1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/allocTracer.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcHeapSummary.hpp"
  31 #include "gc/shared/gcTrace.hpp"
  32 #include "gc/shared/gcTraceTime.inline.hpp"
  33 #include "gc/shared/gcWhen.hpp"
  34 #include "gc/shared/vmGCOperations.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/metaspace.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "runtime/init.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "services/heapDumper.hpp"
  43 
  44 
  45 #ifdef ASSERT
  46 int CollectedHeap::_fire_out_of_memory_count = 0;
  47 #endif
  48 
  49 size_t CollectedHeap::_filler_array_max_size = 0;
  50 
  51 template <>
  52 void EventLogBase<GCMessage>::print(outputStream* st, GCMessage& m) {
  53   st->print_cr("GC heap %s", m.is_before ? "before" : "after");
  54   st->print_raw(m);
  55 }
  56 
  57 void GCHeapLog::log_heap(CollectedHeap* heap, bool before) {
  58   if (!should_log()) {
  59     return;
  60   }
  61 
  62   double timestamp = fetch_timestamp();
  63   MutexLockerEx ml(&_mutex, Mutex::_no_safepoint_check_flag);
  64   int index = compute_log_index();
  65   _records[index].thread = NULL; // Its the GC thread so it's not that interesting.
  66   _records[index].timestamp = timestamp;
  67   _records[index].data.is_before = before;
  68   stringStream st(_records[index].data.buffer(), _records[index].data.size());
  69 
  70   st.print_cr("{Heap %s GC invocations=%u (full %u):",
  71                  before ? "before" : "after",
  72                  heap->total_collections(),
  73                  heap->total_full_collections());
  74 
  75   heap->print_on(&st);
  76   st.print_cr("}");
  77 }
  78 
  79 VirtualSpaceSummary CollectedHeap::create_heap_space_summary() {
  80   size_t capacity_in_words = capacity() / HeapWordSize;
  81 
  82   return VirtualSpaceSummary(
  83     reserved_region().start(), reserved_region().start() + capacity_in_words, reserved_region().end());
  84 }
  85 
  86 GCHeapSummary CollectedHeap::create_heap_summary() {
  87   VirtualSpaceSummary heap_space = create_heap_space_summary();
  88   return GCHeapSummary(heap_space, used());
  89 }
  90 
  91 MetaspaceSummary CollectedHeap::create_metaspace_summary() {
  92   const MetaspaceSizes meta_space(
  93       MetaspaceAux::committed_bytes(),
  94       MetaspaceAux::used_bytes(),
  95       MetaspaceAux::reserved_bytes());
  96   const MetaspaceSizes data_space(
  97       MetaspaceAux::committed_bytes(Metaspace::NonClassType),
  98       MetaspaceAux::used_bytes(Metaspace::NonClassType),
  99       MetaspaceAux::reserved_bytes(Metaspace::NonClassType));
 100   const MetaspaceSizes class_space(
 101       MetaspaceAux::committed_bytes(Metaspace::ClassType),
 102       MetaspaceAux::used_bytes(Metaspace::ClassType),
 103       MetaspaceAux::reserved_bytes(Metaspace::ClassType));
 104 
 105   const MetaspaceChunkFreeListSummary& ms_chunk_free_list_summary =
 106     MetaspaceAux::chunk_free_list_summary(Metaspace::NonClassType);
 107   const MetaspaceChunkFreeListSummary& class_chunk_free_list_summary =
 108     MetaspaceAux::chunk_free_list_summary(Metaspace::ClassType);
 109 
 110   return MetaspaceSummary(MetaspaceGC::capacity_until_GC(), meta_space, data_space, class_space,
 111                           ms_chunk_free_list_summary, class_chunk_free_list_summary);
 112 }
 113 
 114 void CollectedHeap::print_heap_before_gc() {
 115   Universe::print_heap_before_gc();
 116   if (_gc_heap_log != NULL) {
