test/java/lang/Math/CubeRootTests.java

Print this page




  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4347132 4939441
  27  * @summary Tests for {Math, StrictMath}.cbrt
  28  * @author Joseph D. Darcy
  29  */
  30 
  31 import sun.misc.DoubleConsts;
  32 
  33 public class CubeRootTests {
  34     private CubeRootTests(){}
  35 
  36     static final double infinityD = Double.POSITIVE_INFINITY;
  37     static final double NaNd = Double.NaN;
  38 
  39     // Initialize shared random number generator
  40     static java.util.Random rand = new java.util.Random();
  41 
  42     static int testCubeRootCase(double input, double expected) {
  43         int failures=0;
  44 
  45         double minus_input = -input;
  46         double minus_expected = -expected;
  47 
  48         failures+=Tests.test("Math.cbrt(double)", input,
  49                              Math.cbrt(input), expected);
  50         failures+=Tests.test("Math.cbrt(double)", minus_input,
  51                              Math.cbrt(minus_input), minus_expected);
  52         failures+=Tests.test("StrictMath.cbrt(double)", input,


  76             {+0.0,                      +0.0},
  77             {-0.0,                      -0.0},
  78             {+1.0,                      +1.0},
  79             {-1.0,                      -1.0},
  80             {+8.0,                      +2.0},
  81             {-8.0,                      -2.0}
  82         };
  83 
  84         for(int i = 0; i < testCases.length; i++) {
  85             failures += testCubeRootCase(testCases[i][0],
  86                                          testCases[i][1]);
  87         }
  88 
  89         // Test integer perfect cubes less than 2^53.
  90         for(int i = 0; i <= 208063; i++) {
  91             double d = i;
  92             failures += testCubeRootCase(d*d*d, (double)i);
  93         }
  94 
  95         // Test cbrt(2^(3n)) = 2^n.
  96         for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
  97             failures += testCubeRootCase(Math.scalb(1.0, 3*i),
  98                                          Math.scalb(1.0, i) );
  99         }
 100 
 101         // Test cbrt(2^(-3n)) = 2^-n.
 102         for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
 103             failures += testCubeRootCase(Math.scalb(1.0, 3*i),
 104                                          Math.scalb(1.0, i) );
 105         }
 106 
 107         // Test random perfect cubes.  Create double values with
 108         // modest exponents but only have at most the 17 most
 109         // significant bits in the significand set; 17*3 = 51, which
 110         // is less than the number of bits in a double's significand.
 111         long exponentBits1 =
 112             Double.doubleToLongBits(Math.scalb(1.0, 55)) &
 113             DoubleConsts.EXP_BIT_MASK;
 114         long exponentBits2=
 115             Double.doubleToLongBits(Math.scalb(1.0, -55)) &
 116             DoubleConsts.EXP_BIT_MASK;
 117         for(int i = 0; i < 100; i++) {
 118             // Take 16 bits since the 17th bit is implicit in the
 119             // exponent
 120            double input1 =
 121                Double.longBitsToDouble(exponentBits1 |
 122                                        // Significand bits
 123                                        ((long) (rand.nextInt() & 0xFFFF))<<
 124                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
 125            failures += testCubeRootCase(input1*input1*input1, input1);
 126 
 127            double input2 =
 128                Double.longBitsToDouble(exponentBits2 |
 129                                        // Significand bits
 130                                        ((long) (rand.nextInt() & 0xFFFF))<<
 131                                        (DoubleConsts.SIGNIFICAND_WIDTH-1-16));
 132            failures += testCubeRootCase(input2*input2*input2, input2);
 133         }
 134 
 135         // Directly test quality of implementation properties of cbrt
 136         // for values that aren't perfect cubes.  Verify returned
 137         // result meets the 1 ulp test.  That is, we want to verify
 138         // that for positive x > 1,
 139         // y = cbrt(x),
 140         //
 141         // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
 142         // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
 143         //
 144         // where y_mm and y_pp are the next smaller and next larger
 145         // floating-point value to y.  In other words, if y^3 is too
 146         // big, making y larger does not improve the result; likewise,
 147         // if y^3 is too small, making y smaller does not improve the
 148         // result.
 149         //
 150         // ...-----|--?--|--?--|-----... Where is the true result?
 151         //         y_mm  y     y_pp


