1 /*
   2  * Copyright (c) 1996, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.security.ssl;
  27 
  28 import java.io.*;
  29 import java.math.BigInteger;
  30 import java.security.*;
  31 import java.security.interfaces.*;
  32 import java.security.spec.*;
  33 import java.security.cert.*;
  34 import java.security.cert.Certificate;
  35 import java.util.*;
  36 import java.util.concurrent.ConcurrentHashMap;
  37 
  38 import java.lang.reflect.*;
  39 
  40 import javax.security.auth.x500.X500Principal;
  41 
  42 import javax.crypto.KeyGenerator;
  43 import javax.crypto.SecretKey;
  44 import javax.crypto.spec.DHPublicKeySpec;
  45 
  46 import javax.net.ssl.*;
  47 
  48 import sun.security.internal.spec.TlsPrfParameterSpec;
  49 import sun.security.ssl.CipherSuite.*;
  50 import static sun.security.ssl.CipherSuite.PRF.*;
  51 import sun.security.util.KeyUtil;
  52 
  53 /**
  54  * Many data structures are involved in the handshake messages.  These
  55  * classes are used as structures, with public data members.  They are
  56  * not visible outside the SSL package.
  57  *
  58  * Handshake messages all have a common header format, and they are all
  59  * encoded in a "handshake data" SSL record substream.  The base class
  60  * here (HandshakeMessage) provides a common framework and records the
  61  * SSL record type of the particular handshake message.
  62  *
  63  * This file contains subclasses for all the basic handshake messages.
  64  * All handshake messages know how to encode and decode themselves on
  65  * SSL streams; this facilitates using the same code on SSL client and
  66  * server sides, although they don't send and receive the same messages.
  67  *
  68  * Messages also know how to print themselves, which is quite handy
  69  * for debugging.  They always identify their type, and can optionally
  70  * dump all of their content.
  71  *
  72  * @author David Brownell
  73  */
  74 public abstract class HandshakeMessage {
  75 
  76     HandshakeMessage() { }
  77 
  78     // enum HandshakeType:
  79     static final byte   ht_hello_request = 0;
  80     static final byte   ht_client_hello = 1;
  81     static final byte   ht_server_hello = 2;
  82 
  83     static final byte   ht_certificate = 11;
  84     static final byte   ht_server_key_exchange = 12;
  85     static final byte   ht_certificate_request = 13;
  86     static final byte   ht_server_hello_done = 14;
  87     static final byte   ht_certificate_verify = 15;
  88     static final byte   ht_client_key_exchange = 16;
  89 
  90     static final byte   ht_finished = 20;
  91 
  92     /* Class and subclass dynamic debugging support */
  93     public static final Debug debug = Debug.getInstance("ssl");
  94 
  95     /**
  96      * Utility method to convert a BigInteger to a byte array in unsigned
  97      * format as needed in the handshake messages. BigInteger uses
  98      * 2's complement format, i.e. it prepends an extra zero if the MSB
  99      * is set. We remove that.
 100      */
 101     static byte[] toByteArray(BigInteger bi) {
 102         byte[] b = bi.toByteArray();
 103         if ((b.length > 1) && (b[0] == 0)) {
 104             int n = b.length - 1;
 105             byte[] newarray = new byte[n];
 106             System.arraycopy(b, 1, newarray, 0, n);
 107             b = newarray;
 108         }
 109         return b;
 110     }
 111 
 112     /*
 113      * SSL 3.0 MAC padding constants.
 114      * Also used by CertificateVerify and Finished during the handshake.
 115      */
 116     static final byte[] MD5_pad1 = genPad(0x36, 48);
 117     static final byte[] MD5_pad2 = genPad(0x5c, 48);
 118 
 119     static final byte[] SHA_pad1 = genPad(0x36, 40);
 120     static final byte[] SHA_pad2 = genPad(0x5c, 40);
 121 
 122     private static byte[] genPad(int b, int count) {
 123         byte[] padding = new byte[count];
 124         Arrays.fill(padding, (byte)b);
 125         return padding;
 126     }
 127 
 128     /*
 129      * Write a handshake message on the (handshake) output stream.
 130      * This is just a four byte header followed by the data.
 131      *
 132      * NOTE that huge messages -- notably, ones with huge cert
 133      * chains -- are handled correctly.
 134      */
 135     final void write(HandshakeOutStream s) throws IOException {
 136         int len = messageLength();
 137         if (len >= Record.OVERFLOW_OF_INT24) {
 138             throw new SSLException("Handshake message too big"
 139                 + ", type = " + messageType() + ", len = " + len);
 140         }
 141         s.write(messageType());
 142         s.putInt24(len);
 143         send(s);
 144     }
 145 
 146     /*
 147      * Subclasses implement these methods so those kinds of
 148      * messages can be emitted.  Base class delegates to subclass.
 149      */
 150     abstract int  messageType();
 151     abstract int  messageLength();
 152     abstract void send(HandshakeOutStream s) throws IOException;
 153 
 154     /*
 155      * Write a descriptive message on the output stream; for debugging.
 156      */
 157     abstract void print(PrintStream p) throws IOException;
 158 
 159 //
 160 // NOTE:  the rest of these classes are nested within this one, and are
 161 // imported by other classes in this package.  There are a few other
 162 // handshake message classes, not neatly nested here because of current
 163 // licensing requirement for native (RSA) methods.  They belong here,
 164 // but those native methods complicate things a lot!
 165 //
 166 
 167 
 168 /*
 169  * HelloRequest ... SERVER --> CLIENT
 170  *
 171  * Server can ask the client to initiate a new handshake, e.g. to change
 172  * session parameters after a connection has been (re)established.
 173  */
 174 static final class HelloRequest extends HandshakeMessage {
 175     int messageType() { return ht_hello_request; }
 176 
 177     HelloRequest() { }
 178 
 179     HelloRequest(HandshakeInStream in) throws IOException
 180     {
 181         // nothing in this message
 182     }
 183 
 184     int messageLength() { return 0; }
 185 
 186     void send(HandshakeOutStream out) throws IOException
 187     {
 188         // nothing in this messaage
 189     }
 190 
 191     void print(PrintStream out) throws IOException
 192     {
 193         out.println("*** HelloRequest (empty)");
 194     }
 195 
 196 }
 197 
 198 
 199 /*
 200  * ClientHello ... CLIENT --> SERVER
 201  *
 202  * Client initiates handshake by telling server what it wants, and what it
 203  * can support (prioritized by what's first in the ciphe suite list).
 204  *
 205  * By RFC2246:7.4.1.2 it's explicitly anticipated that this message
 206  * will have more data added at the end ... e.g. what CAs the client trusts.
 207  * Until we know how to parse it, we will just read what we know
 208  * about, and let our caller handle the jumps over unknown data.
 209  */
 210 static final class ClientHello extends HandshakeMessage {
 211 
 212     ProtocolVersion     protocolVersion;
 213     RandomCookie        clnt_random;
 214     SessionId           sessionId;
 215     private CipherSuiteList    cipherSuites;
 216     byte[]              compression_methods;
 217 
 218     HelloExtensions extensions = new HelloExtensions();
 219 
 220     private final static byte[]  NULL_COMPRESSION = new byte[] {0};
 221 
 222     ClientHello(SecureRandom generator, ProtocolVersion protocolVersion,
 223             SessionId sessionId, CipherSuiteList cipherSuites) {
 224 
 225         this.protocolVersion = protocolVersion;
 226         this.sessionId = sessionId;
 227         this.cipherSuites = cipherSuites;
 228 
 229         if (cipherSuites.containsEC()) {
 230             extensions.add(SupportedEllipticCurvesExtension.DEFAULT);
 231             extensions.add(SupportedEllipticPointFormatsExtension.DEFAULT);
 232         }
 233 
 234         clnt_random = new RandomCookie(generator);
 235         compression_methods = NULL_COMPRESSION;
 236     }
 237 
 238     ClientHello(HandshakeInStream s, int messageLength) throws IOException {
 239         protocolVersion = ProtocolVersion.valueOf(s.getInt8(), s.getInt8());
 240         clnt_random = new RandomCookie(s);
 241         sessionId = new SessionId(s.getBytes8());
 242         cipherSuites = new CipherSuiteList(s);
 243         compression_methods = s.getBytes8();
 244         if (messageLength() != messageLength) {
 245             extensions = new HelloExtensions(s);
 246         }
 247     }
 248 
 249     CipherSuiteList getCipherSuites() {
 250         return cipherSuites;
 251     }
 252 
 253     // add renegotiation_info extension
 254     void addRenegotiationInfoExtension(byte[] clientVerifyData) {
 255         HelloExtension renegotiationInfo = new RenegotiationInfoExtension(
 256                     clientVerifyData, new byte[0]);
 257         extensions.add(renegotiationInfo);
 258     }
 259 
 260     // add server_name extension
 261     void addServerNameIndicationExtension(String hostname) {
 262         // We would have checked that the hostname ia a FQDN.
