1 /*
   2  * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4860891 4826732 4780454 4939441 4826652
  27  * @summary Tests for IEEE 754[R] recommended functions and similar methods
  28  * @author Joseph D. Darcy
  29  */
  30 
  31 import sun.misc.DoubleConsts;
  32 import sun.misc.FloatConsts;
  33 
  34 public class IeeeRecommendedTests {
  35     private IeeeRecommendedTests(){}
  36 
  37     static final float  NaNf = Float.NaN;
  38     static final double NaNd = Double.NaN;
  39     static final float  infinityF = Float.POSITIVE_INFINITY;
  40     static final double infinityD = Double.POSITIVE_INFINITY;
  41 
  42     static final float  Float_MAX_VALUEmm       = 0x1.fffffcP+127f;
  43     static final float  Float_MAX_SUBNORMAL     = 0x0.fffffeP-126f;
  44     static final float  Float_MAX_SUBNORMALmm   = 0x0.fffffcP-126f;
  45 
  46     static final double Double_MAX_VALUEmm      = 0x1.ffffffffffffeP+1023;
  47     static final double Double_MAX_SUBNORMAL    = 0x0.fffffffffffffP-1022;
  48     static final double Double_MAX_SUBNORMALmm  = 0x0.ffffffffffffeP-1022;
  49 
  50     // Initialize shared random number generator
  51     static java.util.Random rand = new java.util.Random();
  52 
  53     /**
  54      * Returns a floating-point power of two in the normal range.
  55      */
  56     static double powerOfTwoD(int n) {
  57         return Double.longBitsToDouble((((long)n + (long)DoubleConsts.MAX_EXPONENT) <<
  58                                         (DoubleConsts.SIGNIFICAND_WIDTH-1))
  59                                        & DoubleConsts.EXP_BIT_MASK);
  60     }
  61 
  62     /**
  63      * Returns a floating-point power of two in the normal range.
  64      */
  65     static float powerOfTwoF(int n) {
  66         return Float.intBitsToFloat(((n + FloatConsts.MAX_EXPONENT) <<
  67                                      (FloatConsts.SIGNIFICAND_WIDTH-1))
  68                                     & FloatConsts.EXP_BIT_MASK);
  69     }
  70 
  71     /* ******************** getExponent tests ****************************** */
  72 
  73     /*
  74      * The tests for getExponent should test the special values (NaN, +/-
  75      * infinity, etc.), test the endpoints of each binade (set of
  76      * floating-point values with the same exponent), and for good
  77      * measure, test some random values within each binade.  Testing
  78      * the endpoints of each binade includes testing both positive and
  79      * negative numbers.  Subnormal values with different normalized
  80      * exponents should be tested too.  Both Math and StrictMath
  81      * methods should return the same results.
  82      */
  83 
  84     /*
  85      * Test Math.getExponent and StrictMath.getExponent with +d and -d.
  86      */
  87     static int testGetExponentCase(float f, int expected) {
  88         float minus_f = -f;
  89         int failures=0;
  90 
  91         failures+=Tests.test("Math.getExponent(float)", f,
  92                              Math.getExponent(f), expected);
  93         failures+=Tests.test("Math.getExponent(float)", minus_f,
  94                              Math.getExponent(minus_f), expected);
  95 
  96         failures+=Tests.test("StrictMath.getExponent(float)", f,
  97                              StrictMath.getExponent(f), expected);
  98         failures+=Tests.test("StrictMath.getExponent(float)", minus_f,
  99                              StrictMath.getExponent(minus_f), expected);
 100         return failures;
 101     }
 102 
 103     /*
 104      * Test Math.getExponent and StrictMath.getExponent with +d and -d.
 105      */
 106     static int testGetExponentCase(double d, int expected) {
 107         double minus_d = -d;
 108         int failures=0;
 109 
 110         failures+=Tests.test("Math.getExponent(double)", d,
 111                              Math.getExponent(d), expected);
 112         failures+=Tests.test("Math.getExponent(double)", minus_d,
 113                              Math.getExponent(minus_d), expected);
 114 
 115         failures+=Tests.test("StrictMath.getExponent(double)", d,
 116                              StrictMath.getExponent(d), expected);
 117         failures+=Tests.test("StrictMath.getExponent(double)", minus_d,
 118                              StrictMath.getExponent(minus_d), expected);
 119         return failures;
 120     }
 121 
 122     public static int testFloatGetExponent() {
 123         int failures = 0;
 124         float [] specialValues = {NaNf,
 125                                    Float.POSITIVE_INFINITY,
 126                                    +0.0f,
 127                                   +1.0f,
 128                                   +2.0f,
 129                                   +16.0f,
 130                                   +Float.MIN_VALUE,
 131                                   +Float_MAX_SUBNORMAL,
 132                                   +FloatConsts.MIN_NORMAL,
 133                                   +Float.MAX_VALUE
 134         };
 135 
 136         int [] specialResults = {Float.MAX_EXPONENT + 1, // NaN results
 137                                  Float.MAX_EXPONENT + 1, // Infinite results
 138                                  Float.MIN_EXPONENT - 1, // Zero results
 139                                  0,
 140                                  1,
 141                                  4,
 142                                  FloatConsts.MIN_EXPONENT - 1,
 143                                  -FloatConsts.MAX_EXPONENT,
 144                                  FloatConsts.MIN_EXPONENT,
 145                                  FloatConsts.MAX_EXPONENT
 146         };
 147 
 148         // Special value tests
 149         for(int i = 0; i < specialValues.length; i++) {
 150             failures += testGetExponentCase(specialValues[i], specialResults[i]);
 151         }
 152 
 153 
 154         // Normal exponent tests
 155         for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
 156             int result;
 157 
 158             // Create power of two
 159             float po2 = powerOfTwoF(i);
 160 
 161             failures += testGetExponentCase(po2, i);
 162 
 163             // Generate some random bit patterns for the significand
 164             for(int j = 0; j < 10; j++) {
 165                 int randSignif = rand.nextInt();
 166                 float randFloat;
 167 
 168                 randFloat = Float.intBitsToFloat( // Exponent
 169                                                  (Float.floatToIntBits(po2)&
 170                                                   (~FloatConsts.SIGNIF_BIT_MASK)) |
 171                                                  // Significand
 172                                                  (randSignif &
 173                                                   FloatConsts.SIGNIF_BIT_MASK) );
 174 
 175                 failures += testGetExponentCase(randFloat, i);
 176             }
 177 
 178             if (i > FloatConsts.MIN_EXPONENT) {
 179                 float po2minus = Math.nextAfter(po2,
 180                                                  Float.NEGATIVE_INFINITY);
 181                 failures += testGetExponentCase(po2minus, i-1);
 182             }
 183         }
 184 
 185         // Subnormal exponent tests
 186 
 187         /*
 188          * Start with MIN_VALUE, left shift, test high value, low
 189          * values, and random in between.
 190          *
 191          * Use nextAfter to calculate, high value of previous binade,
 192          * loop count i will indicate how many random bits, if any are
 193          * needed.
