft_refs */
1562                                word_size);
1563   if (!gc_succeeded) {
1564     *succeeded = false;
1565     return NULL;
1566   }
1567 
1568   // Retry the allocation once more
1569   result = attempt_allocation_at_safepoint(word_size,
1570                                            context,
1571                                            true /* expect_null_mutator_alloc_region */);
1572   if (result != NULL) {
1573     assert(*succeeded, "sanity");
1574     return result;
1575   }
1576 
1577   assert(!collector_policy()->should_clear_all_soft_refs(),
1578          "Flag should have been handled and cleared prior to this point");
1579 
1580   // What else?  We might try synchronous finalization later.  If the total
1581   // space available is large enough for the allocation, then a more
1582   // complete compaction phase than we've tried so far might be
1583   // appropriate.
1584   assert(*succeeded, "sanity");
1585   return NULL;
1586 }
1587 
1588 // Attempting to expand the heap sufficiently
1589 // to support an allocation of the given "word_size".  If
1590 // successful, perform the allocation and return the address of the
1591 // allocated block, or else "NULL".
1592 
1593 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1594   assert_at_safepoint(true /* should_be_vm_thread */);
1595 
1596   verify_region_sets_optional();
1597 
1598   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1599   ergo_verbose1(ErgoHeapSizing,
1600                 "attempt heap expansion",
1601                 ergo_format_reason("allocation request failed")
1602                 ergo_format_byte("allocation request"),
1603                 word_size * HeapWordSize);
1604   if (expand(expand_bytes)) {
1605     _hrm.verify_optional();
1606     verify_region_sets_optional();
1607     return attempt_allocation_at_safepoint(word_size,
1608                                            context,
1609                                            false /* expect_null_mutator_alloc_region */);
1610   }
1611   return NULL;
1612 }
1613 
1614 bool G1CollectedHeap::expand(size_t expand_bytes) {
1615   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1616   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1617                                        HeapRegion::GrainBytes);
1618   ergo_verbose2(ErgoHeapSizing,
1619                 "expand the heap",
1620                 ergo_format_byte("requested expansion amount")
1621                 ergo_format_byte("attempted expansion amount"),
1622                 expand_bytes, aligned_expand_bytes);
1623 
1624   if (is_maximal_no_gc()) {
1625     ergo_verbose0(ErgoHeapSizing,
1626                       "did not expand the heap",
1627                       ergo_format_reason("heap already fully expanded"));
1628     return false;
1629   }
1630 
1631   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1632   assert(regions_to_expand > 0, "Must expand by at least one region");
1633 
1634   uint expanded_by = _hrm.expand_by(regions_to_expand);
1635 
1636   if (expanded_by > 0) {
1637     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1638     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1639     g1_policy()->record_new_heap_size(num_regions());
1640   } else {
1641     ergo_verbose0(ErgoHeapSizing,
1642                   "did not expand the heap",
1643                   ergo_format_reason("heap expansion operation failed"));
1644     // The expansion of the virtual storage space was unsuccessful.
1645     // Let's see if it was because we ran out of swap.
1646     if (G1ExitOnExpansionFailure &&
1647         _hrm.available() >= regions_to_expand) {
1648       // We had head room...
1649       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1650     }
1651   }
1652   return regions_to_expand > 0;
1653 }
1654 
1655 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1656   size_t aligned_shrink_bytes =
1657     ReservedSpace::page_align_size_down(shrink_bytes);
1658   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1659                                          HeapRegion::GrainBytes);
1660   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1661 
1662   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1663   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1664 
1665   ergo_verbose3(ErgoHeapSizing,
1666                 "shrink the heap",
1667                 ergo_format_byte("requested shrinking amount")
1668                 ergo_format_byte("aligned shrinking amount")
1669                 ergo_format_byte("attempted shrinking amount"),
1670                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1671   if (num_regions_removed > 0) {
1672     g1_policy()->record_new_heap_size(num_regions());
1673   } else {
1674     ergo_verbose0(ErgoHeapSizing,
1675                   "did not shrink the heap",
1676                   ergo_format_reason("heap shrinking operation failed"));
1677   }
1678 }
1679 
1680 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1681   verify_region_sets_optional();
1682 
1683   // We should only reach here at the end of a Full GC which means we
1684   // should not not be holding to any GC alloc regions. The method
1685   // below will make sure of that and do any remaining clean up.
1686   _allocator->abandon_gc_alloc_regions();
1687 
1688   // Instead of tearing down / rebuilding the free lists here, we
1689   // could instead use the remove_all_pending() method on free_list to
1690   // remove only the ones that we need to remove.
1691   tear_down_region_sets(true /* free_list_only */);
1692   shrink_helper(shrink_bytes);
1693   rebuild_region_sets(true /* free_list_only */);
1694 
1695   _hrm.verify_optional();
1696   verify_region_sets_optional();
1697 }
1698 
1699 // Public methods.
1700 
1701 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1702 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1703 #endif // _MSC_VER
1704 
1705 
1706 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1707   CollectedHeap(),
1708   _g1_policy(policy_),
1709   _dirty_card_queue_set(false),
1710   _into_cset_dirty_card_queue_set(false),
1711   _is_alive_closure_cm(this),
1712   _is_alive_closure_stw(this),
1713   _ref_processor_cm(NULL),
1714   _ref_processor_stw(NULL),
1715   _bot_shared(NULL),
1716   _evac_failure_scan_stack(NULL),
1717   _mark_in_progress(false),
1718   _cg1r(NULL),
1719   _g1mm(NULL),
1720   _refine_cte_cl(NULL),
1721   _full_collection(false),
1722   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1723   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1724   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1725   _humongous_reclaim_candidates(),
1726   _has_humongous_reclaim_candidates(false),
1727   _free_regions_coming(false),
1728   _young_list(new YoungList(this)),
1729   _gc_time_stamp(0),
1730   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1731   _old_plab_stats(OldPLABSize, PLABWeight),
1732   _expand_heap_after_alloc_failure(true),
1733   _surviving_young_words(NULL),
1734   _old_marking_cycles_started(0),
1735   _old_marking_cycles_completed(0),
1736   _concurrent_cycle_started(false),
1737   _heap_summary_sent(false),
1738   _in_cset_fast_test(),
1739   _dirty_cards_region_list(NULL),
1740   _worker_cset_start_region(NULL),
1741   _worker_cset_start_region_time_stamp(NULL),
1742   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1743   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1744   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1745   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1746 
1747   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1748                           /* are_GC_task_threads */true,
1749                           /* are_ConcurrentGC_threads */false);
1750   _workers->initialize_workers();
1751 
1752   _allocator = G1Allocator::create_allocator(this);
1753   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1754 
1755   int n_queues = (int)ParallelGCThreads;
1756   _task_queues = new RefToScanQueueSet(n_queues);
1757 
1758   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1759   assert(n_rem_sets > 0, "Invariant.");
1760 
1761   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1762   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1763   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1764 
1765   for (int i = 0; i < n_queues; i++) {
1766     RefToScanQueue* q = new RefToScanQueue();
1767     q->initialize();
1768     _task_queues->register_queue(i, q);
1769     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1770   }
1771   clear_cset_start_regions();
1772 
1773   // Initialize the G1EvacuationFailureALot counters and flags.
1774   NOT_PRODUCT(reset_evacuation_should_fail();)
1775 
1776   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1777 }
1778 
1779 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1780                                                                  size_t size,
1781                                                                  size_t translation_factor) {
1782   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1783   // Allocate a new reserved space, preferring to use large pages.
1784   ReservedSpace rs(size, preferred_page_size);
1785   G1RegionToSpaceMapper* result  =
1786     G1RegionToSpaceMapper::create_mapper(rs,
1787                                          size,
1788                                          rs.alignment(),
1789                                          HeapRegion::GrainBytes,
1790                                          translation_factor,
1791                                          mtGC);
1792   if (TracePageSizes) {
1793     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1794                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
1795   }
1796   return result;
1797 }
1798 
1799 jint G1CollectedHeap::initialize() {
1800   CollectedHeap::pre_initialize();
1801   os::enable_vtime();
1802 
1803   G1Log::init();
1804 
1805   // Necessary to satisfy locking discipline assertions.
1806 
1807   MutexLocker x(Heap_lock);
1808 
1809   // We have to initialize the printer before committing the heap, as
1810   // it will be used then.
1811   _hr_printer.set_active(G1PrintHeapRegions);
1812 
1813   // While there are no constraints in the GC code that HeapWordSize
1814   // be any particular value, there are multiple other areas in the
1815   // system which believe this to be true (e.g. oop->object_size in some
1816   // cases incorrectly returns the size in wordSize units rather than
1817   // HeapWordSize).
1818   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1819 
1820   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1821   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1822   size_t heap_alignment = collector_policy()->heap_alignment();
1823 
1824   // Ensure that the sizes are properly aligned.
1825   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1826   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1827   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1828 
1829   _refine_cte_cl = new RefineCardTableEntryClosure();
1830 
1831   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1832 
1833   // Reserve the maximum.
1834 
1835   // When compressed oops are enabled, the preferred heap base
1836   // is calculated by subtracting the requested size from the
1837   // 32Gb boundary and using the result as the base address for
1838   // heap reservation. If the requested size is not aligned to
1839   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1840   // into the ReservedHeapSpace constructor) then the actual
1841   // base of the reserved heap may end up differing from the
1842   // address that was requested (i.e. the preferred heap base).
1843   // If this happens then we could end up using a non-optimal
1844   // compressed oops mode.
1845 
1846   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1847                                                  heap_alignment);
1848 
1849   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1850 
1851   // Create the barrier set for the entire reserved region.
1852   G1SATBCardTableLoggingModRefBS* bs
1853     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1854   bs->initialize();
1855   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1856   set_barrier_set(bs);
1857 
1858   // Also create a G1 rem set.
1859   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1860 
1861   // Carve out the G1 part of the heap.
1862 
1863   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1864   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1865   G1RegionToSpaceMapper* heap_storage =
1866     G1RegionToSpaceMapper::create_mapper(g1_rs,
1867                                          g1_rs.size(),
1868                                          page_size,
1869                                          HeapRegion::GrainBytes,
1870                                          1,
1871                                          mtJavaHeap);
1872   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
1873                        max_byte_size, page_size,
1874                        heap_rs.base(),
1875                        heap_rs.size());
1876   heap_storage->set_mapping_changed_listener(&_listener);
1877 
1878   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1879   G1RegionToSpaceMapper* bot_storage =
1880     create_aux_memory_mapper("Block offset table",
1881                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
1882                              G1BlockOffsetSharedArray::heap_map_factor());
1883 
1884   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1885   G1RegionToSpaceMapper* cardtable_storage =
1886     create_aux_memory_mapper("Card table",
1887                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1888                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1889 
1890   G1RegionToSpaceMapper* card_counts_storage =
1891     create_aux_memory_mapper("Card counts table",
1892                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1893                              G1CardCounts::heap_map_factor());
1894 
1895   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1896   G1RegionToSpaceMapper* prev_bitmap_storage =
1897     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1898   G1RegionToSpaceMapper* next_bitmap_storage =
1899     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
1900 
1901   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1902   g1_barrier_set()->initialize(cardtable_storage);
1903    // Do later initialization work for concurrent refinement.
1904   _cg1r->init(card_counts_storage);
1905 
1906   // 6843694 - ensure that the maximum region index can fit
1907   // in the remembered set structures.
1908   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1909   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1910 
1911   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1912   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1913   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1914             "too many cards per region");
1915 
1916   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1917 
1918   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1919 
1920   {
1921     HeapWord* start = _hrm.reserved().start();
1922     HeapWord* end = _hrm.reserved().end();
1923     size_t granularity = HeapRegion::GrainBytes;
1924 
1925     _in_cset_fast_test.initialize(start, end, granularity);
1926     _humongous_reclaim_candidates.initialize(start, end, granularity);
1927   }
1928 
1929   // Create the ConcurrentMark data structure and thread.
1930   // (Must do this late, so that "max_regions" is defined.)
1931   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1932   if (_cm == NULL || !_cm->completed_initialization()) {
1933     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
1934     return JNI_ENOMEM;
1935   }
1936   _cmThread = _cm->cmThread();
1937 
1938   // Initialize the from_card cache structure of HeapRegionRemSet.
1939   HeapRegionRemSet::init_heap(max_regions());
1940 
1941   // Now expand into the initial heap size.
1942   if (!expand(init_byte_size)) {
1943     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1944     return JNI_ENOMEM;
1945   }
1946 
1947   // Perform any initialization actions delegated to the policy.
1948   g1_policy()->init();
1949 
1950   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1951                                                SATB_Q_FL_lock,
1952                                                G1SATBProcessCompletedThreshold,
1953                                                Shared_SATB_Q_lock);
1954 
1955   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
1956                                                 DirtyCardQ_CBL_mon,
1957                                                 DirtyCardQ_FL_lock,
1958                                                 concurrent_g1_refine()->yellow_zone(),
1959                                                 concurrent_g1_refine()->red_zone(),
1960                                                 Shared_DirtyCardQ_lock);
1961 
1962   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
1963                                     DirtyCardQ_CBL_mon,
1964                                     DirtyCardQ_FL_lock,
1965                                     -1, // never trigger processing
1966                                     -1, // no limit on length
1967                                     Shared_DirtyCardQ_lock,
1968                                     &JavaThread::dirty_card_queue_set());
1969 
1970   // Initialize the card queue set used to hold cards containing
1971   // references into the collection set.
1972   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
1973                                              DirtyCardQ_CBL_mon,
1974                                              DirtyCardQ_FL_lock,
1975                                              -1, // never trigger processing
1976                                              -1, // no limit on length
1977                                              Shared_DirtyCardQ_lock,
1978                                              &JavaThread::dirty_card_queue_set());
1979 
1980   // Here we allocate the dummy HeapRegion that is required by the
1981   // G1AllocRegion class.
1982   HeapRegion* dummy_region = _hrm.get_dummy_region();
1983 
1984   // We'll re-use the same region whether the alloc region will
1985   // require BOT updates or not and, if it doesn't, then a non-young
1986   // region will complain that it cannot support allocations without
1987   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1988   dummy_region->set_eden();
1989   // Make sure it's full.
1990   dummy_region->set_top(dummy_region->end());
1991   G1AllocRegion::setup(this, dummy_region);
1992 
1993   _allocator->init_mutator_alloc_region();
1994 
1995   // Do create of the monitoring and management support so that
1996   // values in the heap have been properly initialized.
1997   _g1mm = new G1MonitoringSupport(this);
1998 
1999   G1StringDedup::initialize();
2000 
2001   return JNI_OK;
2002 }
2003 
2004 void G1CollectedHeap::stop() {
2005   // Stop all concurrent threads. We do this to make sure these threads
2006   // do not continue to execute and access resources (e.g. gclog_or_tty)
2007   // that are destroyed during shutdown.
2008   _cg1r->stop();
2009   _cmThread->stop();
2010   if (G1StringDedup::is_enabled()) {
2011     G1StringDedup::stop();
2012   }
2013 }
2014 
2015 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2016   return HeapRegion::max_region_size();
2017 }
2018 
2019 void G1CollectedHeap::post_initialize() {
2020   CollectedHeap::post_initialize();
2021   ref_processing_init();
2022 }
2023 
2024 void G1CollectedHeap::ref_processing_init() {
2025   // Reference processing in G1 currently works as follows:
2026   //
2027   // * There are two reference processor instances. One is
2028   //   used to record and process discovered references
2029   //   during concurrent marking; the other is used to
2030   //   record and process references during STW pauses
2031   //   (both full and incremental).
2032   // * Both ref processors need to 'span' the entire heap as
2033   //   the regions in the collection set may be dotted around.
2034   //
2035   // * For the concurrent marking ref processor:
2036   //   * Reference discovery is enabled at initial marking.
2037   //   * Reference discovery is disabled and the discovered
2038   //     references processed etc during remarking.
2039   //   * Reference discovery is MT (see below).
2040   //   * Reference discovery requires a barrier (see below).
2041   //   * Reference processing may or may not be MT
2042   //     (depending on the value of ParallelRefProcEnabled
2043   //     and ParallelGCThreads).
2044   //   * A full GC disables reference discovery by the CM
2045   //     ref processor and abandons any entries on it's
2046   //     discovered lists.
2047   //
2048   // * For the STW processor:
2049   //   * Non MT discovery is enabled at the start of a full GC.
2050   //   * Processing and enqueueing during a full GC is non-MT.
2051   //   * During a full GC, references are processed after marking.
2052   //
2053   //   * Discovery (may or may not be MT) is enabled at the start
2054   //     of an incremental evacuation pause.
2055   //   * References are processed near the end of a STW evacuation pause.
2056   //   * For both types of GC:
2057   //     * Discovery is atomic - i.e. not concurrent.
2058   //     * Reference discovery will not need a barrier.
2059 
2060   MemRegion mr = reserved_region();
2061 
2062   // Concurrent Mark ref processor
2063   _ref_processor_cm =
2064     new ReferenceProcessor(mr,    // span
2065                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2066                                 // mt processing
2067                            (uint) ParallelGCThreads,
2068                                 // degree of mt processing
2069                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2070                                 // mt discovery
2071                            (uint) MAX2(ParallelGCThreads, ConcGCThreads),
2072                                 // degree of mt discovery
2073                            false,
2074                                 // Reference discovery is not atomic
2075                            &_is_alive_closure_cm);
2076                                 // is alive closure
2077                                 // (for efficiency/performance)
2078 
2079   // STW ref processor
2080   _ref_processor_stw =
2081     new ReferenceProcessor(mr,    // span
2082                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2083                                 // mt processing
2084                            (uint) ParallelGCThreads,
2085                                 // degree of mt processing
2086                            (ParallelGCThreads > 1),
2087                                 // mt discovery
2088                            (uint) ParallelGCThreads,
2089                                 // degree of mt discovery
2090                            true,
2091                                 // Reference discovery is atomic
2092                            &_is_alive_closure_stw);
2093                                 // is alive closure
2094                                 // (for efficiency/performance)
2095 }
2096 
2097 size_t G1CollectedHeap::capacity() const {
2098   return _hrm.length() * HeapRegion::GrainBytes;
2099 }
2100 
2101 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2102   assert(!hr->is_continues_humongous(), "pre-condition");
2103   hr->reset_gc_time_stamp();
2104   if (hr->is_starts_humongous()) {
2105     uint first_index = hr->hrm_index() + 1;
2106     uint last_index = hr->last_hc_index();
2107     for (uint i = first_index; i < last_index; i += 1) {
2108       HeapRegion* chr = region_at(i);
2109       assert(chr->is_continues_humongous(), "sanity");
2110       chr->reset_gc_time_stamp();
2111     }
2112   }
2113 }
2114 
2115 #ifndef PRODUCT
2116 
2117 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2118 private:
2119   unsigned _gc_time_stamp;
2120   bool _failures;
2121 
2122 public:
2123   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2124     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2125 
2126   virtual bool doHeapRegion(HeapRegion* hr) {
2127     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2128     if (_gc_time_stamp != region_gc_time_stamp) {
2129       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2130                              "expected %d", HR_FORMAT_PARAMS(hr),
2131                              region_gc_time_stamp, _gc_time_stamp);
2132       _failures = true;
2133     }
2134     return false;
2135   }
2136 
2137   bool failures() { return _failures; }
2138 };
2139 
2140 void G1CollectedHeap::check_gc_time_stamps() {
2141   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2142   heap_region_iterate(&cl);
2143   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2144 }
2145 #endif // PRODUCT
2146 
2147 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2148                                                  DirtyCardQueue* into_cset_dcq,
2149                                                  bool concurrent,
2150                                                  uint worker_i) {
2151   // Clean cards in the hot card cache
2152   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2153   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2154 
2155   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2156   size_t n_completed_buffers = 0;
2157   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2158     n_completed_buffers++;
2159   }
2160   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2161   dcqs.clear_n_completed_buffers();
2162   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2163 }
2164 
2165 
2166 // Computes the sum of the storage used by the various regions.
