1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/adaptiveSizePolicy.hpp"
  27 #include "gc/shared/cardTableRS.hpp"
  28 #include "gc/shared/collectorPolicy.hpp"
  29 #include "gc/shared/gcLocker.inline.hpp"
  30 #include "gc/shared/gcPolicyCounters.hpp"
  31 #include "gc/shared/genCollectedHeap.hpp"
  32 #include "gc/shared/generationSpec.hpp"
  33 #include "gc/shared/space.hpp"
  34 #include "gc/shared/vmGCOperations.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/universe.hpp"
  37 #include "runtime/arguments.hpp"
  38 #include "runtime/globals_extension.hpp"
  39 #include "runtime/handles.inline.hpp"
  40 #include "runtime/java.hpp"
  41 #include "runtime/thread.inline.hpp"
  42 #include "runtime/vmThread.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 // CollectorPolicy methods
  46 
  47 CollectorPolicy::CollectorPolicy() :
  48     _space_alignment(0),
  49     _heap_alignment(0),
  50     _initial_heap_byte_size(InitialHeapSize),
  51     _max_heap_byte_size(MaxHeapSize),
  52     _min_heap_byte_size(Arguments::min_heap_size()),
  53     _size_policy(NULL),
  54     _should_clear_all_soft_refs(false),
  55     _all_soft_refs_clear(false)
  56 {}
  57 
  58 #ifdef ASSERT
  59 void CollectorPolicy::assert_flags() {
  60   assert(InitialHeapSize <= MaxHeapSize, "Ergonomics decided on incompatible initial and maximum heap sizes");
  61   assert(InitialHeapSize % _heap_alignment == 0, "InitialHeapSize alignment");
  62   assert(MaxHeapSize % _heap_alignment == 0, "MaxHeapSize alignment");
  63 }
  64 
  65 void CollectorPolicy::assert_size_info() {
  66   assert(InitialHeapSize == _initial_heap_byte_size, "Discrepancy between InitialHeapSize flag and local storage");
  67   assert(MaxHeapSize == _max_heap_byte_size, "Discrepancy between MaxHeapSize flag and local storage");
  68   assert(_max_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible minimum and maximum heap sizes");
  69   assert(_initial_heap_byte_size >= _min_heap_byte_size, "Ergonomics decided on incompatible initial and minimum heap sizes");
  70   assert(_max_heap_byte_size >= _initial_heap_byte_size, "Ergonomics decided on incompatible initial and maximum heap sizes");
  71   assert(_min_heap_byte_size % _heap_alignment == 0, "min_heap_byte_size alignment");
  72   assert(_initial_heap_byte_size % _heap_alignment == 0, "initial_heap_byte_size alignment");
  73   assert(_max_heap_byte_size % _heap_alignment == 0, "max_heap_byte_size alignment");
  74 }
  75 #endif // ASSERT
  76 
  77 void CollectorPolicy::initialize_flags() {
  78   assert(_space_alignment != 0, "Space alignment not set up properly");
  79   assert(_heap_alignment != 0, "Heap alignment not set up properly");
  80   assert(_heap_alignment >= _space_alignment,
  81          "heap_alignment: " SIZE_FORMAT " less than space_alignment: " SIZE_FORMAT,
  82          _heap_alignment, _space_alignment);
  83   assert(_heap_alignment % _space_alignment == 0,
  84          "heap_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
  85          _heap_alignment, _space_alignment);
  86 
  87   if (FLAG_IS_CMDLINE(MaxHeapSize)) {
  88     if (FLAG_IS_CMDLINE(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
  89       vm_exit_during_initialization("Initial heap size set to a larger value than the maximum heap size");
  90     }
  91     if (_min_heap_byte_size != 0 && MaxHeapSize < _min_heap_byte_size) {
  92       vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
  93     }
  94   }
  95 
  96   // Check heap parameter properties
  97   if (MaxHeapSize < 2 * M) {
  98     vm_exit_during_initialization("Too small maximum heap");
  99   }
 100   if (InitialHeapSize < M) {
 101     vm_exit_during_initialization("Too small initial heap");
 102   }
 103   if (_min_heap_byte_size < M) {
 104     vm_exit_during_initialization("Too small minimum heap");
 105   }
 106 
 107   // User inputs from -Xmx and -Xms must be aligned
 108   _min_heap_byte_size = align_size_up(_min_heap_byte_size, _heap_alignment);
 109   size_t aligned_initial_heap_size = align_size_up(InitialHeapSize, _heap_alignment);
 110   size_t aligned_max_heap_size = align_size_up(MaxHeapSize, _heap_alignment);
 111 
 112   // Write back to flags if the values changed
 113   if (aligned_initial_heap_size != InitialHeapSize) {
 114     FLAG_SET_ERGO(size_t, InitialHeapSize, aligned_initial_heap_size);
 115   }
 116   if (aligned_max_heap_size != MaxHeapSize) {
 117     FLAG_SET_ERGO(size_t, MaxHeapSize, aligned_max_heap_size);
 118   }
 119 
 120   if (FLAG_IS_CMDLINE(InitialHeapSize) && _min_heap_byte_size != 0 &&
 121       InitialHeapSize < _min_heap_byte_size) {
 122     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 123   }
 124   if (!FLAG_IS_DEFAULT(InitialHeapSize) && InitialHeapSize > MaxHeapSize) {