 194          */
 195 
 196         float top=Float.MIN_VALUE;
 197         for( int i = 1;
 198             i < FloatConsts.SIGNIFICAND_WIDTH;
 199             i++, top *= 2.0f) {
 200 
 201             failures += testGetExponentCase(top,
 202                                             FloatConsts.MIN_EXPONENT - 1);
 203 
 204             // Test largest value in next smaller binade
 205             if (i >= 3) {// (i == 1) would test 0.0;
 206                          // (i == 2) would just retest MIN_VALUE
 207                 testGetExponentCase(Math.nextAfter(top, 0.0f),
 208                                     FloatConsts.MIN_EXPONENT - 1);
 209 
 210                 if( i >= 10) {
 211                     // create a bit mask with (i-1) 1's in the low order
 212                     // bits
 213                     int mask = ~((~0)<<(i-1));
 214                     float randFloat = Float.intBitsToFloat( // Exponent
 215                                                  Float.floatToIntBits(top) |
 216                                                  // Significand
 217                                                  (rand.nextInt() & mask ) ) ;
 218 
 219                     failures += testGetExponentCase(randFloat,
 220                                                     FloatConsts.MIN_EXPONENT - 1);
 221                 }
 222             }
 223         }
 224 
 225         return failures;
 226     }
 227 
 228 
 229     public static int testDoubleGetExponent() {
 230         int failures = 0;
 231         double [] specialValues = {NaNd,
 232                                    infinityD,
 233                                    +0.0,
 234                                    +1.0,
 235                                    +2.0,
 236                                    +16.0,
 237                                    +Double.MIN_VALUE,
 238                                    +Double_MAX_SUBNORMAL,
 239                                    +DoubleConsts.MIN_NORMAL,
 240                                    +Double.MAX_VALUE
 241         };
 242 
 243         int [] specialResults = {Double.MAX_EXPONENT + 1, // NaN results
 244                                  Double.MAX_EXPONENT + 1, // Infinite results
 245                                  Double.MIN_EXPONENT - 1, // Zero results
 246                                  0,
 247                                  1,
 248                                  4,
 249                                  DoubleConsts.MIN_EXPONENT - 1,
 250                                  -DoubleConsts.MAX_EXPONENT,
 251                                  DoubleConsts.MIN_EXPONENT,
 252                                  DoubleConsts.MAX_EXPONENT
 253         };
 254 
 255         // Special value tests
 256         for(int i = 0; i < specialValues.length; i++) {
 257             failures += testGetExponentCase(specialValues[i], specialResults[i]);
 258         }
 259 
 260 
 261         // Normal exponent tests
 262         for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
 263             int result;
 264 
 265             // Create power of two
 266             double po2 = powerOfTwoD(i);
 267 
 268             failures += testGetExponentCase(po2, i);
 269 
 270             // Generate some random bit patterns for the significand
 271             for(int j = 0; j < 10; j++) {
 272                 long randSignif = rand.nextLong();
 273                 double randFloat;
 274 
 275                 randFloat = Double.longBitsToDouble( // Exponent
 276                                                  (Double.doubleToLongBits(po2)&
 277                                                   (~DoubleConsts.SIGNIF_BIT_MASK)) |
 278                                                  // Significand
 279                                                  (randSignif &
 280                                                   DoubleConsts.SIGNIF_BIT_MASK) );
 281 
 282                 failures += testGetExponentCase(randFloat, i);
 283             }
 284 
 285             if (i > DoubleConsts.MIN_EXPONENT) {
 286                 double po2minus = Math.nextAfter(po2,
 287                                                     Double.NEGATIVE_INFINITY);
 288                 failures += testGetExponentCase(po2minus, i-1);
 289             }
 290         }
 291 
 292         // Subnormal exponent tests
 293 
 294         /*
 295          * Start with MIN_VALUE, left shift, test high value, low
 296          * values, and random in between.
 297          *
 298          * Use nextAfter to calculate, high value of previous binade;
 299          * loop count i will indicate how many random bits, if any are
 300          * needed.
 301          */
 302 
 303         double top=Double.MIN_VALUE;
 304         for( int i = 1;
 305             i < DoubleConsts.SIGNIFICAND_WIDTH;
 306             i++, top *= 2.0f) {
 307 
 308             failures += testGetExponentCase(top,
 309                                             DoubleConsts.MIN_EXPONENT - 1);
 310 
 311             // Test largest value in next smaller binade
 312             if (i >= 3) {// (i == 1) would test 0.0;
 313                          // (i == 2) would just retest MIN_VALUE
 314                 testGetExponentCase(Math.nextAfter(top, 0.0),
 315                                     DoubleConsts.MIN_EXPONENT - 1);
 316 
 317                 if( i >= 10) {
 318                     // create a bit mask with (i-1) 1's in the low order
 319                     // bits
 320                     long mask = ~((~0L)<<(i-1));
 321                     double randFloat = Double.longBitsToDouble( // Exponent
 322                                                  Double.doubleToLongBits(top) |
 323                                                  // Significand
 324                                                  (rand.nextLong() & mask ) ) ;
 325 
 326                     failures += testGetExponentCase(randFloat,
 327                                                     DoubleConsts.MIN_EXPONENT - 1);
 328                 }
 329             }
 330         }
 331 
 332         return failures;
 333     }
 334 
 335 
 336     /* ******************** nextAfter tests ****************************** */
 337 
 338     static int testNextAfterCase(float start, double direction, float expected) {
 339         int failures=0;
 340         float minus_start = -start;
 341         double minus_direction = -direction;
 342         float minus_expected = -expected;
 343 
 344         failures+=Tests.test("Math.nextAfter(float,double)", start, direction,
 345                              Math.nextAfter(start, direction), expected);
 346         failures+=Tests.test("Math.nextAfter(float,double)", minus_start, minus_direction,
 347                              Math.nextAfter(minus_start, minus_direction), minus_expected);
 348 
 349         failures+=Tests.test("StrictMath.nextAfter(float,double)", start, direction,
 350                              StrictMath.nextAfter(start, direction), expected);
 351         failures+=Tests.test("StrictMath.nextAfter(float,double)", minus_start, minus_direction,
 352                              StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
 353         return failures;
 354     }
 355 
 356     static int testNextAfterCase(double start, double direction, double expected) {
 357         int failures=0;
 358 
 359         double minus_start = -start;
 360         double minus_direction = -direction;
 361         double minus_expected = -expected;
 362 
 363         failures+=Tests.test("Math.nextAfter(double,double)", start, direction,
 364                              Math.nextAfter(start, direction), expected);
 365         failures+=Tests.test("Math.nextAfter(double,double)", minus_start, minus_direction,
 366                              Math.nextAfter(minus_start, minus_direction), minus_expected);
 367 
 368         failures+=Tests.test("StrictMath.nextAfter(double,double)", start, direction,
 369                              StrictMath.nextAfter(start, direction), expected);
 370         failures+=Tests.test("StrictMath.nextAfter(double,double)", minus_start, minus_direction,
 371                              StrictMath.nextAfter(minus_start, minus_direction), minus_expected);
 372         return failures;
 373     }
 374 
 375     public static int testFloatNextAfter() {
 376         int failures=0;
 377 
 378         /*
 379          * Each row of the testCases matrix represents one test case
 380          * for nexAfter; given the input of the first two columns, the
 381          * result in the last column is expected.
 382          */
 383         float [][] testCases  = {
 384             {NaNf,              NaNf,                   NaNf},
 385             {NaNf,              0.0f,                   NaNf},
 386             {0.0f,              NaNf,                   NaNf},
 387             {NaNf,              infinityF,              NaNf},
 388             {infinityF,         NaNf,                   NaNf},
 389 
 390             {infinityF,         infinityF,              infinityF},
 391             {infinityF,         -infinityF,             Float.MAX_VALUE},
 392             {infinityF,         0.0f,                   Float.MAX_VALUE},
 393 
 394             {Float.MAX_VALUE,   infinityF,              infinityF},
 395             {Float.MAX_VALUE,   -infinityF,             Float_MAX_VALUEmm},
 396             {Float.MAX_VALUE,   Float.MAX_VALUE,        Float.MAX_VALUE},
 397             {Float.MAX_VALUE,   0.0f,                   Float_MAX_VALUEmm},
 398 
 399             {Float_MAX_VALUEmm, Float.MAX_VALUE,        Float.MAX_VALUE},
 400             {Float_MAX_VALUEmm, infinityF,              Float.MAX_VALUE},
 401             {Float_MAX_VALUEmm, Float_MAX_VALUEmm,      Float_MAX_VALUEmm},
 402 
 403             {FloatConsts.MIN_NORMAL,    infinityF,              FloatConsts.MIN_NORMAL+
 404                                                                 Float.MIN_VALUE},
 405             {FloatConsts.MIN_NORMAL,    -infinityF,             Float_MAX_SUBNORMAL},
 406             {FloatConsts.MIN_NORMAL,    1.0f,                   FloatConsts.MIN_NORMAL+
 407                                                                 Float.MIN_VALUE},
 408             {FloatConsts.MIN_NORMAL,    -1.0f,                  Float_MAX_SUBNORMAL},
 409             {FloatConsts.MIN_NORMAL,    FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
 410 
 411             {Float_MAX_SUBNORMAL,       FloatConsts.MIN_NORMAL, FloatConsts.MIN_NORMAL},
 412             {Float_MAX_SUBNORMAL,       Float_MAX_SUBNORMAL,    Float_MAX_SUBNORMAL},
 413             {Float_MAX_SUBNORMAL,       0.0f,                   Float_MAX_SUBNORMALmm},
 414 
 415             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMAL,    Float_MAX_SUBNORMAL},
 416             {Float_MAX_SUBNORMALmm,     0.0f,                   Float_MAX_SUBNORMALmm-Float.MIN_VALUE},
 417             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMALmm,  Float_MAX_SUBNORMALmm},
 418 
 419             {Float.MIN_VALUE,   0.0f,                   0.0f},
 420             {-Float.MIN_VALUE,  0.0f,                   -0.0f},
 421             {Float.MIN_VALUE,   Float.MIN_VALUE,        Float.MIN_VALUE},
 422             {Float.MIN_VALUE,   1.0f,                   2*Float.MIN_VALUE},
 423 
 424             // Make sure zero behavior is tested
 425             {0.0f,              0.0f,                   0.0f},
 426             {0.0f,              -0.0f,                  -0.0f},
 427             {-0.0f,             0.0f,                   0.0f},
 428             {-0.0f,             -0.0f,                  -0.0f},
 429             {0.0f,              infinityF,              Float.MIN_VALUE},
 430             {0.0f,              -infinityF,             -Float.MIN_VALUE},
 431             {-0.0f,             infinityF,              Float.MIN_VALUE},
 432             {-0.0f,             -infinityF,             -Float.MIN_VALUE},
 433             {0.0f,              Float.MIN_VALUE,        Float.MIN_VALUE},
 434             {0.0f,              -Float.MIN_VALUE,       -Float.MIN_VALUE},
 435             {-0.0f,             Float.MIN_VALUE,        Float.MIN_VALUE},
 436             {-0.0f,             -Float.MIN_VALUE,       -Float.MIN_VALUE}
 437         };
 438 
 439         for(int i = 0; i < testCases.length; i++) {
 440             failures += testNextAfterCase(testCases[i][0], testCases[i][1],
 441                                           testCases[i][2]);
 442         }
 443 
 444         return failures;
 445     }
 446 
 447     public static int testDoubleNextAfter() {
 448         int failures =0;
 449 
 450         /*
 451          * Each row of the testCases matrix represents one test case
 452          * for nexAfter; given the input of the first two columns, the
 453          * result in the last column is expected.