 223         }
 224 
 225         // Test monotonicity properites near perfect cubes; test two
 226         // numbers before and two numbers after; i.e. for
 227         //
 228         // pcNeighbors[] =
 229         // {nextDown(nextDown(pc)),
 230         // nextDown(pc),
 231         // pc,
 232         // nextUp(pc),
 233         // nextUp(nextUp(pc))}
 234         //
 235         // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
 236         {
 237 
 238             double pcNeighbors[] = new double[5];
 239             double pcNeighborsCbrt[] = new double[5];
 240             double pcNeighborsStrictCbrt[] = new double[5];
 241 
 242             // Test near cbrt(2^(3n)) = 2^n.
 243             for(int i = 18; i <= DoubleConsts.MAX_EXPONENT/3; i++) {
 244                 double pc = Math.scalb(1.0, 3*i);
 245 
 246                 pcNeighbors[2] = pc;
 247                 pcNeighbors[1] = Math.nextDown(pc);
 248                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 249                 pcNeighbors[3] = Math.nextUp(pc);
 250                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 251 
 252                 for(int j = 0; j < pcNeighbors.length; j++) {
 253                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 254                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 255                 }
 256 
 257                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 258                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 259                         failures++;
 260                         System.err.println("Monotonicity failure for Math.cbrt on " +
 261                                           pcNeighbors[j] + " and "  +
 262                                           pcNeighbors[j+1] + "\n\treturned " +
 263                                           pcNeighborsCbrt[j] + " and " +
 264                                           pcNeighborsCbrt[j+1] );
 265                     }
 266 
 267                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
 268                         failures++;
 269                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
 270                                           pcNeighbors[j] + " and "  +
 271                                           pcNeighbors[j+1] + "\n\treturned " +
 272                                           pcNeighborsStrictCbrt[j] + " and " +
 273                                           pcNeighborsStrictCbrt[j+1] );
 274                     }
 275 
 276 
 277                 }
 278 
 279             }
 280 
 281             // Test near cbrt(2^(-3n)) = 2^-n.
 282             for(int i = -1; i >= DoubleConsts.MIN_SUB_EXPONENT/3; i--) {
 283                 double pc = Math.scalb(1.0, 3*i);
 284 
 285                 pcNeighbors[2] = pc;
 286                 pcNeighbors[1] = Math.nextDown(pc);
 287                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 288                 pcNeighbors[3] = Math.nextUp(pc);
 289                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 290 
 291                 for(int j = 0; j < pcNeighbors.length; j++) {
 292                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 293                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 294                 }
 295 
 296                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 297                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 298                         failures++;
 299                         System.err.println("Monotonicity failure for Math.cbrt on " +
 300                                           pcNeighbors[j] + " and "  +
 301                                           pcNeighbors[j+1] + "\n\treturned " +
 302                                           pcNeighborsCbrt[j] + " and " +




  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4347132 4939441
  27  * @summary Tests for {Math, StrictMath}.cbrt
  28  * @author Joseph D. Darcy
  29  */
  30 


  31 public class CubeRootTests {
  32     private CubeRootTests(){}
  33 
  34     static final double infinityD = Double.POSITIVE_INFINITY;
  35     static final double NaNd = Double.NaN;
  36 
  37     // Initialize shared random number generator
  38     static java.util.Random rand = new java.util.Random();
  39 
  40     static int testCubeRootCase(double input, double expected) {
  41         int failures=0;
  42 
  43         double minus_input = -input;
  44         double minus_expected = -expected;
  45 
  46         failures+=Tests.test("Math.cbrt(double)", input,
  47                              Math.cbrt(input), expected);
  48         failures+=Tests.test("Math.cbrt(double)", minus_input,
  49                              Math.cbrt(minus_input), minus_expected);
  50         failures+=Tests.test("StrictMath.cbrt(double)", input,


  74             {+0.0,                      +0.0},
  75             {-0.0,                      -0.0},
  76             {+1.0,                      +1.0},
  77             {-1.0,                      -1.0},
  78             {+8.0,                      +2.0},
  79             {-8.0,                      -2.0}
  80         };
  81 
  82         for(int i = 0; i < testCases.length; i++) {
  83             failures += testCubeRootCase(testCases[i][0],
  84                                          testCases[i][1]);
  85         }
  86 
  87         // Test integer perfect cubes less than 2^53.
  88         for(int i = 0; i <= 208063; i++) {
  89             double d = i;
  90             failures += testCubeRootCase(d*d*d, (double)i);
  91         }
  92 
  93         // Test cbrt(2^(3n)) = 2^n.
  94         for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
  95             failures += testCubeRootCase(Math.scalb(1.0, 3*i),
  96                                          Math.scalb(1.0, i) );
  97         }
  98 
  99         // Test cbrt(2^(-3n)) = 2^-n.
 100         for(int i = -1; i >= DoubleUtils.MIN_SUB_EXPONENT/3; i--) {
 101             failures += testCubeRootCase(Math.scalb(1.0, 3*i),
 102                                          Math.scalb(1.0, i) );
 103         }
 104 
 105         // Test random perfect cubes.  Create double values with
 106         // modest exponents but only have at most the 17 most
 107         // significant bits in the significand set; 17*3 = 51, which
 108         // is less than the number of bits in a double's significand.
 109         long exponentBits1 =
 110             Double.doubleToLongBits(Math.scalb(1.0, 55)) &
 111             DoubleUtils.EXP_BIT_MASK;
 112         long exponentBits2=
 113             Double.doubleToLongBits(Math.scalb(1.0, -55)) &
 114             DoubleUtils.EXP_BIT_MASK;
 115         for(int i = 0; i < 100; i++) {
 116             // Take 16 bits since the 17th bit is implicit in the
 117             // exponent
 118            double input1 =
 119                Double.longBitsToDouble(exponentBits1 |
 120                                        // Significand bits
 121                                        ((long) (rand.nextInt() & 0xFFFF))<<
 122                                        (DoubleUtils.SIGNIFICAND_WIDTH-1-16));
 123            failures += testCubeRootCase(input1*input1*input1, input1);
 124 
 125            double input2 =
 126                Double.longBitsToDouble(exponentBits2 |
 127                                        // Significand bits
 128                                        ((long) (rand.nextInt() & 0xFFFF))<<
 129                                        (DoubleUtils.SIGNIFICAND_WIDTH-1-16));
 130            failures += testCubeRootCase(input2*input2*input2, input2);
 131         }
 132 
 133         // Directly test quality of implementation properties of cbrt
 134         // for values that aren't perfect cubes.  Verify returned
 135         // result meets the 1 ulp test.  That is, we want to verify
 136         // that for positive x > 1,
 137         // y = cbrt(x),
 138         //
 139         // if (err1=x - y^3 ) < 0, abs((y_pp^3 -x )) < err1
 140         // if (err1=x - y^3 ) > 0, abs((y_mm^3 -x )) < err1
 141         //
 142         // where y_mm and y_pp are the next smaller and next larger
 143         // floating-point value to y.  In other words, if y^3 is too
 144         // big, making y larger does not improve the result; likewise,
 145         // if y^3 is too small, making y smaller does not improve the
 146         // result.
 147         //
 148         // ...-----|--?--|--?--|-----... Where is the true result?
 149         //         y_mm  y     y_pp