 117     _gc_heap_log->log_heap_before(this);
 118   }
 119 }
 120 
 121 void CollectedHeap::print_heap_after_gc() {
 122   Universe::print_heap_after_gc();
 123   if (_gc_heap_log != NULL) {
 124     _gc_heap_log->log_heap_after(this);
 125   }
 126 }
 127 
 128 void CollectedHeap::print_on_error(outputStream* st) const {
 129   st->print_cr("Heap:");
 130   print_extended_on(st);
 131   st->cr();
 132 
 133   _barrier_set->print_on(st);
 134 }
 135 
 136 void CollectedHeap::register_nmethod(nmethod* nm) {
 137   assert_locked_or_safepoint(CodeCache_lock);
 138   if (!nm->on_scavenge_root_list() && nm->detect_scavenge_root_oops()) {
 139     CodeCache::add_scavenge_root_nmethod(nm);
 140   }
 141 }
 142 
 143 void CollectedHeap::unregister_nmethod(nmethod* nm) {
 144   assert_locked_or_safepoint(CodeCache_lock);
 145 }
 146 
 147 void CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 148   const GCHeapSummary& heap_summary = create_heap_summary();
 149   gc_tracer->report_gc_heap_summary(when, heap_summary);
 150 
 151   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 152   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 153 }
 154 
 155 void CollectedHeap::trace_heap_before_gc(const GCTracer* gc_tracer) {
 156   trace_heap(GCWhen::BeforeGC, gc_tracer);
 157 }
 158 
 159 void CollectedHeap::trace_heap_after_gc(const GCTracer* gc_tracer) {
 160   trace_heap(GCWhen::AfterGC, gc_tracer);
 161 }
 162 
 163 // WhiteBox API support for concurrent collectors.  These are the
 164 // default implementations, for collectors which don't support this
 165 // feature.
 166 bool CollectedHeap::supports_concurrent_phase_control() const {
 167   return false;
 168 }
 169 
 170 const char* const* CollectedHeap::concurrent_phases() const {
 171   static const char* const result[] = { NULL };
 172   return result;
 173 }
 174 
 175 bool CollectedHeap::request_concurrent_phase(const char* phase) {
 176   return false;
 177 }
 178 
 179 // Memory state functions.
 180 
 181 
 182 CollectedHeap::CollectedHeap() :
 183   _barrier_set(NULL),
 184   _is_gc_active(false),
 185   _total_collections(0),
 186   _total_full_collections(0),
 187   _gc_cause(GCCause::_no_gc),
 188   _gc_lastcause(GCCause::_no_gc)
 189 {
 190   const size_t max_len = size_t(arrayOopDesc::max_array_length(T_INT));
 191   const size_t elements_per_word = HeapWordSize / sizeof(jint);
 192   _filler_array_max_size = align_object_size(filler_array_hdr_size() +
 193                                              max_len / elements_per_word);
 194 
 195   NOT_PRODUCT(_promotion_failure_alot_count = 0;)
 196   NOT_PRODUCT(_promotion_failure_alot_gc_number = 0;)
 197 
 198   if (UsePerfData) {
 199     EXCEPTION_MARK;
 200 
 201     // create the gc cause jvmstat counters
 202     _perf_gc_cause = PerfDataManager::create_string_variable(SUN_GC, "cause",
 203                              80, GCCause::to_string(_gc_cause), CHECK);
 204 
 205     _perf_gc_lastcause =
 206                 PerfDataManager::create_string_variable(SUN_GC, "lastCause",
 207                              80, GCCause::to_string(_gc_lastcause), CHECK);
 208   }
 209 
 210   // Create the ring log
 211   if (LogEvents) {
 212     _gc_heap_log = new GCHeapLog();
 213   } else {
 214     _gc_heap_log = NULL;
 215   }
 216 }
 217 
 218 // This interface assumes that it's being called by the
 219 // vm thread. It collects the heap assuming that the
 220 // heap lock is already held and that we are executing in
 221 // the context of the vm thread.