 454          */
 455         double [][] testCases  = {
 456             {NaNd,              NaNd,                   NaNd},
 457             {NaNd,              0.0d,                   NaNd},
 458             {0.0d,              NaNd,                   NaNd},
 459             {NaNd,              infinityD,              NaNd},
 460             {infinityD,         NaNd,                   NaNd},
 461 
 462             {infinityD,         infinityD,              infinityD},
 463             {infinityD,         -infinityD,             Double.MAX_VALUE},
 464             {infinityD,         0.0d,                   Double.MAX_VALUE},
 465 
 466             {Double.MAX_VALUE,  infinityD,              infinityD},
 467             {Double.MAX_VALUE,  -infinityD,             Double_MAX_VALUEmm},
 468             {Double.MAX_VALUE,  Double.MAX_VALUE,       Double.MAX_VALUE},
 469             {Double.MAX_VALUE,  0.0d,                   Double_MAX_VALUEmm},
 470 
 471             {Double_MAX_VALUEmm,        Double.MAX_VALUE,       Double.MAX_VALUE},
 472             {Double_MAX_VALUEmm,        infinityD,              Double.MAX_VALUE},
 473             {Double_MAX_VALUEmm,        Double_MAX_VALUEmm,     Double_MAX_VALUEmm},
 474 
 475             {DoubleConsts.MIN_NORMAL,   infinityD,              DoubleConsts.MIN_NORMAL+
 476                                                                 Double.MIN_VALUE},
 477             {DoubleConsts.MIN_NORMAL,   -infinityD,             Double_MAX_SUBNORMAL},
 478             {DoubleConsts.MIN_NORMAL,   1.0f,                   DoubleConsts.MIN_NORMAL+
 479                                                                 Double.MIN_VALUE},
 480             {DoubleConsts.MIN_NORMAL,   -1.0f,                  Double_MAX_SUBNORMAL},
 481             {DoubleConsts.MIN_NORMAL,   DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
 482 
 483             {Double_MAX_SUBNORMAL,      DoubleConsts.MIN_NORMAL,DoubleConsts.MIN_NORMAL},
 484             {Double_MAX_SUBNORMAL,      Double_MAX_SUBNORMAL,   Double_MAX_SUBNORMAL},
 485             {Double_MAX_SUBNORMAL,      0.0d,                   Double_MAX_SUBNORMALmm},
 486 
 487             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMAL,   Double_MAX_SUBNORMAL},
 488             {Double_MAX_SUBNORMALmm,    0.0d,                   Double_MAX_SUBNORMALmm-Double.MIN_VALUE},
 489             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMALmm, Double_MAX_SUBNORMALmm},
 490 
 491             {Double.MIN_VALUE,  0.0d,                   0.0d},
 492             {-Double.MIN_VALUE, 0.0d,                   -0.0d},
 493             {Double.MIN_VALUE,  Double.MIN_VALUE,       Double.MIN_VALUE},
 494             {Double.MIN_VALUE,  1.0f,                   2*Double.MIN_VALUE},
 495 
 496             // Make sure zero behavior is tested
 497             {0.0d,              0.0d,                   0.0d},
 498             {0.0d,              -0.0d,                  -0.0d},
 499             {-0.0d,             0.0d,                   0.0d},
 500             {-0.0d,             -0.0d,                  -0.0d},
 501             {0.0d,              infinityD,              Double.MIN_VALUE},
 502             {0.0d,              -infinityD,             -Double.MIN_VALUE},
 503             {-0.0d,             infinityD,              Double.MIN_VALUE},
 504             {-0.0d,             -infinityD,             -Double.MIN_VALUE},
 505             {0.0d,              Double.MIN_VALUE,       Double.MIN_VALUE},
 506             {0.0d,              -Double.MIN_VALUE,      -Double.MIN_VALUE},
 507             {-0.0d,             Double.MIN_VALUE,       Double.MIN_VALUE},
 508             {-0.0d,             -Double.MIN_VALUE,      -Double.MIN_VALUE}
 509         };
 510 
 511         for(int i = 0; i < testCases.length; i++) {
 512             failures += testNextAfterCase(testCases[i][0], testCases[i][1],
 513                                           testCases[i][2]);
 514         }
 515         return failures;
 516     }
 517 
 518     /* ******************** nextUp tests ********************************* */
 519 
 520     public static int testFloatNextUp() {
 521         int failures=0;
 522 
 523         /*
 524          * Each row of testCases represents one test case for nextUp;
 525          * the first column is the input and the second column is the
 526          * expected result.
 527          */
 528         float testCases [][] = {
 529             {NaNf,                      NaNf},
 530             {-infinityF,                -Float.MAX_VALUE},
 531             {-Float.MAX_VALUE,          -Float_MAX_VALUEmm},
 532             {-FloatConsts.MIN_NORMAL,   -Float_MAX_SUBNORMAL},
 533             {-Float_MAX_SUBNORMAL,      -Float_MAX_SUBNORMALmm},
 534             {-Float.MIN_VALUE,          -0.0f},
 535             {-0.0f,                     Float.MIN_VALUE},
 536             {+0.0f,                     Float.MIN_VALUE},
 537             {Float.MIN_VALUE,           Float.MIN_VALUE*2},
 538             {Float_MAX_SUBNORMALmm,     Float_MAX_SUBNORMAL},
 539             {Float_MAX_SUBNORMAL,       FloatConsts.MIN_NORMAL},
 540             {FloatConsts.MIN_NORMAL,    FloatConsts.MIN_NORMAL+Float.MIN_VALUE},
 541             {Float_MAX_VALUEmm,         Float.MAX_VALUE},
 542             {Float.MAX_VALUE,           infinityF},
 543             {infinityF,                 infinityF}
 544         };
 545 
 546         for(int i = 0; i < testCases.length; i++) {
 547             failures+=Tests.test("Math.nextUp(float)",
 548                                  testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
 549 
 550             failures+=Tests.test("StrictMath.nextUp(float)",
 551                                  testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
 552         }
 553 
 554         return failures;
 555     }
 556 
 557 
 558     public static int testDoubleNextUp() {
 559         int failures=0;
 560 
 561         /*
 562          * Each row of testCases represents one test case for nextUp;
 563          * the first column is the input and the second column is the
 564          * expected result.
 565          */
 566         double testCases [][] = {
 567             {NaNd,                      NaNd},
 568             {-infinityD,                -Double.MAX_VALUE},
 569             {-Double.MAX_VALUE,         -Double_MAX_VALUEmm},
 570             {-DoubleConsts.MIN_NORMAL,  -Double_MAX_SUBNORMAL},
 571             {-Double_MAX_SUBNORMAL,     -Double_MAX_SUBNORMALmm},
 572             {-Double.MIN_VALUE,         -0.0d},
 573             {-0.0d,                     Double.MIN_VALUE},
 574             {+0.0d,                     Double.MIN_VALUE},
 575             {Double.MIN_VALUE,          Double.MIN_VALUE*2},
 576             {Double_MAX_SUBNORMALmm,    Double_MAX_SUBNORMAL},
 577             {Double_MAX_SUBNORMAL,      DoubleConsts.MIN_NORMAL},
 578             {DoubleConsts.MIN_NORMAL,   DoubleConsts.MIN_NORMAL+Double.MIN_VALUE},
 579             {Double_MAX_VALUEmm,        Double.MAX_VALUE},
 580             {Double.MAX_VALUE,          infinityD},
 581             {infinityD,                 infinityD}
 582         };
 583 
 584         for(int i = 0; i < testCases.length; i++) {
 585             failures+=Tests.test("Math.nextUp(double)",
 586                                  testCases[i][0], Math.nextUp(testCases[i][0]), testCases[i][1]);
 587 
 588             failures+=Tests.test("StrictMath.nextUp(double)",
 589                                  testCases[i][0], StrictMath.nextUp(testCases[i][0]), testCases[i][1]);
 590         }
 591 
 592         return failures;
 593     }
 594 
 595     /* ******************** nextDown tests ********************************* */
 596 
 597     public static int testFloatNextDown() {
 598         int failures=0;
 599 
 600         /*
 601          * Each row of testCases represents one test case for nextDown;
 602          * the first column is the input and the second column is the
 603          * expected result.