 125     FLAG_SET_ERGO(size_t, MaxHeapSize, InitialHeapSize);
 126   } else if (!FLAG_IS_DEFAULT(MaxHeapSize) && InitialHeapSize > MaxHeapSize) {
 127     FLAG_SET_ERGO(size_t, InitialHeapSize, MaxHeapSize);
 128     if (InitialHeapSize < _min_heap_byte_size) {
 129       _min_heap_byte_size = InitialHeapSize;
 130     }
 131   }
 132 
 133   _initial_heap_byte_size = InitialHeapSize;
 134   _max_heap_byte_size = MaxHeapSize;
 135 
 136   FLAG_SET_ERGO(size_t, MinHeapDeltaBytes, align_size_up(MinHeapDeltaBytes, _space_alignment));
 137 
 138   DEBUG_ONLY(CollectorPolicy::assert_flags();)
 139 }
 140 
 141 void CollectorPolicy::initialize_size_info() {
 142   log_debug(gc, heap)("Minimum heap " SIZE_FORMAT "  Initial heap " SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 143                       _min_heap_byte_size, _initial_heap_byte_size, _max_heap_byte_size);
 144 
 145   DEBUG_ONLY(CollectorPolicy::assert_size_info();)
 146 }
 147 
 148 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 149   bool result = _should_clear_all_soft_refs;
 150   set_should_clear_all_soft_refs(false);
 151   return result;
 152 }
 153 
 154 void CollectorPolicy::cleared_all_soft_refs() {
 155   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 156   // have been cleared in the last collection but if the gc overhear
 157   // limit continues to be near, SoftRefs should still be cleared.
 158   if (size_policy() != NULL) {
 159     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 160   }
 161   _all_soft_refs_clear = true;
 162 }
 163 
 164 size_t CollectorPolicy::compute_heap_alignment() {
 165   // The card marking array and the offset arrays for old generations are
 166   // committed in os pages as well. Make sure they are entirely full (to
 167   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 168   // byte entry and the os page size is 4096, the maximum heap size should
 169   // be 512*4096 = 2MB aligned.
 170 
 171   size_t alignment = CardTableRS::ct_max_alignment_constraint();
 172 
 173   if (UseLargePages) {
 174       // In presence of large pages we have to make sure that our
 175       // alignment is large page aware.
 176       alignment = lcm(os::large_page_size(), alignment);
 177   }
 178 
 179   return alignment;
 180 }
 181 
 182 // GenCollectorPolicy methods
 183 
 184 GenCollectorPolicy::GenCollectorPolicy() :
 185     _min_young_size(0),
 186     _initial_young_size(0),
 187     _max_young_size(0),
 188     _min_old_size(0),
 189     _initial_old_size(0),
 190     _max_old_size(0),
 191     _gen_alignment(0),
 192     _young_gen_spec(NULL),
 193     _old_gen_spec(NULL)
 194 {}
 195 
 196 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 197   return align_size_down_bounded(base_size / (NewRatio + 1), _gen_alignment);
 198 }
 199 
 200 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 201                                                  size_t maximum_size) {
 202   size_t max_minus = maximum_size - _gen_alignment;
 203   return desired_size < max_minus ? desired_size : max_minus;
 204 }
 205 
 206 
 207 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 208                                                 size_t init_promo_size,
 209                                                 size_t init_survivor_size) {
 210   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 211   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 212                                         init_promo_size,
 213                                         init_survivor_size,
 214                                         max_gc_pause_sec,
 215                                         GCTimeRatio);
 216 }
 217 
 218 size_t GenCollectorPolicy::young_gen_size_lower_bound() {
 219   // The young generation must be aligned and have room for eden + two survivors
 220   return align_size_up(3 * _space_alignment, _gen_alignment);
 221 }
 222 
 223 size_t GenCollectorPolicy::old_gen_size_lower_bound() {
 224   return align_size_up(_space_alignment, _gen_alignment);
 225 }
 226 
 227 #ifdef ASSERT
 228 void GenCollectorPolicy::assert_flags() {
 229   CollectorPolicy::assert_flags();
 230   assert(NewSize >= _min_young_size, "Ergonomics decided on a too small young gen size");
 231   assert(NewSize <= MaxNewSize, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 232   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young gen and heap sizes");
 233   assert(NewSize % _gen_alignment == 0, "NewSize alignment");
 234   assert(FLAG_IS_DEFAULT(MaxNewSize) || MaxNewSize % _gen_alignment == 0, "MaxNewSize alignment");
 235   assert(OldSize + NewSize <= MaxHeapSize, "Ergonomics decided on incompatible generation and heap sizes");
 236   assert(OldSize % _gen_alignment == 0, "OldSize alignment");
 237 }
 238 
 239 void GenCollectorPolicy::assert_size_info() {
