/* * Copyright (c) 2009, 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package com.sun.prism.es2; import com.sun.glass.ui.Screen; import com.sun.javafx.geom.Rectangle; import com.sun.javafx.geom.Vec3d; import com.sun.javafx.geom.transform.Affine2D; import com.sun.javafx.geom.transform.Affine3D; import com.sun.javafx.geom.transform.BaseTransform; import com.sun.javafx.geom.transform.GeneralTransform3D; import com.sun.javafx.sg.prism.NGCamera; import com.sun.javafx.sg.prism.NGDefaultCamera; import com.sun.prism.CompositeMode; import com.sun.prism.Graphics; import com.sun.prism.Material; import com.sun.prism.RTTexture; import com.sun.prism.RenderTarget; import com.sun.prism.Texture; import com.sun.prism.impl.PrismSettings; import com.sun.prism.impl.ps.BaseShaderContext; import com.sun.prism.ps.Shader; import com.sun.prism.ps.ShaderFactory; class ES2Context extends BaseShaderContext { // Temporary variables private static GeneralTransform3D scratchTx = new GeneralTransform3D(); private static final GeneralTransform3D flipTx = new GeneralTransform3D(); private static final Affine3D scratchAffine3DTx = new Affine3D(); // contains the combined projection/modelview matrix (elements 0-15) private static float rawMatrix[] = new float[GLContext.NUM_MATRIX_ELEMENTS]; private GeneralTransform3D projViewTx = new GeneralTransform3D(); private GeneralTransform3D worldTx = new GeneralTransform3D(); private Vec3d cameraPos = new Vec3d(); private RenderTarget currentTarget; private final GLContext glContext; private final GLDrawable dummyGLDrawable; private final GLPixelFormat pixelFormat; private State state; private int quadIndices; // The drawable that is current to the glContext private GLDrawable currentDrawable = null; private int indexBuffer = 0; private int shaderProgram; public static final int NUM_QUADS = PrismSettings.superShader ? 4096 : 256; ES2Context(Screen screen, ShaderFactory factory) { super(screen, factory, NUM_QUADS); GLFactory glF = ES2Pipeline.glFactory; // NOTE: There is issue with the returned value of getNativeScreen. // HMonitor (Windows), GTKMonitor index (Linux) ... // We would prefer HDC (Windows) and screen number(index) (Linux) pixelFormat = glF.createGLPixelFormat(screen.getNativeScreen(), ES2Pipeline.pixelFormatAttributes); dummyGLDrawable = glF.createDummyGLDrawable(pixelFormat); glContext = glF.createGLContext(dummyGLDrawable, pixelFormat, glF.getShareContext(), PrismSettings.isVsyncEnabled); makeCurrent(dummyGLDrawable); glContext.enableVertexAttributes(); quadIndices = genQuadsIndexBuffer(NUM_QUADS); setIndexBuffer(quadIndices); state = new State(); } static short [] getQuadIndices16bit(int numQuads) { short data[] = new short[numQuads * 6]; for (int i = 0; i != numQuads; ++i) { int vtx = i * 4; int idx = i * 6; data[idx+0] = (short) (vtx+0); data[idx+1] = (short) (vtx+1); data[idx+2] = (short) (vtx+2); data[idx+3] = (short) (vtx+2); data[idx+4] = (short) (vtx+1); data[idx+5] = (short) (vtx+3); } return data; } int genQuadsIndexBuffer(int numQuads) { if (numQuads * 6 > 0x10000) throw new IllegalArgumentException("vertex indices overflow"); return glContext.createIndexBuffer16(getQuadIndices16bit(numQuads)); } final void clearContext() { if (currentDrawable != null) { currentDrawable.swapBuffers(glContext); } } final void setIndexBuffer(int ib) { if (indexBuffer != ib) { glContext.setIndexBuffer(indexBuffer = ib); } } GLContext getGLContext() { return glContext; } GLPixelFormat getPixelFormat() { return pixelFormat; } ES2Shader getPhongShader(ES2MeshView meshView) { return ES2PhongShader.getShader(meshView, this); } void makeCurrent(GLDrawable drawable) { if (drawable == null) { drawable = dummyGLDrawable; } if (drawable != currentDrawable) { glContext.makeCurrent(drawable); // Need to restore FBO to