2167 size_t G1CollectedHeap::used() const {
2168   return _allocator->used();
2169 }
2170 
2171 size_t G1CollectedHeap::used_unlocked() const {
2172   return _allocator->used_unlocked();
2173 }
2174 
2175 class SumUsedClosure: public HeapRegionClosure {
2176   size_t _used;
2177 public:
2178   SumUsedClosure() : _used(0) {}
2179   bool doHeapRegion(HeapRegion* r) {
2180     if (!r->is_continues_humongous()) {
2181       _used += r->used();
2182     }
2183     return false;
2184   }
2185   size_t result() { return _used; }
2186 };
2187 
2188 size_t G1CollectedHeap::recalculate_used() const {
2189   double recalculate_used_start = os::elapsedTime();
2190 
2191   SumUsedClosure blk;
2192   heap_region_iterate(&blk);
2193 
2194   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2195   return blk.result();
2196 }
2197 
2198 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2199   switch (cause) {
2200     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2201     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2202     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2203     case GCCause::_g1_humongous_allocation: return true;
2204     case GCCause::_update_allocation_context_stats_inc: return true;
2205     case GCCause::_wb_conc_mark:            return true;
2206     default:                                return false;
2207   }
2208 }
2209 
2210 #ifndef PRODUCT
2211 void G1CollectedHeap::allocate_dummy_regions() {
2212   // Let's fill up most of the region
2213   size_t word_size = HeapRegion::GrainWords - 1024;
2214   // And as a result the region we'll allocate will be humongous.
2215   guarantee(is_humongous(word_size), "sanity");
2216 
2217   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2218     // Let's use the existing mechanism for the allocation
2219     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2220                                                  AllocationContext::system());
2221     if (dummy_obj != NULL) {
2222       MemRegion mr(dummy_obj, word_size);
2223       CollectedHeap::fill_with_object(mr);
2224     } else {
2225       // If we can't allocate once, we probably cannot allocate
2226       // again. Let's get out of the loop.
2227       break;
2228     }
2229   }
2230 }
2231 #endif // !PRODUCT
2232 
2233 void G1CollectedHeap::increment_old_marking_cycles_started() {
2234   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2235     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2236     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2237     _old_marking_cycles_started, _old_marking_cycles_completed));
2238 
2239   _old_marking_cycles_started++;
2240 }
2241 
2242 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2243   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2244 
2245   // We assume that if concurrent == true, then the caller is a
2246   // concurrent thread that was joined the Suspendible Thread
2247   // Set. If there's ever a cheap way to check this, we should add an
2248   // assert here.
2249 
2250   // Given that this method is called at the end of a Full GC or of a
2251   // concurrent cycle, and those can be nested (i.e., a Full GC can
2252   // interrupt a concurrent cycle), the number of full collections
2253   // completed should be either one (in the case where there was no
2254   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2255   // behind the number of full collections started.
2256 
2257   // This is the case for the inner caller, i.e. a Full GC.
2258   assert(concurrent ||
2259          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2260          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2261          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2262                  "is inconsistent with _old_marking_cycles_completed = %u",
2263                  _old_marking_cycles_started, _old_marking_cycles_completed));
2264 
2265   // This is the case for the outer caller, i.e. the concurrent cycle.
2266   assert(!concurrent ||
2267          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2268          err_msg("for outer caller (concurrent cycle): "
2269                  "_old_marking_cycles_started = %u "
2270                  "is inconsistent with _old_marking_cycles_completed = %u",
2271                  _old_marking_cycles_started, _old_marking_cycles_completed));
2272 
2273   _old_marking_cycles_completed += 1;
2274 
2275   // We need to clear the "in_progress" flag in the CM thread before
2276   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2277   // is set) so that if a waiter requests another System.gc() it doesn't
2278   // incorrectly see that a marking cycle is still in progress.
2279   if (concurrent) {
2280     _cmThread->clear_in_progress();
2281   }
2282 
2283   // This notify_all() will ensure that a thread that called
2284   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2285   // and it's waiting for a full GC to finish will be woken up. It is
2286   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2287   FullGCCount_lock->notify_all();
2288 }
2289 
2290 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2291   _concurrent_cycle_started = true;
2292   _gc_timer_cm->register_gc_start(start_time);
2293 
2294   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2295   trace_heap_before_gc(_gc_tracer_cm);
2296 }
2297 
2298 void G1CollectedHeap::register_concurrent_cycle_end() {
2299   if (_concurrent_cycle_started) {
2300     if (_cm->has_aborted()) {
2301       _gc_tracer_cm->report_concurrent_mode_failure();
2302     }
2303 
2304     _gc_timer_cm->register_gc_end();
2305     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2306 
2307     // Clear state variables to prepare for the next concurrent cycle.
2308     _concurrent_cycle_started = false;
2309     _heap_summary_sent = false;
2310   }
2311 }
2312 
2313 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2314   if (_concurrent_cycle_started) {
2315     // This function can be called when:
2316     //  the cleanup pause is run
2317     //  the concurrent cycle is aborted before the cleanup pause.
2318     //  the concurrent cycle is aborted after the cleanup pause,
2319     //   but before the concurrent cycle end has been registered.
2320     // Make sure that we only send the heap information once.
2321     if (!_heap_summary_sent) {
2322       trace_heap_after_gc(_gc_tracer_cm);
2323       _heap_summary_sent = true;
2324     }
2325   }
2326 }
2327 
2328 G1YCType G1CollectedHeap::yc_type() {
2329   bool is_young = g1_policy()->gcs_are_young();
2330   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2331   bool is_during_mark = mark_in_progress();
2332 
2333   if (is_initial_mark) {
2334     return InitialMark;
2335   } else if (is_during_mark) {
2336     return DuringMark;
2337   } else if (is_young) {
2338     return Normal;
2339   } else {
2340     return Mixed;
2341   }
2342 }
2343 
2344 void G1CollectedHeap::collect(GCCause::Cause cause) {
2345   assert_heap_not_locked();
2346 
2347   uint gc_count_before;
2348   uint old_marking_count_before;
2349   uint full_gc_count_before;
2350   bool retry_gc;
2351 
2352   do {
2353     retry_gc = false;
2354 
2355     {
2356       MutexLocker ml(Heap_lock);
2357 
2358       // Read the GC count while holding the Heap_lock
2359       gc_count_before = total_collections();
2360       full_gc_count_before = total_full_collections();
2361       old_marking_count_before = _old_marking_cycles_started;
2362     }
2363 
2364     if (should_do_concurrent_full_gc(cause)) {
2365       // Schedule an initial-mark evacuation pause that will start a
2366       // concurrent cycle. We're setting word_size to 0 which means that
2367       // we are not requesting a post-GC allocation.
2368       VM_G1IncCollectionPause op(gc_count_before,
2369                                  0,     /* word_size */
2370                                  true,  /* should_initiate_conc_mark */
2371                                  g1_policy()->max_pause_time_ms(),
2372                                  cause);
2373       op.set_allocation_context(AllocationContext::current());
2374 
2375       VMThread::execute(&op);
2376       if (!op.pause_succeeded()) {
2377         if (old_marking_count_before == _old_marking_cycles_started) {
2378           retry_gc = op.should_retry_gc();
2379         } else {
2380           // A Full GC happened while we were trying to schedule the
2381           // initial-mark GC. No point in starting a new cycle given
2382           // that the whole heap was collected anyway.
2383         }
2384 
2385         if (retry_gc) {
2386           if (GC_locker::is_active_and_needs_gc()) {
2387             GC_locker::stall_until_clear();
2388           }
2389         }
2390       }
2391     } else {
2392       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2393           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2394 
2395         // Schedule a standard evacuation pause. We're setting word_size
2396         // to 0 which means that we are not requesting a post-GC allocation.
2397         VM_G1IncCollectionPause op(gc_count_before,
2398                                    0,     /* word_size */
2399                                    false, /* should_initiate_conc_mark */
2400                                    g1_policy()->max_pause_time_ms(),
2401                                    cause);
2402         VMThread::execute(&op);
2403       } else {
2404         // Schedule a Full GC.
2405         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2406         VMThread::execute(&op);
2407       }
2408     }
2409   } while (retry_gc);
2410 }
2411 
2412 bool G1CollectedHeap::is_in(const void* p) const {
2413   if (_hrm.reserved().contains(p)) {
2414     // Given that we know that p is in the reserved space,
2415     // heap_region_containing_raw() should successfully
2416     // return the containing region.
2417     HeapRegion* hr = heap_region_containing_raw(p);
2418     return hr->is_in(p);
2419   } else {
2420     return false;
2421   }
2422 }
2423 
2424 #ifdef ASSERT
2425 bool G1CollectedHeap::is_in_exact(const void* p) const {
2426   bool contains = reserved_region().contains(p);
2427   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2428   if (contains && available) {
2429     return true;
2430   } else {
2431     return false;
2432   }
2433 }
2434 #endif
2435 
2436 // Iteration functions.
2437 
2438 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2439 
2440 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2441   ExtendedOopClosure* _cl;
2442 public:
2443   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2444   bool doHeapRegion(HeapRegion* r) {
2445     if (!r->is_continues_humongous()) {
2446       r->oop_iterate(_cl);
2447     }
2448     return false;
2449   }
2450 };
2451 
2452 // Iterates an ObjectClosure over all objects within a HeapRegion.
2453 
2454 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2455   ObjectClosure* _cl;
2456 public:
2457   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2458   bool doHeapRegion(HeapRegion* r) {
2459     if (!r->is_continues_humongous()) {
2460       r->object_iterate(_cl);
2461     }
2462     return false;
2463   }
2464 };
2465 
2466 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2467   IterateObjectClosureRegionClosure blk(cl);
2468   heap_region_iterate(&blk);
2469 }
2470 
2471 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2472   _hrm.iterate(cl);
2473 }
2474 
2475 void
2476 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2477                                          uint worker_id,
2478                                          HeapRegionClaimer *hrclaimer,
2479                                          bool concurrent) const {
2480   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2481 }
2482 
2483 // Clear the cached CSet starting regions and (more importantly)
2484 // the time stamps. Called when we reset the GC time stamp.
2485 void G1CollectedHeap::clear_cset_start_regions() {
2486   assert(_worker_cset_start_region != NULL, "sanity");
2487   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2488 
2489   for (uint i = 0; i < ParallelGCThreads; i++) {
2490     _worker_cset_start_region[i] = NULL;
2491     _worker_cset_start_region_time_stamp[i] = 0;
2492   }
2493 }
2494 
2495 // Given the id of a worker, obtain or calculate a suitable
2496 // starting region for iterating over the current collection set.
2497 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2498   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2499 
2500   HeapRegion* result = NULL;
2501   unsigned gc_time_stamp = get_gc_time_stamp();
2502 
2503   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2504     // Cached starting region for current worker was set
2505     // during the current pause - so it's valid.
2506     // Note: the cached starting heap region may be NULL
2507     // (when the collection set is empty).
2508     result = _worker_cset_start_region[worker_i];
2509     assert(result == NULL || result->in_collection_set(), "sanity");
2510     return result;
2511   }
2512 
2513   // The cached entry was not valid so let's calculate
2514   // a suitable starting heap region for this worker.
2515 
2516   // We want the parallel threads to start their collection
2517   // set iteration at different collection set regions to
2518   // avoid contention.
2519   // If we have:
2520   //          n collection set regions
2521   //          p threads
2522   // Then thread t will start at region floor ((t * n) / p)
2523 
2524   result = g1_policy()->collection_set();
2525   uint cs_size = g1_policy()->cset_region_length();
2526   uint active_workers = workers()->active_workers();
2527 
2528   uint end_ind   = (cs_size * worker_i) / active_workers;
2529   uint start_ind = 0;
2530 
2531   if (worker_i > 0 &&
2532       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2533     // Previous workers starting region is valid
2534     // so let's iterate from there
2535     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2536     result = _worker_cset_start_region[worker_i - 1];
2537   }
2538 
2539   for (uint i = start_ind; i < end_ind; i++) {
2540     result = result->next_in_collection_set();
2541   }
2542 
2543   // Note: the calculated starting heap region may be NULL
2544   // (when the collection set is empty).
2545   assert(result == NULL || result->in_collection_set(), "sanity");
2546   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2547          "should be updated only once per pause");
2548   _worker_cset_start_region[worker_i] = result;
2549   OrderAccess::storestore();
2550   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2551   return result;
2552 }
2553 
2554 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2555   HeapRegion* r = g1_policy()->collection_set();
2556   while (r != NULL) {
2557     HeapRegion* next = r->next_in_collection_set();
2558     if (cl->doHeapRegion(r)) {
2559       cl->incomplete();
2560       return;
2561     }
2562     r = next;
2563   }
2564 }
2565 
2566 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2567                                                   HeapRegionClosure *cl) {
2568   if (r == NULL) {
2569     // The CSet is empty so there's nothing to do.
2570     return;
2571   }
2572 
2573   assert(r->in_collection_set(),
2574          "Start region must be a member of the collection set.");
2575   HeapRegion* cur = r;
2576   while (cur != NULL) {
2577     HeapRegion* next = cur->next_in_collection_set();
2578     if (cl->doHeapRegion(cur) && false) {
2579       cl->incomplete();
2580       return;
2581     }
2582     cur = next;
2583   }
2584   cur = g1_policy()->collection_set();
2585   while (cur != r) {
2586     HeapRegion* next = cur->next_in_collection_set();
2587     if (cl->doHeapRegion(cur) && false) {
2588       cl->incomplete();
2589       return;
2590     }
2591     cur = next;
2592   }
2593 }
2594 
2595 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2596   HeapRegion* result = _hrm.next_region_in_heap(from);
2597   while (result != NULL && result->is_humongous()) {
2598     result = _hrm.next_region_in_heap(result);
2599   }
2600   return result;
2601 }
2602 
2603 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2604   HeapRegion* hr = heap_region_containing(addr);
2605   return hr->block_start(addr);
2606 }
2607 
2608 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2609   HeapRegion* hr = heap_region_containing(addr);
2610   return hr->block_size(addr);
2611 }
2612 
2613 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2614   HeapRegion* hr = heap_region_containing(addr);
2615   return hr->block_is_obj(addr);
2616 }
2617 
2618 bool G1CollectedHeap::supports_tlab_allocation() const {
2619   return true;
2620 }
2621 
2622 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2623   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2624 }
2625 
2626 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2627   return young_list()->eden_used_bytes();
2628 }
2629 
2630 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2631 // must be smaller than the humongous object limit.
2632 size_t G1CollectedHeap::max_tlab_size() const {
2633   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2634 }
2635 
2636 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2637   // Return the remaining space in the cur alloc region, but not less than
2638   // the min TLAB size.
2639 
2640   // Also, this value can be at most the humongous object threshold,
2641   // since we can't allow tlabs to grow big enough to accommodate
2642   // humongous objects.
2643 
2644   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2645   size_t max_tlab = max_tlab_size() * wordSize;
2646   if (hr == NULL) {
2647     return max_tlab;
2648   } else {
2649     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2650   }
2651 }
2652 
2653 size_t G1CollectedHeap::max_capacity() const {
2654   return _hrm.reserved().byte_size();
2655 }
2656 
2657 jlong G1CollectedHeap::millis_since_last_gc() {
2658   // assert(false, "NYI");
2659   return 0;
2660 }
2661 
2662 void G1CollectedHeap::prepare_for_verify() {
2663   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2664     ensure_parsability(false);
2665   }
2666   g1_rem_set()->prepare_for_verify();
2667 }
2668 
2669 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2670                                               VerifyOption vo) {
2671   switch (vo) {
2672   case VerifyOption_G1UsePrevMarking:
2673     return hr->obj_allocated_since_prev_marking(obj);
2674   case VerifyOption_G1UseNextMarking:
2675     return hr->obj_allocated_since_next_marking(obj);
2676   case VerifyOption_G1UseMarkWord:
2677     return false;
2678   default:
2679     ShouldNotReachHere();
2680   }
2681   return false; // keep some compilers happy
2682 }
2683 
2684 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2685   switch (vo) {
2686   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2687   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2688   case VerifyOption_G1UseMarkWord:    return NULL;
2689   default:                            ShouldNotReachHere();
2690   }
2691   return NULL; // keep some compilers happy
2692 }
2693 
2694 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2695   switch (vo) {
2696   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2697   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2698   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2699   default:                            ShouldNotReachHere();
2700   }
2701   return false; // keep some compilers happy
2702 }
2703 
2704 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2705   switch (vo) {
2706   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2707   case VerifyOption_G1UseNextMarking: return "NTAMS";
2708   case VerifyOption_G1UseMarkWord:    return "NONE";
2709   default:                            ShouldNotReachHere();
2710   }
2711   return NULL; // keep some compilers happy
2712 }
2713 
2714 class VerifyRootsClosure: public OopClosure {
2715 private:
2716   G1CollectedHeap* _g1h;
2717   VerifyOption     _vo;
2718   bool             _failures;
2719 public:
2720   // _vo == UsePrevMarking -> use "prev" marking information,
2721   // _vo == UseNextMarking -> use "next" marking information,
2722   // _vo == UseMarkWord    -> use mark word from object header.
2723   VerifyRootsClosure(VerifyOption vo) :
2724     _g1h(G1CollectedHeap::heap()),
2725     _vo(vo),
2726     _failures(false) { }
2727 
2728   bool failures() { return _failures; }
2729 
2730   template <class T> void do_oop_nv(T* p) {
2731     T heap_oop = oopDesc::load_heap_oop(p);
2732     if (!oopDesc::is_null(heap_oop)) {
2733       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2734       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2735         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2736                                "points to dead obj "PTR_FORMAT, p2i(p), p2i(obj));
2737         if (_vo == VerifyOption_G1UseMarkWord) {
2738           gclog_or_tty->print_cr("  Mark word: "INTPTR_FORMAT, (intptr_t)obj->mark());
2739         }
2740         obj->print_on(gclog_or_tty);
2741         _failures = true;
2742       }
2743     }
2744   }
2745 
2746   void do_oop(oop* p)       { do_oop_nv(p); }
2747   void do_oop(narrowOop* p) { do_oop_nv(p); }
2748 };
2749 
2750 class G1VerifyCodeRootOopClosure: public OopClosure {
2751   G1CollectedHeap* _g1h;
2752   OopClosure* _root_cl;
2753   nmethod* _nm;
2754   VerifyOption _vo;
2755   bool _failures;
2756 
2757   template <class T> void do_oop_work(T* p) {
2758     // First verify that this root is live
2759     _root_cl->do_oop(p);
2760 
2761     if (!G1VerifyHeapRegionCodeRoots) {
2762       // We're not verifying the code roots attached to heap region.
2763       return;
2764     }
2765 
2766     // Don't check the code roots during marking verification in a full GC
2767     if (_vo == VerifyOption_G1UseMarkWord) {
2768       return;
2769     }
2770 
2771     // Now verify that the current nmethod (which contains p) is
2772     // in the code root list of the heap region containing the
2773     // object referenced by p.
