## test/java/lang/Math/HyperbolicTests.java

```@@ -23,14 +23,17 @@

/*
* @test
* @bug 4851625 4900189 4939441
* @summary Tests for {Math, StrictMath}.{sinh, cosh, tanh}
+ * @library /lib/testlibrary
+ * @build jdk.testlibrary.DoubleUtils jdk.testlibrary.FloatUtils
+ * @run main HyperbolicTests
* @author Joseph D. Darcy
*/

-import sun.misc.DoubleConsts;
+import static jdk.testlibrary.DoubleUtils.*;

public class HyperbolicTests {
private HyperbolicTests(){}

static final double NaNd = Double.NaN;
```

```@@ -262,11 +265,11 @@
// For powers of 2 less than 2^(-27), the second and
// subsequent terms of the Taylor series expansion will get
// rounded away since |n-n^3| > 53, the binary precision of a
// double significand.

-        for(int i = DoubleConsts.MIN_SUB_EXPONENT; i < -27; i++) {
+        for(int i = MIN_SUB_EXPONENT; i < -27; i++) {
double d = Math.scalb(2.0, i);

// Result and expected are the same.
failures += testSinhCaseWithUlpDiff(d, d, 2.5);
}
```

```@@ -340,11 +343,11 @@
failures += testSinhCaseWithUlpDiff(input, expected, 4.0);
}

// sinh(x) overflows for values greater than 710; in
// particular, it overflows for all 2^i, i > 10.
-        for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) {
+        for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
double d = Math.scalb(2.0, i);

// Result and expected are the same.
failures += testSinhCaseWithUlpDiff(d,
Double.POSITIVE_INFINITY, 0.0);
```

```@@ -621,11 +624,11 @@

// For powers of 2 less than 2^(-27), the second and
// subsequent terms of the Taylor series expansion will get
// rounded.

-        for(int i = DoubleConsts.MIN_SUB_EXPONENT; i < -27; i++) {
+        for(int i = MIN_SUB_EXPONENT; i < -27; i++) {
double d = Math.scalb(2.0, i);

// Result and expected are the same.
failures += testCoshCaseWithUlpDiff(d, 1.0, 2.5);
}
```

```@@ -699,11 +702,11 @@
failures += testCoshCaseWithUlpDiff(input, expected, 4.0);
}

// cosh(x) overflows for values greater than 710; in
// particular, it overflows for all 2^i, i > 10.
-        for(int i = 10; i <= DoubleConsts.MAX_EXPONENT; i++) {
+        for(int i = 10; i <= Double.MAX_EXPONENT; i++) {
double d = Math.scalb(2.0, i);

// Result and expected are the same.
failures += testCoshCaseWithUlpDiff(d,
Double.POSITIVE_INFINITY, 0.0);
```

```@@ -980,11 +983,11 @@
// For powers of 2 less than 2^(-27), the second and
// subsequent terms of the Taylor series expansion will get
// rounded away since |n-n^3| > 53, the binary precision of a
// double significand.

-        for(int i = DoubleConsts.MIN_SUB_EXPONENT; i < -27; i++) {
+        for(int i = MIN_SUB_EXPONENT; i < -27; i++) {
double d = Math.scalb(2.0, i);

// Result and expected are the same.
failures += testTanhCaseWithUlpDiff(d, d, 2.5);
}
```

```@@ -994,11 +997,11 @@

for(int i = 22; i < 32; i++) {
failures += testTanhCaseWithUlpDiff(i, 1.0, 2.5);
}

-        for(int i = 5; i <= DoubleConsts.MAX_EXPONENT; i++) {
+        for(int i = 5; i <= Double.MAX_EXPONENT; i++) {
double d = Math.scalb(2.0, i);

failures += testTanhCaseWithUlpDiff(d, 1.0, 2.5);
}

```