1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.Set;
  30 import javax.lang.model.element.ElementKind;
  31 import javax.tools.JavaFileObject;
  32 
  33 import com.sun.tools.javac.code.*;
  34 import com.sun.tools.javac.jvm.*;
  35 import com.sun.tools.javac.tree.*;
  36 import com.sun.tools.javac.util.*;
  37 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  38 import com.sun.tools.javac.util.List;
  39 
  40 import com.sun.tools.javac.jvm.Target;
  41 import com.sun.tools.javac.code.Symbol.*;
  42 import com.sun.tools.javac.tree.JCTree.*;
  43 import com.sun.tools.javac.code.Type.*;
  44 
  45 import com.sun.source.tree.IdentifierTree;
  46 import com.sun.source.tree.MemberSelectTree;
  47 import com.sun.source.tree.TreeVisitor;
  48 import com.sun.source.util.SimpleTreeVisitor;
  49 
  50 import static com.sun.tools.javac.code.Flags.*;
  51 import static com.sun.tools.javac.code.Kinds.*;
  52 import static com.sun.tools.javac.code.TypeTags.*;
  53 
  54 /** This is the main context-dependent analysis phase in GJC. It
  55  *  encompasses name resolution, type checking and constant folding as
  56  *  subtasks. Some subtasks involve auxiliary classes.
  57  *  @see Check
  58  *  @see Resolve
  59  *  @see ConstFold
  60  *  @see Infer
  61  *
  62  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
  63  *  you write code that depends on this, you do so at your own risk.
  64  *  This code and its internal interfaces are subject to change or
  65  *  deletion without notice.</b>
  66  */
  67 public class Attr extends JCTree.Visitor {
  68     protected static final Context.Key<Attr> attrKey =
  69         new Context.Key<Attr>();
  70 
  71     final Names names;
  72     final Log log;
  73     final Symtab syms;
  74     final Resolve rs;
  75     final Check chk;
  76     final MemberEnter memberEnter;
  77     final TreeMaker make;
  78     final ConstFold cfolder;
  79     final Enter enter;
  80     final Target target;
  81     final Types types;
  82     final JCDiagnostic.Factory diags;
  83     final Annotate annotate;
  84 
  85     public static Attr instance(Context context) {
  86         Attr instance = context.get(attrKey);
  87         if (instance == null)
  88             instance = new Attr(context);
  89         return instance;
  90     }
  91 
  92     protected Attr(Context context) {
  93         context.put(attrKey, this);
  94 
  95         names = Names.instance(context);
  96         log = Log.instance(context);
  97         syms = Symtab.instance(context);
  98         rs = Resolve.instance(context);
  99         chk = Check.instance(context);
 100         memberEnter = MemberEnter.instance(context);
 101         make = TreeMaker.instance(context);
 102         enter = Enter.instance(context);
 103         cfolder = ConstFold.instance(context);
 104         target = Target.instance(context);
 105         types = Types.instance(context);
 106         diags = JCDiagnostic.Factory.instance(context);
 107         annotate = Annotate.instance(context);
 108 
 109         Options options = Options.instance(context);
 110 
 111         Source source = Source.instance(context);
 112         allowGenerics = source.allowGenerics();
 113         allowVarargs = source.allowVarargs();
 114         allowEnums = source.allowEnums();
 115         allowBoxing = source.allowBoxing();
 116         allowCovariantReturns = source.allowCovariantReturns();
 117         allowAnonOuterThis = source.allowAnonOuterThis();
 118         allowStringsInSwitch = source.allowStringsInSwitch();
 119         sourceName = source.name;
 120         relax = (options.get("-retrofit") != null ||
 121                  options.get("-relax") != null);
 122         useBeforeDeclarationWarning = options.get("useBeforeDeclarationWarning") != null;
 123         allowInvokedynamic = options.get("invokedynamic") != null;
 124         enableSunApiLintControl = options.get("enableSunApiLintControl") != null;
 125     }
 126 
 127     /** Switch: relax some constraints for retrofit mode.
 128      */
 129     boolean relax;
 130 
 131     /** Switch: support generics?
 132      */
 133     boolean allowGenerics;
 134 
 135     /** Switch: allow variable-arity methods.
 136      */
 137     boolean allowVarargs;
 138 
 139     /** Switch: support enums?
 140      */
 141     boolean allowEnums;
 142 
 143     /** Switch: support boxing and unboxing?