 604          */
 605         float testCases [][] = {
 606             {NaNf,                      NaNf},
 607             {-infinityF,                -infinityF},
 608             {-Float.MAX_VALUE,          -infinityF},
 609             {-Float_MAX_VALUEmm,        -Float.MAX_VALUE},
 610             {-Float_MAX_SUBNORMAL,      -FloatConsts.MIN_NORMAL},
 611             {-Float_MAX_SUBNORMALmm,    -Float_MAX_SUBNORMAL},
 612             {-0.0f,                     -Float.MIN_VALUE},
 613             {+0.0f,                     -Float.MIN_VALUE},
 614             {Float.MIN_VALUE,           0.0f},
 615             {Float.MIN_VALUE*2,         Float.MIN_VALUE},
 616             {Float_MAX_SUBNORMAL,       Float_MAX_SUBNORMALmm},
 617             {FloatConsts.MIN_NORMAL,    Float_MAX_SUBNORMAL},
 618             {FloatConsts.MIN_NORMAL+
 619              Float.MIN_VALUE,           FloatConsts.MIN_NORMAL},
 620             {Float.MAX_VALUE,           Float_MAX_VALUEmm},
 621             {infinityF,                 Float.MAX_VALUE},
 622         };
 623 
 624         for(int i = 0; i < testCases.length; i++) {
 625             failures+=Tests.test("Math.nextDown(float)",
 626                                  testCases[i][0], Math.nextDown(testCases[i][0]), testCases[i][1]);
 627 
 628             failures+=Tests.test("StrictMath.nextDown(float)",
 629                                  testCases[i][0], StrictMath.nextDown(testCases[i][0]), testCases[i][1]);
 630         }
 631 
 632         return failures;
 633     }
 634 
 635 
 636     public static int testDoubleNextDown() {
 637         int failures=0;
 638 
 639         /*
 640          * Each row of testCases represents one test case for nextDown;
 641          * the first column is the input and the second column is the
 642          * expected result.
 643          */
 644         double testCases [][] = {
 645             {NaNd,                      NaNd},
 646             {-infinityD,                -infinityD},
 647             {-Double.MAX_VALUE,         -infinityD},
 648             {-Double_MAX_VALUEmm,       -Double.MAX_VALUE},
 649             {-Double_MAX_SUBNORMAL,     -DoubleConsts.MIN_NORMAL},
 650             {-Double_MAX_SUBNORMALmm,   -Double_MAX_SUBNORMAL},
 651             {-0.0d,                     -Double.MIN_VALUE},
 652             {+0.0d,                     -Double.MIN_VALUE},
 653             {Double.MIN_VALUE,          0.0d},
 654             {Double.MIN_VALUE*2,        Double.MIN_VALUE},
 655             {Double_MAX_SUBNORMAL,      Double_MAX_SUBNORMALmm},
 656             {DoubleConsts.MIN_NORMAL,   Double_MAX_SUBNORMAL},
 657             {DoubleConsts.MIN_NORMAL+
 658              Double.MIN_VALUE,          DoubleConsts.MIN_NORMAL},
 659             {Double.MAX_VALUE,          Double_MAX_VALUEmm},
 660             {infinityD,                 Double.MAX_VALUE},
 661         };
 662 
 663         for(int i = 0; i < testCases.length; i++) {
 664             failures+=Tests.test("Math.nextDown(double)",
 665                                  testCases[i][0], Math.nextDown(testCases[i][0]), testCases[i][1]);
 666 
 667             failures+=Tests.test("StrictMath.nextDown(double)",
 668                                  testCases[i][0], StrictMath.nextDown(testCases[i][0]), testCases[i][1]);
 669         }
 670 
 671         return failures;
 672     }
 673 
 674 
 675     /* ********************** boolean tests ****************************** */
 676 
 677     /*
 678      * Combined tests for boolean functions, isFinite, isInfinite,
 679      * isNaN, isUnordered.
 680      */
 681 
 682     public static int testFloatBooleanMethods() {
 683         int failures = 0;
 684 
 685         float testCases [] = {
 686             NaNf,
 687             -infinityF,
 688             infinityF,
 689             -Float.MAX_VALUE,
 690             -3.0f,
 691             -1.0f,
 692             -FloatConsts.MIN_NORMAL,
 693             -Float_MAX_SUBNORMALmm,
 694             -Float_MAX_SUBNORMAL,
 695             -Float.MIN_VALUE,
 696             -0.0f,
 697             +0.0f,
 698             Float.MIN_VALUE,
 699             Float_MAX_SUBNORMALmm,
 700             Float_MAX_SUBNORMAL,
 701             FloatConsts.MIN_NORMAL,
 702             1.0f,
 703             3.0f,
 704             Float_MAX_VALUEmm,
 705             Float.MAX_VALUE
 706         };
 707 
 708         for(int i = 0; i < testCases.length; i++) {
 709             // isNaN
 710             failures+=Tests.test("Float.isNaN(float)", testCases[i],
 711                                  Float.isNaN(testCases[i]), (i ==0));
 712 
 713             // isFinite
 714             failures+=Tests.test("Float.isFinite(float)", testCases[i],
 715                                  Float.isFinite(testCases[i]), (i >= 3));
 716 
 717             // isInfinite
 718             failures+=Tests.test("Float.isInfinite(float)", testCases[i],
 719                                  Float.isInfinite(testCases[i]), (i==1 || i==2));
 720 
 721             // isUnorderd
 722             for(int j = 0; j < testCases.length; j++) {
 723                 failures+=Tests.test("Tests.isUnordered(float, float)", testCases[i],testCases[j],
 724                                      Tests.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
 725             }
 726         }
 727 
 728         return failures;
 729     }
 730 
 731     public static int testDoubleBooleanMethods() {
 732         int failures = 0;
 733         boolean result = false;
 734 
 735         double testCases [] = {
 736             NaNd,
 737             -infinityD,
 738             infinityD,
 739             -Double.MAX_VALUE,
 740             -3.0d,
 741             -1.0d,
 742             -DoubleConsts.MIN_NORMAL,
 743             -Double_MAX_SUBNORMALmm,
 744             -Double_MAX_SUBNORMAL,
 745             -Double.MIN_VALUE,
 746             -0.0d,
 747             +0.0d,
 748             Double.MIN_VALUE,
 749             Double_MAX_SUBNORMALmm,
 750             Double_MAX_SUBNORMAL,
 751             DoubleConsts.MIN_NORMAL,
 752             1.0d,
 753             3.0d,
 754             Double_MAX_VALUEmm,
 755             Double.MAX_VALUE
 756         };
 757 
 758         for(int i = 0; i < testCases.length; i++) {
 759             // isNaN
 760             failures+=Tests.test("Double.isNaN(double)", testCases[i],
 761                                  Double.isNaN(testCases[i]), (i ==0));
 762 
 763             // isFinite
 764             failures+=Tests.test("Double.isFinite(double)", testCases[i],
 765                                  Double.isFinite(testCases[i]), (i >= 3));
 766 
 767             // isInfinite
 768             failures+=Tests.test("Double.isInfinite(double)", testCases[i],
 769                                  Double.isInfinite(testCases[i]), (i==1 || i==2));
 770 
 771             // isUnorderd
 772             for(int j = 0; j < testCases.length; j++) {
 773                 failures+=Tests.test("Tests.isUnordered(double, double)", testCases[i],testCases[j],
 774                                      Tests.isUnordered(testCases[i],testCases[j]), (i==0 || j==0));
 775             }
 776         }
 777 
 778         return failures;
 779     }
 780 
 781     /* ******************** copySign tests******************************** */
 782 
 783    public static int testFloatCopySign() {
 784         int failures = 0;
 785 
 786         // testCases[0] are logically positive numbers;
 787         // testCases[1] are negative numbers.