 222 void CollectedHeap::collect_as_vm_thread(GCCause::Cause cause) {
 223   assert(Thread::current()->is_VM_thread(), "Precondition#1");
 224   assert(Heap_lock->is_locked(), "Precondition#2");
 225   GCCauseSetter gcs(this, cause);
 226   switch (cause) {
 227     case GCCause::_heap_inspection:
 228     case GCCause::_heap_dump:
 229     case GCCause::_metadata_GC_threshold : {
 230       HandleMark hm;
 231       do_full_collection(false);        // don't clear all soft refs
 232       break;
 233     }
 234     case GCCause::_metadata_GC_clear_soft_refs: {
 235       HandleMark hm;
 236       do_full_collection(true);         // do clear all soft refs
 237       break;
 238     }
 239     default:
 240       ShouldNotReachHere(); // Unexpected use of this function
 241   }
 242 }
 243 
 244 void CollectedHeap::set_barrier_set(BarrierSet* barrier_set) {
 245   _barrier_set = barrier_set;
 246   oopDesc::set_bs(_barrier_set);
 247 }
 248 
 249 void CollectedHeap::pre_initialize() {
 250 }
 251 
 252 #ifndef PRODUCT
 253 void CollectedHeap::check_for_bad_heap_word_value(HeapWord* addr, size_t size) {
 254   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 255     for (size_t slot = 0; slot < size; slot += 1) {
 256       assert((*(intptr_t*) (addr + slot)) != ((intptr_t) badHeapWordVal),
 257              "Found badHeapWordValue in post-allocation check");
 258     }
 259   }
 260 }
 261 
 262 void CollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr, size_t size) {
 263   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 264     for (size_t slot = 0; slot < size; slot += 1) {
 265       assert((*(intptr_t*) (addr + slot)) == ((intptr_t) badHeapWordVal),
 266              "Found non badHeapWordValue in pre-allocation check");
 267     }
 268   }
 269 }
 270 #endif // PRODUCT
 271 
 272 #ifdef ASSERT
 273 void CollectedHeap::check_for_valid_allocation_state() {
 274   Thread *thread = Thread::current();
 275   // How to choose between a pending exception and a potential
 276   // OutOfMemoryError?  Don't allow pending exceptions.
 277   // This is a VM policy failure, so how do we exhaustively test it?
 278   assert(!thread->has_pending_exception(),
 279          "shouldn't be allocating with pending exception");
 280   if (StrictSafepointChecks) {
 281     assert(thread->allow_allocation(),
 282            "Allocation done by thread for which allocation is blocked "
 283            "by No_Allocation_Verifier!");
 284     // Allocation of an oop can always invoke a safepoint,
 285     // hence, the true argument
 286     thread->check_for_valid_safepoint_state(true);
 287   }
 288 }
 289 #endif
 290 
 291 HeapWord* CollectedHeap::allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size) {
 292 
 293   // Retain tlab and allocate object in shared space if
 294   // the amount free in the tlab is too large to discard.
 295   if (thread->tlab().free() > thread->tlab().refill_waste_limit()) {
 296     thread->tlab().record_slow_allocation(size);
 297     return NULL;
 298   }
 299 
 300   // Discard tlab and allocate a new one.
 301   // To minimize fragmentation, the last TLAB may be smaller than the rest.
 302   size_t new_tlab_size = thread->tlab().compute_size(size);
 303 
 304   thread->tlab().clear_before_allocation();
 305 
 306   if (new_tlab_size == 0) {
 307     return NULL;
 308   }
 309 
 310   // Allocate a new TLAB...
 311   HeapWord* obj = Universe::heap()->allocate_new_tlab(new_tlab_size);
 312   if (obj == NULL) {
 313     return NULL;
 314   }
 315 
 316   AllocTracer::send_allocation_in_new_tlab_event(klass, new_tlab_size * HeapWordSize, size * HeapWordSize);
 317 
 318   if (ZeroTLAB) {
 319     // ..and clear it.
 320     Copy::zero_to_words(obj, new_tlab_size);
 321   } else {
 322     // ...and zap just allocated object.
 323 #ifdef ASSERT
 324     // Skip mangling the space corresponding to the object header to
 325     // ensure that the returned space is not considered parsable by
 326     // any concurrent GC thread.
 327     size_t hdr_size = oopDesc::header_size();
 328     Copy::fill_to_words(obj + hdr_size, new_tlab_size - hdr_size, badHeapWordVal);
 329 #endif // ASSERT
 330   }
 331   thread->tlab().fill(obj, obj + size, new_tlab_size);
 332   return obj;
 333 }
 334 
 335 size_t CollectedHeap::max_tlab_size() const {
 336   // TLABs can't be bigger than we can fill with a int[Integer.MAX_VALUE].