on screen framebuffer glContext.bindFBO(0); currentDrawable = drawable; } } /** * Called from ES2Graphics.updateRenderTarget() in response to a window * resize event. This method ensures that the context is made current * after the resize event, which is required on Mac OS X in order to * force a call to [NSOpenGLContext update]. */ void forceRenderTarget(ES2Graphics g) { updateRenderTarget(g.getRenderTarget(), g.getCameraNoClone(), g.isDepthTest() && g.isDepthBuffer()); } int getShaderProgram() { return shaderProgram; } // Forcibly sets the current shader program to the given object. void setShaderProgram(int progid) { shaderProgram = progid; glContext.setShaderProgram(progid); } // Sets the current shader program to the given object only if it was // not already the current program. void updateShaderProgram(int progid) { if (progid != shaderProgram) { setShaderProgram(progid); } } @Override protected void init() { super.init(); } @Override protected void releaseRenderTarget() { currentTarget = null; super.releaseRenderTarget(); } @Override protected State updateRenderTarget(RenderTarget target, NGCamera camera, boolean depthTest) { int fboID = ((ES2RenderTarget)target).getFboID(); glContext.bindFBO(fboID); boolean msaa = false; if (target instanceof ES2RTTexture) { // Attach a depth buffer to the currently bound FBO ES2RTTexture rtTarget = (ES2RTTexture)target; msaa = rtTarget.isMSAA(); if (depthTest) { rtTarget.attachDepthBuffer(this); } } // update viewport int x = target.getContentX(); int y = target.getContentY(); int w = target.getContentWidth(); int h = target.getContentHeight(); glContext.updateViewportAndDepthTest(x, y, w, h, depthTest); glContext.updateMSAAState(msaa); if (camera instanceof NGDefaultCamera) { // update projection matrix; this will be uploaded to the shader // along with the modelview matrix in updateShaderTransform() ((NGDefaultCamera) camera).validate(w, h); scratchTx = camera.getProjViewTx(scratchTx); } else { scratchTx = camera.getProjViewTx(scratchTx); // TODO: verify that this is the right solution. There may be // other use-cases where rendering needs different viewport size. double vw = camera.getViewWidth(); double vh = camera.getViewHeight(); if (w != vw || h != vh) { scratchTx.scale(vw / w, vh / h, 1.0); } } if (target instanceof ES2RTTexture) { // Compute a flipped version of projViewTx projViewTx.set(flipTx); projViewTx.mul(scratchTx); } else { projViewTx.set(scratchTx); } // update camera position; this will be uploaded to the shader // when we switch to 3D state cameraPos = camera.getPositionInWorld(cameraPos); currentTarget = target; return state; } @Override protected void updateTexture(int texUnit, Texture tex) { glContext.updateActiveTextureUnit(texUnit); if (tex == null) { glContext.updateBoundTexture(0); } else { ES2Texture es2Tex = (ES2Texture)tex; glContext.updateBoundTexture(es2Tex.getNativeSourceHandle()); es2Tex.updateWrapState(); es2Tex.updateFilterState(); } } @Override protected void updateShaderTransform(Shader shader, BaseTransform xform) { if (xform == null) { xform = BaseTransform.IDENTITY_TRANSFORM; } scratchTx.set(projViewTx); updateRawMatrix(scratchTx.mul(xform)); ES2Shader es2shader = (ES2Shader) shader; es2shader.setMatrix("mvpMatrix", rawMatrix); // printRawMatrix("mvpMatrix"); if (es2shader.isPixcoordUsed()) { // the gl_FragCoord variable is in window coordinates and // does not take the viewport origin into account (or the fact // that we do a y-flip of the projection matrix in the case // of onscreen windows for that matter); we need to update // the special jsl_pixCoordOffset param here so that the shader // can continue to treat pixcoord as if it were in the range // [0,0] to [contentWidth,contentHeight] of the destination surface float xoff = currentTarget.getContentX(); float yoff = currentTarget.getContentY(); float yinv, yflip; if (currentTarget instanceof ES2SwapChain) { // there is a y-flip in this case yinv = currentTarget.getPhysicalHeight(); yflip = 1f; } else { // no y-flip for RTTextures yinv = 0f; yflip = -1f; } shader.setConstant("jsl_pixCoordOffset", xoff, yoff, yinv, yflip); } } @Override protected void updateWorldTransform(BaseTransform xform) { worldTx.setIdentity(); if ((xform != null) && (!xform.isIdentity())) { worldTx.mul(xform); } } @Override protected void updateClipRect(Rectangle clipRect) { if (clipRect == null || clipRect.isEmpty()) { glContext.scissorTest(false, 0, 0, 0, 0); } else { // the scissor rectangle is specified using the lower-left // origin of the clip region (in the framebuffer's coordinate // space), so we must account for the x/y offsets of the // destination surface, and use a flipped y origin when rendering // to an ES2SwapChain int w = clipRect.width; int h = clipRect.height; int x = currentTarget.getContentX(); int y = currentTarget.getContentY(); if (currentTarget instanceof ES2RTTexture) { x += clipRect.x; y += clipRect.y; } else { int dsth = currentTarget.getPhysicalHeight(); x += clipRect.x; y += dsth - (clipRect.y + h); } glContext.scissorTest(true, x, y, w, h); } } @Override protected void updateCompositeMode(CompositeMode mode) { switch (mode) { case CLEAR: glContext.blendFunc(GLContext.GL_ZERO, GLContext.GL_ZERO); break; case SRC: glContext.blendFunc(GLContext.GL_ONE, GLContext.GL_ZERO); break; case SRC_OVER: glContext.blendFunc(GLContext.GL_ONE, GLContext.GL_ONE_MINUS_SRC_ALPHA); break; case DST_OUT: glContext.blendFunc(GLContext.GL_ZERO, GLContext.GL_ONE_MINUS_SRC_ALPHA); break; case ADD: glContext.blendFunc(GLContext.GL_ONE, GLContext.GL_ONE); break; default: throw new InternalError("Unrecognized composite mode: " + mode); } } @Override public void setDeviceParametersFor2D() { // invalidate cache data indexBuffer = 0; shaderProgram = 0; glContext.setDeviceParametersFor2D(); // Bind vertex attributes and index buffer glContext.enableVertexAttributes(); setIndexBuffer(quadIndices); } @Override public void setDeviceParametersFor3D() { // unbind vertex attributes and index buffer glContext.disableVertexAttributes(); glContext.setDeviceParametersFor3D(); } long createES2Mesh() { return glContext.createES2Mesh(); } // TODO: 3D - Should this be called dispose? void releaseES2Mesh(long nativeHandle) { glContext.releaseES2Mesh(nativeHandle); } boolean buildNativeGeometry(long nativeHandle, float[] vertexBuffer, int vertexBufferLength, short[] indexBuffer, int indexBufferLength) { return glContext.buildNativeGeometry(nativeHandle, vertexBuffer, vertexBufferLength, indexBuffer, indexBufferLength); } boolean buildNativeGeometry(long nativeHandle, float[] vertexBuffer, int vertexBufferLength, int[] indexBuffer, int indexBufferLength) { return glContext.buildNativeGeometry(nativeHandle, vertexBuffer, vertexBufferLength, indexBuffer, indexBufferLength); } long createES2PhongMaterial() { return glContext.createES2PhongMaterial(); } // TODO: 3D - Should this be called dispose? void releaseES2PhongMaterial(long nativeHandle) { glContext.releaseES2PhongMaterial(nativeHandle); } void setSolidColor(long nativeHandle, float r, float g, float b, float a) { glContext.setSolidColor(nativeHandle, r, g, b, a); } void setMap(long nativeHandle, int mapType, int texID) { glContext.setMap(nativeHandle, mapType, texID); } long createES2MeshView(ES2Mesh mesh) { return glContext.createES2MeshView(mesh.getNativeHandle()); } // TODO: 3D - Should this be called dispose? void releaseES2MeshView(long nativeHandle) { glContext.releaseES2MeshView(nativeHandle); } void setCullingMode(long nativeHandle, int cullingMode) { // NOTE: Native code has set clockwise order