1 /*
   2  * Copyright (c) 2009, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  * This file was originally generated by JSLC
  28  * and then hand edited for performance.
  29  */
  30 
  31 package com.sun.scenario.effect.impl.sw.java;
  32 
  33 import com.sun.scenario.effect.Effect;
  34 import com.sun.scenario.effect.BoxShadow;
  35 import com.sun.scenario.effect.FilterContext;
  36 import com.sun.scenario.effect.ImageData;
  37 import com.sun.scenario.effect.impl.HeapImage;
  38 import com.sun.scenario.effect.impl.Renderer;
  39 import com.sun.javafx.geom.Rectangle;
  40 import com.sun.javafx.geom.transform.BaseTransform;
  41 import com.sun.scenario.effect.impl.state.BoxRenderState;
  42 
  43 public class JSWBoxShadowPeer extends JSWEffectPeer<BoxRenderState> {
  44 
  45     public JSWBoxShadowPeer(FilterContext fctx, Renderer r, String uniqueName) {
  46         super(fctx, r, uniqueName);
  47     }
  48 
  49     @Override
  50     public ImageData filter(Effect effect,
  51                             BoxRenderState brstate,
  52                             BaseTransform transform,
  53                             Rectangle outputClip,
  54                             ImageData... inputs)
  55     {
  56         setRenderState(brstate);
  57         // NOTE: for now, all input images must be TYPE_INT_ARGB_PRE
  58 
  59         // Calculate the amount the image grows on each iteration (size-1)
  60         boolean horizontal = (getPass() == 0);
  61         int hinc = horizontal ? brstate.getBoxPixelSize(0) - 1 : 0;
  62         int vinc = horizontal ? 0 : brstate.getBoxPixelSize(1) - 1;
  63         if (hinc < 0) hinc = 0;
  64         if (vinc < 0) vinc = 0;
  65         int iterations = brstate.getBlurPasses();
  66         float spread = brstate.getSpread();
  67         if (horizontal && (iterations < 1 || (hinc < 1 && vinc < 1))) {
  68             inputs[0].addref();
  69             return inputs[0];
  70         }
  71         // Calculate the amount the image will grow through the full operation
  72         // Always upgrade to the next even amount of growth
  73         int growx = (hinc * iterations + 1) & (~0x1);
  74         int growy = (vinc * iterations + 1) & (~0x1);
  75 
  76         // Assert: rstate.getEffectTransformSpace() == UserSpace
  77         // NOTE: We could still have a transformed ImageData for other reasons...
  78         HeapImage src = (HeapImage)inputs[0].getUntransformedImage();
  79         Rectangle srcr = inputs[0].getUntransformedBounds();
  80 
  81         HeapImage cur = src;
  82         int curw = srcr.width;
  83         int curh = srcr.height;
  84         int curscan = cur.getScanlineStride();
  85         int[] curPixels = cur.getPixelArray();
  86 
  87         int finalw = curw + growx;
  88         int finalh = curh + growy;
  89         boolean force = !horizontal;
  90         while (force || curw < finalw || curh < finalh) {
  91             int neww = curw + hinc;
  92             int newh = curh + vinc;
  93             if (neww > finalw) neww = finalw;
  94             if (newh > finalh) newh = finalh;
  95             HeapImage dst = (HeapImage)getRenderer().getCompatibleImage(neww, newh);
  96             int newscan = dst.getScanlineStride();
  97             int[] newPixels = dst.getPixelArray();
  98             if (iterations == 0) {
  99                 // The last "fixup" iteration of 2 should have no spread.