 337   // This restriction could be removed by enabling filling with multiple arrays.
 338   // If we compute that the reasonable way as
 339   //    header_size + ((sizeof(jint) * max_jint) / HeapWordSize)
 340   // we'll overflow on the multiply, so we do the divide first.
 341   // We actually lose a little by dividing first,
 342   // but that just makes the TLAB  somewhat smaller than the biggest array,
 343   // which is fine, since we'll be able to fill that.
 344   size_t max_int_size = typeArrayOopDesc::header_size(T_INT) +
 345               sizeof(jint) *
 346               ((juint) max_jint / (size_t) HeapWordSize);
 347   return align_size_down(max_int_size, MinObjAlignment);
 348 }
 349 
 350 size_t CollectedHeap::filler_array_hdr_size() {
 351   return size_t(align_object_offset(arrayOopDesc::header_size(T_INT))); // align to Long
 352 }
 353 
 354 size_t CollectedHeap::filler_array_min_size() {
 355   return align_object_size(filler_array_hdr_size()); // align to MinObjAlignment
 356 }
 357 
 358 #ifdef ASSERT
 359 void CollectedHeap::fill_args_check(HeapWord* start, size_t words)
 360 {
 361   assert(words >= min_fill_size(), "too small to fill");
 362   assert(words % MinObjAlignment == 0, "unaligned size");
 363   assert(Universe::heap()->is_in_reserved(start), "not in heap");
 364   assert(Universe::heap()->is_in_reserved(start + words - 1), "not in heap");
 365 }
 366 
 367 void CollectedHeap::zap_filler_array(HeapWord* start, size_t words, bool zap)
 368 {
 369   if (ZapFillerObjects && zap) {
 370     Copy::fill_to_words(start + filler_array_hdr_size(),
 371                         words - filler_array_hdr_size(), 0XDEAFBABE);
 372   }
 373 }
 374 #endif // ASSERT
 375 
 376 void
 377 CollectedHeap::fill_with_array(HeapWord* start, size_t words, bool zap)
 378 {
 379   assert(words >= filler_array_min_size(), "too small for an array");
 380   assert(words <= filler_array_max_size(), "too big for a single object");
 381 
 382   const size_t payload_size = words - filler_array_hdr_size();
 383   const size_t len = payload_size * HeapWordSize / sizeof(jint);
 384   assert((int)len >= 0, "size too large " SIZE_FORMAT " becomes %d", words, (int)len);
 385 
 386   // Set the length first for concurrent GC.
 387   ((arrayOop)start)->set_length((int)len);
 388   post_allocation_setup_common(Universe::intArrayKlassObj(), start);
 389   DEBUG_ONLY(zap_filler_array(start, words, zap);)
 390 }
 391 
 392 void
 393 CollectedHeap::fill_with_object_impl(HeapWord* start, size_t words, bool zap)
 394 {
 395   assert(words <= filler_array_max_size(), "too big for a single object");
 396 
 397   if (words >= filler_array_min_size()) {
 398     fill_with_array(start, words, zap);
 399   } else if (words > 0) {
 400     assert(words == min_fill_size(), "unaligned size");
 401     post_allocation_setup_common(SystemDictionary::Object_klass(), start);
 402   }
 403 }
 404 
 405 void CollectedHeap::fill_with_object(HeapWord* start, size_t words, bool zap)
 406 {
 407   DEBUG_ONLY(fill_args_check(start, words);)
 408   HandleMark hm;  // Free handles before leaving.
 409   fill_with_object_impl(start, words, zap);
 410 }
 411 
 412 void CollectedHeap::fill_with_objects(HeapWord* start, size_t words, bool zap)
 413 {
 414   DEBUG_ONLY(fill_args_check(start, words);)
 415   HandleMark hm;  // Free handles before leaving.
 416 
 417   // Multiple objects may be required depending on the filler array maximum size. Fill
 418   // the range up to that with objects that are filler_array_max_size sized. The
 419   // remainder is filled with a single object.
