1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 /*
  25  * @test
  26  * @bug 4074599 4939441
  27  * @summary Tests for {Math, StrictMath}.log10
  28  * @author Joseph D. Darcy
  29  */
  30 
  31 public class Log10Tests {
  32     private Log10Tests(){}
  33 
  34     static final double infinityD = Double.POSITIVE_INFINITY;
  35     static final double NaNd = Double.NaN;
  36     static final double LN_10 = StrictMath.log(10.0);
  37 
  38     // Initialize shared random number generator
  39     static java.util.Random rand = new java.util.Random(0L);
  40 
  41     static int testLog10Case(double input, double expected) {
  42         int failures=0;
  43 
  44         failures+=Tests.test("Math.log10(double)", input,
  45                              Math.log10(input), expected);
  46 
  47         failures+=Tests.test("StrictMath.log10(double)", input,
  48                              StrictMath.log10(input), expected);
  49 
  50         return failures;
  51     }
  52 
  53     static int testLog10() {
  54         int failures = 0;
  55 
  56         double [][] testCases = {
  57             {Double.NaN,                NaNd},
  58             {Double.longBitsToDouble(0x7FF0000000000001L),      NaNd},
  59             {Double.longBitsToDouble(0xFFF0000000000001L),      NaNd},
  60             {Double.longBitsToDouble(0x7FF8555555555555L),      NaNd},
  61             {Double.longBitsToDouble(0xFFF8555555555555L),      NaNd},
  62             {Double.longBitsToDouble(0x7FFFFFFFFFFFFFFFL),      NaNd},
  63             {Double.longBitsToDouble(0xFFFFFFFFFFFFFFFFL),      NaNd},
  64             {Double.longBitsToDouble(0x7FFDeadBeef00000L),      NaNd},
  65             {Double.longBitsToDouble(0xFFFDeadBeef00000L),      NaNd},
  66             {Double.longBitsToDouble(0x7FFCafeBabe00000L),      NaNd},
  67             {Double.longBitsToDouble(0xFFFCafeBabe00000L),      NaNd},
  68             {Double.NEGATIVE_INFINITY,  NaNd},
  69             {-8.0,                      NaNd},
  70             {-1.0,                      NaNd},
  71             {-Double.MIN_NORMAL,        NaNd},
  72             {-Double.MIN_VALUE,         NaNd},
  73             {-0.0,                      -infinityD},
  74             {+0.0,                      -infinityD},
  75             {+1.0,                      0.0},
  76             {Double.POSITIVE_INFINITY,  infinityD},
  77         };
  78 
  79         // Test special cases
  80         for(int i = 0; i < testCases.length; i++) {
  81             failures += testLog10Case(testCases[i][0],
  82                                           testCases[i][1]);
  83         }
  84 
  85         // Test log10(10^n) == n for integer n; 10^n, n < 0 is not
  86         // exactly representable as a floating-point value -- up to
  87         // 10^22 can be represented exactly
  88         double testCase = 1.0;
  89         for(int i = 0; i < 23; i++) {
  90             failures += testLog10Case(testCase, i);
  91             testCase *= 10.0;
  92         }
  93 
  94         // Test for gross inaccuracy by comparing to log; should be
  95         // within a few ulps of log(x)/log(10)
  96         for(int i = 0; i < 10000; i++) {
  97             double input = Double.longBitsToDouble(rand.nextLong());
  98             if(! Double.isFinite(input))
  99                 continue; // avoid testing NaN and infinite values
 100             else {
 101                 input = Math.abs(input);
 102 
 103                 double expected = StrictMath.log(input)/LN_10;
 104                 if( ! Double.isFinite(expected))
 105                     continue; // if log(input) overflowed, try again
 106                 else {
 107                     double result;
 108 
 109                     if( Math.abs(((result=Math.log10(input)) - expected)/Math.ulp(expected)) > 3) {
 110                         failures++;
 111                         System.err.println("For input " + input +
 112                                            ", Math.log10 was more than 3 ulps different from " +
 113                                            "log(input)/log(10): log10(input) = " + result +
 114                                            "\tlog(input)/log(10) = " + expected);
 115                     }
 116 
 117                     if( Math.abs(((result=StrictMath.log10(input)) - expected)/Math.ulp(expected)) > 3) {
 118                         failures++;
 119                         System.err.println("For input " + input +
 120                                            ", StrictMath.log10 was more than 3 ulps different from " +
 121                                            "log(input)/log(10): log10(input) = " + result +
 122                                            "\tlog(input)/log(10) = " + expected);
 123                     }
 124 
 125 
 126                 }
 127             }
 128         }
 129 
 130         // Test for accuracy and monotonicity near log10(1.0).  From
 131         // the Taylor expansion of log,
 132         // log10(1+z) ~= (z -(z^2)/2)/LN_10;
 133         {
 134             double neighbors[] =        new double[40];
 135             double neighborsStrict[] =  new double[40];
 136             double z = Double.NaN;
 137 
 138             // Test inputs greater than 1.0.