 240   CollectorPolicy::assert_size_info();
 241   // GenCollectorPolicy::initialize_size_info may update the MaxNewSize
 242   assert(MaxNewSize < MaxHeapSize, "Ergonomics decided on incompatible maximum young and heap sizes");
 243   assert(NewSize == _initial_young_size, "Discrepancy between NewSize flag and local storage");
 244   assert(MaxNewSize == _max_young_size, "Discrepancy between MaxNewSize flag and local storage");
 245   assert(OldSize == _initial_old_size, "Discrepancy between OldSize flag and local storage");
 246   assert(_min_young_size <= _initial_young_size, "Ergonomics decided on incompatible minimum and initial young gen sizes");
 247   assert(_initial_young_size <= _max_young_size, "Ergonomics decided on incompatible initial and maximum young gen sizes");
 248   assert(_min_young_size % _gen_alignment == 0, "_min_young_size alignment");
 249   assert(_initial_young_size % _gen_alignment == 0, "_initial_young_size alignment");
 250   assert(_max_young_size % _gen_alignment == 0, "_max_young_size alignment");
 251   assert(_min_young_size <= bound_minus_alignment(_min_young_size, _min_heap_byte_size),
 252       "Ergonomics made minimum young generation larger than minimum heap");
 253   assert(_initial_young_size <=  bound_minus_alignment(_initial_young_size, _initial_heap_byte_size),
 254       "Ergonomics made initial young generation larger than initial heap");
 255   assert(_max_young_size <= bound_minus_alignment(_max_young_size, _max_heap_byte_size),
 256       "Ergonomics made maximum young generation lager than maximum heap");
 257   assert(_min_old_size <= _initial_old_size, "Ergonomics decided on incompatible minimum and initial old gen sizes");
 258   assert(_initial_old_size <= _max_old_size, "Ergonomics decided on incompatible initial and maximum old gen sizes");
 259   assert(_max_old_size % _gen_alignment == 0, "_max_old_size alignment");
 260   assert(_initial_old_size % _gen_alignment == 0, "_initial_old_size alignment");
 261   assert(_max_heap_byte_size <= (_max_young_size + _max_old_size), "Total maximum heap sizes must be sum of generation maximum sizes");
 262   assert(_min_young_size + _min_old_size <= _min_heap_byte_size, "Minimum generation sizes exceed minimum heap size");
 263   assert(_initial_young_size + _initial_old_size == _initial_heap_byte_size, "Initial generation sizes should match initial heap size");
 264   assert(_max_young_size + _max_old_size == _max_heap_byte_size, "Maximum generation sizes should match maximum heap size");
 265 }
 266 #endif // ASSERT
 267 
 268 void GenCollectorPolicy::initialize_flags() {
 269   CollectorPolicy::initialize_flags();
 270 
 271   assert(_gen_alignment != 0, "Generation alignment not set up properly");
 272   assert(_heap_alignment >= _gen_alignment,
 273          "heap_alignment: " SIZE_FORMAT " less than gen_alignment: " SIZE_FORMAT,
 274          _heap_alignment, _gen_alignment);
 275   assert(_gen_alignment % _space_alignment == 0,
 276          "gen_alignment: " SIZE_FORMAT " not aligned by space_alignment: " SIZE_FORMAT,
 277          _gen_alignment, _space_alignment);
 278   assert(_heap_alignment % _gen_alignment == 0,
 279          "heap_alignment: " SIZE_FORMAT " not aligned by gen_alignment: " SIZE_FORMAT,
 280          _heap_alignment, _gen_alignment);
 281 
 282   // All generational heaps have a young gen; handle those flags here
 283 
 284   // Make sure the heap is large enough for two generations
 285   size_t smallest_new_size = young_gen_size_lower_bound();
 286   size_t smallest_heap_size = align_size_up(smallest_new_size + old_gen_size_lower_bound(),
 287                                            _heap_alignment);
 288   if (MaxHeapSize < smallest_heap_size) {
 289     FLAG_SET_ERGO(size_t, MaxHeapSize, smallest_heap_size);
 290     _max_heap_byte_size = MaxHeapSize;
 291   }
 292   // If needed, synchronize _min_heap_byte size and _initial_heap_byte_size
 293   if (_min_heap_byte_size < smallest_heap_size) {
 294     _min_heap_byte_size = smallest_heap_size;
 295     if (InitialHeapSize < _min_heap_byte_size) {
 296       FLAG_SET_ERGO(size_t, InitialHeapSize, smallest_heap_size);
 297       _initial_heap_byte_size = smallest_heap_size;
 298     }
 299   }
 300 
 301   // Make sure NewSize allows an old generation to fit even if set on the command line
 302   if (FLAG_IS_CMDLINE(NewSize) && NewSize >= _initial_heap_byte_size) {
 303     log_warning(gc, ergo)("NewSize was set larger than initial heap size, will use initial heap size.");
 304     FLAG_SET_ERGO(size_t, NewSize, bound_minus_alignment(NewSize, _initial_heap_byte_size));
 305   }
 306 
 307   // Now take the actual NewSize into account. We will silently increase NewSize
 308   // if the user specified a smaller or unaligned value.