2774 
2775     T heap_oop = oopDesc::load_heap_oop(p);
2776     if (!oopDesc::is_null(heap_oop)) {
2777       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2778 
2779       // Now fetch the region containing the object
2780       HeapRegion* hr = _g1h->heap_region_containing(obj);
2781       HeapRegionRemSet* hrrs = hr->rem_set();
2782       // Verify that the strong code root list for this region
2783       // contains the nmethod
2784       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2785         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2786                                "from nmethod "PTR_FORMAT" not in strong "
2787                                "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2788                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2789         _failures = true;
2790       }
2791     }
2792   }
2793 
2794 public:
2795   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2796     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2797 
2798   void do_oop(oop* p) { do_oop_work(p); }
2799   void do_oop(narrowOop* p) { do_oop_work(p); }
2800 
2801   void set_nmethod(nmethod* nm) { _nm = nm; }
2802   bool failures() { return _failures; }
2803 };
2804 
2805 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2806   G1VerifyCodeRootOopClosure* _oop_cl;
2807 
2808 public:
2809   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2810     _oop_cl(oop_cl) {}
2811 
2812   void do_code_blob(CodeBlob* cb) {
2813     nmethod* nm = cb->as_nmethod_or_null();
2814     if (nm != NULL) {
2815       _oop_cl->set_nmethod(nm);
2816       nm->oops_do(_oop_cl);
2817     }
2818   }
2819 };
2820 
2821 class YoungRefCounterClosure : public OopClosure {
2822   G1CollectedHeap* _g1h;
2823   int              _count;
2824  public:
2825   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2826   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2827   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2828 
2829   int count() { return _count; }
2830   void reset_count() { _count = 0; };
2831 };
2832 
2833 class VerifyKlassClosure: public KlassClosure {
2834   YoungRefCounterClosure _young_ref_counter_closure;
2835   OopClosure *_oop_closure;
2836  public:
2837   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2838   void do_klass(Klass* k) {
2839     k->oops_do(_oop_closure);
2840 
2841     _young_ref_counter_closure.reset_count();
2842     k->oops_do(&_young_ref_counter_closure);
2843     if (_young_ref_counter_closure.count() > 0) {
2844       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
2845     }
2846   }
2847 };
2848 
2849 class VerifyLivenessOopClosure: public OopClosure {
2850   G1CollectedHeap* _g1h;
2851   VerifyOption _vo;
2852 public:
2853   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2854     _g1h(g1h), _vo(vo)
2855   { }
2856   void do_oop(narrowOop *p) { do_oop_work(p); }
2857   void do_oop(      oop *p) { do_oop_work(p); }
2858 
2859   template <class T> void do_oop_work(T *p) {
2860     oop obj = oopDesc::load_decode_heap_oop(p);
2861     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2862               "Dead object referenced by a not dead object");
2863   }
2864 };
2865 
2866 class VerifyObjsInRegionClosure: public ObjectClosure {
2867 private:
2868   G1CollectedHeap* _g1h;
2869   size_t _live_bytes;
2870   HeapRegion *_hr;
2871   VerifyOption _vo;
2872 public:
2873   // _vo == UsePrevMarking -> use "prev" marking information,
2874   // _vo == UseNextMarking -> use "next" marking information,
2875   // _vo == UseMarkWord    -> use mark word from object header.
2876   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2877     : _live_bytes(0), _hr(hr), _vo(vo) {
2878     _g1h = G1CollectedHeap::heap();
2879   }
2880   void do_object(oop o) {
2881     VerifyLivenessOopClosure isLive(_g1h, _vo);
2882     assert(o != NULL, "Huh?");
2883     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2884       // If the object is alive according to the mark word,
2885       // then verify that the marking information agrees.
2886       // Note we can't verify the contra-positive of the
2887       // above: if the object is dead (according to the mark
2888       // word), it may not be marked, or may have been marked
2889       // but has since became dead, or may have been allocated
2890       // since the last marking.
2891       if (_vo == VerifyOption_G1UseMarkWord) {
2892         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2893       }
2894 
2895       o->oop_iterate_no_header(&isLive);
2896       if (!_hr->obj_allocated_since_prev_marking(o)) {
2897         size_t obj_size = o->size();    // Make sure we don't overflow
2898         _live_bytes += (obj_size * HeapWordSize);
2899       }
2900     }
2901   }
2902   size_t live_bytes() { return _live_bytes; }
2903 };
2904 
2905 class VerifyRegionClosure: public HeapRegionClosure {
2906 private:
2907   bool             _par;
2908   VerifyOption     _vo;
2909   bool             _failures;
2910 public:
2911   // _vo == UsePrevMarking -> use "prev" marking information,
2912   // _vo == UseNextMarking -> use "next" marking information,
2913   // _vo == UseMarkWord    -> use mark word from object header.
2914   VerifyRegionClosure(bool par, VerifyOption vo)
2915     : _par(par),
2916       _vo(vo),
2917       _failures(false) {}
2918 
2919   bool failures() {
2920     return _failures;
2921   }
2922 
2923   bool doHeapRegion(HeapRegion* r) {
2924     if (!r->is_continues_humongous()) {
2925       bool failures = false;
2926       r->verify(_vo, &failures);
2927       if (failures) {
2928         _failures = true;
2929       } else {
2930         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
2931         r->object_iterate(&not_dead_yet_cl);
2932         if (_vo != VerifyOption_G1UseNextMarking) {
2933           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
2934             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
2935                                    "max_live_bytes "SIZE_FORMAT" "
2936                                    "< calculated "SIZE_FORMAT,
2937                                    p2i(r->bottom()), p2i(r->end()),
2938                                    r->max_live_bytes(),
2939                                  not_dead_yet_cl.live_bytes());
2940             _failures = true;
2941           }
2942         } else {
2943           // When vo == UseNextMarking we cannot currently do a sanity
2944           // check on the live bytes as the calculation has not been
2945           // finalized yet.
2946         }
2947       }
2948     }
2949     return false; // stop the region iteration if we hit a failure
2950   }
2951 };
2952 
2953 // This is the task used for parallel verification of the heap regions
2954 
2955 class G1ParVerifyTask: public AbstractGangTask {
2956 private:
2957   G1CollectedHeap*  _g1h;
2958   VerifyOption      _vo;
2959   bool              _failures;
2960   HeapRegionClaimer _hrclaimer;
2961 
2962 public:
2963   // _vo == UsePrevMarking -> use "prev" marking information,
2964   // _vo == UseNextMarking -> use "next" marking information,
2965   // _vo == UseMarkWord    -> use mark word from object header.
2966   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
2967       AbstractGangTask("Parallel verify task"),
2968       _g1h(g1h),
2969       _vo(vo),
2970       _failures(false),
2971       _hrclaimer(g1h->workers()->active_workers()) {}
2972 
2973   bool failures() {
2974     return _failures;
2975   }
2976 
2977   void work(uint worker_id) {
2978     HandleMark hm;
2979     VerifyRegionClosure blk(true, _vo);
2980     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
2981     if (blk.failures()) {
2982       _failures = true;
2983     }
2984   }
2985 };
2986 
2987 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
2988   if (SafepointSynchronize::is_at_safepoint()) {
2989     assert(Thread::current()->is_VM_thread(),
2990            "Expected to be executed serially by the VM thread at this point");
2991 
2992     if (!silent) { gclog_or_tty->print("Roots "); }
2993     VerifyRootsClosure rootsCl(vo);
2994     VerifyKlassClosure klassCl(this, &rootsCl);
2995     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
2996 
2997     // We apply the relevant closures to all the oops in the
2998     // system dictionary, class loader data graph, the string table
2999     // and the nmethods in the code cache.
3000     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3001     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3002 
3003     {
3004       G1RootProcessor root_processor(this, 1);
3005       root_processor.process_all_roots(&rootsCl,
3006                                        &cldCl,
3007                                        &blobsCl);
3008     }
3009 
3010     bool failures = rootsCl.failures() || codeRootsCl.failures();
3011 
3012     if (vo != VerifyOption_G1UseMarkWord) {
3013       // If we're verifying during a full GC then the region sets
3014       // will have been torn down at the start of the GC. Therefore
3015       // verifying the region sets will fail. So we only verify
3016       // the region sets when not in a full GC.
3017       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3018       verify_region_sets();
3019     }
3020 
3021     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3022     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3023 
3024       G1ParVerifyTask task(this, vo);
3025       workers()->run_task(&task);
3026       if (task.failures()) {
3027         failures = true;
3028       }
3029 
3030     } else {
3031       VerifyRegionClosure blk(false, vo);
3032       heap_region_iterate(&blk);
3033       if (blk.failures()) {
3034         failures = true;
3035       }
3036     }
3037 
3038     if (G1StringDedup::is_enabled()) {
3039       if (!silent) gclog_or_tty->print("StrDedup ");
3040       G1StringDedup::verify();
3041     }
3042 
3043     if (failures) {
3044       gclog_or_tty->print_cr("Heap:");
3045       // It helps to have the per-region information in the output to
3046       // help us track down what went wrong. This is why we call
3047       // print_extended_on() instead of print_on().
3048       print_extended_on(gclog_or_tty);
3049       gclog_or_tty->cr();
3050       gclog_or_tty->flush();
3051     }
3052     guarantee(!failures, "there should not have been any failures");
3053   } else {
3054     if (!silent) {
3055       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3056       if (G1StringDedup::is_enabled()) {
3057         gclog_or_tty->print(", StrDedup");
3058       }
3059       gclog_or_tty->print(") ");
3060     }
3061   }
3062 }
3063 
3064 void G1CollectedHeap::verify(bool silent) {
3065   verify(silent, VerifyOption_G1UsePrevMarking);
3066 }
3067 
3068 double G1CollectedHeap::verify(bool guard, const char* msg) {
3069   double verify_time_ms = 0.0;
3070 
3071   if (guard && total_collections() >= VerifyGCStartAt) {
3072     double verify_start = os::elapsedTime();
3073     HandleMark hm;  // Discard invalid handles created during verification
3074     prepare_for_verify();
3075     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3076     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3077   }
3078 
3079   return verify_time_ms;
3080 }
3081 
3082 void G1CollectedHeap::verify_before_gc() {
3083   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3084   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3085 }
3086 
3087 void G1CollectedHeap::verify_after_gc() {
3088   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3089   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3090 }
3091 
3092 class PrintRegionClosure: public HeapRegionClosure {
3093   outputStream* _st;
3094 public:
3095   PrintRegionClosure(outputStream* st) : _st(st) {}
3096   bool doHeapRegion(HeapRegion* r) {
3097     r->print_on(_st);
3098     return false;
3099   }
3100 };
3101 
3102 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3103                                        const HeapRegion* hr,
3104                                        const VerifyOption vo) const {
3105   switch (vo) {
3106   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3107   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3108   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3109   default:                            ShouldNotReachHere();
3110   }
3111   return false; // keep some compilers happy
3112 }
3113 
3114 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3115                                        const VerifyOption vo) const {
3116   switch (vo) {
3117   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3118   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3119   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3120   default:                            ShouldNotReachHere();
3121   }
3122   return false; // keep some compilers happy
3123 }
3124 
3125 void G1CollectedHeap::print_on(outputStream* st) const {
3126   st->print(" %-20s", "garbage-first heap");
3127   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3128             capacity()/K, used_unlocked()/K);
3129   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3130             p2i(_hrm.reserved().start()),
3131             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3132             p2i(_hrm.reserved().end()));
3133   st->cr();
3134   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3135   uint young_regions = _young_list->length();
3136   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3137             (size_t) young_regions * HeapRegion::GrainBytes / K);
3138   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3139   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3140             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3141   st->cr();
3142   MetaspaceAux::print_on(st);
3143 }
3144 
3145 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3146   print_on(st);
3147 
3148   // Print the per-region information.
3149   st->cr();
3150   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3151                "HS=humongous(starts), HC=humongous(continues), "
3152                "CS=collection set, F=free, TS=gc time stamp, "
3153                "PTAMS=previous top-at-mark-start, "
3154                "NTAMS=next top-at-mark-start)");
3155   PrintRegionClosure blk(st);
3156   heap_region_iterate(&blk);
3157 }
3158 
3159 void G1CollectedHeap::print_on_error(outputStream* st) const {
3160   this->CollectedHeap::print_on_error(st);
3161 
3162   if (_cm != NULL) {
3163     st->cr();
3164     _cm->print_on_error(st);
3165   }
3166 }
3167 
3168 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3169   workers()->print_worker_threads_on(st);
3170   _cmThread->print_on(st);
3171   st->cr();
3172   _cm->print_worker_threads_on(st);
3173   _cg1r->print_worker_threads_on(st);
3174   if (G1StringDedup::is_enabled()) {
3175     G1StringDedup::print_worker_threads_on(st);
3176   }
3177 }
3178 
3179 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3180   workers()->threads_do(tc);
3181   tc->do_thread(_cmThread);
3182   _cg1r->threads_do(tc);
3183   if (G1StringDedup::is_enabled()) {
3184     G1StringDedup::threads_do(tc);
3185   }
3186 }
3187 
3188 void G1CollectedHeap::print_tracing_info() const {
3189   // We'll overload this to mean "trace GC pause statistics."
3190   if (TraceYoungGenTime || TraceOldGenTime) {
3191     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3192     // to that.
3193     g1_policy()->print_tracing_info();
3194   }
3195   if (G1SummarizeRSetStats) {
3196     g1_rem_set()->print_summary_info();
3197   }
3198   if (G1SummarizeConcMark) {
3199     concurrent_mark()->print_summary_info();
3200   }
3201   g1_policy()->print_yg_surv_rate_info();
3202 }
3203 
3204 #ifndef PRODUCT
3205 // Helpful for debugging RSet issues.
3206 
3207 class PrintRSetsClosure : public HeapRegionClosure {
3208 private:
3209   const char* _msg;
3210   size_t _occupied_sum;
3211 
3212 public:
3213   bool doHeapRegion(HeapRegion* r) {
3214     HeapRegionRemSet* hrrs = r->rem_set();
3215     size_t occupied = hrrs->occupied();
3216     _occupied_sum += occupied;
3217 
3218     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3219                            HR_FORMAT_PARAMS(r));
3220     if (occupied == 0) {
3221       gclog_or_tty->print_cr("  RSet is empty");
3222     } else {
3223       hrrs->print();
3224     }
3225     gclog_or_tty->print_cr("----------");
3226     return false;
3227   }
3228 
3229   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3230     gclog_or_tty->cr();
3231     gclog_or_tty->print_cr("========================================");
3232     gclog_or_tty->print_cr("%s", msg);
3233     gclog_or_tty->cr();
3234   }
3235 
3236   ~PrintRSetsClosure() {
3237     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3238     gclog_or_tty->print_cr("========================================");
3239     gclog_or_tty->cr();
3240   }
3241 };
3242 
3243 void G1CollectedHeap::print_cset_rsets() {
3244   PrintRSetsClosure cl("Printing CSet RSets");
3245   collection_set_iterate(&cl);
3246 }
3247 
3248 void G1CollectedHeap::print_all_rsets() {
3249   PrintRSetsClosure cl("Printing All RSets");;
3250   heap_region_iterate(&cl);
3251 }
3252 #endif // PRODUCT
3253 
3254 G1CollectedHeap* G1CollectedHeap::heap() {
3255   CollectedHeap* heap = Universe::heap();
3256   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3257   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3258   return (G1CollectedHeap*)heap;
3259 }
3260 
3261 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3262   // always_do_update_barrier = false;
3263   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3264   // Fill TLAB's and such
3265   accumulate_statistics_all_tlabs();
3266   ensure_parsability(true);
3267 
3268   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3269       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3270     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3271   }
3272 }
3273 
3274 void G1CollectedHeap::gc_epilogue(bool full) {
3275 
3276   if (G1SummarizeRSetStats &&
3277       (G1SummarizeRSetStatsPeriod > 0) &&
3278       // we are at the end of the GC. Total collections has already been increased.
3279       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3280     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3281   }
3282 
3283   // FIXME: what is this about?
3284   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3285   // is set.
3286   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3287                         "derived pointer present"));
3288   // always_do_update_barrier = true;
3289 
3290   resize_all_tlabs();
3291   allocation_context_stats().update(full);
3292 
3293   // We have just completed a GC. Update the soft reference
3294   // policy with the new heap occupancy
3295   Universe::update_heap_info_at_gc();
3296 }
3297 
3298 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3299                                                uint gc_count_before,
3300                                                bool* succeeded,
3301                                                GCCause::Cause gc_cause) {
3302   assert_heap_not_locked_and_not_at_safepoint();
3303   g1_policy()->record_stop_world_start();
3304   VM_G1IncCollectionPause op(gc_count_before,
3305                              word_size,
3306                              false, /* should_initiate_conc_mark */
3307                              g1_policy()->max_pause_time_ms(),
3308                              gc_cause);
3309 
3310   op.set_allocation_context(AllocationContext::current());
3311   VMThread::execute(&op);
3312 
3313   HeapWord* result = op.result();
3314   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3315   assert(result == NULL || ret_succeeded,
3316          "the result should be NULL if the VM did not succeed");
3317   *succeeded = ret_succeeded;
3318 
3319   assert_heap_not_locked();
3320   return result;
3321 }
3322 
3323 void
3324 G1CollectedHeap::doConcurrentMark() {
3325   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3326   if (!_cmThread->in_progress()) {
3327     _cmThread->set_started();
3328     CGC_lock->notify();
3329   }
3330 }
3331 
3332 size_t G1CollectedHeap::pending_card_num() {
3333   size_t extra_cards = 0;
3334   JavaThread *curr = Threads::first();
3335   while (curr != NULL) {
3336     DirtyCardQueue& dcq = curr->dirty_card_queue();
3337     extra_cards += dcq.size();
3338     curr = curr->next();
3339   }
3340   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3341   size_t buffer_size = dcqs.buffer_size();
3342   size_t buffer_num = dcqs.completed_buffers_num();
3343 
3344   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3345   // in bytes - not the number of 'entries'. We need to convert
3346   // into a number of cards.
3347   return (buffer_size * buffer_num + extra_cards) / oopSize;
3348 }
3349 
3350 size_t G1CollectedHeap::cards_scanned() {
3351   return g1_rem_set()->cardsScanned();
3352 }
3353 
3354 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3355  private:
3356   size_t _total_humongous;
3357   size_t _candidate_humongous;
3358 
3359   DirtyCardQueue _dcq;
3360 
3361   // We don't nominate objects with many remembered set entries, on
3362   // the assumption that such objects are likely still live.
3363   bool is_remset_small(HeapRegion* region) const {
3364     HeapRegionRemSet* const rset = region->rem_set();
3365     return G1EagerReclaimHumongousObjectsWithStaleRefs
3366       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3367       : rset->is_empty();
3368   }
3369 
3370   bool is_typeArray_region(HeapRegion* region) const {
3371     return oop(region->bottom())->is_typeArray();
3372   }
3373 
3374   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3375     assert(region->is_starts_humongous(), "Must start a humongous object");
3376 
3377     // Candidate selection must satisfy the following constraints
3378     // while concurrent marking is in progress:
3379     //
3380     // * In order to maintain SATB invariants, an object must not be
3381     // reclaimed if it was allocated before the start of marking and
3382     // has not had its references scanned.  Such an object must have
3383     // its references (including type metadata) scanned to ensure no
3384     // live objects are missed by the marking process.  Objects
3385     // allocated after the start of concurrent marking don't need to
3386     // be scanned.