 263         ArrayList<String> hostnames = new ArrayList<>(1);
 264         hostnames.add(hostname);
 265 
 266         try {
 267             extensions.add(new ServerNameExtension(hostnames));
 268         } catch (IOException ioe) {
 269             // ignore the exception and return
 270         }
 271     }
 272 
 273     // add signature_algorithm extension
 274     void addSignatureAlgorithmsExtension(
 275             Collection<SignatureAndHashAlgorithm> algorithms) {
 276         HelloExtension signatureAlgorithm =
 277                 new SignatureAlgorithmsExtension(algorithms);
 278         extensions.add(signatureAlgorithm);
 279     }
 280 
 281     @Override
 282     int messageType() { return ht_client_hello; }
 283 
 284     @Override
 285     int messageLength() {
 286         /*
 287          * Add fixed size parts of each field...
 288          * version + random + session + cipher + compress
 289          */
 290         return (2 + 32 + 1 + 2 + 1
 291             + sessionId.length()                /* ... + variable parts */
 292             + (cipherSuites.size() * 2)
 293             + compression_methods.length)
 294             + extensions.length();
 295     }
 296 
 297     @Override
 298     void send(HandshakeOutStream s) throws IOException {
 299         s.putInt8(protocolVersion.major);
 300         s.putInt8(protocolVersion.minor);
 301         clnt_random.send(s);
 302         s.putBytes8(sessionId.getId());
 303         cipherSuites.send(s);
 304         s.putBytes8(compression_methods);
 305         extensions.send(s);
 306     }
 307 
 308     @Override
 309     void print(PrintStream s) throws IOException {
 310         s.println("*** ClientHello, " + protocolVersion);
 311 
 312         if (debug != null && Debug.isOn("verbose")) {
 313             s.print("RandomCookie:  ");
 314             clnt_random.print(s);
 315 
 316             s.print("Session ID:  ");
 317             s.println(sessionId);
 318 
 319             s.println("Cipher Suites: " + cipherSuites);
 320 
 321             Debug.println(s, "Compression Methods", compression_methods);
 322             extensions.print(s);
 323             s.println("***");
 324         }
 325     }
 326 }
 327 
 328 /*
 329  * ServerHello ... SERVER --> CLIENT
 330  *
 331  * Server chooses protocol options from among those it supports and the
 332  * client supports.  Then it sends the basic session descriptive parameters
 333  * back to the client.
 334  */
 335 static final
 336 class ServerHello extends HandshakeMessage
 337 {
 338     int messageType() { return ht_server_hello; }
 339 
 340     ProtocolVersion     protocolVersion;
 341     RandomCookie        svr_random;
 342     SessionId           sessionId;
 343     CipherSuite         cipherSuite;
 344     byte                compression_method;
 345     HelloExtensions extensions = new HelloExtensions();
 346 
 347     ServerHello() {
 348         // empty
 349     }
 350 
 351     ServerHello(HandshakeInStream input, int messageLength)
 352             throws IOException {
 353         protocolVersion = ProtocolVersion.valueOf(input.getInt8(),
 354                                                   input.getInt8());
 355         svr_random = new RandomCookie(input);
 356         sessionId = new SessionId(input.getBytes8());
 357         cipherSuite = CipherSuite.valueOf(input.getInt8(), input.getInt8());
 358         compression_method = (byte)input.getInt8();
 359         if (messageLength() != messageLength) {
 360             extensions = new HelloExtensions(input);
 361         }
 362     }
 363 
 364     int messageLength()
 365     {
 366         // almost fixed size, except session ID and extensions:
 367         //      major + minor = 2
 368         //      random = 32
 369         //      session ID len field = 1
 370         //      cipher suite + compression = 3
 371         //      extensions: if present, 2 + length of extensions
 372         return 38 + sessionId.length() + extensions.length();
 373     }
 374 
 375     void send(HandshakeOutStream s) throws IOException
 376     {
 377         s.putInt8(protocolVersion.major);
 378         s.putInt8(protocolVersion.minor);
 379         svr_random.send(s);
 380         s.putBytes8(sessionId.getId());
 381         s.putInt8(cipherSuite.id >> 8);
 382         s.putInt8(cipherSuite.id & 0xff);
 383         s.putInt8(compression_method);
 384         extensions.send(s);
 385     }
 386 
 387     void print(PrintStream s) throws IOException
 388     {
 389         s.println("*** ServerHello, " + protocolVersion);
 390 
 391         if (debug != null && Debug.isOn("verbose")) {
 392             s.print("RandomCookie:  ");
 393             svr_random.print(s);
 394 
 395             int i;
 396 
 397             s.print("Session ID:  ");
 398             s.println(sessionId);
 399 
 400             s.println("Cipher Suite: " + cipherSuite);
 401             s.println("Compression Method: " + compression_method);
 402             extensions.print(s);
 403             s.println("***");
 404         }
 405     }
 406 }
 407 
 408 
 409 /*
 410  * CertificateMsg ... send by both CLIENT and SERVER
 411  *
 412  * Each end of a connection may need to pass its certificate chain to
 413  * the other end.  Such chains are intended to validate an identity with
 414  * reference to some certifying authority.  Examples include companies
 415  * like Verisign, or financial institutions.  There's some control over
 416  * the certifying authorities which are sent.
 417  *
 418  * NOTE: that these messages might be huge, taking many handshake records.
 419  * Up to 2^48 bytes of certificate may be sent, in records of at most 2^14
 420  * bytes each ... up to 2^32 records sent on the output stream.
 421  */
 422 static final
 423 class CertificateMsg extends HandshakeMessage
 424 {
 425     int messageType() { return ht_certificate; }
 426 
 427     private X509Certificate[] chain;
 428 
 429     private List<byte[]> encodedChain;
 430 
 431     private int messageLength;
 432 
 433     CertificateMsg(X509Certificate[] certs) {
 434         chain = certs;
 435     }
 436 
 437     CertificateMsg(HandshakeInStream input) throws IOException {
 438         int chainLen = input.getInt24();
 439         List<Certificate> v = new ArrayList<>(4);
 440 
 441         CertificateFactory cf = null;
 442         while (chainLen > 0) {
 443             byte[] cert = input.getBytes24();
 444             chainLen -= (3 + cert.length);
 445             try {
 446                 if (cf == null) {
 447                     cf = CertificateFactory.getInstance("X.509");
 448                 }
 449                 v.add(cf.generateCertificate(new ByteArrayInputStream(cert)));
 450             } catch (CertificateException e) {
 451                 throw (SSLProtocolException)new SSLProtocolException(
 452                     e.getMessage()).initCause(e);
 453             }
 454         }
 455 
 456         chain = v.toArray(new X509Certificate[v.size()]);
 457     }
 458 
 459     int messageLength() {
 460         if (encodedChain == null) {
 461             messageLength = 3;
 462             encodedChain = new ArrayList<byte[]>(chain.length);
 463             try {
 464                 for (X509Certificate cert : chain) {
 465                     byte[] b = cert.getEncoded();
 466                     encodedChain.add(b);
 467                     messageLength += b.length + 3;
 468                 }
 469             } catch (CertificateEncodingException e) {
 470                 encodedChain = null;
 471                 throw new RuntimeException("Could not encode certificates", e);
 472             }
 473         }
 474         return messageLength;
 475     }
 476 
 477     void send(HandshakeOutStream s) throws IOException {
 478         s.putInt24(messageLength() - 3);
 479         for (byte[] b : encodedChain) {
 480             s.putBytes24(b);
 481         }
 482     }
 483 
 484     void print(PrintStream s) throws IOException {
 485         s.println("*** Certificate chain");
 486 
 487         if (debug != null && Debug.isOn("verbose")) {
 488             for (int i = 0; i < chain.length; i++)
 489                 s.println("chain [" + i + "] = " + chain[i]);
 490             s.println("***");
 491         }
 492     }
 493 
 494     X509Certificate[] getCertificateChain() {
 495         return chain.clone();
 496     }
 497 }
 498 
 499 /*
 500  * ServerKeyExchange ... SERVER --> CLIENT
 501  *
 502  * The cipher suite selected, when combined with the certificate exchanged,
 503  * implies one of several different kinds of key exchange.  Most current
 504  * cipher suites require the server to send more than its certificate.
 505  *
 506  * The primary exceptions are when a server sends an encryption-capable
 507  * RSA public key in its cert, to be used with RSA (or RSA_export) key
 508  * exchange; and when a server sends its Diffie-Hellman cert.  Those kinds
 509  * of key exchange do not require a ServerKeyExchange message.
 510  *
 511  * Key exchange can be viewed as having three modes, which are explicit
 512  * for the Diffie-Hellman flavors and poorly specified for RSA ones:
 513  *
 514  *      - "Ephemeral" keys.  Here, a "temporary" key is allocated by the
 515  *        server, and signed.  Diffie-Hellman keys signed using RSA or
 516  *        DSS are ephemeral (DHE flavor).  RSA keys get used to do the same
 517  *        thing, to cut the key size down to 512 bits (export restrictions)
 518  *        or for signing-only RSA certificates.
 519  *
 520  *      - Anonymity.  Here no server certificate is sent, only the public
 521  *        key of the server.  This case is subject to man-in-the-middle
 522  *        attacks.  This can be done with Diffie-Hellman keys (DH_anon) or
 523  *        with RSA keys, but is only used in SSLv3 for DH_anon.
 524  *
 525  *      - "Normal" case.  Here a server certificate is sent, and the public
 526  *        key there is used directly in exchanging the premaster secret.
 527  *        For example, Diffie-Hellman "DH" flavor, and any RSA flavor with
 528  *        only 512 bit keys.