 788         float testCases [][] = {
 789             {+0.0f,
 790              Float.MIN_VALUE,
 791              Float_MAX_SUBNORMALmm,
 792              Float_MAX_SUBNORMAL,
 793              FloatConsts.MIN_NORMAL,
 794              1.0f,
 795              3.0f,
 796              Float_MAX_VALUEmm,
 797              Float.MAX_VALUE,
 798              infinityF,
 799             },
 800             {-infinityF,
 801              -Float.MAX_VALUE,
 802              -3.0f,
 803              -1.0f,
 804              -FloatConsts.MIN_NORMAL,
 805              -Float_MAX_SUBNORMALmm,
 806              -Float_MAX_SUBNORMAL,
 807              -Float.MIN_VALUE,
 808              -0.0f}
 809         };
 810 
 811         float NaNs[] = {Float.intBitsToFloat(0x7fc00000),       // "positive" NaN
 812                         Float.intBitsToFloat(0xFfc00000)};      // "negative" NaN
 813 
 814         // Tests shared between raw and non-raw versions
 815         for(int i = 0; i < 2; i++) {
 816             for(int j = 0; j < 2; j++) {
 817                 for(int m = 0; m < testCases[i].length; m++) {
 818                     for(int n = 0; n < testCases[j].length; n++) {
 819                         // copySign(magnitude, sign)
 820                         failures+=Tests.test("Math.copySign(float,float)",
 821                                              testCases[i][m],testCases[j][n],
 822                                              Math.copySign(testCases[i][m], testCases[j][n]),
 823                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 824 
 825                         failures+=Tests.test("StrictMath.copySign(float,float)",
 826                                              testCases[i][m],testCases[j][n],
 827                                              StrictMath.copySign(testCases[i][m], testCases[j][n]),
 828                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 829                     }
 830                 }
 831             }
 832         }
 833 
 834         // For rawCopySign, NaN may effectively have either sign bit
 835         // while for copySign NaNs are treated as if they always have
 836         // a zero sign bit (i.e. as positive numbers)
 837         for(int i = 0; i < 2; i++) {
 838             for(int j = 0; j < NaNs.length; j++) {
 839                 for(int m = 0; m < testCases[i].length; m++) {
 840                     // copySign(magnitude, sign)
 841 
 842                     failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
 843                                  Math.abs(testCases[i][m])) ? 0:1;
 844 
 845 
 846                     failures+=Tests.test("StrictMath.copySign(float,float)",
 847                                          testCases[i][m], NaNs[j],
 848                                          StrictMath.copySign(testCases[i][m], NaNs[j]),
 849                                          Math.abs(testCases[i][m]) );
 850                 }
 851             }
 852         }
 853 
 854         return failures;
 855     }
 856 
 857     public static int testDoubleCopySign() {
 858         int failures = 0;
 859 
 860         // testCases[0] are logically positive numbers;
 861         // testCases[1] are negative numbers.
 862         double testCases [][] = {
 863             {+0.0d,
 864              Double.MIN_VALUE,
 865              Double_MAX_SUBNORMALmm,
 866              Double_MAX_SUBNORMAL,
 867              DoubleConsts.MIN_NORMAL,
 868              1.0d,
 869              3.0d,
 870              Double_MAX_VALUEmm,
 871              Double.MAX_VALUE,
 872              infinityD,
 873             },
 874             {-infinityD,
 875              -Double.MAX_VALUE,
 876              -3.0d,
 877              -1.0d,
 878              -DoubleConsts.MIN_NORMAL,
 879              -Double_MAX_SUBNORMALmm,
 880              -Double_MAX_SUBNORMAL,
 881              -Double.MIN_VALUE,
 882              -0.0d}
 883         };
 884 
 885         double NaNs[] = {Double.longBitsToDouble(0x7ff8000000000000L),  // "positive" NaN
 886                          Double.longBitsToDouble(0xfff8000000000000L),  // "negative" NaN
 887                          Double.longBitsToDouble(0x7FF0000000000001L),
 888                          Double.longBitsToDouble(0xFFF0000000000001L),
 889                          Double.longBitsToDouble(0x7FF8555555555555L),
 890                          Double.longBitsToDouble(0xFFF8555555555555L),
 891                          Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),
 892                          Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),
 893                          Double.longBitsToDouble(0x7FFDeadBeef00000L),
 894                          Double.longBitsToDouble(0xFFFDeadBeef00000L),
 895                          Double.longBitsToDouble(0x7FFCafeBabe00000L),
 896                          Double.longBitsToDouble(0xFFFCafeBabe00000L)};
 897 
 898         // Tests shared between Math and StrictMath versions
 899         for(int i = 0; i < 2; i++) {
 900             for(int j = 0; j < 2; j++) {
 901                 for(int m = 0; m < testCases[i].length; m++) {
 902                     for(int n = 0; n < testCases[j].length; n++) {
 903                         // copySign(magnitude, sign)
 904                         failures+=Tests.test("MathcopySign(double,double)",
 905                                              testCases[i][m],testCases[j][n],
 906                                              Math.copySign(testCases[i][m], testCases[j][n]),
 907                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 908 
 909                         failures+=Tests.test("StrictMath.copySign(double,double)",
 910                                              testCases[i][m],testCases[j][n],
 911                                              StrictMath.copySign(testCases[i][m], testCases[j][n]),
 912                                              (j==0?1.0f:-1.0f)*Math.abs(testCases[i][m]) );
 913                     }
 914                 }
 915             }
 916         }
 917 
 918         // For Math.copySign, NaN may effectively have either sign bit
 919         // while for StrictMath.copySign NaNs are treated as if they
 920         // always have a zero sign bit (i.e. as positive numbers)
 921         for(int i = 0; i < 2; i++) {
 922             for(int j = 0; j < NaNs.length; j++) {
 923                 for(int m = 0; m < testCases[i].length; m++) {
 924                     // copySign(magnitude, sign)
 925 
 926                     failures += (Math.abs(Math.copySign(testCases[i][m], NaNs[j])) ==
 927                                  Math.abs(testCases[i][m])) ? 0:1;
 928 
 929 
 930                     failures+=Tests.test("StrictMath.copySign(double,double)",
 931                                          testCases[i][m], NaNs[j],
 932                                          StrictMath.copySign(testCases[i][m], NaNs[j]),
 933                                          Math.abs(testCases[i][m]) );
 934                 }
 935             }
 936         }
 937 
 938 
 939         return failures;
 940     }
 941 
 942     /* ************************ scalb tests ******************************* */
 943 
 944     static int testScalbCase(float value, int scale_factor, float expected) {
 945         int failures=0;
 946 
 947         failures+=Tests.test("Math.scalb(float,int)",
 948                              value, scale_factor,
 949                              Math.scalb(value, scale_factor), expected);
 950 
 951         failures+=Tests.test("Math.scalb(float,int)",
 952                              -value, scale_factor,
 953                              Math.scalb(-value, scale_factor), -expected);
 954 
 955         failures+=Tests.test("StrictMath.scalb(float,int)",
 956                              value, scale_factor,
 957                              StrictMath.scalb(value, scale_factor), expected);
 958 
 959         failures+=Tests.test("StrictMath.scalb(float,int)",
 960                              -value, scale_factor,
 961                              StrictMath.scalb(-value, scale_factor), -expected);
 962         return failures;
 963     }
 964 
 965     public static int testFloatScalb() {
 966         int failures=0;
 967         int MAX_SCALE = FloatConsts.MAX_EXPONENT + -FloatConsts.MIN_EXPONENT +
 968                         FloatConsts.SIGNIFICAND_WIDTH + 1;
 969 
 970 
 971         // Arguments x, where scalb(x,n) is x for any n.
 972         float [] identityTestCases = {NaNf,
 973                                       -0.0f,
 974                                       +0.0f,
 975                                       infinityF,
 976                                       -infinityF
 977         };
 978 
 979         float [] subnormalTestCases = {
 980             Float.MIN_VALUE,
 981             3.0f*Float.MIN_VALUE,
 982             Float_MAX_SUBNORMALmm,
 983             Float_MAX_SUBNORMAL
 984         };
 985 
 986         float [] someTestCases = {
 987             Float.MIN_VALUE,
 988             3.0f*Float.MIN_VALUE,
 989             Float_MAX_SUBNORMALmm,
 990             Float_MAX_SUBNORMAL,
 991             FloatConsts.MIN_NORMAL,
 992             1.0f,
 993             2.0f,
 994             3.0f,
 995             (float)Math.PI,
 996             Float_MAX_VALUEmm,
 997             Float.MAX_VALUE
 998         };
 999 
1000         int [] oneMultiplyScalingFactors = {
1001             FloatConsts.MIN_EXPONENT,
1002             FloatConsts.MIN_EXPONENT+1,
1003             -3,
1004             -2,
1005             -1,
1006             0,
1007             1,
1008             2,
1009             3,
1010             FloatConsts.MAX_EXPONENT-1,
1011             FloatConsts.MAX_EXPONENT
1012         };
1013 
1014         int [] manyScalingFactors = {
1015             Integer.MIN_VALUE,
1016             Integer.MIN_VALUE+1,
1017             -MAX_SCALE -1,
1018             -MAX_SCALE,
1019             -MAX_SCALE+1,
1020 
1021             2*FloatConsts.MIN_EXPONENT-1,       // -253
1022             2*FloatConsts.MIN_EXPONENT,         // -252
1023             2*FloatConsts.MIN_EXPONENT+1,       // -251
1024 
1025             FloatConsts.MIN_EXPONENT - FloatConsts.SIGNIFICAND_WIDTH,
1026             FloatConsts.MIN_SUB_EXPONENT,
1027             -FloatConsts.MAX_EXPONENT,          // -127
1028             FloatConsts.MIN_EXPONENT,           // -126
1029 
1030             -2,
1031             -1,
1032             0,
1033             1,
1034             2,
1035 
1036             FloatConsts.MAX_EXPONENT-1,         // 126
1037             FloatConsts.MAX_EXPONENT,           // 127
1038             FloatConsts.MAX_EXPONENT+1,         // 128
1039 
1040             2*FloatConsts.MAX_EXPONENT-1,       // 253
1041             2*FloatConsts.MAX_EXPONENT,         // 254
1042             2*FloatConsts.MAX_EXPONENT+1,       // 255
1043 
1044             MAX_SCALE-1,
1045             MAX_SCALE,
1046             MAX_SCALE+1,
1047             Integer.MAX_VALUE-1,
1048             Integer.MAX_VALUE
1049         };
1050 
1051         // Test cases where scaling is always a no-op
1052         for(int i=0; i < identityTestCases.length; i++) {
1053             for(int j=0; j < manyScalingFactors.length; j++) {
1054                 failures += testScalbCase(identityTestCases[i],
1055                                           manyScalingFactors[j],
1056                                           identityTestCases[i]);
1057             }
1058         }
1059 
1060         // Test cases where result is 0.0 or infinity due to magnitude
1061         // of the scaling factor
1062         for(int i=0; i < someTestCases.length; i++) {
1063             for(int j=0; j < manyScalingFactors.length; j++) {
1064                 int scaleFactor = manyScalingFactors[j];
1065                 if (Math.abs(scaleFactor) >= MAX_SCALE) {
1066                     float value = someTestCases[i];
1067                     failures+=testScalbCase(value,
1068                                             scaleFactor,
1069                                             Math.copySign( (scaleFactor>0?infinityF:0.0f), value) );
1070                 }
1071             }
1072         }
1073 
1074         // Test cases that could be done with one floating-point
1075         // multiply.
