1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4347132 4939441
  27  * @summary Tests for {Math, StrictMath}.cbrt
  28  * @author Joseph D. Darcy
  29  */
  30 
  31 import sun.misc.DoubleConsts;
  32 
  33 public class CubeRootTests {
  34     private CubeRootTests(){}
  35 
  36     static final double infinityD = Double.POSITIVE_INFINITY;
  37     static final double NaNd = Double.NaN;
  38 
  39     // Initialize shared random number generator
  40     static java.util.Random rand = new java.util.Random();
  41 
  42     static int testCubeRootCase(double input, double expected) {
  43         int failures=0;
  44 
  45         double minus_input = -input;
  46         double minus_expected = -expected;
  47 
  48         failures+=Tests.test("Math.cbrt(double)", input,
  49                              Math.cbrt(input), expected);
  50         failures+=Tests.test("Math.cbrt(double)", minus_input,
  51                              Math.cbrt(minus_input), minus_expected);
  52         failures+=Tests.test("StrictMath.cbrt(double)", input,
  53                              StrictMath.cbrt(input), expected);
  54         failures+=Tests.test("StrictMath.cbrt(double)", minus_input,
  55                              StrictMath.cbrt(minus_input), minus_expected);
  56 
  57         return failures;
  58     }
  59 
  60     static int testCubeRoot() {
  61         int failures = 0;
  62         double [][] testCases = {
  63             {NaNd,                      NaNd},
  64             {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
  65             {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
  66             {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
  67             {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
  68             {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
  69             {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
  70             {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
  71             {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
  72             {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
  73             {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
  74             {Double.POSITIVE_INFINITY,  Double.POSITIVE_INFINITY},
  75             {Double.NEGATIVE_INFINITY,  Double.NEGATIVE_INFINITY},
  76             {+0.0,                      +0.0},
  77             {-0.0,                      -0.0},
  78             {+1.0,                      +1.0},
  79             {-1.0,                      -1.0},
  80             {+8.0,                      +2.0},
  81             {-8.0,                      -2.0}
  82         };
  83 
  84         for(int i = 0; i < testCases.length; i++) {
  85             failures += testCubeRootCase(testCases[i][0],
  86                                          testCases[i][1]);
  87         }
  88 
  89         // Test integer perfect cubes less than 2^53.
  90         for(int i = 0; i <= 208063; i++) {
  91             double d = i;
  92             failures += testCubeRootCase(d*d*d, (double)i);
  93         }
  94 
  95         // Test cbrt(2^(3n)) = 2^n.
  96         for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
  97             failures += testCubeRootCase(Math.scalb(1.0, 3*i),
  98                                          Math.scalb(1.0, i) );
  99         }
 100 
 101         // Test cbrt(2^(-3n)) = 2^-n.
 102         for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
 103             failures += testCubeRootCase(Math.scalb(1.0, 3*i),
 104                                          Math.scalb(1.0, i) );
 105         }
 106 
 107         // Test random perfect cubes.  Create double values with
 108         // modest exponents but only have at most the 17 most
 109         // significant bits in the significand set; 17*3 = 51, which
 110         // is less than the number of bits in a double's significand.
 111         long exponentBits1 =
 112             Double.doubleToLongBits(Math.scalb(1.0, 55)) &
 113             DoubleConsts.EXP_BIT_MASK;
 114         long exponentBits2=
 115             Double.doubleToLongBits(Math.scalb(1.0, -55)) &
 116             DoubleConsts.EXP_BIT_MASK;
 117         for(int i = 0; i < 100; i++) {
 118             // Take 16 bits since the 17th bit is implicit in the
 119             // exponent
 120            double input1 =
 121                Double.longBitsToDouble(exponentBits1 |
 122                                        // Significand bits
 123                                        ((long) (rand.nextInt() & 0xFFFF))<<
 124                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
 125            failures += testCubeRootCase(input1*input1*input1, input1);
 126 
 127            double input2 =
 128                Double.longBitsToDouble(exponentBits2 |
 129                                        // Significand bits
 130                                        ((long) (rand.nextInt() & 0xFFFF))<<
 131                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
 132            failures += testCubeRootCase(input2*input2*input2, input2);
 133         }
 134 
 135         // Directly test quality of implementation properties of cbrt
 136         // for values that aren't perfect cubes.  Verify returned
 137         // result meets the 1 ulp test.  That is, we want to verify
 138         // that for positive x > 1,
 139         // y = cbrt(x),
 140         //
 141         // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
 142         // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
 143         //
 144         // where y_mm and y_pp are the next smaller and next larger
 145         // floating-point value to y.  In other words, if y^3 is too
 146         // big, making y larger does not improve the result; likewise,
 147         // if y^3 is too small, making y smaller does not improve the
 148         // result.
 149         //
 150         // ...-----|--?--|--?--|-----... Where is the true result?
 151         //         y_mm  y     y_pp
 152         //
 153         // The returned value y should be one of the floating-point
 154         // values braketing the true result.  However, given y, a
 155         // priori we don't know if the true result falls in [y_mm, y]
 156         // or [y, y_pp].  The above test looks at the error in x-y^3
 157         // to determine which region the true result is in; e.g. if
 158         // y^3 is smaller than x, the true result should be in [y,
 159         // y_pp].  Therefore, it would be an error for y_mm to be a
 160         // closer approximation to x^(1/3).  In this case, it is
 161         // permissible, although not ideal, for y_pp^3 to be a closer
 162         // approximation to x^(1/3) than y^3.
 163         //
 164         // We will use pow(y,3) to compute y^3.  Although pow is not
 165         // correctly rounded, StrictMath.pow should have at most 1 ulp
 166         // error.  For y > 1, pow(y_mm,3) and pow(y_pp,3) will differ
 167         // from pow(y,3) by more than one ulp so the comparision of
 168         // errors should still be valid.