3387     //
3388     // * An object must not be reclaimed if it is on the concurrent
3389     // mark stack.  Objects allocated after the start of concurrent
3390     // marking are never pushed on the mark stack.
3391     //
3392     // Nominating only objects allocated after the start of concurrent
3393     // marking is sufficient to meet both constraints.  This may miss
3394     // some objects that satisfy the constraints, but the marking data
3395     // structures don't support efficiently performing the needed
3396     // additional tests or scrubbing of the mark stack.
3397     //
3398     // However, we presently only nominate is_typeArray() objects.
3399     // A humongous object containing references induces remembered
3400     // set entries on other regions.  In order to reclaim such an
3401     // object, those remembered sets would need to be cleaned up.
3402     //
3403     // We also treat is_typeArray() objects specially, allowing them
3404     // to be reclaimed even if allocated before the start of
3405     // concurrent mark.  For this we rely on mark stack insertion to
3406     // exclude is_typeArray() objects, preventing reclaiming an object
3407     // that is in the mark stack.  We also rely on the metadata for
3408     // such objects to be built-in and so ensured to be kept live.
3409     // Frequent allocation and drop of large binary blobs is an
3410     // important use case for eager reclaim, and this special handling
3411     // may reduce needed headroom.
3412 
3413     return is_typeArray_region(region) && is_remset_small(region);
3414   }
3415 
3416  public:
3417   RegisterHumongousWithInCSetFastTestClosure()
3418   : _total_humongous(0),
3419     _candidate_humongous(0),
3420     _dcq(&JavaThread::dirty_card_queue_set()) {
3421   }
3422 
3423   virtual bool doHeapRegion(HeapRegion* r) {
3424     if (!r->is_starts_humongous()) {
3425       return false;
3426     }
3427     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3428 
3429     bool is_candidate = humongous_region_is_candidate(g1h, r);
3430     uint rindex = r->hrm_index();
3431     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3432     if (is_candidate) {
3433       _candidate_humongous++;
3434       g1h->register_humongous_region_with_cset(rindex);
3435       // Is_candidate already filters out humongous object with large remembered sets.
3436       // If we have a humongous object with a few remembered sets, we simply flush these
3437       // remembered set entries into the DCQS. That will result in automatic
3438       // re-evaluation of their remembered set entries during the following evacuation
3439       // phase.
3440       if (!r->rem_set()->is_empty()) {
3441         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3442                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3443         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3444         HeapRegionRemSetIterator hrrs(r->rem_set());
3445         size_t card_index;
3446         while (hrrs.has_next(card_index)) {
3447           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3448           // The remembered set might contain references to already freed
3449           // regions. Filter out such entries to avoid failing card table
3450           // verification.
3451           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3452             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3453               *card_ptr = CardTableModRefBS::dirty_card_val();
3454               _dcq.enqueue(card_ptr);
3455             }
3456           }
3457         }
3458         r->rem_set()->clear_locked();
3459       }
3460       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3461     }
3462     _total_humongous++;
3463 
3464     return false;
3465   }
3466 
3467   size_t total_humongous() const { return _total_humongous; }
3468   size_t candidate_humongous() const { return _candidate_humongous; }
3469 
3470   void flush_rem_set_entries() { _dcq.flush(); }
3471 };
3472 
3473 void G1CollectedHeap::register_humongous_regions_with_cset() {
3474   if (!G1EagerReclaimHumongousObjects) {
3475     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3476     return;
3477   }
3478   double time = os::elapsed_counter();
3479 
3480   // Collect reclaim candidate information and register candidates with cset.
3481   RegisterHumongousWithInCSetFastTestClosure cl;
3482   heap_region_iterate(&cl);
3483 
3484   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3485   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3486                                                                   cl.total_humongous(),
3487                                                                   cl.candidate_humongous());
3488   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3489 
3490   // Finally flush all remembered set entries to re-check into the global DCQS.
3491   cl.flush_rem_set_entries();
3492 }
3493 
3494 void
3495 G1CollectedHeap::setup_surviving_young_words() {
3496   assert(_surviving_young_words == NULL, "pre-condition");
3497   uint array_length = g1_policy()->young_cset_region_length();
3498   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3499   if (_surviving_young_words == NULL) {
3500     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3501                           "Not enough space for young surv words summary.");
3502   }
3503   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3504 #ifdef ASSERT
3505   for (uint i = 0;  i < array_length; ++i) {
3506     assert( _surviving_young_words[i] == 0, "memset above" );
3507   }
3508 #endif // !ASSERT
3509 }
3510 
3511 void
3512 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3513   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3514   uint array_length = g1_policy()->young_cset_region_length();
3515   for (uint i = 0; i < array_length; ++i) {
3516     _surviving_young_words[i] += surv_young_words[i];
3517   }
3518 }
3519 
3520 void
3521 G1CollectedHeap::cleanup_surviving_young_words() {
3522   guarantee( _surviving_young_words != NULL, "pre-condition" );
3523   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3524   _surviving_young_words = NULL;
3525 }
3526 
3527 #ifdef ASSERT
3528 class VerifyCSetClosure: public HeapRegionClosure {
3529 public:
3530   bool doHeapRegion(HeapRegion* hr) {
3531     // Here we check that the CSet region's RSet is ready for parallel
3532     // iteration. The fields that we'll verify are only manipulated
3533     // when the region is part of a CSet and is collected. Afterwards,
3534     // we reset these fields when we clear the region's RSet (when the
3535     // region is freed) so they are ready when the region is
3536     // re-allocated. The only exception to this is if there's an
3537     // evacuation failure and instead of freeing the region we leave
3538     // it in the heap. In that case, we reset these fields during
3539     // evacuation failure handling.
3540     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3541 
3542     // Here's a good place to add any other checks we'd like to
3543     // perform on CSet regions.
3544     return false;
3545   }
3546 };
3547 #endif // ASSERT
3548 
3549 uint G1CollectedHeap::num_task_queues() const {
3550   return _task_queues->size();
3551 }
3552 
3553 #if TASKQUEUE_STATS
3554 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3555   st->print_raw_cr("GC Task Stats");
3556   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3557   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3558 }
3559 
3560 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3561   print_taskqueue_stats_hdr(st);
3562 
3563   TaskQueueStats totals;
3564   const uint n = num_task_queues();
3565   for (uint i = 0; i < n; ++i) {
3566     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3567     totals += task_queue(i)->stats;
3568   }
3569   st->print_raw("tot "); totals.print(st); st->cr();
3570 
3571   DEBUG_ONLY(totals.verify());
3572 }
3573 
3574 void G1CollectedHeap::reset_taskqueue_stats() {
3575   const uint n = num_task_queues();
3576   for (uint i = 0; i < n; ++i) {
3577     task_queue(i)->stats.reset();
3578   }
3579 }
3580 #endif // TASKQUEUE_STATS
3581 
3582 void G1CollectedHeap::log_gc_header() {
3583   if (!G1Log::fine()) {
3584     return;
3585   }
3586 
3587   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3588 
3589   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3590     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3591     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3592 
3593   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3594 }
3595 
3596 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3597   if (!G1Log::fine()) {
3598     return;
3599   }
3600 
3601   if (G1Log::finer()) {
3602     if (evacuation_failed()) {
3603       gclog_or_tty->print(" (to-space exhausted)");
3604     }
3605     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3606     g1_policy()->phase_times()->note_gc_end();
3607     g1_policy()->phase_times()->print(pause_time_sec);
3608     g1_policy()->print_detailed_heap_transition();
3609   } else {
3610     if (evacuation_failed()) {
3611       gclog_or_tty->print("--");
3612     }
3613     g1_policy()->print_heap_transition();
3614     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3615   }
3616   gclog_or_tty->flush();
3617 }
3618 
3619 bool
3620 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3621   assert_at_safepoint(true /* should_be_vm_thread */);
3622   guarantee(!is_gc_active(), "collection is not reentrant");
3623 
3624   if (GC_locker::check_active_before_gc()) {
3625     return false;
3626   }
3627 
3628   _gc_timer_stw->register_gc_start();
3629 
3630   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3631 
3632   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3633   ResourceMark rm;
3634 
3635   G1Log::update_level();
3636   print_heap_before_gc();
3637   trace_heap_before_gc(_gc_tracer_stw);
3638 
3639   verify_region_sets_optional();
3640   verify_dirty_young_regions();
3641 
3642   // This call will decide whether this pause is an initial-mark
3643   // pause. If it is, during_initial_mark_pause() will return true
3644   // for the duration of this pause.
3645   g1_policy()->decide_on_conc_mark_initiation();
3646 
3647   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3648   assert(!g1_policy()->during_initial_mark_pause() ||
3649           g1_policy()->gcs_are_young(), "sanity");
3650 
3651   // We also do not allow mixed GCs during marking.
3652   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3653 
3654   // Record whether this pause is an initial mark. When the current
3655   // thread has completed its logging output and it's safe to signal
3656   // the CM thread, the flag's value in the policy has been reset.
3657   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3658 
3659   // Inner scope for scope based logging, timers, and stats collection
3660   {
3661     EvacuationInfo evacuation_info;
3662 
3663     if (g1_policy()->during_initial_mark_pause()) {
3664       // We are about to start a marking cycle, so we increment the
3665       // full collection counter.
3666       increment_old_marking_cycles_started();
3667       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3668     }
3669 
3670     _gc_tracer_stw->report_yc_type(yc_type());
3671 
3672     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3673 
3674     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3675                                                                   workers()->active_workers(),
3676                                                                   Threads::number_of_non_daemon_threads());
3677     workers()->set_active_workers(active_workers);
3678 
3679     double pause_start_sec = os::elapsedTime();
3680     g1_policy()->phase_times()->note_gc_start(active_workers, mark_in_progress());
3681     log_gc_header();
3682 
3683     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3684     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3685 
3686     // If the secondary_free_list is not empty, append it to the
3687     // free_list. No need to wait for the cleanup operation to finish;
3688     // the region allocation code will check the secondary_free_list
3689     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3690     // set, skip this step so that the region allocation code has to
3691     // get entries from the secondary_free_list.
3692     if (!G1StressConcRegionFreeing) {
3693       append_secondary_free_list_if_not_empty_with_lock();
3694     }
3695 
3696     assert(check_young_list_well_formed(), "young list should be well formed");
3697 
3698     // Don't dynamically change the number of GC threads this early.  A value of
3699     // 0 is used to indicate serial work.  When parallel work is done,
3700     // it will be set.
3701 
3702     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3703       IsGCActiveMark x;
3704 
3705       gc_prologue(false);
3706       increment_total_collections(false /* full gc */);
3707       increment_gc_time_stamp();
3708 
3709       verify_before_gc();
3710 
3711       check_bitmaps("GC Start");
3712 
3713       COMPILER2_PRESENT(DerivedPointerTable::clear());
3714 
3715       // Please see comment in g1CollectedHeap.hpp and
3716       // G1CollectedHeap::ref_processing_init() to see how
3717       // reference processing currently works in G1.
3718 
3719       // Enable discovery in the STW reference processor
3720       ref_processor_stw()->enable_discovery();
3721 
3722       {
3723         // We want to temporarily turn off discovery by the
3724         // CM ref processor, if necessary, and turn it back on
3725         // on again later if we do. Using a scoped
3726         // NoRefDiscovery object will do this.
3727         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3728 
3729         // Forget the current alloc region (we might even choose it to be part
3730         // of the collection set!).
3731         _allocator->release_mutator_alloc_region();
3732 
3733         // We should call this after we retire the mutator alloc
3734         // region(s) so that all the ALLOC / RETIRE events are generated
3735         // before the start GC event.
3736         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3737 
3738         // This timing is only used by the ergonomics to handle our pause target.
3739         // It is unclear why this should not include the full pause. We will
3740         // investigate this in CR 7178365.
3741         //
3742         // Preserving the old comment here if that helps the investigation:
3743         //
3744         // The elapsed time induced by the start time below deliberately elides
3745         // the possible verification above.
3746         double sample_start_time_sec = os::elapsedTime();
3747 
3748 #if YOUNG_LIST_VERBOSE
3749         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3750         _young_list->print();
3751         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3752 #endif // YOUNG_LIST_VERBOSE
3753 
3754         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3755 
3756         double scan_wait_start = os::elapsedTime();
3757         // We have to wait until the CM threads finish scanning the
3758         // root regions as it's the only way to ensure that all the
3759         // objects on them have been correctly scanned before we start
3760         // moving them during the GC.
3761         bool waited = _cm->root_regions()->wait_until_scan_finished();
3762         double wait_time_ms = 0.0;
3763         if (waited) {
3764           double scan_wait_end = os::elapsedTime();
3765           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3766         }
3767         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3768 
3769 #if YOUNG_LIST_VERBOSE
3770         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3771         _young_list->print();
3772 #endif // YOUNG_LIST_VERBOSE
3773 
3774         if (g1_policy()->during_initial_mark_pause()) {
3775           concurrent_mark()->checkpointRootsInitialPre();
3776         }
3777 
3778 #if YOUNG_LIST_VERBOSE
3779         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3780         _young_list->print();
3781         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3782 #endif // YOUNG_LIST_VERBOSE
3783 
3784         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3785 
3786         register_humongous_regions_with_cset();
3787 
3788         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3789 
3790         _cm->note_start_of_gc();
3791         // We call this after finalize_cset() to
3792         // ensure that the CSet has been finalized.
3793         _cm->verify_no_cset_oops();
3794 
3795         if (_hr_printer.is_active()) {
3796           HeapRegion* hr = g1_policy()->collection_set();
3797           while (hr != NULL) {
3798             _hr_printer.cset(hr);
3799             hr = hr->next_in_collection_set();
3800           }
3801         }
3802 
3803 #ifdef ASSERT
3804         VerifyCSetClosure cl;
3805         collection_set_iterate(&cl);
3806 #endif // ASSERT
3807 
3808         setup_surviving_young_words();
3809 
3810         // Initialize the GC alloc regions.
3811         _allocator->init_gc_alloc_regions(evacuation_info);
3812 
3813         // Actually do the work...
3814         evacuate_collection_set(evacuation_info);
3815 
3816         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3817 
3818         eagerly_reclaim_humongous_regions();
3819 
3820         g1_policy()->clear_collection_set();
3821 
3822         cleanup_surviving_young_words();
3823 
3824         // Start a new incremental collection set for the next pause.
3825         g1_policy()->start_incremental_cset_building();
3826 
3827         clear_cset_fast_test();
3828 
3829         _young_list->reset_sampled_info();
3830 
3831         // Don't check the whole heap at this point as the
3832         // GC alloc regions from this pause have been tagged
3833         // as survivors and moved on to the survivor list.
3834         // Survivor regions will fail the !is_young() check.
3835         assert(check_young_list_empty(false /* check_heap */),
3836           "young list should be empty");
3837 
3838 #if YOUNG_LIST_VERBOSE
3839         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3840         _young_list->print();
3841 #endif // YOUNG_LIST_VERBOSE
3842 
3843         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3844                                              _young_list->first_survivor_region(),
3845                                              _young_list->last_survivor_region());
3846 
3847         _young_list->reset_auxilary_lists();
3848 
3849         if (evacuation_failed()) {
3850           _allocator->set_used(recalculate_used());
3851           for (uint i = 0; i < ParallelGCThreads; i++) {
3852             if (_evacuation_failed_info_array[i].has_failed()) {
3853               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3854             }
3855           }
3856         } else {
3857           // The "used" of the the collection set have already been subtracted
3858           // when they were freed.  Add in the bytes evacuated.
3859           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3860         }
3861 
3862         if (g1_policy()->during_initial_mark_pause()) {
3863           // We have to do this before we notify the CM threads that
3864           // they can start working to make sure that all the
3865           // appropriate initialization is done on the CM object.
3866           concurrent_mark()->checkpointRootsInitialPost();
3867           set_marking_started();
3868           // Note that we don't actually trigger the CM thread at
3869           // this point. We do that later when we're sure that
3870           // the current thread has completed its logging output.
3871         }
3872 
3873         allocate_dummy_regions();
3874 
3875 #if YOUNG_LIST_VERBOSE
3876         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3877         _young_list->print();
3878         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3879 #endif // YOUNG_LIST_VERBOSE
3880 
3881         _allocator->init_mutator_alloc_region();
3882 
3883         {
3884           size_t expand_bytes = g1_policy()->expansion_amount();
3885           if (expand_bytes > 0) {
3886             size_t bytes_before = capacity();
3887             // No need for an ergo verbose message here,
3888             // expansion_amount() does this when it returns a value > 0.
3889             if (!expand(expand_bytes)) {
3890               // We failed to expand the heap. Cannot do anything about it.
3891             }
3892           }
3893         }
3894 
3895         // We redo the verification but now wrt to the new CSet which
3896         // has just got initialized after the previous CSet was freed.
3897         _cm->verify_no_cset_oops();
3898         _cm->note_end_of_gc();
3899 
3900         // This timing is only used by the ergonomics to handle our pause target.
3901         // It is unclear why this should not include the full pause. We will
3902         // investigate this in CR 7178365.
3903         double sample_end_time_sec = os::elapsedTime();
3904         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3905         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
3906 
3907         MemoryService::track_memory_usage();
3908 
3909         // In prepare_for_verify() below we'll need to scan the deferred
3910         // update buffers to bring the RSets up-to-date if
3911         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
3912         // the update buffers we'll probably need to scan cards on the
3913         // regions we just allocated to (i.e., the GC alloc
3914         // regions). However, during the last GC we called
3915         // set_saved_mark() on all the GC alloc regions, so card
3916         // scanning might skip the [saved_mark_word()...top()] area of
3917         // those regions (i.e., the area we allocated objects into
3918         // during the last GC). But it shouldn't. Given that
3919         // saved_mark_word() is conditional on whether the GC time stamp
3920         // on the region is current or not, by incrementing the GC time
3921         // stamp here we invalidate all the GC time stamps on all the
3922         // regions and saved_mark_word() will simply return top() for
3923         // all the regions. This is a nicer way of ensuring this rather
3924         // than iterating over the regions and fixing them. In fact, the
3925         // GC time stamp increment here also ensures that
3926         // saved_mark_word() will return top() between pauses, i.e.,
3927         // during concurrent refinement. So we don't need the
3928         // is_gc_active() check to decided which top to use when
3929         // scanning cards (see CR 7039627).
3930         increment_gc_time_stamp();
3931 
3932         verify_after_gc();
3933         check_bitmaps("GC End");
3934 
3935         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3936         ref_processor_stw()->verify_no_references_recorded();
3937 
3938         // CM reference discovery will be re-enabled if necessary.
3939       }
3940 
3941       // We should do this after we potentially expand the heap so
3942       // that all the COMMIT events are generated before the end GC
3943       // event, and after we retire the GC alloc regions so that all
3944       // RETIRE events are generated before the end GC event.
3945       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
3946 
3947 #ifdef TRACESPINNING
3948       ParallelTaskTerminator::print_termination_counts();
3949 #endif
3950 
3951       gc_epilogue(false);
3952     }
3953 
3954     // Print the remainder of the GC log output.
3955     log_gc_footer(os::elapsedTime() - pause_start_sec);
3956 
3957     // It is not yet to safe to tell the concurrent mark to
3958     // start as we have some optional output below. We don't want the
3959     // output from the concurrent mark thread interfering with this
3960     // logging output either.
3961 
3962     _hrm.verify_optional();
3963     verify_region_sets_optional();
3964 
3965     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
3966     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3967 
3968     print_heap_after_gc();
3969     trace_heap_after_gc(_gc_tracer_stw);
3970 
3971     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3972     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3973     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3974     // before any GC notifications are raised.