1076         for(int i=0; i < someTestCases.length; i++) {
1077             for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
1078                 int scaleFactor = oneMultiplyScalingFactors[j];
1079                     float value = someTestCases[i];
1080 
1081                     failures+=testScalbCase(value,
1082                                             scaleFactor,
1083                                             value*powerOfTwoF(scaleFactor));
1084             }
1085         }
1086 
1087         // Create 2^MAX_EXPONENT
1088         float twoToTheMaxExp = 1.0f; // 2^0
1089         for(int i = 0; i < FloatConsts.MAX_EXPONENT; i++)
1090             twoToTheMaxExp *=2.0f;
1091 
1092         // Scale-up subnormal values until they all overflow
1093         for(int i=0; i < subnormalTestCases.length; i++) {
1094             float scale = 1.0f; // 2^j
1095             float value = subnormalTestCases[i];
1096 
1097             for(int j=FloatConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
1098                 int scaleFactor = j;
1099 
1100                 failures+=testScalbCase(value,
1101                                         scaleFactor,
1102                                         (Tests.ilogb(value) +j > FloatConsts.MAX_EXPONENT ) ?
1103                                         Math.copySign(infinityF, value) : // overflow
1104                                         // calculate right answer
1105                                         twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
1106                 scale*=2.0f;
1107             }
1108         }
1109 
1110         // Scale down a large number until it underflows.  By scaling
1111         // down MAX_NORMALmm, the first subnormal result will be exact
1112         // but the next one will round -- all those results can be
1113         // checked by halving a separate value in the loop.  Actually,
1114         // we can keep halving and checking until the product is zero
1115         // since:
1116         //
1117         // 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
1118         // it will round *up*
1119         //
1120         // 2. When rounding first occurs in the expected product, it
1121         // too rounds up, to 2^-MAX_EXPONENT.
1122         //
1123         // Halving expected after rounding happends to give the same
1124         // result as the scalb operation.
1125         float expected = Float_MAX_VALUEmm *0.5f;
1126         for(int i = -1; i > -MAX_SCALE; i--) {
1127             failures+=testScalbCase(Float_MAX_VALUEmm, i, expected);
1128 
1129             expected *= 0.5f;
1130         }
1131 
1132         // Tricky rounding tests:
1133         // Scale down a large number into subnormal range such that if
1134         // scalb is being implemented with multiple floating-point
1135         // multiplies, the value would round twice if the multiplies
1136         // were done in the wrong order.
1137 
1138         float value = 0x8.0000bP-5f;
1139         expected = 0x1.00001p-129f;
1140 
1141         for(int i = 0; i < 129; i++) {
1142             failures+=testScalbCase(value,
1143                                     -127-i,
1144                                     expected);
1145             value *=2.0f;
1146         }
1147 
1148         return failures;
1149     }
1150 
1151     static int testScalbCase(double value, int scale_factor, double expected) {
1152         int failures=0;
1153 
1154         failures+=Tests.test("Math.scalb(double,int)",
1155                              value, scale_factor,
1156                              Math.scalb(value, scale_factor), expected);
1157 
1158         failures+=Tests.test("Math.scalb(double,int)",
1159                              -value, scale_factor,
1160                              Math.scalb(-value, scale_factor), -expected);
1161 
1162         failures+=Tests.test("StrictMath.scalb(double,int)",
1163                              value, scale_factor,
1164                              StrictMath.scalb(value, scale_factor), expected);
1165 
1166         failures+=Tests.test("StrictMath.scalb(double,int)",
1167                              -value, scale_factor,
1168                              StrictMath.scalb(-value, scale_factor), -expected);
1169 
1170         return failures;
1171     }
1172 
1173     public static int testDoubleScalb() {
1174         int failures=0;
1175         int MAX_SCALE = DoubleConsts.MAX_EXPONENT + -DoubleConsts.MIN_EXPONENT +
1176                         DoubleConsts.SIGNIFICAND_WIDTH + 1;
1177 
1178 
1179         // Arguments x, where scalb(x,n) is x for any n.
1180         double [] identityTestCases = {NaNd,
1181                                       -0.0,
1182                                       +0.0,
1183                                       infinityD,
1184         };
1185 
1186         double [] subnormalTestCases = {
1187             Double.MIN_VALUE,
1188             3.0d*Double.MIN_VALUE,
1189             Double_MAX_SUBNORMALmm,
1190             Double_MAX_SUBNORMAL
1191         };
1192 
1193         double [] someTestCases = {
1194             Double.MIN_VALUE,
1195             3.0d*Double.MIN_VALUE,
1196             Double_MAX_SUBNORMALmm,
1197             Double_MAX_SUBNORMAL,
1198             DoubleConsts.MIN_NORMAL,
1199             1.0d,
1200             2.0d,
1201             3.0d,
1202             Math.PI,
1203             Double_MAX_VALUEmm,
1204             Double.MAX_VALUE
1205         };
1206 
1207         int [] oneMultiplyScalingFactors = {
1208             DoubleConsts.MIN_EXPONENT,
1209             DoubleConsts.MIN_EXPONENT+1,
1210             -3,
1211             -2,
1212             -1,
1213             0,
1214             1,
1215             2,
1216             3,
1217             DoubleConsts.MAX_EXPONENT-1,
1218             DoubleConsts.MAX_EXPONENT
1219         };
1220 
1221         int [] manyScalingFactors = {
1222             Integer.MIN_VALUE,
1223             Integer.MIN_VALUE+1,
1224             -MAX_SCALE -1,
1225             -MAX_SCALE,
1226             -MAX_SCALE+1,
1227 
1228             2*DoubleConsts.MIN_EXPONENT-1,      // -2045
1229             2*DoubleConsts.MIN_EXPONENT,        // -2044
1230             2*DoubleConsts.MIN_EXPONENT+1,      // -2043
1231 
1232             DoubleConsts.MIN_EXPONENT,          // -1022
1233             DoubleConsts.MIN_EXPONENT - DoubleConsts.SIGNIFICAND_WIDTH,
1234             DoubleConsts.MIN_SUB_EXPONENT,
1235             -DoubleConsts.MAX_EXPONENT,         // -1023
1236             DoubleConsts.MIN_EXPONENT,          // -1022
1237 
1238             -2,
1239             -1,
1240             0,
1241             1,
1242             2,
1243 
1244             DoubleConsts.MAX_EXPONENT-1,        // 1022
1245             DoubleConsts.MAX_EXPONENT,          // 1023
1246             DoubleConsts.MAX_EXPONENT+1,        // 1024
1247 
1248             2*DoubleConsts.MAX_EXPONENT-1,      // 2045
1249             2*DoubleConsts.MAX_EXPONENT,        // 2046
1250             2*DoubleConsts.MAX_EXPONENT+1,      // 2047
1251 
1252             MAX_SCALE-1,
1253             MAX_SCALE,
1254             MAX_SCALE+1,
1255             Integer.MAX_VALUE-1,
1256             Integer.MAX_VALUE
1257         };
1258 
1259         // Test cases where scaling is always a no-op
1260         for(int i=0; i < identityTestCases.length; i++) {
1261             for(int j=0; j < manyScalingFactors.length; j++) {
1262                 failures += testScalbCase(identityTestCases[i],
1263                                           manyScalingFactors[j],
1264                                           identityTestCases[i]);
1265             }
1266         }
1267 
1268         // Test cases where result is 0.0 or infinity due to magnitude
1269         // of the scaling factor
1270         for(int i=0; i < someTestCases.length; i++) {
1271             for(int j=0; j < manyScalingFactors.length; j++) {
1272                 int scaleFactor = manyScalingFactors[j];
1273                 if (Math.abs(scaleFactor) >= MAX_SCALE) {
1274                     double value = someTestCases[i];
1275                     failures+=testScalbCase(value,
1276                                             scaleFactor,
1277                                             Math.copySign( (scaleFactor>0?infinityD:0.0), value) );
1278                 }
1279             }
1280         }
1281 
1282         // Test cases that could be done with one floating-point
1283         // multiply.