 169 
 170         for(int i = 0; i < 1000; i++) {
 171             double d = 1.0 + rand.nextDouble();
 172             double err, err_adjacent;
 173 
 174             double y1 = Math.cbrt(d);
 175             double y2 = StrictMath.cbrt(d);
 176 
 177             err = d - StrictMath.pow(y1, 3);
 178             if (err != 0.0) {
 179                 if(Double.isNaN(err)) {
 180                     failures++;
 181                     System.err.println("Encountered unexpected NaN value: d = " + d +
 182                                        "\tcbrt(d) = " + y1);
 183                 } else {
 184                     if (err < 0.0) {
 185                         err_adjacent = StrictMath.pow(Math.nextUp(y1), 3) - d;
 186                     }
 187                     else  { // (err > 0.0)
 188                         err_adjacent = StrictMath.pow(Math.nextAfter(y1,0.0), 3) - d;
 189                     }
 190 
 191                     if (Math.abs(err) > Math.abs(err_adjacent)) {
 192                         failures++;
 193                         System.err.println("For Math.cbrt(" + d + "), returned result " +
 194                                            y1 + "is not as good as adjacent value.");
 195                     }
 196                 }
 197             }
 198 
 199 
 200             err = d - StrictMath.pow(y2, 3);
 201             if (err != 0.0) {
 202                 if(Double.isNaN(err)) {
 203                     failures++;
 204                     System.err.println("Encountered unexpected NaN value: d = " + d +
 205                                        "\tcbrt(d) = " + y2);
 206                 } else {
 207                     if (err < 0.0) {
 208                         err_adjacent = StrictMath.pow(Math.nextUp(y2), 3) - d;
 209                     }
 210                     else  { // (err > 0.0)
 211                         err_adjacent = StrictMath.pow(Math.nextAfter(y2,0.0), 3) - d;
 212                     }
 213 
 214                     if (Math.abs(err) > Math.abs(err_adjacent)) {
 215                         failures++;
 216                         System.err.println("For StrictMath.cbrt(" + d + "), returned result " +
 217                                            y2 + "is not as good as adjacent value.");
 218                     }
 219                 }
 220             }
 221 
 222 
 223         }
 224 
 225         // Test monotonicity properites near perfect cubes; test two
 226         // numbers before and two numbers after; i.e. for
 227         //
 228         // pcNeighbors[] =
 229         // {nextDown(nextDown(pc)),
 230         // nextDown(pc),
 231         // pc,
 232         // nextUp(pc),
 233         // nextUp(nextUp(pc))}
 234         //
 235         // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
 236         {
 237 
 238             double pcNeighbors[] = new double[5];
 239             double pcNeighborsCbrt[] = new double[5];
 240             double pcNeighborsStrictCbrt[] = new double[5];
 241 
 242             // Test near cbrt(2^(3n)) = 2^n.
 243             for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
 244                 double pc = Math.scalb(1.0, 3*i);
 245 
 246                 pcNeighbors[2] = pc;
 247                 pcNeighbors[1] = Math.nextDown(pc);
 248                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 249                 pcNeighbors[3] = Math.nextUp(pc);
 250                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 251 
 252                 for(int j = 0; j < pcNeighbors.length; j++) {
 253                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 254                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 255                 }
 256 
 257                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 258                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 259                         failures++;
 260                         System.err.println("Monotonicity failure for Math.cbrt on " +
 261                                           pcNeighbors[j] + " and "  +
 262                                           pcNeighbors[j+1] + "\n\treturned " +
 263                                           pcNeighborsCbrt[j] + " and " +
 264                                           pcNeighborsCbrt[j+1] );
 265                     }
 266 
 267                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
 268                         failures++;
 269                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
 270                                           pcNeighbors[j] + " and "  +
 271                                           pcNeighbors[j+1] + "\n\treturned " +
 272                                           pcNeighborsStrictCbrt[j] + " and " +
 273                                           pcNeighborsStrictCbrt[j+1] );
 274                     }
 275 
 276 
 277                 }
 278 
 279             }
 280 
 281             // Test near cbrt(2^(-3n)) = 2^-n.
 282             for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
 283                 double pc = Math.scalb(1.0, 3*i);
 284 
 285                 pcNeighbors[2] = pc;
 286                 pcNeighbors[1] = Math.nextDown(pc);
 287                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 288                 pcNeighbors[3] = Math.nextUp(pc);
 289                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 290 
 291                 for(int j = 0; j < pcNeighbors.length; j++) {
 292                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 293                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 294                 }
 295 
 296                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 297                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 298                         failures++;
 299                         System.err.println("Monotonicity failure for Math.cbrt on " +
 300                                           pcNeighbors[j] + " and "  +
 301                                           pcNeighbors[j+1] + "\n\treturned " +
 302                                           pcNeighborsCbrt[j] + " and " +
 303                                           pcNeighborsCbrt[j+1] );
 304                     }
 305 
 306                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
 307                         failures++;
 308                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
 309                                           pcNeighbors[j] + " and "  +
 310                                           pcNeighbors[j+1] + "\n\treturned " +
 311                                           pcNeighborsStrictCbrt[j] + " and " +
 312                                           pcNeighborsStrictCbrt[j+1] );
 313                     }
 314 
 315 
 316                 }
 317             }
 318         }
 319 
 320         return failures;
 321     }
 322 
 323     public static void main(String argv[]) {
 324         int failures = 0;
 325 
 326         failures += testCubeRoot();
 327 
 328         if (failures > 0) {
 329             System.err.println("Testing cbrt incurred "
 330                                + failures + " failures.");
 331             throw new RuntimeException();
 332         }
 333     }
 334 
 335 }