 529  *
 530  * If a server certificate is sent, there is no anonymity.  However,
 531  * when a certificate is sent, ephemeral keys may still be used to
 532  * exchange the premaster secret.  That's how RSA_EXPORT often works,
 533  * as well as how the DHE_* flavors work.
 534  */
 535 static abstract class ServerKeyExchange extends HandshakeMessage
 536 {
 537     int messageType() { return ht_server_key_exchange; }
 538 }
 539 
 540 
 541 /*
 542  * Using RSA for Key Exchange:  exchange a session key that's not as big
 543  * as the signing-only key.  Used for export applications, since exported
 544  * RSA encryption keys can't be bigger than 512 bytes.
 545  *
 546  * This is never used when keys are 512 bits or smaller, and isn't used
 547  * on "US Domestic" ciphers in any case.
 548  */
 549 static final
 550 class RSA_ServerKeyExchange extends ServerKeyExchange
 551 {
 552     private byte rsa_modulus[];     // 1 to 2^16 - 1 bytes
 553     private byte rsa_exponent[];    // 1 to 2^16 - 1 bytes
 554 
 555     private Signature signature;
 556     private byte[] signatureBytes;
 557 
 558     /*
 559      * Hash the nonces and the ephemeral RSA public key.
 560      */
 561     private void updateSignature(byte clntNonce[], byte svrNonce[])
 562             throws SignatureException {
 563         int tmp;
 564 
 565         signature.update(clntNonce);
 566         signature.update(svrNonce);
 567 
 568         tmp = rsa_modulus.length;
 569         signature.update((byte)(tmp >> 8));
 570         signature.update((byte)(tmp & 0x0ff));
 571         signature.update(rsa_modulus);
 572 
 573         tmp = rsa_exponent.length;
 574         signature.update((byte)(tmp >> 8));
 575         signature.update((byte)(tmp & 0x0ff));
 576         signature.update(rsa_exponent);
 577     }
 578 
 579 
 580     /*
 581      * Construct an RSA server key exchange message, using data
 582      * known _only_ to the server.
 583      *
 584      * The client knows the public key corresponding to this private
 585      * key, from the Certificate message sent previously.  To comply
 586      * with US export regulations we use short RSA keys ... either
 587      * long term ones in the server's X509 cert, or else ephemeral
 588      * ones sent using this message.
 589      */
 590     RSA_ServerKeyExchange(PublicKey ephemeralKey, PrivateKey privateKey,
 591             RandomCookie clntNonce, RandomCookie svrNonce, SecureRandom sr)
 592             throws GeneralSecurityException {
 593         RSAPublicKeySpec rsaKey = JsseJce.getRSAPublicKeySpec(ephemeralKey);
 594         rsa_modulus = toByteArray(rsaKey.getModulus());
 595         rsa_exponent = toByteArray(rsaKey.getPublicExponent());
 596         signature = RSASignature.getInstance();
 597         signature.initSign(privateKey, sr);
 598         updateSignature(clntNonce.random_bytes, svrNonce.random_bytes);
 599         signatureBytes = signature.sign();
 600     }
 601 
 602 
 603     /*
 604      * Parse an RSA server key exchange message, using data known
 605      * to the client (and, in some situations, eavesdroppers).
 606      */
 607     RSA_ServerKeyExchange(HandshakeInStream input)
 608             throws IOException, NoSuchAlgorithmException {
 609         signature = RSASignature.getInstance();
 610         rsa_modulus = input.getBytes16();
 611         rsa_exponent = input.getBytes16();
 612         signatureBytes = input.getBytes16();
 613     }
 614 
 615     /*
 616      * Get the ephemeral RSA public key that will be used in this
 617      * SSL connection.
 618      */
 619     PublicKey getPublicKey() {
 620         try {
 621             KeyFactory kfac = JsseJce.getKeyFactory("RSA");
 622             // modulus and exponent are always positive
 623             RSAPublicKeySpec kspec = new RSAPublicKeySpec(
 624                 new BigInteger(1, rsa_modulus),
 625                 new BigInteger(1, rsa_exponent));
 626             return kfac.generatePublic(kspec);
 627         } catch (Exception e) {
 628             throw new RuntimeException(e);
 629         }
 630     }
 631 
 632     /*
 633      * Verify the signed temporary key using the hashes computed
 634      * from it and the two nonces.  This is called by clients
 635      * with "exportable" RSA flavors.
 636      */
 637     boolean verify(PublicKey certifiedKey, RandomCookie clntNonce,
 638             RandomCookie svrNonce) throws GeneralSecurityException {
 639         signature.initVerify(certifiedKey);
 640         updateSignature(clntNonce.random_bytes, svrNonce.random_bytes);
 641         return signature.verify(signatureBytes);
 642     }
 643 
 644     int messageLength() {
 645         return 6 + rsa_modulus.length + rsa_exponent.length
 646                + signatureBytes.length;
 647     }
 648 
 649     void send(HandshakeOutStream s) throws IOException {
 650         s.putBytes16(rsa_modulus);
 651         s.putBytes16(rsa_exponent);
 652         s.putBytes16(signatureBytes);
 653     }
 654 
 655     void print(PrintStream s) throws IOException {
 656         s.println("*** RSA ServerKeyExchange");
 657 
 658         if (debug != null && Debug.isOn("verbose")) {
 659             Debug.println(s, "RSA Modulus", rsa_modulus);
 660             Debug.println(s, "RSA Public Exponent", rsa_exponent);
 661         }
 662     }
 663 }
 664 
 665 
 666 /*
 667  * Using Diffie-Hellman algorithm for key exchange.  All we really need to
 668  * do is securely get Diffie-Hellman keys (using the same P, G parameters)
 669  * to our peer, then we automatically have a shared secret without need
 670  * to exchange any more data.  (D-H only solutions, such as SKIP, could
 671  * eliminate key exchange negotiations and get faster connection setup.
 672  * But they still need a signature algorithm like DSS/DSA to support the
 673  * trusted distribution of keys without relying on unscalable physical
 674  * key distribution systems.)
 675  *
 676  * This class supports several DH-based key exchange algorithms, though
 677  * perhaps eventually each deserves its own class.  Notably, this has
 678  * basic support for DH_anon and its DHE_DSS and DHE_RSA signed variants.
 679  */
 680 static final
 681 class DH_ServerKeyExchange extends ServerKeyExchange
 682 {
 683     // Fix message encoding, see 4348279
 684     private final static boolean dhKeyExchangeFix =
 685         Debug.getBooleanProperty("com.sun.net.ssl.dhKeyExchangeFix", true);
 686 
 687     private byte                dh_p [];        // 1 to 2^16 - 1 bytes
 688     private byte                dh_g [];        // 1 to 2^16 - 1 bytes
 689     private byte                dh_Ys [];       // 1 to 2^16 - 1 bytes
 690 
 691     private byte                signature [];
 692 
 693     // protocol version being established using this ServerKeyExchange message
 694     ProtocolVersion protocolVersion;
 695 
 696     // the preferable signature algorithm used by this ServerKeyExchange message
 697     private SignatureAndHashAlgorithm preferableSignatureAlgorithm;
 698 
 699     /*
 700      * Construct from initialized DH key object, for DH_anon
 701      * key exchange.
 702      */
 703     DH_ServerKeyExchange(DHCrypt obj, ProtocolVersion protocolVersion) {
 704         this.protocolVersion = protocolVersion;
 705         this.preferableSignatureAlgorithm = null;
 706 
 707         // The DH key has been validated in the constructor of DHCrypt.
 708         setValues(obj);
 709         signature = null;
 710     }
 711 
 712     /*
 713      * Construct from initialized DH key object and the key associated
 714      * with the cert chain which was sent ... for DHE_DSS and DHE_RSA
 715      * key exchange.  (Constructor called by server.)
 716      */
 717     DH_ServerKeyExchange(DHCrypt obj, PrivateKey key, byte clntNonce[],
 718             byte svrNonce[], SecureRandom sr,
 719             SignatureAndHashAlgorithm signAlgorithm,
 720             ProtocolVersion protocolVersion) throws GeneralSecurityException {
 721 
 722         this.protocolVersion = protocolVersion;
 723 
 724         // The DH key has been validated in the constructor of DHCrypt.
 725         setValues(obj);
 726 
 727         Signature sig;
 728         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
 729             this.preferableSignatureAlgorithm = signAlgorithm;
 730             sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName());
 731         } else {
 732             this.preferableSignatureAlgorithm = null;
 733             if (key.getAlgorithm().equals("DSA")) {
 734                 sig = JsseJce.getSignature(JsseJce.SIGNATURE_DSA);
 735             } else {
 736                 sig = RSASignature.getInstance();
 737             }
 738         }
 739 
 740         sig.initSign(key, sr);
 741         updateSignature(sig, clntNonce, svrNonce);
 742         signature = sig.sign();
 743     }
 744 
 745     /*
 746      * Construct a DH_ServerKeyExchange message from an input
 747      * stream, as if sent from server to client for use with
 748      * DH_anon key exchange
 749      */
 750     DH_ServerKeyExchange(HandshakeInStream input,
 751             ProtocolVersion protocolVersion)
 752             throws IOException, GeneralSecurityException {
 753 
 754         this.protocolVersion = protocolVersion;
 755         this.preferableSignatureAlgorithm = null;
 756 
 757         dh_p = input.getBytes16();
 758         dh_g = input.getBytes16();
 759         dh_Ys = input.getBytes16();
 760         KeyUtil.validate(new DHPublicKeySpec(new BigInteger(1, dh_Ys),
 761                                              new BigInteger(1, dh_p),
 762                                              new BigInteger(1, dh_g)));
 763 
 764         signature = null;
 765     }
 766 
 767     /*
 768      * Construct a DH_ServerKeyExchange message from an input stream
 769      * and a certificate, as if sent from server to client for use with
 770      * DHE_DSS or DHE_RSA key exchange.  (Called by client.)