 139             neighbors[0] =              Math.log10(1.0);
 140             neighborsStrict[0] =        StrictMath.log10(1.0);
 141 
 142             double input[] =  new double[40];
 143             int half = input.length/2;
 144 
 145 
 146             // Initialize input to the 40 consecutive double values
 147             // "centered" at 1.0.
 148             double up = Double.NaN;
 149             double down = Double.NaN;
 150             for(int i = 0; i < half; i++) {
 151                 if (i == 0) {
 152                     input[half] = 1.0;
 153                     up   = Math.nextUp(1.0);
 154                     down = Math.nextDown(1.0);
 155                 } else {
 156                     input[half + i] = up;
 157                     input[half - i] = down;
 158                     up   = Math.nextUp(up);
 159                     down = Math.nextDown(down);
 160                 }
 161             }
 162             input[0] = Math.nextDown(input[1]);
 163 
 164             for(int i = 0; i < neighbors.length; i++) {
 165                 neighbors[i] =          Math.log10(input[i]);
 166                 neighborsStrict[i] =    StrictMath.log10(input[i]);
 167 
 168                 // Test accuracy.
 169                 z = input[i] - 1.0;
 170                 double expected = (z - (z*z)*0.5)/LN_10;
 171                 if ( Math.abs(neighbors[i] - expected ) > 3*Math.ulp(expected) ) {
 172                     failures++;
 173                     System.err.println("For input near 1.0 " + input[i] +
 174                                        ", Math.log10(1+z) was more than 3 ulps different from " +
 175                                        "(z-(z^2)/2)/ln(10): log10(input) = " + neighbors[i] +
 176                                        "\texpected about = " + expected);
 177                 }
 178 
 179                 if ( Math.abs(neighborsStrict[i] - expected ) > 3*Math.ulp(expected) ) {
 180                     failures++;
 181                     System.err.println("For input near 1.0 " + input[i] +
 182                                        ", StrictMath.log10(1+z) was more than 3 ulps different from " +
 183                                        "(z-(z^2)/2)/ln(10): log10(input) = " + neighborsStrict[i] +
 184                                        "\texpected about = " + expected);
 185                 }
 186 
 187                 // Test monotonicity
 188                 if( i > 0) {
 189                     if( neighbors[i-1] > neighbors[i] ) {
 190                         failures++;
 191                         System.err.println("Monotonicity failure for Math.log10  at " + input[i] +
 192                                            " and prior value.");
 193                     }
 194 
 195                     if( neighborsStrict[i-1] > neighborsStrict[i] ) {
 196                         failures++;
 197                         System.err.println("Monotonicity failure for StrictMath.log10  at " + input[i] +
 198                                            " and prior value.");
 199                     }
 200                 }
 201             }
 202 
 203         }
 204 
 205         return failures;
 206     }
 207 
 208     public static void main(String argv[]) {
 209         int failures = 0;
 210 
 211         failures += testLog10();
 212 
 213         if (failures > 0) {
 214             System.err.println("Testing log10 incurred "
 215                                + failures + " failures.");
 216             throw new RuntimeException();
 217         }
 218     }
 219 
 220 }