1284         for(int i=0; i < someTestCases.length; i++) {
1285             for(int j=0; j < oneMultiplyScalingFactors.length; j++) {
1286                 int scaleFactor = oneMultiplyScalingFactors[j];
1287                     double value = someTestCases[i];
1288 
1289                     failures+=testScalbCase(value,
1290                                             scaleFactor,
1291                                             value*powerOfTwoD(scaleFactor));
1292             }
1293         }
1294 
1295         // Create 2^MAX_EXPONENT
1296         double twoToTheMaxExp = 1.0; // 2^0
1297         for(int i = 0; i < DoubleConsts.MAX_EXPONENT; i++)
1298             twoToTheMaxExp *=2.0;
1299 
1300         // Scale-up subnormal values until they all overflow
1301         for(int i=0; i < subnormalTestCases.length; i++) {
1302             double scale = 1.0; // 2^j
1303             double value = subnormalTestCases[i];
1304 
1305             for(int j=DoubleConsts.MAX_EXPONENT*2; j < MAX_SCALE; j++) { // MAX_SCALE -1 should cause overflow
1306                 int scaleFactor = j;
1307 
1308                 failures+=testScalbCase(value,
1309                                         scaleFactor,
1310                                         (Tests.ilogb(value) +j > DoubleConsts.MAX_EXPONENT ) ?
1311                                         Math.copySign(infinityD, value) : // overflow
1312                                         // calculate right answer
1313                                         twoToTheMaxExp*(twoToTheMaxExp*(scale*value)) );
1314                 scale*=2.0;
1315             }
1316         }
1317 
1318         // Scale down a large number until it underflows.  By scaling
1319         // down MAX_NORMALmm, the first subnormal result will be exact
1320         // but the next one will round -- all those results can be
1321         // checked by halving a separate value in the loop.  Actually,
1322         // we can keep halving and checking until the product is zero
1323         // since:
1324         //
1325         // 1. If the scalb of MAX_VALUEmm is subnormal and *not* exact
1326         // it will round *up*
1327         //
1328         // 2. When rounding first occurs in the expected product, it
1329         // too rounds up, to 2^-MAX_EXPONENT.
1330         //
1331         // Halving expected after rounding happends to give the same
1332         // result as the scalb operation.
1333         double expected = Double_MAX_VALUEmm *0.5f;
1334         for(int i = -1; i > -MAX_SCALE; i--) {
1335             failures+=testScalbCase(Double_MAX_VALUEmm, i, expected);
1336 
1337             expected *= 0.5;
1338         }
1339 
1340         // Tricky rounding tests:
1341         // Scale down a large number into subnormal range such that if
1342         // scalb is being implemented with multiple floating-point
1343         // multiplies, the value would round twice if the multiplies
1344         // were done in the wrong order.
1345 
1346         double value = 0x1.000000000000bP-1;
1347         expected     = 0x0.2000000000001P-1022;
1348         for(int i = 0; i < DoubleConsts.MAX_EXPONENT+2; i++) {
1349             failures+=testScalbCase(value,
1350                                     -1024-i,
1351                                     expected);
1352             value *=2.0;
1353         }
1354 
1355         return failures;
1356     }
1357 
1358     /* ************************* ulp tests ******************************* */
1359 
1360 
1361     /*
1362      * Test Math.ulp and StrictMath.ulp with +d and -d.
1363      */
1364     static int testUlpCase(float f, float expected) {
1365         float minus_f = -f;
1366         int failures=0;
1367 
1368         failures+=Tests.test("Math.ulp(float)", f,
1369                              Math.ulp(f), expected);
1370         failures+=Tests.test("Math.ulp(float)", minus_f,
1371                              Math.ulp(minus_f), expected);
1372         failures+=Tests.test("StrictMath.ulp(float)", f,
1373                              StrictMath.ulp(f), expected);
1374         failures+=Tests.test("StrictMath.ulp(float)", minus_f,
1375                              StrictMath.ulp(minus_f), expected);
1376         return failures;
1377     }
1378 
1379     static int testUlpCase(double d, double expected) {
1380         double minus_d = -d;
1381         int failures=0;
1382 
1383         failures+=Tests.test("Math.ulp(double)", d,
1384                              Math.ulp(d), expected);
1385         failures+=Tests.test("Math.ulp(double)", minus_d,
1386                              Math.ulp(minus_d), expected);
1387         failures+=Tests.test("StrictMath.ulp(double)", d,
1388                              StrictMath.ulp(d), expected);
1389         failures+=Tests.test("StrictMath.ulp(double)", minus_d,
1390                              StrictMath.ulp(minus_d), expected);
1391         return failures;
1392     }
1393 
1394     public static int testFloatUlp() {
1395         int failures = 0;
1396         float [] specialValues = {NaNf,
1397                                   Float.POSITIVE_INFINITY,
1398                                   +0.0f,
1399                                   +1.0f,
1400                                   +2.0f,
1401                                   +16.0f,
1402                                   +Float.MIN_VALUE,
1403                                   +Float_MAX_SUBNORMAL,
1404                                   +FloatConsts.MIN_NORMAL,
1405                                   +Float.MAX_VALUE
1406         };
1407 
1408         float [] specialResults = {NaNf,
1409                                    Float.POSITIVE_INFINITY,
1410                                    Float.MIN_VALUE,
1411                                    powerOfTwoF(-23),
1412                                    powerOfTwoF(-22),
1413                                    powerOfTwoF(-19),
1414                                    Float.MIN_VALUE,
1415                                    Float.MIN_VALUE,
1416                                    Float.MIN_VALUE,
1417                                    powerOfTwoF(104)
1418         };
1419 
1420         // Special value tests
1421         for(int i = 0; i < specialValues.length; i++) {
1422             failures += testUlpCase(specialValues[i], specialResults[i]);
1423         }
1424 
1425 
1426         // Normal exponent tests
1427         for(int i = FloatConsts.MIN_EXPONENT; i <= FloatConsts.MAX_EXPONENT; i++) {
1428             float expected;
1429 
1430             // Create power of two
1431             float po2 = powerOfTwoF(i);
1432             expected = Math.scalb(1.0f, i - (FloatConsts.SIGNIFICAND_WIDTH-1));
1433 
1434             failures += testUlpCase(po2, expected);
1435 
1436             // Generate some random bit patterns for the significand
1437             for(int j = 0; j < 10; j++) {
1438                 int randSignif = rand.nextInt();
1439                 float randFloat;
1440 
1441                 randFloat = Float.intBitsToFloat( // Exponent
1442                                                  (Float.floatToIntBits(po2)&
1443                                                   (~FloatConsts.SIGNIF_BIT_MASK)) |
1444                                                  // Significand
1445                                                  (randSignif &
1446                                                   FloatConsts.SIGNIF_BIT_MASK) );
1447 
1448                 failures += testUlpCase(randFloat, expected);
1449             }
1450 
1451             if (i > FloatConsts.MIN_EXPONENT) {
1452                 float po2minus = Math.nextAfter(po2,
1453                                                    Float.NEGATIVE_INFINITY);
1454                 failures += testUlpCase(po2minus, expected/2.0f);
1455             }
1456         }
1457 
1458         // Subnormal tests
1459 
1460         /*
1461          * Start with MIN_VALUE, left shift, test high value, low
1462          * values, and random in between.
1463          *
1464          * Use nextAfter to calculate, high value of previous binade,
1465          * loop count i will indicate how many random bits, if any are
1466          * needed.