3975     g1mm()->update_sizes();
3976 
3977     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3978     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3979     _gc_timer_stw->register_gc_end();
3980     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3981   }
3982   // It should now be safe to tell the concurrent mark thread to start
3983   // without its logging output interfering with the logging output
3984   // that came from the pause.
3985 
3986   if (should_start_conc_mark) {
3987     // CAUTION: after the doConcurrentMark() call below,
3988     // the concurrent marking thread(s) could be running
3989     // concurrently with us. Make sure that anything after
3990     // this point does not assume that we are the only GC thread
3991     // running. Note: of course, the actual marking work will
3992     // not start until the safepoint itself is released in
3993     // SuspendibleThreadSet::desynchronize().
3994     doConcurrentMark();
3995   }
3996 
3997   return true;
3998 }
3999 
4000 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4001   _drain_in_progress = false;
4002   set_evac_failure_closure(cl);
4003   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4004 }
4005 
4006 void G1CollectedHeap::finalize_for_evac_failure() {
4007   assert(_evac_failure_scan_stack != NULL &&
4008          _evac_failure_scan_stack->length() == 0,
4009          "Postcondition");
4010   assert(!_drain_in_progress, "Postcondition");
4011   delete _evac_failure_scan_stack;
4012   _evac_failure_scan_stack = NULL;
4013 }
4014 
4015 void G1CollectedHeap::remove_self_forwarding_pointers() {
4016   double remove_self_forwards_start = os::elapsedTime();
4017 
4018   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4019   workers()->run_task(&rsfp_task);
4020 
4021   // Now restore saved marks, if any.
4022   assert(_objs_with_preserved_marks.size() ==
4023             _preserved_marks_of_objs.size(), "Both or none.");
4024   while (!_objs_with_preserved_marks.is_empty()) {
4025     oop obj = _objs_with_preserved_marks.pop();
4026     markOop m = _preserved_marks_of_objs.pop();
4027     obj->set_mark(m);
4028   }
4029   _objs_with_preserved_marks.clear(true);
4030   _preserved_marks_of_objs.clear(true);
4031 
4032   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4033 }
4034 
4035 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4036   _evac_failure_scan_stack->push(obj);
4037 }
4038 
4039 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4040   assert(_evac_failure_scan_stack != NULL, "precondition");
4041 
4042   while (_evac_failure_scan_stack->length() > 0) {
4043      oop obj = _evac_failure_scan_stack->pop();
4044      _evac_failure_closure->set_region(heap_region_containing(obj));
4045      obj->oop_iterate_backwards(_evac_failure_closure);
4046   }
4047 }
4048 
4049 oop
4050 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4051                                                oop old) {
4052   assert(obj_in_cs(old),
4053          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4054                  p2i(old)));
4055   markOop m = old->mark();
4056   oop forward_ptr = old->forward_to_atomic(old);
4057   if (forward_ptr == NULL) {
4058     // Forward-to-self succeeded.
4059     assert(_par_scan_state != NULL, "par scan state");
4060     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4061     uint queue_num = _par_scan_state->queue_num();
4062 
4063     _evacuation_failed = true;
4064     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4065     if (_evac_failure_closure != cl) {
4066       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4067       assert(!_drain_in_progress,
4068              "Should only be true while someone holds the lock.");
4069       // Set the global evac-failure closure to the current thread's.
4070       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4071       set_evac_failure_closure(cl);
4072       // Now do the common part.
4073       handle_evacuation_failure_common(old, m);
4074       // Reset to NULL.
4075       set_evac_failure_closure(NULL);
4076     } else {
4077       // The lock is already held, and this is recursive.
4078       assert(_drain_in_progress, "This should only be the recursive case.");
4079       handle_evacuation_failure_common(old, m);
4080     }
4081     return old;
4082   } else {
4083     // Forward-to-self failed. Either someone else managed to allocate
4084     // space for this object (old != forward_ptr) or they beat us in
4085     // self-forwarding it (old == forward_ptr).
4086     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4087            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4088                    "should not be in the CSet",
4089                    p2i(old), p2i(forward_ptr)));
4090     return forward_ptr;
4091   }
4092 }
4093 
4094 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4095   preserve_mark_if_necessary(old, m);
4096 
4097   HeapRegion* r = heap_region_containing(old);
4098   if (!r->evacuation_failed()) {
4099     r->set_evacuation_failed(true);
4100     _hr_printer.evac_failure(r);
4101   }
4102 
4103   push_on_evac_failure_scan_stack(old);
4104 
4105   if (!_drain_in_progress) {
4106     // prevent recursion in copy_to_survivor_space()
4107     _drain_in_progress = true;
4108     drain_evac_failure_scan_stack();
4109     _drain_in_progress = false;
4110   }
4111 }
4112 
4113 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4114   assert(evacuation_failed(), "Oversaving!");
4115   // We want to call the "for_promotion_failure" version only in the
4116   // case of a promotion failure.
4117   if (m->must_be_preserved_for_promotion_failure(obj)) {
4118     _objs_with_preserved_marks.push(obj);
4119     _preserved_marks_of_objs.push(m);
4120   }
4121 }
4122 
4123 void G1ParCopyHelper::mark_object(oop obj) {
4124   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4125 
4126   // We know that the object is not moving so it's safe to read its size.
4127   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4128 }
4129 
4130 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4131   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4132   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4133   assert(from_obj != to_obj, "should not be self-forwarded");
4134 
4135   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4136   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4137 
4138   // The object might be in the process of being copied by another
4139   // worker so we cannot trust that its to-space image is
4140   // well-formed. So we have to read its size from its from-space
4141   // image which we know should not be changing.
4142   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4143 }
4144 
4145 template <class T>
4146 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4147   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4148     _scanned_klass->record_modified_oops();
4149   }
4150 }
4151 
4152 template <G1Barrier barrier, G1Mark do_mark_object>
4153 template <class T>
4154 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4155   T heap_oop = oopDesc::load_heap_oop(p);
4156 
4157   if (oopDesc::is_null(heap_oop)) {
4158     return;
4159   }
4160 
4161   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4162 
4163   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4164 
4165   const InCSetState state = _g1->in_cset_state(obj);
4166   if (state.is_in_cset()) {
4167     oop forwardee;
4168     markOop m = obj->mark();
4169     if (m->is_marked()) {
4170       forwardee = (oop) m->decode_pointer();
4171     } else {
4172       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4173     }
4174     assert(forwardee != NULL, "forwardee should not be NULL");
4175     oopDesc::encode_store_heap_oop(p, forwardee);
4176     if (do_mark_object != G1MarkNone && forwardee != obj) {
4177       // If the object is self-forwarded we don't need to explicitly
4178       // mark it, the evacuation failure protocol will do so.
4179       mark_forwarded_object(obj, forwardee);
4180     }
4181 
4182     if (barrier == G1BarrierKlass) {
4183       do_klass_barrier(p, forwardee);
4184     }
4185   } else {
4186     if (state.is_humongous()) {
4187       _g1->set_humongous_is_live(obj);
4188     }
4189     // The object is not in collection set. If we're a root scanning
4190     // closure during an initial mark pause then attempt to mark the object.
4191     if (do_mark_object == G1MarkFromRoot) {
4192       mark_object(obj);
4193     }
4194   }
4195 
4196   if (barrier == G1BarrierEvac) {
4197     _par_scan_state->update_rs(_from, p, _worker_id);
4198   }
4199 }
4200 
4201 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4202 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4203 
4204 class G1ParEvacuateFollowersClosure : public VoidClosure {
4205 protected:
4206   G1CollectedHeap*              _g1h;
4207   G1ParScanThreadState*         _par_scan_state;
4208   RefToScanQueueSet*            _queues;
4209   ParallelTaskTerminator*       _terminator;
4210 
4211   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4212   RefToScanQueueSet*      queues()         { return _queues; }
4213   ParallelTaskTerminator* terminator()     { return _terminator; }
4214 
4215 public:
4216   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4217                                 G1ParScanThreadState* par_scan_state,
4218                                 RefToScanQueueSet* queues,
4219                                 ParallelTaskTerminator* terminator)
4220     : _g1h(g1h), _par_scan_state(par_scan_state),
4221       _queues(queues), _terminator(terminator) {}
4222 
4223   void do_void();
4224 
4225 private:
4226   inline bool offer_termination();
4227 };
4228 
4229 bool G1ParEvacuateFollowersClosure::offer_termination() {
4230   G1ParScanThreadState* const pss = par_scan_state();
4231   pss->start_term_time();
4232   const bool res = terminator()->offer_termination();
4233   pss->end_term_time();
4234   return res;
4235 }
4236 
4237 void G1ParEvacuateFollowersClosure::do_void() {
4238   G1ParScanThreadState* const pss = par_scan_state();
4239   pss->trim_queue();
4240   do {
4241     pss->steal_and_trim_queue(queues());
4242   } while (!offer_termination());
4243 }
4244 
4245 class G1KlassScanClosure : public KlassClosure {
4246  G1ParCopyHelper* _closure;
4247  bool             _process_only_dirty;
4248  int              _count;
4249  public:
4250   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4251       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4252   void do_klass(Klass* klass) {
4253     // If the klass has not been dirtied we know that there's
4254     // no references into  the young gen and we can skip it.
4255    if (!_process_only_dirty || klass->has_modified_oops()) {
4256       // Clean the klass since we're going to scavenge all the metadata.
4257       klass->clear_modified_oops();
4258 
4259       // Tell the closure that this klass is the Klass to scavenge
4260       // and is the one to dirty if oops are left pointing into the young gen.
4261       _closure->set_scanned_klass(klass);
4262 
4263       klass->oops_do(_closure);
4264 
4265       _closure->set_scanned_klass(NULL);
4266     }
4267     _count++;
4268   }
4269 };
4270 
4271 class G1ParTask : public AbstractGangTask {
4272 protected:
4273   G1CollectedHeap*       _g1h;
4274   RefToScanQueueSet      *_queues;
4275   G1RootProcessor*       _root_processor;
4276   ParallelTaskTerminator _terminator;
4277   uint _n_workers;
4278 
4279   Mutex _stats_lock;
4280   Mutex* stats_lock() { return &_stats_lock; }
4281 
4282 public:
4283   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4284     : AbstractGangTask("G1 collection"),
4285       _g1h(g1h),
4286       _queues(task_queues),
4287       _root_processor(root_processor),
4288       _terminator(n_workers, _queues),
4289       _n_workers(n_workers),
4290       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4291   {}
4292 
4293   RefToScanQueueSet* queues() { return _queues; }
4294 
4295   RefToScanQueue *work_queue(int i) {
4296     return queues()->queue(i);
4297   }
4298 
4299   ParallelTaskTerminator* terminator() { return &_terminator; }
4300 
4301   // Helps out with CLD processing.
4302   //
4303   // During InitialMark we need to:
4304   // 1) Scavenge all CLDs for the young GC.
4305   // 2) Mark all objects directly reachable from strong CLDs.
4306   template <G1Mark do_mark_object>
4307   class G1CLDClosure : public CLDClosure {
4308     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4309     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4310     G1KlassScanClosure                                _klass_in_cld_closure;
4311     bool                                              _claim;
4312 
4313    public:
4314     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4315                  bool only_young, bool claim)
4316         : _oop_closure(oop_closure),
4317           _oop_in_klass_closure(oop_closure->g1(),
4318                                 oop_closure->pss(),
4319                                 oop_closure->rp()),
4320           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4321           _claim(claim) {
4322 
4323     }
4324 
4325     void do_cld(ClassLoaderData* cld) {
4326       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4327     }
4328   };
4329 
4330   void work(uint worker_id) {
4331     if (worker_id >= _n_workers) return;  // no work needed this round
4332 
4333     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4334 
4335     {
4336       ResourceMark rm;
4337       HandleMark   hm;
4338 
4339       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4340 
4341       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4342       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4343 
4344       pss.set_evac_failure_closure(&evac_failure_cl);
4345 
4346       bool only_young = _g1h->g1_policy()->gcs_are_young();
4347 
4348       // Non-IM young GC.
4349       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4350       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4351                                                                                only_young, // Only process dirty klasses.
4352                                                                                false);     // No need to claim CLDs.
4353       // IM young GC.
4354       //    Strong roots closures.
4355       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4356       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4357                                                                                false, // Process all klasses.
4358                                                                                true); // Need to claim CLDs.
4359       //    Weak roots closures.
4360       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4361       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4362                                                                                     false, // Process all klasses.
4363                                                                                     true); // Need to claim CLDs.
4364 
4365       OopClosure* strong_root_cl;
4366       OopClosure* weak_root_cl;
4367       CLDClosure* strong_cld_cl;
4368       CLDClosure* weak_cld_cl;
4369 
4370       bool trace_metadata = false;
4371 
4372       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4373         // We also need to mark copied objects.
4374         strong_root_cl = &scan_mark_root_cl;
4375         strong_cld_cl  = &scan_mark_cld_cl;
4376         if (ClassUnloadingWithConcurrentMark) {
4377           weak_root_cl = &scan_mark_weak_root_cl;
4378           weak_cld_cl  = &scan_mark_weak_cld_cl;
4379           trace_metadata = true;
4380         } else {
4381           weak_root_cl = &scan_mark_root_cl;
4382           weak_cld_cl  = &scan_mark_cld_cl;
4383         }
4384       } else {
4385         strong_root_cl = &scan_only_root_cl;
4386         weak_root_cl   = &scan_only_root_cl;
4387         strong_cld_cl  = &scan_only_cld_cl;
4388         weak_cld_cl    = &scan_only_cld_cl;
4389       }
4390 
4391       pss.start_strong_roots();
4392 
4393       _root_processor->evacuate_roots(strong_root_cl,
4394                                       weak_root_cl,
4395                                       strong_cld_cl,
4396                                       weak_cld_cl,
4397                                       trace_metadata,
4398                                       worker_id);
4399 
4400       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4401       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4402                                             weak_root_cl,
4403                                             worker_id);
4404       pss.end_strong_roots();
4405 
4406       {
4407         double start = os::elapsedTime();
4408         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4409         evac.do_void();
4410         double elapsed_sec = os::elapsedTime() - start;
4411         double term_sec = pss.term_time();
4412         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4413         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4414         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4415       }
4416       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4417       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4418 
4419       if (PrintTerminationStats) {
4420         MutexLocker x(stats_lock());
4421         pss.print_termination_stats(worker_id);
4422       }
4423 
4424       assert(pss.queue_is_empty(), "should be empty");
4425 
4426       // Close the inner scope so that the ResourceMark and HandleMark
4427       // destructors are executed here and are included as part of the
4428       // "GC Worker Time".
4429     }
4430     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4431   }
4432 };
4433 
4434 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4435 private:
4436   BoolObjectClosure* _is_alive;
4437   int _initial_string_table_size;
4438   int _initial_symbol_table_size;
4439 
4440   bool  _process_strings;
4441   int _strings_processed;
4442   int _strings_removed;
4443 
4444   bool  _process_symbols;
4445   int _symbols_processed;
4446   int _symbols_removed;
4447 
4448 public:
4449   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4450     AbstractGangTask("String/Symbol Unlinking"),
4451     _is_alive(is_alive),
4452     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4453     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4454 
4455     _initial_string_table_size = StringTable::the_table()->table_size();
4456     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4457     if (process_strings) {
4458       StringTable::clear_parallel_claimed_index();
4459     }
4460     if (process_symbols) {
4461       SymbolTable::clear_parallel_claimed_index();
4462     }
4463   }
4464 
4465   ~G1StringSymbolTableUnlinkTask() {
4466     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4467               err_msg("claim value %d after unlink less than initial string table size %d",
4468                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4469     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4470               err_msg("claim value %d after unlink less than initial symbol table size %d",
4471                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4472 
4473     if (G1TraceStringSymbolTableScrubbing) {
4474       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4475                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4476                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4477                              strings_processed(), strings_removed(),
4478                              symbols_processed(), symbols_removed());
4479     }
4480   }
4481 
4482   void work(uint worker_id) {
4483     int strings_processed = 0;
4484     int strings_removed = 0;
4485     int symbols_processed = 0;
4486     int symbols_removed = 0;
4487     if (_process_strings) {
4488       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4489       Atomic::add(strings_processed, &_strings_processed);
4490       Atomic::add(strings_removed, &_strings_removed);
4491     }
4492     if (_process_symbols) {
4493       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4494       Atomic::add(symbols_processed, &_symbols_processed);
4495       Atomic::add(symbols_removed, &_symbols_removed);
4496     }
4497   }
4498 
4499   size_t strings_processed() const { return (size_t)_strings_processed; }
4500   size_t strings_removed()   const { return (size_t)_strings_removed; }
4501 
4502   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4503   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4504 };
4505 
4506 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4507 private:
4508   static Monitor* _lock;
4509 
4510   BoolObjectClosure* const _is_alive;
4511   const bool               _unloading_occurred;
4512   const uint               _num_workers;
4513 
4514   // Variables used to claim nmethods.
4515   nmethod* _first_nmethod;
4516   volatile nmethod* _claimed_nmethod;
4517 
4518   // The list of nmethods that need to be processed by the second pass.
4519   volatile nmethod* _postponed_list;
4520   volatile uint     _num_entered_barrier;
4521 
4522  public:
4523   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4524       _is_alive(is_alive),
4525       _unloading_occurred(unloading_occurred),
4526       _num_workers(num_workers),
4527       _first_nmethod(NULL),
4528       _claimed_nmethod(NULL),
4529       _postponed_list(NULL),
4530       _num_entered_barrier(0)
4531   {
4532     nmethod::increase_unloading_clock();
4533     // Get first alive nmethod
4534     NMethodIterator iter = NMethodIterator();
4535     if(iter.next_alive()) {
4536       _first_nmethod = iter.method();
4537     }
4538     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4539   }
4540 
4541   ~G1CodeCacheUnloadingTask() {
4542     CodeCache::verify_clean_inline_caches();
4543 
4544     CodeCache::set_needs_cache_clean(false);
4545     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4546 
4547     CodeCache::verify_icholder_relocations();
4548   }
4549 
4550  private:
4551   void add_to_postponed_list(nmethod* nm) {
4552       nmethod* old;
4553       do {
4554         old = (nmethod*)_postponed_list;
4555         nm->set_unloading_next(old);
4556       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4557   }
4558 
4559   void clean_nmethod(nmethod* nm) {
4560     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4561 
4562     if (postponed) {
4563       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4564       add_to_postponed_list(nm);
4565     }
4566 
4567     // Mark that this thread has been cleaned/unloaded.
4568     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4569     nm->set_unloading_clock(nmethod::global_unloading_clock());
4570   }
4571 
4572   void clean_nmethod_postponed(nmethod* nm) {
4573     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4574   }
4575 
4576   static const int MaxClaimNmethods = 16;
4577 
4578   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4579     nmethod* first;
4580     NMethodIterator last;
4581 
4582     do {
4583       *num_claimed_nmethods = 0;
4584 
4585       first = (nmethod*)_claimed_nmethod;
4586       last = NMethodIterator(first);
4587 
4588       if (first != NULL) {
4589 
4590         for (int i = 0; i < MaxClaimNmethods; i++) {
4591           if (!last.next_alive()) {
4592             break;
4593           }
4594           claimed_nmethods[i] = last.method();
4595           (*num_claimed_nmethods)++;
4596         }
4597       }
4598 
4599     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4600   }
4601 
4602   nmethod* claim_postponed_nmethod() {
4603     nmethod* claim;
4604     nmethod* next;
4605 
4606     do {
4607       claim = (nmethod*)_postponed_list;
4608       if (claim == NULL) {
4609         return NULL;
4610       }
4611 
4612       next = claim->unloading_next();
4613 
4614     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4615 
4616     return claim;
4617   }
4618 
4619  public:
4620   // Mark that we're done with the first pass of nmethod cleaning.