 309   size_t bounded_new_size = bound_minus_alignment(NewSize, MaxHeapSize);
 310   bounded_new_size = MAX2(smallest_new_size, (size_t)align_size_down(bounded_new_size, _gen_alignment));
 311   if (bounded_new_size != NewSize) {
 312     FLAG_SET_ERGO(size_t, NewSize, bounded_new_size);
 313   }
 314   _min_young_size = smallest_new_size;
 315   _initial_young_size = NewSize;
 316 
 317   if (!FLAG_IS_DEFAULT(MaxNewSize)) {
 318     if (MaxNewSize >= MaxHeapSize) {
 319       // Make sure there is room for an old generation
 320       size_t smaller_max_new_size = MaxHeapSize - _gen_alignment;
 321       if (FLAG_IS_CMDLINE(MaxNewSize)) {
 322         log_warning(gc, ergo)("MaxNewSize (" SIZE_FORMAT "k) is equal to or greater than the entire "
 323                               "heap (" SIZE_FORMAT "k).  A new max generation size of " SIZE_FORMAT "k will be used.",
 324                               MaxNewSize/K, MaxHeapSize/K, smaller_max_new_size/K);
 325       }
 326       FLAG_SET_ERGO(size_t, MaxNewSize, smaller_max_new_size);
 327       if (NewSize > MaxNewSize) {
 328         FLAG_SET_ERGO(size_t, NewSize, MaxNewSize);
 329         _initial_young_size = NewSize;
 330       }
 331     } else if (MaxNewSize < _initial_young_size) {
 332       FLAG_SET_ERGO(size_t, MaxNewSize, _initial_young_size);
 333     } else if (!is_size_aligned(MaxNewSize, _gen_alignment)) {
 334       FLAG_SET_ERGO(size_t, MaxNewSize, align_size_down(MaxNewSize, _gen_alignment));
 335     }
 336     _max_young_size = MaxNewSize;
 337   }
 338 
 339   if (NewSize > MaxNewSize) {
 340     // At this point this should only happen if the user specifies a large NewSize and/or
 341     // a small (but not too small) MaxNewSize.
 342     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 343       log_warning(gc, ergo)("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 344                             "A new max generation size of " SIZE_FORMAT "k will be used.",
 345                             NewSize/K, MaxNewSize/K, NewSize/K);
 346     }
 347     FLAG_SET_ERGO(size_t, MaxNewSize, NewSize);
 348     _max_young_size = MaxNewSize;
 349   }
 350 
 351   if (SurvivorRatio < 1 || NewRatio < 1) {
 352     vm_exit_during_initialization("Invalid young gen ratio specified");
 353   }
 354 
 355   if (OldSize < old_gen_size_lower_bound()) {
 356     FLAG_SET_ERGO(size_t, OldSize, old_gen_size_lower_bound());
 357   }
 358   if (!is_size_aligned(OldSize, _gen_alignment)) {
 359     FLAG_SET_ERGO(size_t, OldSize, align_size_down(OldSize, _gen_alignment));
 360   }
 361 
 362   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(MaxHeapSize)) {
 363     // NewRatio will be used later to set the young generation size so we use
 364     // it to calculate how big the heap should be based on the requested OldSize
 365     // and NewRatio.
 366     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 367     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 368 
 369     calculated_heapsize = align_size_up(calculated_heapsize, _heap_alignment);
 370     FLAG_SET_ERGO(size_t, MaxHeapSize, calculated_heapsize);
 371     _max_heap_byte_size = MaxHeapSize;
 372     FLAG_SET_ERGO(size_t, InitialHeapSize, calculated_heapsize);
 373     _initial_heap_byte_size = InitialHeapSize;
 374   }
 375 
 376   // Adjust NewSize and OldSize or MaxHeapSize to match each other
 377   if (NewSize + OldSize > MaxHeapSize) {
 378     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 379       // Somebody has set a maximum heap size with the intention that we should not
 380       // exceed it. Adjust New/OldSize as necessary.
 381       size_t calculated_size = NewSize + OldSize;
 382       double shrink_factor = (double) MaxHeapSize / calculated_size;
 383       size_t smaller_new_size = align_size_down((size_t)(NewSize * shrink_factor), _gen_alignment);
 384       FLAG_SET_ERGO(size_t, NewSize, MAX2(young_gen_size_lower_bound(), smaller_new_size));
 385       _initial_young_size = NewSize;
 386 
 387       // OldSize is already aligned because above we aligned MaxHeapSize to
 388       // _heap_alignment, and we just made sure that NewSize is aligned to
 389       // _gen_alignment. In initialize_flags() we verified that _heap_alignment
 390       // is a multiple of _gen_alignment.
 391       FLAG_SET_ERGO(size_t, OldSize, MaxHeapSize - NewSize);
 392     } else {
 393       FLAG_SET_ERGO(size_t, MaxHeapSize, align_size_up(NewSize + OldSize, _heap_alignment));
 394       _max_heap_byte_size = MaxHeapSize;
 395     }
 396   }
 397 
 398   // Update NewSize, if possible, to avoid sizing the young gen too small when only
 399   // OldSize is set on the command line.
 400   if (FLAG_IS_CMDLINE(OldSize) && !FLAG_IS_CMDLINE(NewSize)) {
 401     if (OldSize < _initial_heap_byte_size) {
 402       size_t new_size = _initial_heap_byte_size - OldSize;
 403       // Need to compare against the flag value for max since _max_young_size
 404       // might not have been set yet.