 771      */
 772     DH_ServerKeyExchange(HandshakeInStream input, PublicKey publicKey,
 773             byte clntNonce[], byte svrNonce[], int messageSize,
 774             Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs,
 775             ProtocolVersion protocolVersion)
 776             throws IOException, GeneralSecurityException {
 777 
 778         this.protocolVersion = protocolVersion;
 779 
 780         // read params: ServerDHParams
 781         dh_p = input.getBytes16();
 782         dh_g = input.getBytes16();
 783         dh_Ys = input.getBytes16();
 784         KeyUtil.validate(new DHPublicKeySpec(new BigInteger(1, dh_Ys),
 785                                              new BigInteger(1, dh_p),
 786                                              new BigInteger(1, dh_g)));
 787 
 788         // read the signature and hash algorithm
 789         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
 790             int hash = input.getInt8();         // hash algorithm
 791             int signature = input.getInt8();    // signature algorithm
 792 
 793             preferableSignatureAlgorithm =
 794                 SignatureAndHashAlgorithm.valueOf(hash, signature, 0);
 795 
 796             // Is it a local supported signature algorithm?
 797             if (!localSupportedSignAlgs.contains(
 798                     preferableSignatureAlgorithm)) {
 799                 throw new SSLHandshakeException(
 800                         "Unsupported SignatureAndHashAlgorithm in " +
 801                         "ServerKeyExchange message");
 802             }
 803         } else {
 804             this.preferableSignatureAlgorithm = null;
 805         }
 806 
 807         // read the signature
 808         byte signature[];
 809         if (dhKeyExchangeFix) {
 810             signature = input.getBytes16();
 811         } else {
 812             messageSize -= (dh_p.length + 2);
 813             messageSize -= (dh_g.length + 2);
 814             messageSize -= (dh_Ys.length + 2);
 815 
 816             signature = new byte[messageSize];
 817             input.read(signature);
 818         }
 819 
 820         Signature sig;
 821         String algorithm = publicKey.getAlgorithm();
 822         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
 823             sig = JsseJce.getSignature(
 824                         preferableSignatureAlgorithm.getAlgorithmName());
 825         } else {
 826             if (algorithm.equals("DSA")) {
 827                 sig = JsseJce.getSignature(JsseJce.SIGNATURE_DSA);
 828             } else if (algorithm.equals("RSA")) {
 829                 sig = RSASignature.getInstance();
 830             } else {
 831                 throw new SSLKeyException("neither an RSA or a DSA key");
 832             }
 833         }
 834 
 835         sig.initVerify(publicKey);
 836         updateSignature(sig, clntNonce, svrNonce);
 837 
 838         if (sig.verify(signature) == false ) {
 839             throw new SSLKeyException("Server D-H key verification failed");
 840         }
 841     }
 842 
 843     /* Return the Diffie-Hellman modulus */
 844     BigInteger getModulus() {
 845         return new BigInteger(1, dh_p);
 846     }
 847 
 848     /* Return the Diffie-Hellman base/generator */
 849     BigInteger getBase() {
 850         return new BigInteger(1, dh_g);
 851     }
 852 
 853     /* Return the server's Diffie-Hellman public key */
 854     BigInteger getServerPublicKey() {
 855         return new BigInteger(1, dh_Ys);
 856     }
 857 
 858     /*
 859      * Update sig with nonces and Diffie-Hellman public key.
 860      */
 861     private void updateSignature(Signature sig, byte clntNonce[],
 862             byte svrNonce[]) throws SignatureException {
 863         int tmp;
 864 
 865         sig.update(clntNonce);
 866         sig.update(svrNonce);
 867 
 868         tmp = dh_p.length;
 869         sig.update((byte)(tmp >> 8));
 870         sig.update((byte)(tmp & 0x0ff));
 871         sig.update(dh_p);
 872 
 873         tmp = dh_g.length;
 874         sig.update((byte)(tmp >> 8));
 875         sig.update((byte)(tmp & 0x0ff));
 876         sig.update(dh_g);
 877 
 878         tmp = dh_Ys.length;
 879         sig.update((byte)(tmp >> 8));
 880         sig.update((byte)(tmp & 0x0ff));
 881         sig.update(dh_Ys);
 882     }
 883 
 884     private void setValues(DHCrypt obj) {
 885         dh_p = toByteArray(obj.getModulus());
 886         dh_g = toByteArray(obj.getBase());
 887         dh_Ys = toByteArray(obj.getPublicKey());
 888     }
 889 
 890     int messageLength() {
 891         int temp = 6;   // overhead for p, g, y(s) values.
 892 
 893         temp += dh_p.length;
 894         temp += dh_g.length;
 895         temp += dh_Ys.length;
 896 
 897         if (signature != null) {
 898             if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
 899                 temp += SignatureAndHashAlgorithm.sizeInRecord();
 900             }
 901 
 902             temp += signature.length;
 903             if (dhKeyExchangeFix) {
 904                 temp += 2;
 905             }
 906         }
 907 
 908         return temp;
 909     }
 910 
 911     void send(HandshakeOutStream s) throws IOException {
 912         s.putBytes16(dh_p);
 913         s.putBytes16(dh_g);
 914         s.putBytes16(dh_Ys);
 915 
 916         if (signature != null) {
 917             if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
 918                 s.putInt8(preferableSignatureAlgorithm.getHashValue());
 919                 s.putInt8(preferableSignatureAlgorithm.getSignatureValue());
 920             }
 921 
 922             if (dhKeyExchangeFix) {
 923                 s.putBytes16(signature);
 924             } else {
 925                 s.write(signature);
 926             }
 927         }
 928     }
 929 
 930     void print(PrintStream s) throws IOException {
 931         s.println("*** Diffie-Hellman ServerKeyExchange");
 932 
 933         if (debug != null && Debug.isOn("verbose")) {
 934             Debug.println(s, "DH Modulus", dh_p);
 935             Debug.println(s, "DH Base", dh_g);
 936             Debug.println(s, "Server DH Public Key", dh_Ys);
 937 
 938             if (signature == null) {
 939                 s.println("Anonymous");
 940             } else {
 941                 if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
 942                     s.println("Signature Algorithm " +
 943                         preferableSignatureAlgorithm.getAlgorithmName());
 944                 }
 945 
 946                 s.println("Signed with a DSA or RSA public key");
 947             }
 948         }
 949     }
 950 }
 951 
 952 /*
 953  * ECDH server key exchange message. Sent by the server for ECDHE and ECDH_anon
 954  * ciphersuites to communicate its ephemeral public key (including the
 955  * EC domain parameters).
 956  *
 957  * We support named curves only, no explicitly encoded curves.
 958  */
 959 static final
 960 class ECDH_ServerKeyExchange extends ServerKeyExchange {
 961 
 962     // constants for ECCurveType
 963     private final static int CURVE_EXPLICIT_PRIME = 1;
 964     private final static int CURVE_EXPLICIT_CHAR2 = 2;
 965     private final static int CURVE_NAMED_CURVE    = 3;
 966 
 967     // id of the curve we are using
 968     private int curveId;
 969     // encoded public point
 970     private byte[] pointBytes;
 971 
 972     // signature bytes (or null if anonymous)
 973     private byte[] signatureBytes;
 974 
 975     // public key object encapsulated in this message
 976     private ECPublicKey publicKey;
 977 
 978     // protocol version being established using this ServerKeyExchange message
 979     ProtocolVersion protocolVersion;
 980 
 981     // the preferable signature algorithm used by this ServerKeyExchange message
 982     private SignatureAndHashAlgorithm preferableSignatureAlgorithm;
 983 
 984     ECDH_ServerKeyExchange(ECDHCrypt obj, PrivateKey privateKey,
 985             byte[] clntNonce, byte[] svrNonce, SecureRandom sr,
 986             SignatureAndHashAlgorithm signAlgorithm,
 987             ProtocolVersion protocolVersion) throws GeneralSecurityException {
 988 
 989         this.protocolVersion = protocolVersion;
 990 
 991         publicKey = (ECPublicKey)obj.getPublicKey();
 992         ECParameterSpec params = publicKey.getParams();
 993         ECPoint point = publicKey.getW();
 994         pointBytes = JsseJce.encodePoint(point, params.getCurve());
 995         curveId = SupportedEllipticCurvesExtension.getCurveIndex(params);
 996 
 997         if (privateKey == null) {
 998             // ECDH_anon
 999             return;
1000         }
1001 
1002         Signature sig;
1003         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1004             this.preferableSignatureAlgorithm = signAlgorithm;
1005             sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName());
1006         } else {
1007             sig = getSignature(privateKey.getAlgorithm());
1008         }
1009         sig.initSign(privateKey);  // where is the SecureRandom?
1010 
1011         updateSignature(sig, clntNonce, svrNonce);
1012         signatureBytes = sig.sign();
1013     }
1014 
1015     /*
1016      * Parse an ECDH server key exchange message.