4621   void barrier_mark(uint worker_id) {
4622     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4623     _num_entered_barrier++;
4624     if (_num_entered_barrier == _num_workers) {
4625       ml.notify_all();
4626     }
4627   }
4628 
4629   // See if we have to wait for the other workers to
4630   // finish their first-pass nmethod cleaning work.
4631   void barrier_wait(uint worker_id) {
4632     if (_num_entered_barrier < _num_workers) {
4633       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4634       while (_num_entered_barrier < _num_workers) {
4635           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4636       }
4637     }
4638   }
4639 
4640   // Cleaning and unloading of nmethods. Some work has to be postponed
4641   // to the second pass, when we know which nmethods survive.
4642   void work_first_pass(uint worker_id) {
4643     // The first nmethods is claimed by the first worker.
4644     if (worker_id == 0 && _first_nmethod != NULL) {
4645       clean_nmethod(_first_nmethod);
4646       _first_nmethod = NULL;
4647     }
4648 
4649     int num_claimed_nmethods;
4650     nmethod* claimed_nmethods[MaxClaimNmethods];
4651 
4652     while (true) {
4653       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4654 
4655       if (num_claimed_nmethods == 0) {
4656         break;
4657       }
4658 
4659       for (int i = 0; i < num_claimed_nmethods; i++) {
4660         clean_nmethod(claimed_nmethods[i]);
4661       }
4662     }
4663   }
4664 
4665   void work_second_pass(uint worker_id) {
4666     nmethod* nm;
4667     // Take care of postponed nmethods.
4668     while ((nm = claim_postponed_nmethod()) != NULL) {
4669       clean_nmethod_postponed(nm);
4670     }
4671   }
4672 };
4673 
4674 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4675 
4676 class G1KlassCleaningTask : public StackObj {
4677   BoolObjectClosure*                      _is_alive;
4678   volatile jint                           _clean_klass_tree_claimed;
4679   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4680 
4681  public:
4682   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4683       _is_alive(is_alive),
4684       _clean_klass_tree_claimed(0),
4685       _klass_iterator() {
4686   }
4687 
4688  private:
4689   bool claim_clean_klass_tree_task() {
4690     if (_clean_klass_tree_claimed) {
4691       return false;
4692     }
4693 
4694     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4695   }
4696 
4697   InstanceKlass* claim_next_klass() {
4698     Klass* klass;
4699     do {
4700       klass =_klass_iterator.next_klass();
4701     } while (klass != NULL && !klass->oop_is_instance());
4702 
4703     return (InstanceKlass*)klass;
4704   }
4705 
4706 public:
4707 
4708   void clean_klass(InstanceKlass* ik) {
4709     ik->clean_implementors_list(_is_alive);
4710     ik->clean_method_data(_is_alive);
4711 
4712     // G1 specific cleanup work that has
4713     // been moved here to be done in parallel.
4714     ik->clean_dependent_nmethods();
4715   }
4716 
4717   void work() {
4718     ResourceMark rm;
4719 
4720     // One worker will clean the subklass/sibling klass tree.
4721     if (claim_clean_klass_tree_task()) {
4722       Klass::clean_subklass_tree(_is_alive);
4723     }
4724 
4725     // All workers will help cleaning the classes,
4726     InstanceKlass* klass;
4727     while ((klass = claim_next_klass()) != NULL) {
4728       clean_klass(klass);
4729     }
4730   }
4731 };
4732 
4733 // To minimize the remark pause times, the tasks below are done in parallel.
4734 class G1ParallelCleaningTask : public AbstractGangTask {
4735 private:
4736   G1StringSymbolTableUnlinkTask _string_symbol_task;
4737   G1CodeCacheUnloadingTask      _code_cache_task;
4738   G1KlassCleaningTask           _klass_cleaning_task;
4739 
4740 public:
4741   // The constructor is run in the VMThread.
4742   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4743       AbstractGangTask("Parallel Cleaning"),
4744       _string_symbol_task(is_alive, process_strings, process_symbols),
4745       _code_cache_task(num_workers, is_alive, unloading_occurred),
4746       _klass_cleaning_task(is_alive) {
4747   }
4748 
4749   // The parallel work done by all worker threads.
4750   void work(uint worker_id) {
4751     // Do first pass of code cache cleaning.
4752     _code_cache_task.work_first_pass(worker_id);
4753 
4754     // Let the threads mark that the first pass is done.
4755     _code_cache_task.barrier_mark(worker_id);
4756 
4757     // Clean the Strings and Symbols.
4758     _string_symbol_task.work(worker_id);
4759 
4760     // Wait for all workers to finish the first code cache cleaning pass.
4761     _code_cache_task.barrier_wait(worker_id);
4762 
4763     // Do the second code cache cleaning work, which realize on
4764     // the liveness information gathered during the first pass.
4765     _code_cache_task.work_second_pass(worker_id);
4766 
4767     // Clean all klasses that were not unloaded.
4768     _klass_cleaning_task.work();
4769   }
4770 };
4771 
4772 
4773 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4774                                         bool process_strings,
4775                                         bool process_symbols,
4776                                         bool class_unloading_occurred) {
4777   uint n_workers = workers()->active_workers();
4778 
4779   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4780                                         n_workers, class_unloading_occurred);
4781   workers()->run_task(&g1_unlink_task);
4782 }
4783 
4784 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4785                                                      bool process_strings, bool process_symbols) {
4786   {
4787     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4788     workers()->run_task(&g1_unlink_task);
4789   }
4790 
4791   if (G1StringDedup::is_enabled()) {
4792     G1StringDedup::unlink(is_alive);
4793   }
4794 }
4795 
4796 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4797  private:
4798   DirtyCardQueueSet* _queue;
4799  public:
4800   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4801 
4802   virtual void work(uint worker_id) {
4803     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4804     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4805 
4806     RedirtyLoggedCardTableEntryClosure cl;
4807     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4808 
4809     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4810   }
4811 };
4812 
4813 void G1CollectedHeap::redirty_logged_cards() {
4814   double redirty_logged_cards_start = os::elapsedTime();
4815 
4816   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4817   dirty_card_queue_set().reset_for_par_iteration();
4818   workers()->run_task(&redirty_task);
4819 
4820   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4821   dcq.merge_bufferlists(&dirty_card_queue_set());
4822   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4823 
4824   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4825 }
4826 
4827 // Weak Reference Processing support
4828 
4829 // An always "is_alive" closure that is used to preserve referents.
4830 // If the object is non-null then it's alive.  Used in the preservation
4831 // of referent objects that are pointed to by reference objects
4832 // discovered by the CM ref processor.
4833 class G1AlwaysAliveClosure: public BoolObjectClosure {
4834   G1CollectedHeap* _g1;
4835 public:
4836   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4837   bool do_object_b(oop p) {
4838     if (p != NULL) {
4839       return true;
4840     }
4841     return false;
4842   }
4843 };
4844 
4845 bool G1STWIsAliveClosure::do_object_b(oop p) {
4846   // An object is reachable if it is outside the collection set,
4847   // or is inside and copied.
4848   return !_g1->obj_in_cs(p) || p->is_forwarded();
4849 }
4850 
4851 // Non Copying Keep Alive closure
4852 class G1KeepAliveClosure: public OopClosure {
4853   G1CollectedHeap* _g1;
4854 public:
4855   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
4856   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
4857   void do_oop(oop* p) {
4858     oop obj = *p;
4859     assert(obj != NULL, "the caller should have filtered out NULL values");
4860 
4861     const InCSetState cset_state = _g1->in_cset_state(obj);
4862     if (!cset_state.is_in_cset_or_humongous()) {
4863       return;
4864     }
4865     if (cset_state.is_in_cset()) {
4866       assert( obj->is_forwarded(), "invariant" );
4867       *p = obj->forwardee();
4868     } else {
4869       assert(!obj->is_forwarded(), "invariant" );
4870       assert(cset_state.is_humongous(),
4871              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
4872       _g1->set_humongous_is_live(obj);
4873     }
4874   }
4875 };
4876 
4877 // Copying Keep Alive closure - can be called from both
4878 // serial and parallel code as long as different worker
4879 // threads utilize different G1ParScanThreadState instances
4880 // and different queues.
4881 
4882 class G1CopyingKeepAliveClosure: public OopClosure {
4883   G1CollectedHeap*         _g1h;
4884   OopClosure*              _copy_non_heap_obj_cl;
4885   G1ParScanThreadState*    _par_scan_state;
4886 
4887 public:
4888   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
4889                             OopClosure* non_heap_obj_cl,
4890                             G1ParScanThreadState* pss):
4891     _g1h(g1h),
4892     _copy_non_heap_obj_cl(non_heap_obj_cl),
4893     _par_scan_state(pss)
4894   {}
4895 
4896   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
4897   virtual void do_oop(      oop* p) { do_oop_work(p); }
4898 
4899   template <class T> void do_oop_work(T* p) {
4900     oop obj = oopDesc::load_decode_heap_oop(p);
4901 
4902     if (_g1h->is_in_cset_or_humongous(obj)) {
4903       // If the referent object has been forwarded (either copied
4904       // to a new location or to itself in the event of an
4905       // evacuation failure) then we need to update the reference
4906       // field and, if both reference and referent are in the G1
4907       // heap, update the RSet for the referent.
4908       //
4909       // If the referent has not been forwarded then we have to keep
4910       // it alive by policy. Therefore we have copy the referent.
4911       //
4912       // If the reference field is in the G1 heap then we can push
4913       // on the PSS queue. When the queue is drained (after each
4914       // phase of reference processing) the object and it's followers
4915       // will be copied, the reference field set to point to the
4916       // new location, and the RSet updated. Otherwise we need to
4917       // use the the non-heap or metadata closures directly to copy
4918       // the referent object and update the pointer, while avoiding
4919       // updating the RSet.
4920 
4921       if (_g1h->is_in_g1_reserved(p)) {
4922         _par_scan_state->push_on_queue(p);
4923       } else {
4924         assert(!Metaspace::contains((const void*)p),
4925                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
4926         _copy_non_heap_obj_cl->do_oop(p);
4927       }
4928     }
4929   }
4930 };
4931 
4932 // Serial drain queue closure. Called as the 'complete_gc'
4933 // closure for each discovered list in some of the
4934 // reference processing phases.
4935 
4936 class G1STWDrainQueueClosure: public VoidClosure {
4937 protected:
4938   G1CollectedHeap* _g1h;
4939   G1ParScanThreadState* _par_scan_state;
4940 
4941   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4942 
4943 public:
4944   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
4945     _g1h(g1h),
4946     _par_scan_state(pss)
4947   { }
4948 
4949   void do_void() {
4950     G1ParScanThreadState* const pss = par_scan_state();
4951     pss->trim_queue();
4952   }
4953 };
4954 
4955 // Parallel Reference Processing closures
4956 
4957 // Implementation of AbstractRefProcTaskExecutor for parallel reference
4958 // processing during G1 evacuation pauses.
4959 
4960 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
4961 private:
4962   G1CollectedHeap*   _g1h;
4963   RefToScanQueueSet* _queues;
4964   FlexibleWorkGang*  _workers;
4965   uint               _active_workers;
4966 
4967 public:
4968   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
4969                            FlexibleWorkGang* workers,
4970                            RefToScanQueueSet *task_queues,
4971                            uint n_workers) :
4972     _g1h(g1h),
4973     _queues(task_queues),
4974     _workers(workers),
4975     _active_workers(n_workers)
4976   {
4977     assert(n_workers > 0, "shouldn't call this otherwise");
4978   }
4979 
4980   // Executes the given task using concurrent marking worker threads.
4981   virtual void execute(ProcessTask& task);
4982   virtual void execute(EnqueueTask& task);
4983 };
4984 
4985 // Gang task for possibly parallel reference processing
4986 
4987 class G1STWRefProcTaskProxy: public AbstractGangTask {
4988   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
4989   ProcessTask&     _proc_task;
4990   G1CollectedHeap* _g1h;
4991   RefToScanQueueSet *_task_queues;
4992   ParallelTaskTerminator* _terminator;
4993 
4994 public:
4995   G1STWRefProcTaskProxy(ProcessTask& proc_task,
4996                      G1CollectedHeap* g1h,
4997                      RefToScanQueueSet *task_queues,
4998                      ParallelTaskTerminator* terminator) :
4999     AbstractGangTask("Process reference objects in parallel"),
5000     _proc_task(proc_task),
5001     _g1h(g1h),
5002     _task_queues(task_queues),
5003     _terminator(terminator)
5004   {}
5005 
5006   virtual void work(uint worker_id) {
5007     // The reference processing task executed by a single worker.
5008     ResourceMark rm;
5009     HandleMark   hm;
5010 
5011     G1STWIsAliveClosure is_alive(_g1h);
5012 
5013     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5014     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5015 
5016     pss.set_evac_failure_closure(&evac_failure_cl);
5017 
5018     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5019 
5020     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5021 
5022     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5023 
5024     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5025       // We also need to mark copied objects.
5026       copy_non_heap_cl = &copy_mark_non_heap_cl;
5027     }
5028 
5029     // Keep alive closure.
5030     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5031 
5032     // Complete GC closure
5033     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5034 
5035     // Call the reference processing task's work routine.
5036     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5037 
5038     // Note we cannot assert that the refs array is empty here as not all
5039     // of the processing tasks (specifically phase2 - pp2_work) execute
5040     // the complete_gc closure (which ordinarily would drain the queue) so
5041     // the queue may not be empty.
5042   }
5043 };
5044 
5045 // Driver routine for parallel reference processing.
5046 // Creates an instance of the ref processing gang
5047 // task and has the worker threads execute it.
5048 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5049   assert(_workers != NULL, "Need parallel worker threads.");
5050 
5051   ParallelTaskTerminator terminator(_active_workers, _queues);
5052   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5053 
5054   _workers->run_task(&proc_task_proxy);
5055 }
5056 
5057 // Gang task for parallel reference enqueueing.
5058 
5059 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5060   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5061   EnqueueTask& _enq_task;
5062 
5063 public:
5064   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5065     AbstractGangTask("Enqueue reference objects in parallel"),
5066     _enq_task(enq_task)
5067   { }
5068 
5069   virtual void work(uint worker_id) {
5070     _enq_task.work(worker_id);
5071   }
5072 };
5073 
5074 // Driver routine for parallel reference enqueueing.
5075 // Creates an instance of the ref enqueueing gang
5076 // task and has the worker threads execute it.
5077 
5078 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5079   assert(_workers != NULL, "Need parallel worker threads.");
5080 
5081   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5082 
5083   _workers->run_task(&enq_task_proxy);
5084 }
5085 
5086 // End of weak reference support closures
5087 
5088 // Abstract task used to preserve (i.e. copy) any referent objects
5089 // that are in the collection set and are pointed to by reference
5090 // objects discovered by the CM ref processor.
5091 
5092 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5093 protected:
5094   G1CollectedHeap* _g1h;
5095   RefToScanQueueSet      *_queues;
5096   ParallelTaskTerminator _terminator;
5097   uint _n_workers;
5098 
5099 public:
5100   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5101     AbstractGangTask("ParPreserveCMReferents"),
5102     _g1h(g1h),
5103     _queues(task_queues),
5104     _terminator(workers, _queues),
5105     _n_workers(workers)
5106   { }
5107 
5108   void work(uint worker_id) {
5109     ResourceMark rm;
5110     HandleMark   hm;
5111 
5112     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5113     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5114 
5115     pss.set_evac_failure_closure(&evac_failure_cl);
5116 
5117     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5118 
5119     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5120 
5121     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5122 
5123     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5124 
5125     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5126       // We also need to mark copied objects.
5127       copy_non_heap_cl = &copy_mark_non_heap_cl;
5128     }
5129 
5130     // Is alive closure
5131     G1AlwaysAliveClosure always_alive(_g1h);
5132 
5133     // Copying keep alive closure. Applied to referent objects that need
5134     // to be copied.
5135     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5136 
5137     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5138 
5139     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5140     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5141 
5142     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5143     // So this must be true - but assert just in case someone decides to
5144     // change the worker ids.
5145     assert(worker_id < limit, "sanity");
5146     assert(!rp->discovery_is_atomic(), "check this code");
5147 
5148     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5149     for (uint idx = worker_id; idx < limit; idx += stride) {
5150       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5151 
5152       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5153       while (iter.has_next()) {
5154         // Since discovery is not atomic for the CM ref processor, we
5155         // can see some null referent objects.
5156         iter.load_ptrs(DEBUG_ONLY(true));
5157         oop ref = iter.obj();
5158 
5159         // This will filter nulls.
5160         if (iter.is_referent_alive()) {
5161           iter.make_referent_alive();
5162         }
5163         iter.move_to_next();
5164       }
5165     }
5166 
5167     // Drain the queue - which may cause stealing
5168     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5169     drain_queue.do_void();
5170     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5171     assert(pss.queue_is_empty(), "should be");
5172   }
5173 };
5174 
5175 // Weak Reference processing during an evacuation pause (part 1).
5176 void G1CollectedHeap::process_discovered_references() {
5177   double ref_proc_start = os::elapsedTime();
5178 
5179   ReferenceProcessor* rp = _ref_processor_stw;
5180   assert(rp->discovery_enabled(), "should have been enabled");
5181 
5182   // Any reference objects, in the collection set, that were 'discovered'
5183   // by the CM ref processor should have already been copied (either by
5184   // applying the external root copy closure to the discovered lists, or
5185   // by following an RSet entry).
5186   //
5187   // But some of the referents, that are in the collection set, that these
5188   // reference objects point to may not have been copied: the STW ref
5189   // processor would have seen that the reference object had already
5190   // been 'discovered' and would have skipped discovering the reference,
5191   // but would not have treated the reference object as a regular oop.
5192   // As a result the copy closure would not have been applied to the
5193   // referent object.
5194   //
5195   // We need to explicitly copy these referent objects - the references
5196   // will be processed at the end of remarking.
5197   //
5198   // We also need to do this copying before we process the reference
5199   // objects discovered by the STW ref processor in case one of these
5200   // referents points to another object which is also referenced by an
5201   // object discovered by the STW ref processor.
5202 
5203   uint no_of_gc_workers = workers()->active_workers();
5204 
5205   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5206                                                  no_of_gc_workers,
5207                                                  _task_queues);
5208 
5209   workers()->run_task(&keep_cm_referents);
5210 
5211   // Closure to test whether a referent is alive.
5212   G1STWIsAliveClosure is_alive(this);
5213 
5214   // Even when parallel reference processing is enabled, the processing
5215   // of JNI refs is serial and performed serially by the current thread
5216   // rather than by a worker. The following PSS will be used for processing
5217   // JNI refs.
5218 
5219   // Use only a single queue for this PSS.
5220   G1ParScanThreadState            pss(this, 0, NULL);
5221 
5222   // We do not embed a reference processor in the copying/scanning
5223   // closures while we're actually processing the discovered
5224   // reference objects.
5225   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5226 
5227   pss.set_evac_failure_closure(&evac_failure_cl);
5228 
5229   assert(pss.queue_is_empty(), "pre-condition");
5230 
5231   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5232 
5233   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5234 
5235   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5236 
5237   if (g1_policy()->during_initial_mark_pause()) {
5238     // We also need to mark copied objects.