 405       if (new_size >= _min_young_size && new_size <= MaxNewSize) {
 406         FLAG_SET_ERGO(size_t, NewSize, new_size);
 407         _initial_young_size = NewSize;
 408       }
 409     }
 410   }
 411 
 412   always_do_update_barrier = UseConcMarkSweepGC;
 413 
 414   DEBUG_ONLY(GenCollectorPolicy::assert_flags();)
 415 }
 416 
 417 // Values set on the command line win over any ergonomically
 418 // set command line parameters.
 419 // Ergonomic choice of parameters are done before this
 420 // method is called.  Values for command line parameters such as NewSize
 421 // and MaxNewSize feed those ergonomic choices into this method.
 422 // This method makes the final generation sizings consistent with
 423 // themselves and with overall heap sizings.
 424 // In the absence of explicitly set command line flags, policies
 425 // such as the use of NewRatio are used to size the generation.
 426 
 427 // Minimum sizes of the generations may be different than
 428 // the initial sizes.  An inconsistency is permitted here
 429 // in the total size that can be specified explicitly by
 430 // command line specification of OldSize and NewSize and
 431 // also a command line specification of -Xms.  Issue a warning
 432 // but allow the values to pass.
 433 void GenCollectorPolicy::initialize_size_info() {
 434   CollectorPolicy::initialize_size_info();
 435 
 436   _initial_young_size = NewSize;
 437   _max_young_size = MaxNewSize;
 438   _initial_old_size = OldSize;
 439 
 440   // Determine maximum size of the young generation.
 441 
 442   if (FLAG_IS_DEFAULT(MaxNewSize)) {
 443     _max_young_size = scale_by_NewRatio_aligned(_max_heap_byte_size);
 444     // Bound the maximum size by NewSize below (since it historically
 445     // would have been NewSize and because the NewRatio calculation could
 446     // yield a size that is too small) and bound it by MaxNewSize above.
 447     // Ergonomics plays here by previously calculating the desired
 448     // NewSize and MaxNewSize.
 449     _max_young_size = MIN2(MAX2(_max_young_size, _initial_young_size), MaxNewSize);
 450   }
 451 
 452   // Given the maximum young size, determine the initial and
 453   // minimum young sizes.
 454 
 455   if (_max_heap_byte_size == _initial_heap_byte_size) {
 456     // The maximum and initial heap sizes are the same so the generation's
 457     // initial size must be the same as it maximum size. Use NewSize as the
 458     // size if set on command line.
 459     _max_young_size = FLAG_IS_CMDLINE(NewSize) ? NewSize : _max_young_size;
 460     _initial_young_size = _max_young_size;
 461 
 462     // Also update the minimum size if min == initial == max.
 463     if (_max_heap_byte_size == _min_heap_byte_size) {
 464       _min_young_size = _max_young_size;
 465     }
 466   } else {
 467     if (FLAG_IS_CMDLINE(NewSize)) {
 468       // If NewSize is set on the command line, we should use it as
 469       // the initial size, but make sure it is within the heap bounds.
 470       _initial_young_size =
 471         MIN2(_max_young_size, bound_minus_alignment(NewSize, _initial_heap_byte_size));
 472       _min_young_size = bound_minus_alignment(_initial_young_size, _min_heap_byte_size);
 473     } else {
 474       // For the case where NewSize is not set on the command line, use
 475       // NewRatio to size the initial generation size. Use the current
 476       // NewSize as the floor, because if NewRatio is overly large, the resulting
 477       // size can be too small.
 478       _initial_young_size =
 479         MIN2(_max_young_size, MAX2(scale_by_NewRatio_aligned(_initial_heap_byte_size), NewSize));
 480     }
 481   }
 482 
 483   log_trace(gc, heap)("1: Minimum young " SIZE_FORMAT "  Initial young " SIZE_FORMAT "  Maximum young " SIZE_FORMAT,
 484                       _min_young_size, _initial_young_size, _max_young_size);
 485 
 486   // At this point the minimum, initial and maximum sizes
 487   // of the overall heap and of the young generation have been determined.
 488   // The maximum old size can be determined from the maximum young
 489   // and maximum heap size since no explicit flags exist
 490   // for setting the old generation maximum.
 491   _max_old_size = MAX2(_max_heap_byte_size - _max_young_size, _gen_alignment);
 492 
 493   // If no explicit command line flag has been set for the
 494   // old generation size, use what is left.
 495   if (!FLAG_IS_CMDLINE(OldSize)) {
 496     // The user has not specified any value but the ergonomics
 497     // may have chosen a value (which may or may not be consistent
 498     // with the overall heap size).  In either case make
 499     // the minimum, maximum and initial sizes consistent
 500     // with the young sizes and the overall heap sizes.
 501     _min_old_size = _gen_alignment;
 502     _initial_old_size = MIN2(_max_old_size, MAX2(_initial_heap_byte_size - _initial_young_size, _min_old_size));
 503     // _max_old_size has already been made consistent above.
 504   } else {
 505     // OldSize has been explicitly set on the command line. Use it
 506     // for the initial size but make sure the minimum allow a young
 507     // generation to fit as well.
 508     // If the user has explicitly set an OldSize that is inconsistent
 509     // with other command line flags, issue a warning.
 510     // The generation minimums and the overall heap minimum should
 511     // be within one generation alignment.