1467          */
1468 
1469         float top=Float.MIN_VALUE;
1470         for( int i = 1;
1471             i < FloatConsts.SIGNIFICAND_WIDTH;
1472             i++, top *= 2.0f) {
1473 
1474             failures += testUlpCase(top, Float.MIN_VALUE);
1475 
1476             // Test largest value in next smaller binade
1477             if (i >= 3) {// (i == 1) would test 0.0;
1478                          // (i == 2) would just retest MIN_VALUE
1479                 testUlpCase(Math.nextAfter(top, 0.0f),
1480                             Float.MIN_VALUE);
1481 
1482                 if( i >= 10) {
1483                     // create a bit mask with (i-1) 1's in the low order
1484                     // bits
1485                     int mask = ~((~0)<<(i-1));
1486                     float randFloat = Float.intBitsToFloat( // Exponent
1487                                                  Float.floatToIntBits(top) |
1488                                                  // Significand
1489                                                  (rand.nextInt() & mask ) ) ;
1490 
1491                     failures += testUlpCase(randFloat, Float.MIN_VALUE);
1492                 }
1493             }
1494         }
1495 
1496         return failures;
1497     }
1498 
1499     public static int testDoubleUlp() {
1500         int failures = 0;
1501         double [] specialValues = {NaNd,
1502                                   Double.POSITIVE_INFINITY,
1503                                   +0.0d,
1504                                   +1.0d,
1505                                   +2.0d,
1506                                   +16.0d,
1507                                   +Double.MIN_VALUE,
1508                                   +Double_MAX_SUBNORMAL,
1509                                   +DoubleConsts.MIN_NORMAL,
1510                                   +Double.MAX_VALUE
1511         };
1512 
1513         double [] specialResults = {NaNf,
1514                                    Double.POSITIVE_INFINITY,
1515                                    Double.MIN_VALUE,
1516                                    powerOfTwoD(-52),
1517                                    powerOfTwoD(-51),
1518                                    powerOfTwoD(-48),
1519                                    Double.MIN_VALUE,
1520                                    Double.MIN_VALUE,
1521                                    Double.MIN_VALUE,
1522                                    powerOfTwoD(971)
1523         };
1524 
1525         // Special value tests
1526         for(int i = 0; i < specialValues.length; i++) {
1527             failures += testUlpCase(specialValues[i], specialResults[i]);
1528         }
1529 
1530 
1531         // Normal exponent tests
1532         for(int i = DoubleConsts.MIN_EXPONENT; i <= DoubleConsts.MAX_EXPONENT; i++) {
1533             double expected;
1534 
1535             // Create power of two
1536             double po2 = powerOfTwoD(i);
1537             expected = Math.scalb(1.0, i - (DoubleConsts.SIGNIFICAND_WIDTH-1));
1538 
1539             failures += testUlpCase(po2, expected);
1540 
1541             // Generate some random bit patterns for the significand
1542             for(int j = 0; j < 10; j++) {
1543                 long randSignif = rand.nextLong();
1544                 double randDouble;
1545 
1546                 randDouble = Double.longBitsToDouble( // Exponent
1547                                                  (Double.doubleToLongBits(po2)&
1548                                                   (~DoubleConsts.SIGNIF_BIT_MASK)) |
1549                                                  // Significand
1550                                                  (randSignif &
1551                                                   DoubleConsts.SIGNIF_BIT_MASK) );
1552 
1553                 failures += testUlpCase(randDouble, expected);
1554             }
1555 
1556             if (i > DoubleConsts.MIN_EXPONENT) {
1557                 double po2minus = Math.nextAfter(po2,
1558                                                     Double.NEGATIVE_INFINITY);
1559                 failures += testUlpCase(po2minus, expected/2.0f);
1560             }
1561         }
1562 
1563         // Subnormal tests
1564 
1565         /*
1566          * Start with MIN_VALUE, left shift, test high value, low
1567          * values, and random in between.
1568          *
1569          * Use nextAfter to calculate, high value of previous binade,
1570          * loop count i will indicate how many random bits, if any are
1571          * needed.
1572          */
1573 
1574         double top=Double.MIN_VALUE;
1575         for( int i = 1;
1576             i < DoubleConsts.SIGNIFICAND_WIDTH;
1577             i++, top *= 2.0f) {
1578 
1579             failures += testUlpCase(top, Double.MIN_VALUE);
1580 
1581             // Test largest value in next smaller binade
1582             if (i >= 3) {// (i == 1) would test 0.0;
1583                          // (i == 2) would just retest MIN_VALUE
1584                 testUlpCase(Math.nextAfter(top, 0.0f),
1585                             Double.MIN_VALUE);
1586 
1587                 if( i >= 10) {
1588                     // create a bit mask with (i-1) 1's in the low order
1589                     // bits
1590                     int mask = ~((~0)<<(i-1));
1591                     double randDouble = Double.longBitsToDouble( // Exponent
1592                                                  Double.doubleToLongBits(top) |
1593                                                  // Significand
1594                                                  (rand.nextLong() & mask ) ) ;
1595 
1596                     failures += testUlpCase(randDouble, Double.MIN_VALUE);
1597                 }
1598             }
1599         }
1600 
1601         return failures;
1602     }
1603 
1604     public static int testFloatSignum() {
1605         int failures = 0;
1606         float testCases [][] = {
1607             {NaNf,                      NaNf},
1608             {-infinityF,                -1.0f},
1609             {-Float.MAX_VALUE,          -1.0f},
1610             {-FloatConsts.MIN_NORMAL,   -1.0f},
1611             {-1.0f,                     -1.0f},
1612             {-2.0f,                     -1.0f},
1613             {-Float_MAX_SUBNORMAL,      -1.0f},
1614             {-Float.MIN_VALUE,          -1.0f},
1615             {-0.0f,                     -0.0f},
1616             {+0.0f,                     +0.0f},
1617             {Float.MIN_VALUE,            1.0f},
1618             {Float_MAX_SUBNORMALmm,      1.0f},
1619             {Float_MAX_SUBNORMAL,        1.0f},
1620             {FloatConsts.MIN_NORMAL,     1.0f},
1621             {1.0f,                       1.0f},
1622             {2.0f,                       1.0f},
1623             {Float_MAX_VALUEmm,          1.0f},
1624             {Float.MAX_VALUE,            1.0f},
1625             {infinityF,                  1.0f}
1626         };
1627 
1628         for(int i = 0; i < testCases.length; i++) {
1629             failures+=Tests.test("Math.signum(float)",
1630                                  testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
1631             failures+=Tests.test("StrictMath.signum(float)",
1632                                  testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
1633         }
1634 
1635         return failures;
1636     }
1637 
1638     public static int testDoubleSignum() {
1639         int failures = 0;
1640         double testCases [][] = {
1641             {NaNd,                      NaNd},
1642             {-infinityD,                -1.0},
1643             {-Double.MAX_VALUE,         -1.0},
1644             {-DoubleConsts.MIN_NORMAL,  -1.0},
1645             {-1.0,                      -1.0},
1646             {-2.0,                      -1.0},
1647             {-Double_MAX_SUBNORMAL,     -1.0},
1648             {-Double.MIN_VALUE,         -1.0d},
1649             {-0.0d,                     -0.0d},
1650             {+0.0d,                     +0.0d},
1651             {Double.MIN_VALUE,           1.0},
1652             {Double_MAX_SUBNORMALmm,     1.0},
1653             {Double_MAX_SUBNORMAL,       1.0},
1654             {DoubleConsts.MIN_NORMAL,    1.0},
1655             {1.0,                        1.0},
1656             {2.0,                        1.0},
1657             {Double_MAX_VALUEmm,         1.0},
1658             {Double.MAX_VALUE,           1.0},
1659             {infinityD,                  1.0}
1660         };
1661 
1662         for(int i = 0; i < testCases.length; i++) {
1663             failures+=Tests.test("Math.signum(double)",
1664                                  testCases[i][0], Math.signum(testCases[i][0]), testCases[i][1]);
1665             failures+=Tests.test("StrictMath.signum(double)",
1666                                  testCases[i][0], StrictMath.signum(testCases[i][0]), testCases[i][1]);
1667         }
1668 
1669         return failures;
1670     }
1671 
1672 
1673     public static void main(String argv[]) {
1674         int failures = 0;
1675 
1676         failures += testFloatGetExponent();
1677         failures += testDoubleGetExponent();
1678 
1679         failures += testFloatNextAfter();
1680         failures += testDoubleNextAfter();
1681 
1682         failures += testFloatNextUp();
1683         failures += testDoubleNextUp();
1684 
1685         failures += testFloatNextDown();
1686         failures += testDoubleNextDown();
1687 
1688         failures += testFloatBooleanMethods();
1689         failures += testDoubleBooleanMethods();
1690 
1691         failures += testFloatCopySign();
1692         failures += testDoubleCopySign();
1693 
1694         failures += testFloatScalb();
1695         failures += testDoubleScalb();
1696 
1697         failures += testFloatUlp();
1698         failures += testDoubleUlp();
1699 
1700         failures += testFloatSignum();
1701         failures += testDoubleSignum();
1702 
1703         if (failures > 0) {
1704             System.err.println("Testing the recommended functions incurred "
1705                                + failures + " failures.");
1706             throw new RuntimeException();
1707         }
1708     }
1709 }