 100                 spread = 0f;
 101             }
 102             if (horizontal) {
 103                 filterHorizontalBlack(newPixels, neww, newh, newscan,
 104                                       curPixels, curw, curh, curscan,
 105                                       spread);
 106             } else if (neww < finalw || newh < finalh) {
 107                 // Use BLACK for shadow color until very last pass
 108                 filterVerticalBlack(newPixels, neww, newh, newscan,
 109                                     curPixels, curw, curh, curscan,
 110                                     spread);
 111             } else {
 112                 float shadowColor[] =
 113                      brstate.getShadowColor().getPremultipliedRGBComponents();
 114                 if (shadowColor[3] == 1f &&
 115                     shadowColor[0] == 0f &&
 116                     shadowColor[1] == 0f &&
 117                     shadowColor[2] == 0f)
 118                 {
 119                     filterVerticalBlack(newPixels, neww, newh, newscan,
 120                                         curPixels, curw, curh, curscan,
 121                                         spread);
 122                 } else {
 123                     filterVertical(newPixels, neww, newh, newscan,
 124                                    curPixels, curw, curh, curscan,
 125                                    spread, shadowColor);
 126                 }
 127             }
 128             if (cur != src) {
 129                 getRenderer().releaseCompatibleImage(cur);
 130             }
 131             iterations--;
 132             force = false;
 133             cur = dst;
 134             curw = neww;
 135             curh = newh;
 136             curPixels = newPixels;
 137             curscan = newscan;
 138         }
 139 
 140         Rectangle resBounds =
 141             new Rectangle(srcr.x - growx/2, srcr.y - growy/2, curw, curh);
 142         return new ImageData(getFilterContext(), cur, resBounds);
 143     }
 144 
 145     protected void filterHorizontalBlack(int dstPixels[], int dstw, int dsth, int dstscan,
 146                                          int srcPixels[], int srcw, int srch, int srcscan,
 147                                          float spread)
 148     {
 149         int hsize = dstw - srcw + 1;
 150         // amax goes from hsize*255 to 255 as spread goes from 0 to 1
 151         int amax = hsize * 255;
 152         amax += (255 - amax) * spread;
 153         int kscale = 0x7fffffff / amax;
 154         int amin = (amax / 255);
 155         int srcoff = 0;
 156         int dstoff = 0;
 157         for (int y = 0; y < dsth; y++) {
 158             int suma = 0;
 159             for (int x = 0; x < dstw; x++) {
 160                 int rgb;
 161                 // Un-accumulate the data for col-hsize location into the sums.
 162                 rgb = (x >= hsize) ? srcPixels[srcoff + x - hsize] : 0;
 163                 suma -= (rgb >>> 24);
 164                 // Accumulate the data for this col location into the sums.
 165                 rgb = (x < srcw) ? srcPixels[srcoff + x] : 0;
 166                 suma += (rgb >>> 24);
 167                 // Clamp, scale and convert the sum into a color.
 168                 dstPixels[dstoff + x] =
 169                     ((suma < amin) ? 0
 170                      : ((suma >= amax) ? 0xff000000
 171                         : (((suma * kscale) >> 23) << 24)));
 172             }
 173             srcoff += srcscan;
 174             dstoff += dstscan;
 175         }
 176     }
 177 
 178     protected void filterVerticalBlack(int dstPixels[], int dstw, int dsth, int dstscan,
 179                                        int srcPixels[], int srcw, int srch, int srcscan,
 180                                        float spread)
 181     {
 182         int vsize = dsth - srch + 1;
 183         // amax goes from hsize*255 to 255 as spread goes from 0 to 1
 184         int amax = vsize * 255;
 185         amax += (255 - amax) * spread;
 186         int kscale = 0x7fffffff / amax;
 187         int amin = (amax / 255);
 188         int voff = vsize * srcscan;
 189         for (int x = 0; x < dstw; x++) {
 190             int suma = 0;
 191             int srcoff = x;
 192             int dstoff = x;
 193             for (int y = 0; y < dsth; y++) {
 194                 int rgb;
 195                 // Un-accumulate the data for row-vsize location into the sums.
 196                 rgb = (srcoff >= voff) ? srcPixels[srcoff - voff] : 0;
 197                 suma -= (rgb >>> 24);
 198                 // Accumulate the data for this row location into the sums.
 199                 rgb = (y < srch) ? srcPixels[srcoff] : 0;
 200                 suma += (rgb >>> 24);
 201                 // Clamp, scale and convert the sum into a color.