1017      */
1018     ECDH_ServerKeyExchange(HandshakeInStream input, PublicKey signingKey,
1019             byte[] clntNonce, byte[] svrNonce,
1020             Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs,
1021             ProtocolVersion protocolVersion)
1022             throws IOException, GeneralSecurityException {
1023 
1024         this.protocolVersion = protocolVersion;
1025 
1026         // read params: ServerECDHParams
1027         int curveType = input.getInt8();
1028         ECParameterSpec parameters;
1029         // These parsing errors should never occur as we negotiated
1030         // the supported curves during the exchange of the Hello messages.
1031         if (curveType == CURVE_NAMED_CURVE) {
1032             curveId = input.getInt16();
1033             if (SupportedEllipticCurvesExtension.isSupported(curveId)
1034                     == false) {
1035                 throw new SSLHandshakeException(
1036                     "Unsupported curveId: " + curveId);
1037             }
1038             String curveOid =
1039                 SupportedEllipticCurvesExtension.getCurveOid(curveId);
1040             if (curveOid == null) {
1041                 throw new SSLHandshakeException(
1042                     "Unknown named curve: " + curveId);
1043             }
1044             parameters = JsseJce.getECParameterSpec(curveOid);
1045             if (parameters == null) {
1046                 throw new SSLHandshakeException(
1047                     "Unsupported curve: " + curveOid);
1048             }
1049         } else {
1050             throw new SSLHandshakeException(
1051                 "Unsupported ECCurveType: " + curveType);
1052         }
1053         pointBytes = input.getBytes8();
1054 
1055         ECPoint point = JsseJce.decodePoint(pointBytes, parameters.getCurve());
1056         KeyFactory factory = JsseJce.getKeyFactory("EC");
1057         publicKey = (ECPublicKey)factory.generatePublic(
1058             new ECPublicKeySpec(point, parameters));
1059 
1060         if (signingKey == null) {
1061             // ECDH_anon
1062             return;
1063         }
1064 
1065         // read the signature and hash algorithm
1066         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1067             int hash = input.getInt8();         // hash algorithm
1068             int signature = input.getInt8();    // signature algorithm
1069 
1070             preferableSignatureAlgorithm =
1071                 SignatureAndHashAlgorithm.valueOf(hash, signature, 0);
1072 
1073             // Is it a local supported signature algorithm?
1074             if (!localSupportedSignAlgs.contains(
1075                     preferableSignatureAlgorithm)) {
1076                 throw new SSLHandshakeException(
1077                         "Unsupported SignatureAndHashAlgorithm in " +
1078                         "ServerKeyExchange message");
1079             }
1080         }
1081 
1082         // read the signature
1083         signatureBytes = input.getBytes16();
1084 
1085         // verify the signature
1086         Signature sig;
1087         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1088             sig = JsseJce.getSignature(
1089                         preferableSignatureAlgorithm.getAlgorithmName());
1090         } else {
1091             sig = getSignature(signingKey.getAlgorithm());
1092         }
1093         sig.initVerify(signingKey);
1094 
1095         updateSignature(sig, clntNonce, svrNonce);
1096 
1097         if (sig.verify(signatureBytes) == false ) {
1098             throw new SSLKeyException(
1099                 "Invalid signature on ECDH server key exchange message");
1100         }
1101     }
1102 
1103     /*
1104      * Get the ephemeral EC public key encapsulated in this message.
1105      */
1106     ECPublicKey getPublicKey() {
1107         return publicKey;
1108     }
1109 
1110     private static Signature getSignature(String keyAlgorithm)
1111             throws NoSuchAlgorithmException {
1112         if (keyAlgorithm.equals("EC")) {
1113             return JsseJce.getSignature(JsseJce.SIGNATURE_ECDSA);
1114         } else if (keyAlgorithm.equals("RSA")) {
1115             return RSASignature.getInstance();
1116         } else {
1117             throw new NoSuchAlgorithmException("neither an RSA or a EC key");
1118         }
1119     }
1120 
1121     private void updateSignature(Signature sig, byte clntNonce[],
1122             byte svrNonce[]) throws SignatureException {
1123         sig.update(clntNonce);
1124         sig.update(svrNonce);
1125 
1126         sig.update((byte)CURVE_NAMED_CURVE);
1127         sig.update((byte)(curveId >> 8));
1128         sig.update((byte)curveId);
1129         sig.update((byte)pointBytes.length);
1130         sig.update(pointBytes);
1131     }
1132 
1133     int messageLength() {
1134         int sigLen = 0;
1135         if (signatureBytes != null) {
1136             sigLen = 2 + signatureBytes.length;
1137             if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1138                 sigLen += SignatureAndHashAlgorithm.sizeInRecord();
1139             }
1140         }
1141 
1142         return 4 + pointBytes.length + sigLen;
1143     }
1144 
1145     void send(HandshakeOutStream s) throws IOException {
1146         s.putInt8(CURVE_NAMED_CURVE);
1147         s.putInt16(curveId);
1148         s.putBytes8(pointBytes);
1149 
1150         if (signatureBytes != null) {
1151             if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1152                 s.putInt8(preferableSignatureAlgorithm.getHashValue());
1153                 s.putInt8(preferableSignatureAlgorithm.getSignatureValue());
1154             }
1155 
1156             s.putBytes16(signatureBytes);
1157         }
1158     }
1159 
1160     void print(PrintStream s) throws IOException {
1161         s.println("*** ECDH ServerKeyExchange");
1162 
1163         if (debug != null && Debug.isOn("verbose")) {
1164             if (signatureBytes == null) {
1165                 s.println("Anonymous");
1166             } else {
1167                 if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1168                     s.println("Signature Algorithm " +
1169                             preferableSignatureAlgorithm.getAlgorithmName());
1170                 }
1171             }
1172 
1173             s.println("Server key: " + publicKey);
1174         }
1175     }
1176 }
1177 
1178 static final class DistinguishedName {
1179 
1180     /*
1181      * DER encoded distinguished name.
1182      * TLS requires that its not longer than 65535 bytes.
1183      */
1184     byte name[];
1185 
1186     DistinguishedName(HandshakeInStream input) throws IOException {
1187         name = input.getBytes16();
1188     }
1189 
1190     DistinguishedName(X500Principal dn) {
1191         name = dn.getEncoded();
1192     }
1193 
1194     X500Principal getX500Principal() throws IOException {
1195         try {
1196             return new X500Principal(name);
1197         } catch (IllegalArgumentException e) {
1198             throw (SSLProtocolException)new SSLProtocolException(
1199                 e.getMessage()).initCause(e);
1200         }
1201     }
1202 
1203     int length() {
1204         return 2 + name.length;
1205     }
1206 
1207     void send(HandshakeOutStream output) throws IOException {
1208         output.putBytes16(name);
1209     }
1210 
1211     void print(PrintStream output) throws IOException {
1212         X500Principal principal = new X500Principal(name);
1213         output.println("<" + principal.toString() + ">");
1214     }
1215 }
1216 
1217 /*
1218  * CertificateRequest ... SERVER --> CLIENT
1219  *
1220  * Authenticated servers may ask clients to authenticate themselves
1221  * in turn, using this message.
1222  *
1223  * Prior to TLS 1.2, the structure of the message is defined as:
1224  *     struct {
1225  *         ClientCertificateType certificate_types<1..2^8-1>;
1226  *         DistinguishedName certificate_authorities<0..2^16-1>;
1227  *     } CertificateRequest;
1228  *
1229  * In TLS 1.2, the structure is changed to:
1230  *     struct {
1231  *         ClientCertificateType certificate_types<1..2^8-1>;
1232  *         SignatureAndHashAlgorithm
1233  *           supported_signature_algorithms<2^16-1>;
1234  *         DistinguishedName certificate_authorities<0..2^16-1>;
1235  *     } CertificateRequest;
1236  *
1237  */
1238 static final
1239 class CertificateRequest extends HandshakeMessage
1240 {
1241     // enum ClientCertificateType
1242     static final int   cct_rsa_sign = 1;
1243     static final int   cct_dss_sign = 2;
1244     static final int   cct_rsa_fixed_dh = 3;
1245     static final int   cct_dss_fixed_dh = 4;
1246 
1247     // The existance of these two values is a bug in the SSL specification.
1248     // They are never used in the protocol.