 512     if (_initial_old_size > _max_old_size) {
 513       log_warning(gc, ergo)("Inconsistency between maximum heap size and maximum "
 514                             "generation sizes: using maximum heap = " SIZE_FORMAT
 515                             ", -XX:OldSize flag is being ignored",
 516                             _max_heap_byte_size);
 517       _initial_old_size = _max_old_size;
 518     }
 519 
 520     _min_old_size = MIN2(_initial_old_size, _min_heap_byte_size - _min_young_size);
 521   }
 522 
 523   // The initial generation sizes should match the initial heap size,
 524   // if not issue a warning and resize the generations. This behavior
 525   // differs from JDK8 where the generation sizes have higher priority
 526   // than the initial heap size.
 527   if ((_initial_old_size + _initial_young_size) != _initial_heap_byte_size) {
 528     log_warning(gc, ergo)("Inconsistency between generation sizes and heap size, resizing "
 529                           "the generations to fit the heap.");
 530 
 531     size_t desired_young_size = _initial_heap_byte_size - _initial_old_size;
 532     if (_initial_heap_byte_size < _initial_old_size) {
 533       // Old want all memory, use minimum for young and rest for old
 534       _initial_young_size = _min_young_size;
 535       _initial_old_size = _initial_heap_byte_size - _min_young_size;
 536     } else if (desired_young_size > _max_young_size) {
 537       // Need to increase both young and old generation
 538       _initial_young_size = _max_young_size;
 539       _initial_old_size = _initial_heap_byte_size - _max_young_size;
 540     } else if (desired_young_size < _min_young_size) {
 541       // Need to decrease both young and old generation
 542       _initial_young_size = _min_young_size;
 543       _initial_old_size = _initial_heap_byte_size - _min_young_size;
 544     } else {
 545       // The young generation boundaries allow us to only update the
 546       // young generation.
 547       _initial_young_size = desired_young_size;
 548     }
 549 
 550     log_trace(gc, heap)("2: Minimum young " SIZE_FORMAT "  Initial young " SIZE_FORMAT "  Maximum young " SIZE_FORMAT,
 551                     _min_young_size, _initial_young_size, _max_young_size);
 552   }
 553 
 554   // Write back to flags if necessary.
 555   if (NewSize != _initial_young_size) {
 556     FLAG_SET_ERGO(size_t, NewSize, _initial_young_size);
 557   }
 558 
 559   if (MaxNewSize != _max_young_size) {
 560     FLAG_SET_ERGO(size_t, MaxNewSize, _max_young_size);
 561   }
 562 
 563   if (OldSize != _initial_old_size) {
 564     FLAG_SET_ERGO(size_t, OldSize, _initial_old_size);
 565   }
 566 
 567   log_trace(gc, heap)("Minimum old " SIZE_FORMAT "  Initial old " SIZE_FORMAT "  Maximum old " SIZE_FORMAT,
 568                   _min_old_size, _initial_old_size, _max_old_size);
 569 
 570   DEBUG_ONLY(GenCollectorPolicy::assert_size_info();)
 571 }
 572 
 573 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 574                                         bool is_tlab,
 575                                         bool* gc_overhead_limit_was_exceeded) {
 576   GenCollectedHeap *gch = GenCollectedHeap::heap();
 577 
 578   debug_only(gch->check_for_valid_allocation_state());
 579   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 580 
 581   // In general gc_overhead_limit_was_exceeded should be false so
 582   // set it so here and reset it to true only if the gc time
 583   // limit is being exceeded as checked below.
 584   *gc_overhead_limit_was_exceeded = false;
 585 
 586   HeapWord* result = NULL;
 587 
 588   // Loop until the allocation is satisfied, or unsatisfied after GC.
 589   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 590     HandleMark hm; // Discard any handles allocated in each iteration.
 591 
 592     // First allocation attempt is lock-free.
 593     Generation *young = gch->young_gen();
 594     assert(young->supports_inline_contig_alloc(),
 595       "Otherwise, must do alloc within heap lock");
 596     if (young->should_allocate(size, is_tlab)) {
 597       result = young->par_allocate(size, is_tlab);
 598       if (result != NULL) {
 599         assert(gch->is_in_reserved(result), "result not in heap");
 600         return result;
 601       }
 602     }
 603     uint gc_count_before;  // Read inside the Heap_lock locked region.
 604     {
 605       MutexLocker ml(Heap_lock);
 606       log_trace(gc, alloc)("GenCollectorPolicy::mem_allocate_work: attempting locked slow path allocation");
 607       // Note that only large objects get a shot at being
 608       // allocated in later generations.
 609       bool first_only = ! should_try_older_generation_allocation(size);
 610 
 611       result = gch->attempt_allocation(size, is_tlab, first_only);
 612       if (result != NULL) {
 613         assert(gch->is_in_reserved(result), "result not in heap");
 614         return result;
 615       }
 616 
 617       if (GCLocker::is_active_and_needs_gc()) {
 618         if (is_tlab) {
 619           return NULL;  // Caller will retry allocating individual object.
 620         }
 621         if (!gch->is_maximal_no_gc()) {
 622           // Try and expand heap to satisfy request.
 623           result = expand_heap_and_allocate(size, is_tlab);
 624           // Result could be null if we are out of space.