5239     copy_non_heap_cl = &copy_mark_non_heap_cl;
5240   }
5241 
5242   // Keep alive closure.
5243   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5244 
5245   // Serial Complete GC closure
5246   G1STWDrainQueueClosure drain_queue(this, &pss);
5247 
5248   // Setup the soft refs policy...
5249   rp->setup_policy(false);
5250 
5251   ReferenceProcessorStats stats;
5252   if (!rp->processing_is_mt()) {
5253     // Serial reference processing...
5254     stats = rp->process_discovered_references(&is_alive,
5255                                               &keep_alive,
5256                                               &drain_queue,
5257                                               NULL,
5258                                               _gc_timer_stw,
5259                                               _gc_tracer_stw->gc_id());
5260   } else {
5261     // Parallel reference processing
5262     assert(rp->num_q() == no_of_gc_workers, "sanity");
5263     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5264 
5265     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5266     stats = rp->process_discovered_references(&is_alive,
5267                                               &keep_alive,
5268                                               &drain_queue,
5269                                               &par_task_executor,
5270                                               _gc_timer_stw,
5271                                               _gc_tracer_stw->gc_id());
5272   }
5273 
5274   _gc_tracer_stw->report_gc_reference_stats(stats);
5275 
5276   // We have completed copying any necessary live referent objects.
5277   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5278 
5279   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5280   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5281 }
5282 
5283 // Weak Reference processing during an evacuation pause (part 2).
5284 void G1CollectedHeap::enqueue_discovered_references() {
5285   double ref_enq_start = os::elapsedTime();
5286 
5287   ReferenceProcessor* rp = _ref_processor_stw;
5288   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5289 
5290   // Now enqueue any remaining on the discovered lists on to
5291   // the pending list.
5292   if (!rp->processing_is_mt()) {
5293     // Serial reference processing...
5294     rp->enqueue_discovered_references();
5295   } else {
5296     // Parallel reference enqueueing
5297 
5298     uint n_workers = workers()->active_workers();
5299 
5300     assert(rp->num_q() == n_workers, "sanity");
5301     assert(n_workers <= rp->max_num_q(), "sanity");
5302 
5303     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5304     rp->enqueue_discovered_references(&par_task_executor);
5305   }
5306 
5307   rp->verify_no_references_recorded();
5308   assert(!rp->discovery_enabled(), "should have been disabled");
5309 
5310   // FIXME
5311   // CM's reference processing also cleans up the string and symbol tables.
5312   // Should we do that here also? We could, but it is a serial operation
5313   // and could significantly increase the pause time.
5314 
5315   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5316   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5317 }
5318 
5319 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5320   _expand_heap_after_alloc_failure = true;
5321   _evacuation_failed = false;
5322 
5323   // Should G1EvacuationFailureALot be in effect for this GC?
5324   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5325 
5326   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5327 
5328   // Disable the hot card cache.
5329   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5330   hot_card_cache->reset_hot_cache_claimed_index();
5331   hot_card_cache->set_use_cache(false);
5332 
5333   const uint n_workers = workers()->active_workers();
5334 
5335   init_for_evac_failure(NULL);
5336 
5337   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5338   double start_par_time_sec = os::elapsedTime();
5339   double end_par_time_sec;
5340 
5341   {
5342     G1RootProcessor root_processor(this, n_workers);
5343     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5344     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5345     if (g1_policy()->during_initial_mark_pause()) {
5346       ClassLoaderDataGraph::clear_claimed_marks();
5347     }
5348 
5349     // The individual threads will set their evac-failure closures.
5350     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5351 
5352     workers()->run_task(&g1_par_task);
5353     end_par_time_sec = os::elapsedTime();
5354 
5355     // Closing the inner scope will execute the destructor
5356     // for the G1RootProcessor object. We record the current
5357     // elapsed time before closing the scope so that time
5358     // taken for the destructor is NOT included in the
5359     // reported parallel time.
5360   }
5361 
5362   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5363 
5364   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5365   phase_times->record_par_time(par_time_ms);
5366 
5367   double code_root_fixup_time_ms =
5368         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5369   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5370 
5371   // Process any discovered reference objects - we have
5372   // to do this _before_ we retire the GC alloc regions
5373   // as we may have to copy some 'reachable' referent
5374   // objects (and their reachable sub-graphs) that were
5375   // not copied during the pause.
5376   process_discovered_references();
5377 
5378   if (G1StringDedup::is_enabled()) {
5379     double fixup_start = os::elapsedTime();
5380 
5381     G1STWIsAliveClosure is_alive(this);
5382     G1KeepAliveClosure keep_alive(this);
5383     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5384 
5385     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5386     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5387   }
5388 
5389   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5390   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5391 
5392   // Reset and re-enable the hot card cache.
5393   // Note the counts for the cards in the regions in the
5394   // collection set are reset when the collection set is freed.
5395   hot_card_cache->reset_hot_cache();
5396   hot_card_cache->set_use_cache(true);
5397 
5398   purge_code_root_memory();
5399 
5400   finalize_for_evac_failure();
5401 
5402   if (evacuation_failed()) {
5403     remove_self_forwarding_pointers();
5404 
5405     // Reset the G1EvacuationFailureALot counters and flags
5406     // Note: the values are reset only when an actual
5407     // evacuation failure occurs.
5408     NOT_PRODUCT(reset_evacuation_should_fail();)
5409   }
5410 
5411   // Enqueue any remaining references remaining on the STW
5412   // reference processor's discovered lists. We need to do
5413   // this after the card table is cleaned (and verified) as
5414   // the act of enqueueing entries on to the pending list
5415   // will log these updates (and dirty their associated
5416   // cards). We need these updates logged to update any
5417   // RSets.
5418   enqueue_discovered_references();
5419 
5420   redirty_logged_cards();
5421   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5422 }
5423 
5424 void G1CollectedHeap::free_region(HeapRegion* hr,
5425                                   FreeRegionList* free_list,
5426                                   bool par,
5427                                   bool locked) {
5428   assert(!hr->is_free(), "the region should not be free");
5429   assert(!hr->is_empty(), "the region should not be empty");
5430   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5431   assert(free_list != NULL, "pre-condition");
5432 
5433   if (G1VerifyBitmaps) {
5434     MemRegion mr(hr->bottom(), hr->end());
5435     concurrent_mark()->clearRangePrevBitmap(mr);
5436   }
5437 
5438   // Clear the card counts for this region.
5439   // Note: we only need to do this if the region is not young
5440   // (since we don't refine cards in young regions).
5441   if (!hr->is_young()) {
5442     _cg1r->hot_card_cache()->reset_card_counts(hr);
5443   }
5444   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5445   free_list->add_ordered(hr);
5446 }
5447 
5448 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5449                                      FreeRegionList* free_list,
5450                                      bool par) {
5451   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5452   assert(free_list != NULL, "pre-condition");
5453 
5454   size_t hr_capacity = hr->capacity();
5455   // We need to read this before we make the region non-humongous,
5456   // otherwise the information will be gone.
5457   uint last_index = hr->last_hc_index();
5458   hr->clear_humongous();
5459   free_region(hr, free_list, par);
5460 
5461   uint i = hr->hrm_index() + 1;
5462   while (i < last_index) {
5463     HeapRegion* curr_hr = region_at(i);
5464     assert(curr_hr->is_continues_humongous(), "invariant");
5465     curr_hr->clear_humongous();
5466     free_region(curr_hr, free_list, par);
5467     i += 1;
5468   }
5469 }
5470 
5471 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5472                                        const HeapRegionSetCount& humongous_regions_removed) {
5473   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5474     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5475     _old_set.bulk_remove(old_regions_removed);
5476     _humongous_set.bulk_remove(humongous_regions_removed);
5477   }
5478 
5479 }
5480 
5481 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5482   assert(list != NULL, "list can't be null");
5483   if (!list->is_empty()) {
5484     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5485     _hrm.insert_list_into_free_list(list);
5486   }
5487 }
5488 
5489 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5490   _allocator->decrease_used(bytes);
5491 }
5492 
5493 class G1ParCleanupCTTask : public AbstractGangTask {
5494   G1SATBCardTableModRefBS* _ct_bs;
5495   G1CollectedHeap* _g1h;
5496   HeapRegion* volatile _su_head;
5497 public:
5498   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5499                      G1CollectedHeap* g1h) :
5500     AbstractGangTask("G1 Par Cleanup CT Task"),
5501     _ct_bs(ct_bs), _g1h(g1h) { }
5502 
5503   void work(uint worker_id) {
5504     HeapRegion* r;
5505     while (r = _g1h->pop_dirty_cards_region()) {
5506       clear_cards(r);
5507     }
5508   }
5509 
5510   void clear_cards(HeapRegion* r) {
5511     // Cards of the survivors should have already been dirtied.
5512     if (!r->is_survivor()) {
5513       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5514     }
5515   }
5516 };
5517 
5518 #ifndef PRODUCT
5519 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5520   G1CollectedHeap* _g1h;
5521   G1SATBCardTableModRefBS* _ct_bs;
5522 public:
5523   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5524     : _g1h(g1h), _ct_bs(ct_bs) { }
5525   virtual bool doHeapRegion(HeapRegion* r) {
5526     if (r->is_survivor()) {
5527       _g1h->verify_dirty_region(r);
5528     } else {
5529       _g1h->verify_not_dirty_region(r);
5530     }
5531     return false;
5532   }
5533 };
5534 
5535 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5536   // All of the region should be clean.
5537   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5538   MemRegion mr(hr->bottom(), hr->end());
5539   ct_bs->verify_not_dirty_region(mr);
5540 }
5541 
5542 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5543   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5544   // dirty allocated blocks as they allocate them. The thread that
5545   // retires each region and replaces it with a new one will do a
5546   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5547   // not dirty that area (one less thing to have to do while holding
5548   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5549   // is dirty.
5550   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5551   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5552   if (hr->is_young()) {
5553     ct_bs->verify_g1_young_region(mr);
5554   } else {
5555     ct_bs->verify_dirty_region(mr);
5556   }
5557 }
5558 
5559 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5560   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5561   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5562     verify_dirty_region(hr);
5563   }
5564 }
5565 
5566 void G1CollectedHeap::verify_dirty_young_regions() {
5567   verify_dirty_young_list(_young_list->first_region());
5568 }
5569 
5570 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5571                                                HeapWord* tams, HeapWord* end) {
5572   guarantee(tams <= end,
5573             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, p2i(tams), p2i(end)));
5574   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5575   if (result < end) {
5576     gclog_or_tty->cr();
5577     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5578                            bitmap_name, p2i(result));
5579     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5580                            bitmap_name, p2i(tams), p2i(end));
5581     return false;
5582   }
5583   return true;
5584 }
5585 
5586 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5587   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5588   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5589 
5590   HeapWord* bottom = hr->bottom();
5591   HeapWord* ptams  = hr->prev_top_at_mark_start();
5592   HeapWord* ntams  = hr->next_top_at_mark_start();
5593   HeapWord* end    = hr->end();
5594 
5595   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5596 
5597   bool res_n = true;
5598   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5599   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5600   // if we happen to be in that state.
5601   if (mark_in_progress() || !_cmThread->in_progress()) {
5602     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5603   }
5604   if (!res_p || !res_n) {
5605     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5606                            HR_FORMAT_PARAMS(hr));
5607     gclog_or_tty->print_cr("#### Caller: %s", caller);
5608     return false;
5609   }
5610   return true;
5611 }
5612 
5613 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5614   if (!G1VerifyBitmaps) return;
5615 
5616   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5617 }
5618 
5619 class G1VerifyBitmapClosure : public HeapRegionClosure {
5620 private:
5621   const char* _caller;
5622   G1CollectedHeap* _g1h;
5623   bool _failures;
5624 
5625 public:
5626   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5627     _caller(caller), _g1h(g1h), _failures(false) { }
5628 
5629   bool failures() { return _failures; }
5630 
5631   virtual bool doHeapRegion(HeapRegion* hr) {
5632     if (hr->is_continues_humongous()) return false;
5633 
5634     bool result = _g1h->verify_bitmaps(_caller, hr);
5635     if (!result) {
5636       _failures = true;
5637     }
5638     return false;
5639   }
5640 };
5641 
5642 void G1CollectedHeap::check_bitmaps(const char* caller) {
5643   if (!G1VerifyBitmaps) return;
5644 
5645   G1VerifyBitmapClosure cl(caller, this);
5646   heap_region_iterate(&cl);
5647   guarantee(!cl.failures(), "bitmap verification");
5648 }
5649 
5650 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5651  private:
5652   bool _failures;
5653  public:
5654   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5655 
5656   virtual bool doHeapRegion(HeapRegion* hr) {
5657     uint i = hr->hrm_index();
5658     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5659     if (hr->is_humongous()) {
5660       if (hr->in_collection_set()) {
5661         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5662         _failures = true;
5663         return true;
5664       }
5665       if (cset_state.is_in_cset()) {
5666         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5667         _failures = true;
5668         return true;
5669       }
5670       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5671         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5672         _failures = true;
5673         return true;
5674       }
5675     } else {
5676       if (cset_state.is_humongous()) {
5677         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5678         _failures = true;
5679         return true;
5680       }
5681       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5682         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5683                                hr->in_collection_set(), cset_state.value(), i);
5684         _failures = true;
5685         return true;
5686       }
5687       if (cset_state.is_in_cset()) {
5688         if (hr->is_young() != (cset_state.is_young())) {
5689           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5690                                  hr->is_young(), cset_state.value(), i);
5691           _failures = true;
5692           return true;
5693         }
5694         if (hr->is_old() != (cset_state.is_old())) {
5695           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5696                                  hr->is_old(), cset_state.value(), i);
5697           _failures = true;
5698           return true;
5699         }
5700       }
5701     }
5702     return false;
5703   }
5704 
5705   bool failures() const { return _failures; }
5706 };
5707 
5708 bool G1CollectedHeap::check_cset_fast_test() {
5709   G1CheckCSetFastTableClosure cl;
5710   _hrm.iterate(&cl);
5711   return !cl.failures();
5712 }
5713 #endif // PRODUCT
5714 
5715 void G1CollectedHeap::cleanUpCardTable() {
5716   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5717   double start = os::elapsedTime();
5718 
5719   {
5720     // Iterate over the dirty cards region list.
5721     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5722 
5723     workers()->run_task(&cleanup_task);
5724 #ifndef PRODUCT
5725     if (G1VerifyCTCleanup || VerifyAfterGC) {
5726       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5727       heap_region_iterate(&cleanup_verifier);
5728     }
5729 #endif
5730   }
5731 
5732   double elapsed = os::elapsedTime() - start;
5733   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5734 }
5735 
5736 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5737   size_t pre_used = 0;
5738   FreeRegionList local_free_list("Local List for CSet Freeing");
5739 
5740   double young_time_ms     = 0.0;
5741   double non_young_time_ms = 0.0;
5742 
5743   // Since the collection set is a superset of the the young list,
5744   // all we need to do to clear the young list is clear its
5745   // head and length, and unlink any young regions in the code below
5746   _young_list->clear();
5747 
5748   G1CollectorPolicy* policy = g1_policy();
5749 
5750   double start_sec = os::elapsedTime();
5751   bool non_young = true;
5752 
5753   HeapRegion* cur = cs_head;
5754   int age_bound = -1;
5755   size_t rs_lengths = 0;
5756 
5757   while (cur != NULL) {
5758     assert(!is_on_master_free_list(cur), "sanity");
5759     if (non_young) {
5760       if (cur->is_young()) {
5761         double end_sec = os::elapsedTime();
5762         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5763         non_young_time_ms += elapsed_ms;
5764 
5765         start_sec = os::elapsedTime();
5766         non_young = false;
5767       }
5768     } else {
5769       if (!cur->is_young()) {
5770         double end_sec = os::elapsedTime();
5771         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5772         young_time_ms += elapsed_ms;
5773 
5774         start_sec = os::elapsedTime();
5775         non_young = true;
5776       }
5777     }
5778 
5779     rs_lengths += cur->rem_set()->occupied_locked();
5780 
5781     HeapRegion* next = cur->next_in_collection_set();
5782     assert(cur->in_collection_set(), "bad CS");
5783     cur->set_next_in_collection_set(NULL);
5784     clear_in_cset(cur);
5785 
5786     if (cur->is_young()) {
5787       int index = cur->young_index_in_cset();
5788       assert(index != -1, "invariant");
5789       assert((uint) index < policy->young_cset_region_length(), "invariant");
5790       size_t words_survived = _surviving_young_words[index];
5791       cur->record_surv_words_in_group(words_survived);
5792 
5793       // At this point the we have 'popped' cur from the collection set
5794       // (linked via next_in_collection_set()) but it is still in the
5795       // young list (linked via next_young_region()). Clear the
5796       // _next_young_region field.
5797       cur->set_next_young_region(NULL);
5798     } else {
5799       int index = cur->young_index_in_cset();
5800       assert(index == -1, "invariant");
5801     }
5802 
5803     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5804             (!cur->is_young() && cur->young_index_in_cset() == -1),
5805             "invariant" );
5806 
5807     if (!cur->evacuation_failed()) {
5808       MemRegion used_mr = cur->used_region();
5809 
5810       // And the region is empty.
5811       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5812       pre_used += cur->used();
5813       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5814     } else {
5815       cur->uninstall_surv_rate_group();
5816       if (cur->is_young()) {
5817         cur->set_young_index_in_cset(-1);
5818       }
5819       cur->set_evacuation_failed(false);
5820       // The region is now considered to be old.
5821       cur->set_old();
5822       _old_set.add(cur);
5823       evacuation_info.increment_collectionset_used_after(cur->used());
5824     }
5825     cur = next;
5826   }
5827 
5828   evacuation_info.set_regions_freed(local_free_list.length());
5829   policy->record_max_rs_lengths(rs_lengths);
5830   policy->cset_regions_freed();
5831 
5832   double end_sec = os::elapsedTime();
5833   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5834 
5835   if (non_young) {
5836     non_young_time_ms += elapsed_ms;
5837   } else {
5838     young_time_ms += elapsed_ms;
5839   }
5840 
5841   prepend_to_freelist(&local_free_list);
5842   decrement_summary_bytes(pre_used);
5843   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5844   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5845 }
5846 
5847 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5848  private:
5849   FreeRegionList* _free_region_list;
5850   HeapRegionSet* _proxy_set;
5851   HeapRegionSetCount _humongous_regions_removed;
5852   size_t _freed_bytes;
5853  public:
5854 
5855   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
5856     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
5857   }
5858 
5859   virtual bool doHeapRegion(HeapRegion* r) {
5860     if (!r->is_starts_humongous()) {
5861       return false;
5862     }
5863 
5864     G1CollectedHeap* g1h = G1CollectedHeap::heap();
5865 
5866     oop obj = (oop)r->bottom();
5867     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
5868 
5869     // The following checks whether the humongous object is live are sufficient.
5870     // The main additional check (in addition to having a reference from the roots
5871     // or the young gen) is whether the humongous object has a remembered set entry.
5872     //
5873     // A humongous object cannot be live if there is no remembered set for it
5874     // because:
5875     // - there can be no references from within humongous starts regions referencing
5876     // the object because we never allocate other objects into them.
5877     // (I.e. there are no intra-region references that may be missed by the
5878     // remembered set)
5879     // - as soon there is a remembered set entry to the humongous starts region
5880     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
5881     // until the end of a concurrent mark.