1249     static final int   cct_rsa_ephemeral_dh = 5;
1250     static final int   cct_dss_ephemeral_dh = 6;
1251 
1252     // From RFC 4492 (ECC)
1253     static final int    cct_ecdsa_sign       = 64;
1254     static final int    cct_rsa_fixed_ecdh   = 65;
1255     static final int    cct_ecdsa_fixed_ecdh = 66;
1256 
1257     private final static byte[] TYPES_NO_ECC = { cct_rsa_sign, cct_dss_sign };
1258     private final static byte[] TYPES_ECC =
1259         { cct_rsa_sign, cct_dss_sign, cct_ecdsa_sign };
1260 
1261     byte                types [];               // 1 to 255 types
1262     DistinguishedName   authorities [];         // 3 to 2^16 - 1
1263         // ... "3" because that's the smallest DER-encoded X500 DN
1264 
1265     // protocol version being established using this CertificateRequest message
1266     ProtocolVersion protocolVersion;
1267 
1268     // supported_signature_algorithms for TLS 1.2 or later
1269     private Collection<SignatureAndHashAlgorithm> algorithms;
1270 
1271     // length of supported_signature_algorithms
1272     private int algorithmsLen;
1273 
1274     CertificateRequest(X509Certificate ca[], KeyExchange keyExchange,
1275             Collection<SignatureAndHashAlgorithm> signAlgs,
1276             ProtocolVersion protocolVersion) throws IOException {
1277 
1278         this.protocolVersion = protocolVersion;
1279 
1280         // always use X500Principal
1281         authorities = new DistinguishedName[ca.length];
1282         for (int i = 0; i < ca.length; i++) {
1283             X500Principal x500Principal = ca[i].getSubjectX500Principal();
1284             authorities[i] = new DistinguishedName(x500Principal);
1285         }
1286         // we support RSA, DSS, and ECDSA client authentication and they
1287         // can be used with all ciphersuites. If this changes, the code
1288         // needs to be adapted to take keyExchange into account.
1289         // We only request ECDSA client auth if we have ECC crypto available.
1290         this.types = JsseJce.isEcAvailable() ? TYPES_ECC : TYPES_NO_ECC;
1291 
1292         // Use supported_signature_algorithms for TLS 1.2 or later.
1293         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1294             if (signAlgs == null || signAlgs.isEmpty()) {
1295                 throw new SSLProtocolException(
1296                         "No supported signature algorithms");
1297             }
1298 
1299             algorithms = new ArrayList<SignatureAndHashAlgorithm>(signAlgs);
1300             algorithmsLen =
1301                 SignatureAndHashAlgorithm.sizeInRecord() * algorithms.size();
1302         } else {
1303             algorithms = new ArrayList<SignatureAndHashAlgorithm>();
1304             algorithmsLen = 0;
1305         }
1306     }
1307 
1308     CertificateRequest(HandshakeInStream input,
1309             ProtocolVersion protocolVersion) throws IOException {
1310 
1311         this.protocolVersion = protocolVersion;
1312 
1313         // Read the certificate_types.
1314         types = input.getBytes8();
1315 
1316         // Read the supported_signature_algorithms for TLS 1.2 or later.
1317         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1318             algorithmsLen = input.getInt16();
1319             if (algorithmsLen < 2) {
1320                 throw new SSLProtocolException(
1321                         "Invalid supported_signature_algorithms field");
1322             }
1323 
1324             algorithms = new ArrayList<SignatureAndHashAlgorithm>();
1325             int remains = algorithmsLen;
1326             int sequence = 0;
1327             while (remains > 1) {    // needs at least two bytes
1328                 int hash = input.getInt8();         // hash algorithm
1329                 int signature = input.getInt8();    // signature algorithm
1330 
1331                 SignatureAndHashAlgorithm algorithm =
1332                     SignatureAndHashAlgorithm.valueOf(hash, signature,
1333                                                                 ++sequence);
1334                 algorithms.add(algorithm);
1335                 remains -= 2;  // one byte for hash, one byte for signature
1336             }
1337 
1338             if (remains != 0) {
1339                 throw new SSLProtocolException(
1340                         "Invalid supported_signature_algorithms field");
1341             }
1342         } else {
1343             algorithms = new ArrayList<SignatureAndHashAlgorithm>();
1344             algorithmsLen = 0;
1345         }
1346 
1347         // read the certificate_authorities
1348         int len = input.getInt16();
1349         ArrayList<DistinguishedName> v = new ArrayList<>();
1350         while (len >= 3) {
1351             DistinguishedName dn = new DistinguishedName(input);
1352             v.add(dn);
1353             len -= dn.length();
1354         }
1355 
1356         if (len != 0) {
1357             throw new SSLProtocolException("Bad CertificateRequest DN length");
1358         }
1359 
1360         authorities = v.toArray(new DistinguishedName[v.size()]);
1361     }
1362 
1363     X500Principal[] getAuthorities() throws IOException {
1364         X500Principal[] ret = new X500Principal[authorities.length];
1365         for (int i = 0; i < authorities.length; i++) {
1366             ret[i] = authorities[i].getX500Principal();
1367         }
1368         return ret;
1369     }
1370 
1371     Collection<SignatureAndHashAlgorithm> getSignAlgorithms() {
1372         return algorithms;
1373     }
1374 
1375     @Override
1376     int messageType() {
1377         return ht_certificate_request;
1378     }
1379 
1380     @Override
1381     int messageLength() {
1382         int len = 1 + types.length + 2;
1383 
1384         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1385             len += algorithmsLen + 2;
1386         }
1387 
1388         for (int i = 0; i < authorities.length; i++) {
1389             len += authorities[i].length();
1390         }
1391 
1392         return len;
1393     }
1394 
1395     @Override
1396     void send(HandshakeOutStream output) throws IOException {
1397         // put certificate_types
1398         output.putBytes8(types);
1399 
1400         // put supported_signature_algorithms
1401         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1402             output.putInt16(algorithmsLen);
1403             for (SignatureAndHashAlgorithm algorithm : algorithms) {
1404                 output.putInt8(algorithm.getHashValue());      // hash
1405                 output.putInt8(algorithm.getSignatureValue()); // signature
1406             }
1407         }
1408 
1409         // put certificate_authorities
1410         int len = 0;
1411         for (int i = 0; i < authorities.length; i++) {
1412             len += authorities[i].length();
1413         }
1414 
1415         output.putInt16(len);
1416         for (int i = 0; i < authorities.length; i++) {
1417             authorities[i].send(output);
1418         }
1419     }
1420 
1421     @Override
1422     void print(PrintStream s) throws IOException {
1423         s.println("*** CertificateRequest");
1424 
1425         if (debug != null && Debug.isOn("verbose")) {
1426             s.print("Cert Types: ");
1427             for (int i = 0; i < types.length; i++) {
1428                 switch (types[i]) {
1429                   case cct_rsa_sign:
1430                     s.print("RSA"); break;
1431                   case cct_dss_sign:
1432                     s.print("DSS"); break;
1433                   case cct_rsa_fixed_dh:
1434                     s.print("Fixed DH (RSA sig)"); break;
1435                   case cct_dss_fixed_dh:
1436                     s.print("Fixed DH (DSS sig)"); break;
1437                   case cct_rsa_ephemeral_dh:
1438                     s.print("Ephemeral DH (RSA sig)"); break;
1439                   case cct_dss_ephemeral_dh:
1440                     s.print("Ephemeral DH (DSS sig)"); break;
1441                   case cct_ecdsa_sign:
1442                     s.print("ECDSA"); break;
1443                   case cct_rsa_fixed_ecdh:
1444                     s.print("Fixed ECDH (RSA sig)"); break;
1445                   case cct_ecdsa_fixed_ecdh:
1446                     s.print("Fixed ECDH (ECDSA sig)"); break;
1447                   default:
1448                     s.print("Type-" + (types[i] & 0xff)); break;
1449                 }
1450                 if (i != types.length - 1) {
1451                     s.print(", ");
1452                 }
1453             }
1454             s.println();
1455 
1456             if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1457                 StringBuffer buffer = new StringBuffer();
1458                 boolean opened = false;
1459                 for (SignatureAndHashAlgorithm signAlg : algorithms) {
1460                     if (opened) {
1461                         buffer.append(", " + signAlg.getAlgorithmName());
1462                     } else {
1463                         buffer.append(signAlg.getAlgorithmName());
1464                         opened = true;
1465                     }
1466                 }
1467                 s.println("Supported Signature Algorithms: " + buffer);
1468             }
1469 
1470             s.println("Cert Authorities:");
1471             if (authorities.length == 0) {
1472                 s.println("<Empty>");
1473             } else {
1474                 for (int i = 0; i < authorities.length; i++) {
1475                     authorities[i].print(s);
1476                 }
1477             }
1478         }
1479     }
1480 }
1481 
1482 
1483 /*
1484  * ServerHelloDone ... SERVER --> CLIENT
1485  *
1486  * When server's done sending its messages in response to the client's
1487  * "hello" (e.g. its own hello, certificate, key exchange message, perhaps
1488  * client certificate request) it sends this message to flag that it's
1489  * done that part of the handshake.
1490  */
1491 static final
1492 class ServerHelloDone extends HandshakeMessage
1493 {
1494     int messageType() { return ht_server_hello_done; }
1495 
1496     ServerHelloDone() { }
1497 
1498     ServerHelloDone(HandshakeInStream input)
1499     {
1500         // nothing to do
1501     }
1502 
1503     int messageLength()
1504     {
1505         return 0;
1506     }
1507 
1508     void send(HandshakeOutStream s) throws IOException
1509     {
1510         // nothing to send
1511     }
1512 
1513     void print(PrintStream s) throws IOException
1514     {
1515         s.println("*** ServerHelloDone");
1516     }
1517 }
1518 
1519 
1520 /*
1521  * CertificateVerify ... CLIENT --> SERVER
1522  *
1523  * Sent after client sends signature-capable certificates (e.g. not
1524  * Diffie-Hellman) to verify.
1525  */
1526 static final class CertificateVerify extends HandshakeMessage {
1527 
1528     // the signature bytes
1529     private byte[] signature;
1530 
1531     // protocol version being established using this ServerKeyExchange message
1532     ProtocolVersion protocolVersion;
1533 
1534     // the preferable signature algorithm used by this CertificateVerify message
1535     private SignatureAndHashAlgorithm preferableSignatureAlgorithm = null;
1536 
1537     /*
1538      * Create an RSA or DSA signed certificate verify message.