 221         }
 222 
 223         // Test monotonicity properites near perfect cubes; test two
 224         // numbers before and two numbers after; i.e. for
 225         //
 226         // pcNeighbors[] =
 227         // {nextDown(nextDown(pc)),
 228         // nextDown(pc),
 229         // pc,
 230         // nextUp(pc),
 231         // nextUp(nextUp(pc))}
 232         //
 233         // test that cbrt(pcNeighbors[i]) <= cbrt(pcNeighbors[i+1])
 234         {
 235 
 236             double pcNeighbors[] = new double[5];
 237             double pcNeighborsCbrt[] = new double[5];
 238             double pcNeighborsStrictCbrt[] = new double[5];
 239 
 240             // Test near cbrt(2^(3n)) = 2^n.
 241             for(int i = 18; i <= Double.MAX_EXPONENT/3; i++) {
 242                 double pc = Math.scalb(1.0, 3*i);
 243 
 244                 pcNeighbors[2] = pc;
 245                 pcNeighbors[1] = Math.nextDown(pc);
 246                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 247                 pcNeighbors[3] = Math.nextUp(pc);
 248                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 249 
 250                 for(int j = 0; j < pcNeighbors.length; j++) {
 251                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 252                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 253                 }
 254 
 255                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 256                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 257                         failures++;
 258                         System.err.println("Monotonicity failure for Math.cbrt on " +
 259                                           pcNeighbors[j] + " and "  +
 260                                           pcNeighbors[j+1] + "\n\treturned " +
 261                                           pcNeighborsCbrt[j] + " and " +
 262                                           pcNeighborsCbrt[j+1] );
 263                     }
 264 
 265                     if(pcNeighborsStrictCbrt[j] >  pcNeighborsStrictCbrt[j+1] ) {
 266                         failures++;
 267                         System.err.println("Monotonicity failure for StrictMath.cbrt on " +
 268                                           pcNeighbors[j] + " and "  +
 269                                           pcNeighbors[j+1] + "\n\treturned " +
 270                                           pcNeighborsStrictCbrt[j] + " and " +
 271                                           pcNeighborsStrictCbrt[j+1] );
 272                     }
 273 
 274 
 275                 }
 276 
 277             }
 278 
 279             // Test near cbrt(2^(-3n)) = 2^-n.
 280             for(int i = -1; i >= DoubleUtils.MIN_SUB_EXPONENT/3; i--) {
 281                 double pc = Math.scalb(1.0, 3*i);
 282 
 283                 pcNeighbors[2] = pc;
 284                 pcNeighbors[1] = Math.nextDown(pc);
 285                 pcNeighbors[0] = Math.nextDown(pcNeighbors[1]);
 286                 pcNeighbors[3] = Math.nextUp(pc);
 287                 pcNeighbors[4] = Math.nextUp(pcNeighbors[3]);
 288 
 289                 for(int j = 0; j < pcNeighbors.length; j++) {
 290                     pcNeighborsCbrt[j] =           Math.cbrt(pcNeighbors[j]);
 291                     pcNeighborsStrictCbrt[j] = StrictMath.cbrt(pcNeighbors[j]);
 292                 }
 293 
 294                 for(int j = 0; j < pcNeighborsCbrt.length-1; j++) {
 295                     if(pcNeighborsCbrt[j] >  pcNeighborsCbrt[j+1] ) {
 296                         failures++;
 297                         System.err.println("Monotonicity failure for Math.cbrt on " +
 298                                           pcNeighbors[j] + " and "  +
 299                                           pcNeighbors[j+1] + "\n\treturned " +
 300                                           pcNeighborsCbrt[j] + " and " +