 144      */
 145     boolean allowBoxing;
 146 
 147     /** Switch: support covariant result types?
 148      */
 149     boolean allowCovariantReturns;
 150 
 151     /** Switch: allow references to surrounding object from anonymous
 152      * objects during constructor call?
 153      */
 154     boolean allowAnonOuterThis;
 155 
 156     /** Switch: allow invokedynamic syntax
 157      */
 158     boolean allowInvokedynamic;
 159 
 160     /**
 161      * Switch: warn about use of variable before declaration?
 162      * RFE: 6425594
 163      */
 164     boolean useBeforeDeclarationWarning;
 165 
 166     /**
 167      * Switch: allow lint infrastructure to control Sun proprietary
 168      * API warnings.
 169      */
 170     boolean enableSunApiLintControl;
 171 
 172     /**
 173      * Switch: allow strings in switch?
 174      */
 175     boolean allowStringsInSwitch;
 176 
 177     /**
 178      * Switch: name of source level; used for error reporting.
 179      */
 180     String sourceName;
 181 
 182     /** Check kind and type of given tree against protokind and prototype.
 183      *  If check succeeds, store type in tree and return it.
 184      *  If check fails, store errType in tree and return it.
 185      *  No checks are performed if the prototype is a method type.
 186      *  It is not necessary in this case since we know that kind and type
 187      *  are correct.
 188      *
 189      *  @param tree     The tree whose kind and type is checked
 190      *  @param owntype  The computed type of the tree
 191      *  @param ownkind  The computed kind of the tree
 192      *  @param pkind    The expected kind (or: protokind) of the tree
 193      *  @param pt       The expected type (or: prototype) of the tree
 194      */
 195     Type check(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
 196         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
 197             if ((ownkind & ~pkind) == 0) {
 198                 owntype = chk.checkType(tree.pos(), owntype, pt);
 199             } else {
 200                 log.error(tree.pos(), "unexpected.type",
 201                           kindNames(pkind),
 202                           kindName(ownkind));
 203                 owntype = types.createErrorType(owntype);
 204             }
 205         }
 206         tree.type = owntype;
 207         return owntype;
 208     }
 209 
 210     Type checkReturn(JCTree tree, Type owntype, int ownkind, int pkind, Type pt) {
 211         if (owntype.tag != ERROR && pt.tag != METHOD && pt.tag != FORALL) {
 212             if ((ownkind & ~pkind) == 0) {
 213                 owntype = chk.checkReturnType(tree.pos(), owntype, pt);
 214             } else {
 215                 log.error(tree.pos(), "unexpected.type",
 216                           kindNames(pkind),
 217                           kindName(ownkind));
 218                 owntype = types.createErrorType(owntype);
 219             }
 220         }
 221         tree.type = owntype;
 222         return owntype;
 223     }
 224 
 225     /** Is given blank final variable assignable, i.e. in a scope where it
 226      *  may be assigned to even though it is final?
 227      *  @param v      The blank final variable.
 228      *  @param env    The current environment.
 229      */
 230     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 231         Symbol owner = env.info.scope.owner;
 232            // owner refers to the innermost variable, method or
 233            // initializer block declaration at this point.
 234         return
 235             v.owner == owner
 236             ||
 237             ((owner.name == names.init ||    // i.e. we are in a constructor
 238               owner.kind == VAR ||           // i.e. we are in a variable initializer
 239               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 240              &&
 241              v.owner == owner.owner
 242              &&
 243              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 244     }
 245 
 246     /** Check that variable can be assigned to.
 247      *  @param pos    The current source code position.
 248      *  @param v      The assigned varaible
 249      *  @param base   If the variable is referred to in a Select, the part
 250      *                to the left of the `.', null otherwise.
 251      *  @param env    The current environment.
 252      */
 253     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 254         if ((v.flags() & FINAL) != 0 &&
 255             ((v.flags() & HASINIT) != 0
 256              ||
 257              !((base == null ||
 258                (base.getTag() == JCTree.IDENT && TreeInfo.name(base) == names._this)) &&
 259                isAssignableAsBlankFinal(v, env)))) {
 260             log.error(pos, "cant.assign.val.to.final.var", v);
 261         }
 262     }
 263 
 264     /** Does tree represent a static reference to an identifier?
 265      *  It is assumed that tree is either a SELECT or an IDENT.