as front-facing glContext.setCullingMode(nativeHandle, cullingMode); } void setMaterial(long nativeHandle, Material material) { ES2PhongMaterial es2Material = (ES2PhongMaterial)material; glContext.setMaterial(nativeHandle, (es2Material).getNativeHandle()); } void setWireframe(long nativeHandle, boolean wireframe) { glContext.setWireframe(nativeHandle, wireframe); } void setAmbientLight(long nativeHandle, float r, float g, float b) { glContext.setAmbientLight(nativeHandle, r, g, b); } void setPointLight(long nativeHandle, int index, float x, float y, float z, float r, float g, float b, float w) { glContext.setPointLight(nativeHandle, index, x, y, z, r, g, b, w); } @Override public void blit(RTTexture srcRTT, RTTexture dstRTT, int srcX0, int srcY0, int srcX1, int srcY1, int dstX0, int dstY0, int dstX1, int dstY1) { // If dstRTT is null then will blit to currently bound fbo int dstFboID = dstRTT == null ? 0 : ((ES2RTTexture)dstRTT).getFboID(); int srcFboID = ((ES2RTTexture)srcRTT).getFboID(); glContext.blitFBO(srcFboID, dstFboID, srcX0, srcY0, srcX1, srcY1, dstX0, dstY0, dstX1, dstY1); } void renderMeshView(long nativeHandle, Graphics g, ES2MeshView meshView) { ES2Shader shader = (ES2Shader) getPhongShader(meshView); setShaderProgram(shader.getProgramObject()); // Support retina display by scaling the projViewTx and pass it to the shader. float pixelScaleFactorX = g.getPixelScaleFactorX(); float pixelScaleFactorY = g.getPixelScaleFactorY(); if (pixelScaleFactorX != 1.0 || pixelScaleFactorY != 1.0) { scratchTx = scratchTx.set(projViewTx); scratchTx.scale(pixelScaleFactorX, pixelScaleFactorY, 1.0); updateRawMatrix(scratchTx); } else { updateRawMatrix(projViewTx); } shader.setMatrix("viewProjectionMatrix", rawMatrix); shader.setConstant("camPos", (float) cameraPos.x, (float) cameraPos.y, (float)cameraPos.z); // Undo the SwapChain scaling done in createGraphics() because 3D needs // this information in the shader (via projViewTx) BaseTransform xform = g.getTransformNoClone(); if (pixelScaleFactorX != 1.0 || pixelScaleFactorY != 1.0) { scratchAffine3DTx.setToIdentity(); scratchAffine3DTx.scale(1.0 / pixelScaleFactorX, 1.0 / pixelScaleFactorY); scratchAffine3DTx.concatenate(xform); updateWorldTransform(scratchAffine3DTx); } else { updateWorldTransform(xform); } updateRawMatrix(worldTx); shader.setMatrix("worldMatrix", rawMatrix); // printRawMatrix("worldMatrix"); ES2PhongShader.setShaderParamaters(shader, meshView, this); glContext.renderMeshView(nativeHandle); } @Override protected void renderQuads(float coordArray[], byte colorArray[], int numVertices) { glContext.drawIndexedQuads(coordArray, colorArray, numVertices); } void printRawMatrix(String mesg) { System.err.println(mesg + " = "); for (int i = 0; i < 4; i++) { System.err.println(rawMatrix[i] + ", " + rawMatrix[i+4] + ", " + rawMatrix[i+8] + ", " + rawMatrix[i+12]); } } // Need to transpose the matrix because OpenGL stores its matrix in // column major (though matrix computation is done in row major) private void updateRawMatrix(GeneralTransform3D src) { rawMatrix[0] = (float)src.get(0); // Scale X rawMatrix[1] = (float)src.get(4); // Shear Y rawMatrix[2] = (float)src.get(8); rawMatrix[3] = (float)src.get(12); rawMatrix[4] = (float)src.get(1); // Shear X rawMatrix[5] = (float)src.get(5); // Scale Y rawMatrix[6] = (float)src.get(9); rawMatrix[7] = (float)src.get(13); rawMatrix[8] = (float)src.get(2); rawMatrix[9] = (float)src.get(6); rawMatrix[10] = (float)src.get(10); rawMatrix[11] = (float)src.get(14); rawMatrix[12] = (float)src.get(3); // Translate X rawMatrix[13] = (float)src.get(7); // Translate Y rawMatrix[14] = (float)src.get(11); rawMatrix[15] = (float)src.get(15); } static { BaseTransform tx = Affine2D.getScaleInstance(1.0, -1.0); flipTx.setIdentity(); flipTx.mul(tx); } }