1539      */
1540     CertificateVerify(ProtocolVersion protocolVersion,
1541             HandshakeHash handshakeHash, PrivateKey privateKey,
1542             SecretKey masterSecret, SecureRandom sr,
1543             SignatureAndHashAlgorithm signAlgorithm)
1544             throws GeneralSecurityException {
1545 
1546         this.protocolVersion = protocolVersion;
1547 
1548         String algorithm = privateKey.getAlgorithm();
1549         Signature sig = null;
1550         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1551             this.preferableSignatureAlgorithm = signAlgorithm;
1552             sig = JsseJce.getSignature(signAlgorithm.getAlgorithmName());
1553         } else {
1554             sig = getSignature(protocolVersion, algorithm);
1555         }
1556         sig.initSign(privateKey, sr);
1557         updateSignature(sig, protocolVersion, handshakeHash, algorithm,
1558                         masterSecret);
1559         signature = sig.sign();
1560     }
1561 
1562     //
1563     // Unmarshal the signed data from the input stream.
1564     //
1565     CertificateVerify(HandshakeInStream input,
1566             Collection<SignatureAndHashAlgorithm> localSupportedSignAlgs,
1567             ProtocolVersion protocolVersion) throws IOException  {
1568 
1569         this.protocolVersion = protocolVersion;
1570 
1571         // read the signature and hash algorithm
1572         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1573             int hashAlg = input.getInt8();         // hash algorithm
1574             int signAlg = input.getInt8();         // signature algorithm
1575 
1576             preferableSignatureAlgorithm =
1577                 SignatureAndHashAlgorithm.valueOf(hashAlg, signAlg, 0);
1578 
1579             // Is it a local supported signature algorithm?
1580             if (!localSupportedSignAlgs.contains(
1581                     preferableSignatureAlgorithm)) {
1582                 throw new SSLHandshakeException(
1583                         "Unsupported SignatureAndHashAlgorithm in " +
1584                         "ServerKeyExchange message");
1585             }
1586         }
1587 
1588         // read the signature
1589         signature = input.getBytes16();
1590     }
1591 
1592     /*
1593      * Get the preferable signature algorithm used by this message
1594      */
1595     SignatureAndHashAlgorithm getPreferableSignatureAlgorithm() {
1596         return preferableSignatureAlgorithm;
1597     }
1598 
1599     /*
1600      * Verify a certificate verify message. Return the result of verification,
1601      * if there is a problem throw a GeneralSecurityException.
1602      */
1603     boolean verify(ProtocolVersion protocolVersion,
1604             HandshakeHash handshakeHash, PublicKey publicKey,
1605             SecretKey masterSecret) throws GeneralSecurityException {
1606         String algorithm = publicKey.getAlgorithm();
1607         Signature sig = null;
1608         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1609             sig = JsseJce.getSignature(
1610                         preferableSignatureAlgorithm.getAlgorithmName());
1611         } else {
1612             sig = getSignature(protocolVersion, algorithm);
1613         }
1614         sig.initVerify(publicKey);
1615         updateSignature(sig, protocolVersion, handshakeHash, algorithm,
1616                         masterSecret);
1617         return sig.verify(signature);
1618     }
1619 
1620     /*
1621      * Get the Signature object appropriate for verification using the
1622      * given signature algorithm and protocol version.
1623      */
1624     private static Signature getSignature(ProtocolVersion protocolVersion,
1625             String algorithm) throws GeneralSecurityException {
1626         if (algorithm.equals("RSA")) {
1627             return RSASignature.getInternalInstance();
1628         } else if (algorithm.equals("DSA")) {
1629             return JsseJce.getSignature(JsseJce.SIGNATURE_RAWDSA);
1630         } else if (algorithm.equals("EC")) {
1631             return JsseJce.getSignature(JsseJce.SIGNATURE_RAWECDSA);
1632         } else {
1633             throw new SignatureException("Unrecognized algorithm: "
1634                 + algorithm);
1635         }
1636     }
1637 
1638     /*
1639      * Update the Signature with the data appropriate for the given
1640      * signature algorithm and protocol version so that the object is
1641      * ready for signing or verifying.
1642      */
1643     private static void updateSignature(Signature sig,
1644             ProtocolVersion protocolVersion,
1645             HandshakeHash handshakeHash, String algorithm, SecretKey masterKey)
1646             throws SignatureException {
1647 
1648         if (algorithm.equals("RSA")) {
1649             if (protocolVersion.v < ProtocolVersion.TLS12.v) { // TLS1.1-
1650                 MessageDigest md5Clone = handshakeHash.getMD5Clone();
1651                 MessageDigest shaClone = handshakeHash.getSHAClone();
1652 
1653                 if (protocolVersion.v < ProtocolVersion.TLS10.v) { // SSLv3
1654                     updateDigest(md5Clone, MD5_pad1, MD5_pad2, masterKey);
1655                     updateDigest(shaClone, SHA_pad1, SHA_pad2, masterKey);
1656                 }
1657 
1658                 // The signature must be an instance of RSASignature, need
1659                 // to use these hashes directly.
1660                 RSASignature.setHashes(sig, md5Clone, shaClone);
1661             } else {  // TLS1.2+
1662                 sig.update(handshakeHash.getAllHandshakeMessages());
1663             }
1664         } else { // DSA, ECDSA
1665             if (protocolVersion.v < ProtocolVersion.TLS12.v) { // TLS1.1-
1666                 MessageDigest shaClone = handshakeHash.getSHAClone();
1667 
1668                 if (protocolVersion.v < ProtocolVersion.TLS10.v) { // SSLv3
1669                     updateDigest(shaClone, SHA_pad1, SHA_pad2, masterKey);
1670                 }
1671 
1672                 sig.update(shaClone.digest());
1673             } else {  // TLS1.2+
1674                 sig.update(handshakeHash.getAllHandshakeMessages());
1675             }
1676         }
1677     }
1678 
1679     /*
1680      * Update the MessageDigest for SSLv3 certificate verify or finished
1681      * message calculation. The digest must already have been updated with
1682      * all preceding handshake messages.
1683      * Used by the Finished class as well.
1684      */
1685     private static void updateDigest(MessageDigest md,
1686             byte[] pad1, byte[] pad2,
1687             SecretKey masterSecret) {
1688         // Digest the key bytes if available.
1689         // Otherwise (sensitive key), try digesting the key directly.
1690         // That is currently only implemented in SunPKCS11 using a private
1691         // reflection API, so we avoid that if possible.
1692         byte[] keyBytes = "RAW".equals(masterSecret.getFormat())
1693                         ? masterSecret.getEncoded() : null;
1694         if (keyBytes != null) {
1695             md.update(keyBytes);
1696         } else {
1697             digestKey(md, masterSecret);
1698         }
1699         md.update(pad1);
1700         byte[] temp = md.digest();
1701 
1702         if (keyBytes != null) {
1703             md.update(keyBytes);
1704         } else {
1705             digestKey(md, masterSecret);
1706         }
1707         md.update(pad2);
1708         md.update(temp);
1709     }
1710 
1711     private final static Class delegate;
1712     private final static Field spiField;
1713 
1714     static {
1715         try {
1716             delegate = Class.forName("java.security.MessageDigest$Delegate");
1717             spiField = delegate.getDeclaredField("digestSpi");
1718         } catch (Exception e) {
1719             throw new RuntimeException("Reflection failed", e);
1720         }
1721         makeAccessible(spiField);
1722     }
1723 
1724     private static void makeAccessible(final AccessibleObject o) {
1725         AccessController.doPrivileged(new PrivilegedAction<Object>() {
1726             public Object run() {
1727                 o.setAccessible(true);
1728                 return null;
1729             }
1730         });
1731     }
1732 
1733     // ConcurrentHashMap does not allow null values, use this marker object
1734     private final static Object NULL_OBJECT = new Object();
1735 
1736     // cache Method objects per Spi class
1737     // Note that this will prevent the Spi classes from being GC'd. We assume
1738     // that is not a problem.
1739     private final static Map<Class,Object> methodCache =
1740                                         new ConcurrentHashMap<>();
1741 
1742     private static void digestKey(MessageDigest md, SecretKey key) {
1743         try {
1744             // Verify that md is implemented via MessageDigestSpi, not
1745             // via JDK 1.1 style MessageDigest subclassing.