 420   const size_t min = min_fill_size();
 421   const size_t max = filler_array_max_size();
 422   while (words > max) {
 423     const size_t cur = (words - max) >= min ? max : max - min;
 424     fill_with_array(start, cur, zap);
 425     start += cur;
 426     words -= cur;
 427   }
 428 
 429   fill_with_object_impl(start, words, zap);
 430 }
 431 
 432 HeapWord* CollectedHeap::allocate_new_tlab(size_t size) {
 433   guarantee(false, "thread-local allocation buffers not supported");
 434   return NULL;
 435 }
 436 
 437 void CollectedHeap::ensure_parsability(bool retire_tlabs) {
 438   // The second disjunct in the assertion below makes a concession
 439   // for the start-up verification done while the VM is being
 440   // created. Callers be careful that you know that mutators
 441   // aren't going to interfere -- for instance, this is permissible
 442   // if we are still single-threaded and have either not yet
 443   // started allocating (nothing much to verify) or we have
 444   // started allocating but are now a full-fledged JavaThread
 445   // (and have thus made our TLAB's) available for filling.
 446   assert(SafepointSynchronize::is_at_safepoint() ||
 447          !is_init_completed(),
 448          "Should only be called at a safepoint or at start-up"
 449          " otherwise concurrent mutator activity may make heap "
 450          " unparsable again");
 451   const bool use_tlab = UseTLAB;
 452   // The main thread starts allocating via a TLAB even before it
 453   // has added itself to the threads list at vm boot-up.
 454   assert(!use_tlab || Threads::first() != NULL,
 455          "Attempt to fill tlabs before main thread has been added"
 456          " to threads list is doomed to failure!");
 457   BarrierSet *bs = barrier_set();
 458   for (JavaThread *thread = Threads::first(); thread; thread = thread->next()) {
 459      if (use_tlab) thread->tlab().make_parsable(retire_tlabs);
 460      bs->make_parsable(thread);
 461   }
 462 }
 463 
 464 void CollectedHeap::accumulate_statistics_all_tlabs() {
 465   if (UseTLAB) {
 466     assert(SafepointSynchronize::is_at_safepoint() ||
 467          !is_init_completed(),
 468          "should only accumulate statistics on tlabs at safepoint");
 469 
 470     ThreadLocalAllocBuffer::accumulate_statistics_before_gc();
 471   }
 472 }
 473 
 474 void CollectedHeap::resize_all_tlabs() {
 475   if (UseTLAB) {
 476     assert(SafepointSynchronize::is_at_safepoint() ||
 477          !is_init_completed(),
 478          "should only resize tlabs at safepoint");
 479 
 480     ThreadLocalAllocBuffer::resize_all_tlabs();
 481   }
 482 }
 483 
 484 void CollectedHeap::full_gc_dump(GCTimer* timer, bool before) {
 485   assert(timer != NULL, "timer is null");
 486   if ((HeapDumpBeforeFullGC && before) || (HeapDumpAfterFullGC && !before)) {
 487     GCTraceTime(Info, gc) tm(before ? "Heap Dump (before full gc)" : "Heap Dump (after full gc)", timer);
 488     HeapDumper::dump_heap();
 489   }
 490 
 491   Log(gc, classhisto) log;
 492   if (log.is_trace()) {
 493     GCTraceTime(Trace, gc, classhisto) tm(before ? "Class Histogram (before full gc)" : "Class Histogram (after full gc)", timer);
 494     ResourceMark rm;
 495     VM_GC_HeapInspection inspector(log.trace_stream(), false /* ! full gc */);
 496     inspector.doit();
 497   }
 498 }
 499 
 500 void CollectedHeap::pre_full_gc_dump(GCTimer* timer) {
 501   full_gc_dump(timer, true);
 502 }
 503 
 504 void CollectedHeap::post_full_gc_dump(GCTimer* timer) {
 505   full_gc_dump(timer, false);
 506 }
 507 
 508 void CollectedHeap::initialize_reserved_region(HeapWord *start, HeapWord *end) {
 509   // It is important to do this in a way such that concurrent readers can't
 510   // temporarily think something is in the heap.  (Seen this happen in asserts.)
 511   _reserved.set_word_size(0);
 512   _reserved.set_start(start);
 513   _reserved.set_end(end);
 514 }
 515 
 516 void CollectedHeap::verify_nmethod_roots(nmethod* nmethod) {
 517   nmethod->verify_scavenge_root_oops();
 518 }