 202                 dstPixels[dstoff] =
 203                     ((suma < amin) ? 0
 204                      : ((suma >= amax) ? 0xff000000
 205                         : (((suma * kscale) >> 23) << 24)));
 206                 srcoff += srcscan;
 207                 dstoff += dstscan;
 208             }
 209         }
 210     }
 211 
 212     protected void filterVertical(int dstPixels[], int dstw, int dsth, int dstscan,
 213                                   int srcPixels[], int srcw, int srch, int srcscan,
 214                                   float spread, float shadowColor[])
 215     {
 216         int vsize = dsth - srch + 1;
 217         // amax goes from hsize*255 to 255 as spread goes from 0 to 1
 218         int amax = vsize * 255;
 219         amax += (255 - amax) * spread;
 220         int kscalea = 0x7fffffff / amax;
 221         int kscaler = (int) (kscalea * shadowColor[0]);
 222         int kscaleg = (int) (kscalea * shadowColor[1]);
 223         int kscaleb = (int) (kscalea * shadowColor[2]);
 224         kscalea *= shadowColor[3];
 225         int amin = (amax / 255);
 226         int voff = vsize * srcscan;
 227         int shadowRGB =
 228             (((int) (shadowColor[0] * 255)) << 16) |
 229             (((int) (shadowColor[1] * 255)) <<  8) |
 230             (((int) (shadowColor[2] * 255))      ) |
 231             (((int) (shadowColor[3] * 255)) << 24);
 232         for (int x = 0; x < dstw; x++) {
 233             int suma = 0;
 234             int srcoff = x;
 235             int dstoff = x;
 236             for (int y = 0; y < dsth; y++) {
 237                 int rgb;
 238                 // Un-accumulate the data for row-vsize location into the sums.
 239                 rgb = (srcoff >= voff) ? srcPixels[srcoff - voff] : 0;
 240                 suma -= (rgb >>> 24);
 241                 // Accumulate the data for this row location into the sums.
 242                 rgb = (y < srch) ? srcPixels[srcoff] : 0;
 243                 suma += (rgb >>> 24);
 244                 // Clamp, scale and convert the sum into a color.
 245                 dstPixels[dstoff] =
 246                     ((suma < amin) ? 0
 247                      : ((suma >= amax) ? shadowRGB
 248                         : ((((suma * kscalea) >> 23) << 24) |
 249                            (((suma * kscaler) >> 23) << 16) |
 250                            (((suma * kscaleg) >> 23) <<  8) |
 251                            (((suma * kscaleb) >> 23)      ))));
 252                 srcoff += srcscan;
 253                 dstoff += dstscan;
 254             }
 255         }
 256     }
 257 
 258     /*
 259      * This is a useful routine for some uses - it goes faster than the
 260      * horizontal-only and vertical-only loops, but it is hard to use it
 261      * in the face of multi-pass box blurs and having to adjust for even
 262      * blur sizes, so it is commented out for now...
 263     private void filterTranspose(int dstPixels[], int dstw, int dsth, int dstscan,
 264                                  int srcPixels[], int srcw, int srch, int srcscan,
 265                                  int ksize)
 266     {
 267         int kscale = 0x7fffffff / (ksize * 255);
 268         int srcoff = 0;
 269         for (int y = 0; y < dstw; y++) {
 270             int suma = 0;
 271             int dstoff = y;
 272             for (int x = 0; x < dsth; x++) {
 273                 int rgb;
 274                 // Un-accumulate the data for col-ksize location into the sums.
 275                 rgb = (x >= ksize) ? srcPixels[srcoff + x - ksize] : 0;
 276                 suma -= (rgb >>> 24);
 277                 // Accumulate the data for this col location into the sums.
 278                 rgb = (x < srcw) ? srcPixels[srcoff + x] : 0;
 279                 suma += (rgb >>> 24);
 280                 dstPixels[dstoff] = (((suma * kscale) >> 23) << 24);
 281                 dstoff += dstscan;
 282             }
 283             srcoff += srcscan;
 284         }
 285     }
 286      */
 287 }