 625           if (result != NULL) {
 626             return result;
 627           }
 628         }
 629 
 630         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 631           return NULL; // We didn't get to do a GC and we didn't get any memory.
 632         }
 633 
 634         // If this thread is not in a jni critical section, we stall
 635         // the requestor until the critical section has cleared and
 636         // GC allowed. When the critical section clears, a GC is
 637         // initiated by the last thread exiting the critical section; so
 638         // we retry the allocation sequence from the beginning of the loop,
 639         // rather than causing more, now probably unnecessary, GC attempts.
 640         JavaThread* jthr = JavaThread::current();
 641         if (!jthr->in_critical()) {
 642           MutexUnlocker mul(Heap_lock);
 643           // Wait for JNI critical section to be exited
 644           GCLocker::stall_until_clear();
 645           gclocker_stalled_count += 1;
 646           continue;
 647         } else {
 648           if (CheckJNICalls) {
 649             fatal("Possible deadlock due to allocating while"
 650                   " in jni critical section");
 651           }
 652           return NULL;
 653         }
 654       }
 655 
 656       // Read the gc count while the heap lock is held.
 657       gc_count_before = gch->total_collections();
 658     }
 659 
 660     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 661     VMThread::execute(&op);
 662     if (op.prologue_succeeded()) {
 663       result = op.result();
 664       if (op.gc_locked()) {
 665          assert(result == NULL, "must be NULL if gc_locked() is true");
 666          continue;  // Retry and/or stall as necessary.
 667       }
 668 
 669       // Allocation has failed and a collection
 670       // has been done.  If the gc time limit was exceeded the
 671       // this time, return NULL so that an out-of-memory
 672       // will be thrown.  Clear gc_overhead_limit_exceeded
 673       // so that the overhead exceeded does not persist.
 674 
 675       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 676       const bool softrefs_clear = all_soft_refs_clear();
 677 
 678       if (limit_exceeded && softrefs_clear) {
 679         *gc_overhead_limit_was_exceeded = true;
 680         size_policy()->set_gc_overhead_limit_exceeded(false);
 681         if (op.result() != NULL) {
 682           CollectedHeap::fill_with_object(op.result(), size);
 683         }
 684         return NULL;
 685       }
 686       assert(result == NULL || gch->is_in_reserved(result),
 687              "result not in heap");
 688       return result;
 689     }
 690 
 691     // Give a warning if we seem to be looping forever.
 692     if ((QueuedAllocationWarningCount > 0) &&
 693         (try_count % QueuedAllocationWarningCount == 0)) {
 694           log_warning(gc, ergo)("GenCollectorPolicy::mem_allocate_work retries %d times,"
 695                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 696     }
 697   }
 698 }
 699 
 700 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 701                                                        bool   is_tlab) {
 702   GenCollectedHeap *gch = GenCollectedHeap::heap();
 703   HeapWord* result = NULL;
 704   Generation *old = gch->old_gen();
 705   if (old->should_allocate(size, is_tlab)) {
 706     result = old->expand_and_allocate(size, is_tlab);
 707   }
 708   if (result == NULL) {
 709     Generation *young = gch->young_gen();
 710     if (young->should_allocate(size, is_tlab)) {
 711       result = young->expand_and_allocate(size, is_tlab);
 712     }
 713   }
 714   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 715   return result;
 716 }
 717 
 718 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 719                                                         bool   is_tlab) {
 720   GenCollectedHeap *gch = GenCollectedHeap::heap();
 721   GCCauseSetter x(gch, GCCause::_allocation_failure);
 722   HeapWord* result = NULL;
 723 
 724   assert(size != 0, "Precondition violated");
 725   if (GCLocker::is_active_and_needs_gc()) {
 726     // GC locker is active; instead of a collection we will attempt
 727     // to expand the heap, if there's room for expansion.
 728     if (!gch->is_maximal_no_gc()) {
 729       result = expand_heap_and_allocate(size, is_tlab);
 730     }
 731     return result;   // Could be null if we are out of space.
 732   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 733     // Do an incremental collection.
 734     gch->do_collection(false,                     // full
 735                        false,                     // clear_all_soft_refs
 736                        size,                      // size
 737                        is_tlab,                   // is_tlab
 738                        GenCollectedHeap::OldGen); // max_generation
 739   } else {
 740     log_trace(gc)(" :: Trying full because partial may fail :: ");
 741     // Try a full collection; see delta for bug id 6266275
 742     // for the original code and why this has been simplified
 743     // with from-space allocation criteria modified and
 744     // such allocation moved out of the safepoint path.
 745     gch->do_collection(true,                      // full
 746                        false,                     // clear_all_soft_refs
 747                        size,                      // size
 748                        is_tlab,                   // is_tlab
 749                        GenCollectedHeap::OldGen); // max_generation
 750   }
 751 
 752   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 753 
 754   if (result != NULL) {
 755     assert(gch->is_in_reserved(result), "result not in heap");
 756     return result;
 757   }
 758 
 759   // OK, collection failed, try expansion.
 760   result = expand_heap_and_allocate(size, is_tlab);
 761   if (result != NULL) {
 762     return result;
 763   }
 764 
 765   // If we reach this point, we're really out of memory. Try every trick
 766   // we can to reclaim memory. Force collection of soft references. Force
 767   // a complete compaction of the heap. Any additional methods for finding
 768   // free memory should be here, especially if they are expensive. If this
 769   // attempt fails, an OOM exception will be thrown.