5882     //
5883     // It is not required to check whether the object has been found dead by marking
5884     // or not, in fact it would prevent reclamation within a concurrent cycle, as
5885     // all objects allocated during that time are considered live.
5886     // SATB marking is even more conservative than the remembered set.
5887     // So if at this point in the collection there is no remembered set entry,
5888     // nobody has a reference to it.
5889     // At the start of collection we flush all refinement logs, and remembered sets
5890     // are completely up-to-date wrt to references to the humongous object.
5891     //
5892     // Other implementation considerations:
5893     // - never consider object arrays at this time because they would pose
5894     // considerable effort for cleaning up the the remembered sets. This is
5895     // required because stale remembered sets might reference locations that
5896     // are currently allocated into.
5897     uint region_idx = r->hrm_index();
5898     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
5899         !r->rem_set()->is_empty()) {
5900 
5901       if (G1TraceEagerReclaimHumongousObjects) {
5902         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5903                                region_idx,
5904                                (size_t)obj->size() * HeapWordSize,
5905                                p2i(r->bottom()),
5906                                r->region_num(),
5907                                r->rem_set()->occupied(),
5908                                r->rem_set()->strong_code_roots_list_length(),
5909                                next_bitmap->isMarked(r->bottom()),
5910                                g1h->is_humongous_reclaim_candidate(region_idx),
5911                                obj->is_typeArray()
5912                               );
5913       }
5914 
5915       return false;
5916     }
5917 
5918     guarantee(obj->is_typeArray(),
5919               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
5920                       PTR_FORMAT " is not.",
5921                       p2i(r->bottom())));
5922 
5923     if (G1TraceEagerReclaimHumongousObjects) {
5924       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length %u with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d reclaim candidate %d type array %d",
5925                              region_idx,
5926                              (size_t)obj->size() * HeapWordSize,
5927                              p2i(r->bottom()),
5928                              r->region_num(),
5929                              r->rem_set()->occupied(),
5930                              r->rem_set()->strong_code_roots_list_length(),
5931                              next_bitmap->isMarked(r->bottom()),
5932                              g1h->is_humongous_reclaim_candidate(region_idx),
5933                              obj->is_typeArray()
5934                             );
5935     }
5936     // Need to clear mark bit of the humongous object if already set.
5937     if (next_bitmap->isMarked(r->bottom())) {
5938       next_bitmap->clear(r->bottom());
5939     }
5940     _freed_bytes += r->used();
5941     r->set_containing_set(NULL);
5942     _humongous_regions_removed.increment(1u, r->capacity());
5943     g1h->free_humongous_region(r, _free_region_list, false);
5944 
5945     return false;
5946   }
5947 
5948   HeapRegionSetCount& humongous_free_count() {
5949     return _humongous_regions_removed;
5950   }
5951 
5952   size_t bytes_freed() const {
5953     return _freed_bytes;
5954   }
5955 
5956   size_t humongous_reclaimed() const {
5957     return _humongous_regions_removed.length();
5958   }
5959 };
5960 
5961 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
5962   assert_at_safepoint(true);
5963 
5964   if (!G1EagerReclaimHumongousObjects ||
5965       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
5966     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
5967     return;
5968   }
5969 
5970   double start_time = os::elapsedTime();
5971 
5972   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
5973 
5974   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
5975   heap_region_iterate(&cl);
5976 
5977   HeapRegionSetCount empty_set;
5978   remove_from_old_sets(empty_set, cl.humongous_free_count());
5979 
5980   G1HRPrinter* hrp = hr_printer();
5981   if (hrp->is_active()) {
5982     FreeRegionListIterator iter(&local_cleanup_list);
5983     while (iter.more_available()) {
5984       HeapRegion* hr = iter.get_next();
5985       hrp->cleanup(hr);
5986     }
5987   }
5988 
5989   prepend_to_freelist(&local_cleanup_list);
5990   decrement_summary_bytes(cl.bytes_freed());
5991 
5992   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
5993                                                                     cl.humongous_reclaimed());
5994 }
5995 
5996 // This routine is similar to the above but does not record
5997 // any policy statistics or update free lists; we are abandoning
5998 // the current incremental collection set in preparation of a
5999 // full collection. After the full GC we will start to build up
6000 // the incremental collection set again.
6001 // This is only called when we're doing a full collection
6002 // and is immediately followed by the tearing down of the young list.
6003 
6004 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6005   HeapRegion* cur = cs_head;
6006 
6007   while (cur != NULL) {
6008     HeapRegion* next = cur->next_in_collection_set();
6009     assert(cur->in_collection_set(), "bad CS");
6010     cur->set_next_in_collection_set(NULL);
6011     clear_in_cset(cur);
6012     cur->set_young_index_in_cset(-1);
6013     cur = next;
6014   }
6015 }
6016 
6017 void G1CollectedHeap::set_free_regions_coming() {
6018   if (G1ConcRegionFreeingVerbose) {
6019     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6020                            "setting free regions coming");
6021   }
6022 
6023   assert(!free_regions_coming(), "pre-condition");
6024   _free_regions_coming = true;
6025 }
6026 
6027 void G1CollectedHeap::reset_free_regions_coming() {
6028   assert(free_regions_coming(), "pre-condition");
6029 
6030   {
6031     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6032     _free_regions_coming = false;
6033     SecondaryFreeList_lock->notify_all();
6034   }
6035 
6036   if (G1ConcRegionFreeingVerbose) {
6037     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6038                            "reset free regions coming");
6039   }
6040 }
6041 
6042 void G1CollectedHeap::wait_while_free_regions_coming() {
6043   // Most of the time we won't have to wait, so let's do a quick test
6044   // first before we take the lock.
6045   if (!free_regions_coming()) {
6046     return;
6047   }
6048 
6049   if (G1ConcRegionFreeingVerbose) {
6050     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6051                            "waiting for free regions");
6052   }
6053 
6054   {
6055     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6056     while (free_regions_coming()) {
6057       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6058     }
6059   }
6060 
6061   if (G1ConcRegionFreeingVerbose) {
6062     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6063                            "done waiting for free regions");
6064   }
6065 }
6066 
6067 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6068   _young_list->push_region(hr);
6069 }
6070 
6071 class NoYoungRegionsClosure: public HeapRegionClosure {
6072 private:
6073   bool _success;
6074 public:
6075   NoYoungRegionsClosure() : _success(true) { }
6076   bool doHeapRegion(HeapRegion* r) {
6077     if (r->is_young()) {
6078       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6079                              p2i(r->bottom()), p2i(r->end()));
6080       _success = false;
6081     }
6082     return false;
6083   }
6084   bool success() { return _success; }
6085 };
6086 
6087 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6088   bool ret = _young_list->check_list_empty(check_sample);
6089 
6090   if (check_heap) {
6091     NoYoungRegionsClosure closure;
6092     heap_region_iterate(&closure);
6093     ret = ret && closure.success();
6094   }
6095 
6096   return ret;
6097 }
6098 
6099 class TearDownRegionSetsClosure : public HeapRegionClosure {
6100 private:
6101   HeapRegionSet *_old_set;
6102 
6103 public:
6104   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6105 
6106   bool doHeapRegion(HeapRegion* r) {
6107     if (r->is_old()) {
6108       _old_set->remove(r);
6109     } else {
6110       // We ignore free regions, we'll empty the free list afterwards.
6111       // We ignore young regions, we'll empty the young list afterwards.
6112       // We ignore humongous regions, we're not tearing down the
6113       // humongous regions set.
6114       assert(r->is_free() || r->is_young() || r->is_humongous(),
6115              "it cannot be another type");
6116     }
6117     return false;
6118   }
6119 
6120   ~TearDownRegionSetsClosure() {
6121     assert(_old_set->is_empty(), "post-condition");
6122   }
6123 };
6124 
6125 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6126   assert_at_safepoint(true /* should_be_vm_thread */);
6127 
6128   if (!free_list_only) {
6129     TearDownRegionSetsClosure cl(&_old_set);
6130     heap_region_iterate(&cl);
6131 
6132     // Note that emptying the _young_list is postponed and instead done as
6133     // the first step when rebuilding the regions sets again. The reason for
6134     // this is that during a full GC string deduplication needs to know if
6135     // a collected region was young or old when the full GC was initiated.
6136   }
6137   _hrm.remove_all_free_regions();
6138 }
6139 
6140 class RebuildRegionSetsClosure : public HeapRegionClosure {
6141 private:
6142   bool            _free_list_only;
6143   HeapRegionSet*   _old_set;
6144   HeapRegionManager*   _hrm;
6145   size_t          _total_used;
6146 
6147 public:
6148   RebuildRegionSetsClosure(bool free_list_only,
6149                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6150     _free_list_only(free_list_only),
6151     _old_set(old_set), _hrm(hrm), _total_used(0) {
6152     assert(_hrm->num_free_regions() == 0, "pre-condition");
6153     if (!free_list_only) {
6154       assert(_old_set->is_empty(), "pre-condition");
6155     }
6156   }
6157 
6158   bool doHeapRegion(HeapRegion* r) {
6159     if (r->is_continues_humongous()) {
6160       return false;
6161     }
6162 
6163     if (r->is_empty()) {
6164       // Add free regions to the free list
6165       r->set_free();
6166       r->set_allocation_context(AllocationContext::system());
6167       _hrm->insert_into_free_list(r);
6168     } else if (!_free_list_only) {
6169       assert(!r->is_young(), "we should not come across young regions");
6170 
6171       if (r->is_humongous()) {
6172         // We ignore humongous regions, we left the humongous set unchanged
6173       } else {
6174         // Objects that were compacted would have ended up on regions
6175         // that were previously old or free.
6176         assert(r->is_free() || r->is_old(), "invariant");
6177         // We now consider them old, so register as such.
6178         r->set_old();
6179         _old_set->add(r);
6180       }
6181       _total_used += r->used();
6182     }
6183 
6184     return false;
6185   }
6186 
6187   size_t total_used() {
6188     return _total_used;
6189   }
6190 };
6191 
6192 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6193   assert_at_safepoint(true /* should_be_vm_thread */);
6194 
6195   if (!free_list_only) {
6196     _young_list->empty_list();
6197   }
6198 
6199   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6200   heap_region_iterate(&cl);
6201 
6202   if (!free_list_only) {
6203     _allocator->set_used(cl.total_used());
6204   }
6205   assert(_allocator->used_unlocked() == recalculate_used(),
6206          err_msg("inconsistent _allocator->used_unlocked(), "
6207                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6208                  _allocator->used_unlocked(), recalculate_used()));
6209 }
6210 
6211 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6212   _refine_cte_cl->set_concurrent(concurrent);
6213 }
6214 
6215 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6216   HeapRegion* hr = heap_region_containing(p);
6217   return hr->is_in(p);
6218 }
6219 
6220 // Methods for the mutator alloc region
6221 
6222 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6223                                                       bool force) {
6224   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6225   assert(!force || g1_policy()->can_expand_young_list(),
6226          "if force is true we should be able to expand the young list");
6227   bool young_list_full = g1_policy()->is_young_list_full();
6228   if (force || !young_list_full) {
6229     HeapRegion* new_alloc_region = new_region(word_size,
6230                                               false /* is_old */,
6231                                               false /* do_expand */);
6232     if (new_alloc_region != NULL) {
6233       set_region_short_lived_locked(new_alloc_region);
6234       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6235       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6236       return new_alloc_region;
6237     }
6238   }
6239   return NULL;
6240 }
6241 
6242 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6243                                                   size_t allocated_bytes) {
6244   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6245   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6246 
6247   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6248   _allocator->increase_used(allocated_bytes);
6249   _hr_printer.retire(alloc_region);
6250   // We update the eden sizes here, when the region is retired,
6251   // instead of when it's allocated, since this is the point that its
6252   // used space has been recored in _summary_bytes_used.
6253   g1mm()->update_eden_size();
6254 }
6255 
6256 // Methods for the GC alloc regions
6257 
6258 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6259                                                  uint count,
6260                                                  InCSetState dest) {
6261   assert(FreeList_lock->owned_by_self(), "pre-condition");
6262 
6263   if (count < g1_policy()->max_regions(dest)) {
6264     const bool is_survivor = (dest.is_young());
6265     HeapRegion* new_alloc_region = new_region(word_size,
6266                                               !is_survivor,
6267                                               true /* do_expand */);
6268     if (new_alloc_region != NULL) {
6269       // We really only need to do this for old regions given that we
6270       // should never scan survivors. But it doesn't hurt to do it
6271       // for survivors too.
6272       new_alloc_region->record_timestamp();
6273       if (is_survivor) {
6274         new_alloc_region->set_survivor();
6275         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6276         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6277       } else {
6278         new_alloc_region->set_old();
6279         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6280         check_bitmaps("Old Region Allocation", new_alloc_region);
6281       }
6282       bool during_im = g1_policy()->during_initial_mark_pause();
6283       new_alloc_region->note_start_of_copying(during_im);
6284       return new_alloc_region;
6285     }
6286   }
6287   return NULL;
6288 }
6289 
6290 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6291                                              size_t allocated_bytes,
6292                                              InCSetState dest) {
6293   bool during_im = g1_policy()->during_initial_mark_pause();
6294   alloc_region->note_end_of_copying(during_im);
6295   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6296   if (dest.is_young()) {
6297     young_list()->add_survivor_region(alloc_region);
6298   } else {
6299     _old_set.add(alloc_region);
6300   }
6301   _hr_printer.retire(alloc_region);
6302 }
6303 
6304 // Heap region set verification
6305 
6306 class VerifyRegionListsClosure : public HeapRegionClosure {
6307 private:
6308   HeapRegionSet*   _old_set;
6309   HeapRegionSet*   _humongous_set;
6310   HeapRegionManager*   _hrm;
6311 
6312 public:
6313   HeapRegionSetCount _old_count;
6314   HeapRegionSetCount _humongous_count;
6315   HeapRegionSetCount _free_count;
6316 
6317   VerifyRegionListsClosure(HeapRegionSet* old_set,
6318                            HeapRegionSet* humongous_set,
6319                            HeapRegionManager* hrm) :
6320     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6321     _old_count(), _humongous_count(), _free_count(){ }
6322 
6323   bool doHeapRegion(HeapRegion* hr) {
6324     if (hr->is_continues_humongous()) {
6325       return false;
6326     }
6327 
6328     if (hr->is_young()) {
6329       // TODO
6330     } else if (hr->is_starts_humongous()) {
6331       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6332       _humongous_count.increment(1u, hr->capacity());
6333     } else if (hr->is_empty()) {
6334       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6335       _free_count.increment(1u, hr->capacity());
6336     } else if (hr->is_old()) {
6337       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6338       _old_count.increment(1u, hr->capacity());
6339     } else {
6340       ShouldNotReachHere();
6341     }
6342     return false;
6343   }
6344 
6345   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6346     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6347     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6348         old_set->total_capacity_bytes(), _old_count.capacity()));
6349 
6350     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6351     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6352         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6353 
6354     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6355     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6356         free_list->total_capacity_bytes(), _free_count.capacity()));
6357   }
6358 };
6359 
6360 void G1CollectedHeap::verify_region_sets() {
6361   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6362 
6363   // First, check the explicit lists.
6364   _hrm.verify();
6365   {
6366     // Given that a concurrent operation might be adding regions to
6367     // the secondary free list we have to take the lock before
6368     // verifying it.
6369     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6370     _secondary_free_list.verify_list();
6371   }
6372 
6373   // If a concurrent region freeing operation is in progress it will
6374   // be difficult to correctly attributed any free regions we come
6375   // across to the correct free list given that they might belong to
6376   // one of several (free_list, secondary_free_list, any local lists,
6377   // etc.). So, if that's the case we will skip the rest of the
6378   // verification operation. Alternatively, waiting for the concurrent
6379   // operation to complete will have a non-trivial effect on the GC's
6380   // operation (no concurrent operation will last longer than the
6381   // interval between two calls to verification) and it might hide
6382   // any issues that we would like to catch during testing.
6383   if (free_regions_coming()) {
6384     return;
6385   }
6386 
6387   // Make sure we append the secondary_free_list on the free_list so
6388   // that all free regions we will come across can be safely
6389   // attributed to the free_list.
6390   append_secondary_free_list_if_not_empty_with_lock();
6391 
6392   // Finally, make sure that the region accounting in the lists is
6393   // consistent with what we see in the heap.
6394 
6395   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6396   heap_region_iterate(&cl);
6397   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6398 }
6399 
6400 // Optimized nmethod scanning
6401 
6402 class RegisterNMethodOopClosure: public OopClosure {
6403   G1CollectedHeap* _g1h;
6404   nmethod* _nm;
6405 
6406   template <class T> void do_oop_work(T* p) {
6407     T heap_oop = oopDesc::load_heap_oop(p);
6408     if (!oopDesc::is_null(heap_oop)) {
6409       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6410       HeapRegion* hr = _g1h->heap_region_containing(obj);
6411       assert(!hr->is_continues_humongous(),
6412              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6413                      " starting at "HR_FORMAT,
6414                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6415 
6416       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6417       hr->add_strong_code_root_locked(_nm);
6418     }
6419   }
6420 
6421 public:
6422   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6423     _g1h(g1h), _nm(nm) {}
6424 
6425   void do_oop(oop* p)       { do_oop_work(p); }
6426   void do_oop(narrowOop* p) { do_oop_work(p); }
6427 };
6428 
6429 class UnregisterNMethodOopClosure: public OopClosure {
6430   G1CollectedHeap* _g1h;
6431   nmethod* _nm;
6432 
6433   template <class T> void do_oop_work(T* p) {
6434     T heap_oop = oopDesc::load_heap_oop(p);
6435     if (!oopDesc::is_null(heap_oop)) {
6436       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6437       HeapRegion* hr = _g1h->heap_region_containing(obj);
6438       assert(!hr->is_continues_humongous(),
6439              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6440                      " starting at "HR_FORMAT,
6441                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6442 
6443       hr->remove_strong_code_root(_nm);
6444     }
6445   }
6446 
6447 public:
6448   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6449     _g1h(g1h), _nm(nm) {}
6450 
6451   void do_oop(oop* p)       { do_oop_work(p); }
6452   void do_oop(narrowOop* p) { do_oop_work(p); }
6453 };
6454 
6455 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6456   CollectedHeap::register_nmethod(nm);
6457 
6458   guarantee(nm != NULL, "sanity");
6459   RegisterNMethodOopClosure reg_cl(this, nm);
6460   nm->oops_do(&reg_cl);
6461 }
6462 
6463 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6464   CollectedHeap::unregister_nmethod(nm);
6465 
6466   guarantee(nm != NULL, "sanity");
6467   UnregisterNMethodOopClosure reg_cl(this, nm);
6468   nm->oops_do(&reg_cl, true);
6469 }
6470 
6471 void G1CollectedHeap::purge_code_root_memory() {
6472   double purge_start = os::elapsedTime();
6473   G1CodeRootSet::purge();
6474   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6475   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6476 }
6477 
6478 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6479   G1CollectedHeap* _g1h;
6480 
6481 public:
6482   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6483     _g1h(g1h) {}
6484 
6485   void do_code_blob(CodeBlob* cb) {
6486     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6487     if (nm == NULL) {
6488       return;
6489     }
6490 
6491     if (ScavengeRootsInCode) {
6492       _g1h->register_nmethod(nm);
6493     }
6494   }
6495 };
6496 
6497 void G1CollectedHeap::rebuild_strong_code_roots() {
6498   RebuildStrongCodeRootClosure blob_cl(this);
6499   CodeCache::blobs_do(&blob_cl);
6500 }