1746             if (md.getClass() != delegate) {
1747                 throw new Exception("Digest is not a MessageDigestSpi");
1748             }
1749             MessageDigestSpi spi = (MessageDigestSpi)spiField.get(md);
1750             Class<?> clazz = spi.getClass();
1751             Object r = methodCache.get(clazz);
1752             if (r == null) {
1753                 try {
1754                     r = clazz.getDeclaredMethod("implUpdate", SecretKey.class);
1755                     makeAccessible((Method)r);
1756                 } catch (NoSuchMethodException e) {
1757                     r = NULL_OBJECT;
1758                 }
1759                 methodCache.put(clazz, r);
1760             }
1761             if (r == NULL_OBJECT) {
1762                 throw new Exception(
1763                     "Digest does not support implUpdate(SecretKey)");
1764             }
1765             Method update = (Method)r;
1766             update.invoke(spi, key);
1767         } catch (Exception e) {
1768             throw new RuntimeException(
1769                 "Could not obtain encoded key and "
1770                 + "MessageDigest cannot digest key", e);
1771         }
1772     }
1773 
1774     @Override
1775     int messageType() {
1776         return ht_certificate_verify;
1777     }
1778 
1779     @Override
1780     int messageLength() {
1781         int temp = 2;
1782 
1783         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1784             temp += SignatureAndHashAlgorithm.sizeInRecord();
1785         }
1786 
1787         return temp + signature.length;
1788     }
1789 
1790     @Override
1791     void send(HandshakeOutStream s) throws IOException {
1792         if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1793             s.putInt8(preferableSignatureAlgorithm.getHashValue());
1794             s.putInt8(preferableSignatureAlgorithm.getSignatureValue());
1795         }
1796 
1797         s.putBytes16(signature);
1798     }
1799 
1800     @Override
1801     void print(PrintStream s) throws IOException {
1802         s.println("*** CertificateVerify");
1803 
1804         if (debug != null && Debug.isOn("verbose")) {
1805             if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1806                 s.println("Signature Algorithm " +
1807                         preferableSignatureAlgorithm.getAlgorithmName());
1808             }
1809         }
1810     }
1811 }
1812 
1813 
1814 /*
1815  * FINISHED ... sent by both CLIENT and SERVER
1816  *
1817  * This is the FINISHED message as defined in the SSL and TLS protocols.
1818  * Both protocols define this handshake message slightly differently.
1819  * This class supports both formats.
1820  *
1821  * When handshaking is finished, each side sends a "change_cipher_spec"
1822  * record, then immediately sends a "finished" handshake message prepared
1823  * according to the newly adopted cipher spec.
1824  *
1825  * NOTE that until this is sent, no application data may be passed, unless
1826  * some non-default cipher suite has already been set up on this connection
1827  * connection (e.g. a previous handshake arranged one).
1828  */
1829 static final class Finished extends HandshakeMessage {
1830 
1831     // constant for a Finished message sent by the client
1832     final static int CLIENT = 1;
1833 
1834     // constant for a Finished message sent by the server
1835     final static int SERVER = 2;
1836 
1837     // enum Sender:  "CLNT" and "SRVR"
1838     private static final byte[] SSL_CLIENT = { 0x43, 0x4C, 0x4E, 0x54 };
1839     private static final byte[] SSL_SERVER = { 0x53, 0x52, 0x56, 0x52 };
1840 
1841     /*
1842      * Contents of the finished message ("checksum"). For TLS, it
1843      * is 12 bytes long, for SSLv3 36 bytes.
1844      */
1845     private byte[] verifyData;
1846 
1847     /*
1848      * Current cipher suite we are negotiating.  TLS 1.2 has
1849      * ciphersuite-defined PRF algorithms.
1850      */
1851     private ProtocolVersion protocolVersion;
1852     private CipherSuite cipherSuite;
1853 
1854     /*
1855      * Create a finished message to send to the remote peer.
1856      */
1857     Finished(ProtocolVersion protocolVersion, HandshakeHash handshakeHash,
1858             int sender, SecretKey master, CipherSuite cipherSuite) {
1859         this.protocolVersion = protocolVersion;
1860         this.cipherSuite = cipherSuite;
1861         verifyData = getFinished(handshakeHash, sender, master);
1862     }
1863 
1864     /*
1865      * Constructor that reads FINISHED message from stream.
1866      */
1867     Finished(ProtocolVersion protocolVersion, HandshakeInStream input,
1868             CipherSuite cipherSuite) throws IOException {
1869         this.protocolVersion = protocolVersion;
1870         this.cipherSuite = cipherSuite;
1871         int msgLen = (protocolVersion.v >= ProtocolVersion.TLS10.v) ? 12 : 36;
1872         verifyData = new byte[msgLen];
1873         input.read(verifyData);
1874     }
1875 
1876     /*
1877      * Verify that the hashes here are what would have been produced
1878      * according to a given set of inputs.  This is used to ensure that
1879      * both client and server are fully in sync, and that the handshake
1880      * computations have been successful.
1881      */
1882     boolean verify(HandshakeHash handshakeHash, int sender, SecretKey master) {
1883         byte[] myFinished = getFinished(handshakeHash, sender, master);
1884         return Arrays.equals(myFinished, verifyData);
1885     }
1886 
1887     /*
1888      * Perform the actual finished message calculation.
1889      */
1890     private byte[] getFinished(HandshakeHash handshakeHash,
1891             int sender, SecretKey masterKey) {
1892         byte[] sslLabel;
1893         String tlsLabel;
1894         if (sender == CLIENT) {
1895             sslLabel = SSL_CLIENT;
1896             tlsLabel = "client finished";
1897         } else if (sender == SERVER) {
1898             sslLabel = SSL_SERVER;
1899             tlsLabel = "server finished";
1900         } else {
1901             throw new RuntimeException("Invalid sender: " + sender);
1902         }
1903 
1904         if (protocolVersion.v >= ProtocolVersion.TLS10.v) {
1905             // TLS 1.0+
1906             try {
1907                 byte [] seed;
1908                 String prfAlg;
1909                 PRF prf;
1910 
1911                 // Get the KeyGenerator alg and calculate the seed.
1912                 if (protocolVersion.v >= ProtocolVersion.TLS12.v) {
1913                     // TLS 1.2
1914                     seed = handshakeHash.getFinishedHash();
1915 
1916                     prfAlg = "SunTls12Prf";
1917                     prf = cipherSuite.prfAlg;
1918                 } else {
1919                     // TLS 1.0/1.1
1920                     MessageDigest md5Clone = handshakeHash.getMD5Clone();
1921                     MessageDigest shaClone = handshakeHash.getSHAClone();
1922                     seed = new byte[36];
1923                     md5Clone.digest(seed, 0, 16);
1924                     shaClone.digest(seed, 16, 20);
1925 
1926                     prfAlg = "SunTlsPrf";
1927                     prf = P_NONE;
1928                 }
1929 
1930                 String prfHashAlg = prf.getPRFHashAlg();
1931                 int prfHashLength = prf.getPRFHashLength();
1932                 int prfBlockSize = prf.getPRFBlockSize();
1933 
1934                 /*
1935                  * RFC 5246/7.4.9 says that finished messages can
1936                  * be ciphersuite-specific in both length/PRF hash
1937                  * algorithm.  If we ever run across a different
1938                  * length, this call will need to be updated.
1939                  */
1940                 TlsPrfParameterSpec spec = new TlsPrfParameterSpec(
1941                     masterKey, tlsLabel, seed, 12,
1942                     prfHashAlg, prfHashLength, prfBlockSize);
1943 
1944                 KeyGenerator kg = JsseJce.getKeyGenerator(prfAlg);
1945                 kg.init(spec);
1946                 SecretKey prfKey = kg.generateKey();
1947                 if ("RAW".equals(prfKey.getFormat()) == false) {
1948                     throw new ProviderException(
1949                         "Invalid PRF output, format must be RAW");
1950                 }
1951                 byte[] finished = prfKey.getEncoded();
1952                 return finished;
1953             } catch (GeneralSecurityException e) {
1954                 throw new RuntimeException("PRF failed", e);
1955             }
1956         } else {
1957             // SSLv3
1958             MessageDigest md5Clone = handshakeHash.getMD5Clone();
1959             MessageDigest shaClone = handshakeHash.getSHAClone();
1960             updateDigest(md5Clone, sslLabel, MD5_pad1, MD5_pad2, masterKey);
1961             updateDigest(shaClone, sslLabel, SHA_pad1, SHA_pad2, masterKey);
1962             byte[] finished = new byte[36];
1963             try {
1964                 md5Clone.digest(finished, 0, 16);
1965                 shaClone.digest(finished, 16, 20);
1966             } catch (DigestException e) {
1967                 // cannot occur
1968                 throw new RuntimeException("Digest failed", e);
1969             }
1970             return finished;
1971         }
1972     }
1973 
1974     /*
1975      * Update the MessageDigest for SSLv3 finished message calculation.
1976      * The digest must already have been updated with all preceding handshake
1977      * messages. This operation is almost identical to the certificate verify
1978      * hash, reuse that code.
1979      */
1980     private static void updateDigest(MessageDigest md, byte[] sender,
1981             byte[] pad1, byte[] pad2, SecretKey masterSecret) {
1982         md.update(sender);
1983         CertificateVerify.updateDigest(md, pad1, pad2, masterSecret);
1984     }
1985 
1986     // get the verify_data of the finished message
1987     byte[] getVerifyData() {
1988         return verifyData;
1989     }
1990 
1991     @Override
1992     int messageType() { return ht_finished; }
1993 
1994     @Override
1995     int messageLength() {
1996         return verifyData.length;
1997     }
1998 
1999     @Override
2000     void send(HandshakeOutStream out) throws IOException {
2001         out.write(verifyData);
2002     }
2003 
2004     @Override
2005     void print(PrintStream s) throws IOException {
2006         s.println("*** Finished");
2007         if (debug != null && Debug.isOn("verbose")) {
2008             Debug.println(s, "verify_data", verifyData);
2009             s.println("***");
2010         }
2011     }
2012 }
2013 
2014 //
2015 // END of nested classes
2016 //
2017 
2018 }