 770   {
 771     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 772 
 773     gch->do_collection(true,                      // full
 774                        true,                      // clear_all_soft_refs
 775                        size,                      // size
 776                        is_tlab,                   // is_tlab
 777                        GenCollectedHeap::OldGen); // max_generation
 778   }
 779 
 780   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 781   if (result != NULL) {
 782     assert(gch->is_in_reserved(result), "result not in heap");
 783     return result;
 784   }
 785 
 786   assert(!should_clear_all_soft_refs(),
 787     "Flag should have been handled and cleared prior to this point");
 788 
 789   // What else?  We might try synchronous finalization later.  If the total
 790   // space available is large enough for the allocation, then a more
 791   // complete compaction phase than we've tried so far might be
 792   // appropriate.
 793   return NULL;
 794 }
 795 
 796 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 797                                                  ClassLoaderData* loader_data,
 798                                                  size_t word_size,
 799                                                  Metaspace::MetadataType mdtype) {
 800   uint loop_count = 0;
 801   uint gc_count = 0;
 802   uint full_gc_count = 0;
 803 
 804   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 805 
 806   do {
 807     MetaWord* result = loader_data->metaspace_non_null()->allocate(word_size, mdtype);
 808     if (result != NULL) {
 809       return result;
 810     }
 811 
 812     if (GCLocker::is_active_and_needs_gc()) {
 813       // If the GCLocker is active, just expand and allocate.
 814       // If that does not succeed, wait if this thread is not
 815       // in a critical section itself.
 816       result =
 817         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 818                                                                mdtype);
 819       if (result != NULL) {
 820         return result;
 821       }
 822       JavaThread* jthr = JavaThread::current();
 823       if (!jthr->in_critical()) {
 824         // Wait for JNI critical section to be exited
 825         GCLocker::stall_until_clear();
 826         // The GC invoked by the last thread leaving the critical
 827         // section will be a young collection and a full collection
 828         // is (currently) needed for unloading classes so continue
 829         // to the next iteration to get a full GC.
 830         continue;
 831       } else {
 832         if (CheckJNICalls) {
 833           fatal("Possible deadlock due to allocating while"
 834                 " in jni critical section");
 835         }
 836         return NULL;
 837       }
 838     }
 839 
 840     {  // Need lock to get self consistent gc_count's
 841       MutexLocker ml(Heap_lock);
 842       gc_count      = Universe::heap()->total_collections();
 843       full_gc_count = Universe::heap()->total_full_collections();
 844     }
 845 
 846     // Generate a VM operation
 847     VM_CollectForMetadataAllocation op(loader_data,
 848                                        word_size,
 849                                        mdtype,
 850                                        gc_count,
 851                                        full_gc_count,
 852                                        GCCause::_metadata_GC_threshold);
 853     VMThread::execute(&op);
 854 
 855     // If GC was locked out, try again. Check before checking success because the
 856     // prologue could have succeeded and the GC still have been locked out.
 857     if (op.gc_locked()) {
 858       continue;
 859     }
 860 
 861     if (op.prologue_succeeded()) {
 862       return op.result();
 863     }
 864     loop_count++;
 865     if ((QueuedAllocationWarningCount > 0) &&
 866         (loop_count % QueuedAllocationWarningCount == 0)) {
 867       log_warning(gc, ergo)("satisfy_failed_metadata_allocation() retries %d times,"
 868                             " size=" SIZE_FORMAT, loop_count, word_size);
 869     }
 870   } while (true);  // Until a GC is done
 871 }
 872 
 873 // Return true if any of the following is true:
 874 // . the allocation won't fit into the current young gen heap
 875 // . gc locker is occupied (jni critical section)
 876 // . heap memory is tight -- the most recent previous collection
 877 //   was a full collection because a partial collection (would
 878 //   have) failed and is likely to fail again
 879 bool GenCollectorPolicy::should_try_older_generation_allocation(
 880         size_t word_size) const {
 881   GenCollectedHeap* gch = GenCollectedHeap::heap();
 882   size_t young_capacity = gch->young_gen()->capacity_before_gc();
 883   return    (word_size > heap_word_size(young_capacity))
 884          || GCLocker::is_active_and_needs_gc()
 885          || gch->incremental_collection_failed();
 886 }
 887 
 888 
 889 //
 890 // MarkSweepPolicy methods
 891 //
 892 
 893 void MarkSweepPolicy::initialize_alignments() {
 894   _space_alignment = _gen_alignment = (size_t)Generation::GenGrain;
 895   _heap_alignment = compute_heap_alignment();
 896 }
 897 
 898 void MarkSweepPolicy::initialize_generations() {
 899   _young_gen_spec = new GenerationSpec(Generation::DefNew, _initial_young_size, _max_young_size, _gen_alignment);
 900   _old_gen_spec   = new GenerationSpec(Generation::MarkSweepCompact, _initial_old_size, _max_old_size, _gen_alignment);
 901 }
 902 
 903 void MarkSweepPolicy::initialize_gc_policy_counters() {
 904   // Initialize the policy counters - 2 collectors, 3 generations.
 905   _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 906 }