 266      *  We have to weed out selects from non-type names here.
 267      *  @param tree    The candidate tree.
 268      */
 269     boolean isStaticReference(JCTree tree) {
 270         if (tree.getTag() == JCTree.SELECT) {
 271             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 272             if (lsym == null || lsym.kind != TYP) {
 273                 return false;
 274             }
 275         }
 276         return true;
 277     }
 278 
 279     /** Is this symbol a type?
 280      */
 281     static boolean isType(Symbol sym) {
 282         return sym != null && sym.kind == TYP;
 283     }
 284 
 285     /** The current `this' symbol.
 286      *  @param env    The current environment.
 287      */
 288     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 289         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 290     }
 291 
 292     /** Attribute a parsed identifier.
 293      * @param tree Parsed identifier name
 294      * @param topLevel The toplevel to use
 295      */
 296     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 297         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 298         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 299                                            syms.errSymbol.name,
 300                                            null, null, null, null);
 301         localEnv.enclClass.sym = syms.errSymbol;
 302         return tree.accept(identAttributer, localEnv);
 303     }
 304     // where
 305         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 306         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 307             @Override
 308             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 309                 Symbol site = visit(node.getExpression(), env);
 310                 if (site.kind == ERR)
 311                     return site;
 312                 Name name = (Name)node.getIdentifier();
 313                 if (site.kind == PCK) {
 314                     env.toplevel.packge = (PackageSymbol)site;
 315                     return rs.findIdentInPackage(env, (TypeSymbol)site, name, TYP | PCK);
 316                 } else {
 317                     env.enclClass.sym = (ClassSymbol)site;
 318                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 319                 }
 320             }
 321 
 322             @Override
 323             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 324                 return rs.findIdent(env, (Name)node.getName(), TYP | PCK);
 325             }
 326         }
 327 
 328     public Type coerce(Type etype, Type ttype) {
 329         return cfolder.coerce(etype, ttype);
 330     }
 331 
 332     public Type attribType(JCTree node, TypeSymbol sym) {
 333         Env<AttrContext> env = enter.typeEnvs.get(sym);
 334         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 335         return attribTree(node, localEnv, Kinds.TYP, Type.noType);
 336     }
 337 
 338     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 339         breakTree = tree;
 340         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 341         try {
 342             attribExpr(expr, env);
 343         } catch (BreakAttr b) {
 344             return b.env;
 345         } finally {
 346             breakTree = null;
 347             log.useSource(prev);
 348         }
 349         return env;
 350     }
 351 
 352     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 353         breakTree = tree;
 354         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 355         try {
 356             attribStat(stmt, env);
 357         } catch (BreakAttr b) {
 358             return b.env;
 359         } finally {
 360             breakTree = null;
 361             log.useSource(prev);
 362         }
 363         return env;
 364     }
 365 
 366     private JCTree breakTree = null;
 367 
 368     private static class BreakAttr extends RuntimeException {
 369         static final long serialVersionUID = -6924771130405446405L;
 370         private Env<AttrContext> env;
 371         private BreakAttr(Env<AttrContext> env) {
 372             this.env = env;
 373         }
 374     }
 375 
 376 
 377 /* ************************************************************************
 378  * Visitor methods
 379  *************************************************************************/
 380 
 381     /** Visitor argument: the current environment.
 382      */
 383     Env<AttrContext> env;
 384 
 385     /** Visitor argument: the currently expected proto-kind.
 386      */
 387     int pkind;
 388 
 389     /** Visitor argument: the currently expected proto-type.
 390      */
 391     Type pt;
 392 
 393     /** Visitor result: the computed type.
 394      */
 395     Type result;
 396 
 397     /** Visitor method: attribute a tree, catching any completion failure
 398      *  exceptions. Return the tree's type.
 399      *
 400      *  @param tree    The tree to be visited.
 401      *  @param env     The environment visitor argument.
 402      *  @param pkind   The protokind visitor argument.
 403      *  @param pt      The prototype visitor argument.
 404      */
 405     Type attribTree(JCTree tree, Env<AttrContext> env, int pkind, Type pt) {
 406         Env<AttrContext> prevEnv = this.env;
 407         int prevPkind = this.pkind;
 408         Type prevPt = this.pt;
 409         try {
 410             this.env = env;
 411             this.pkind = pkind;
 412             this.pt = pt;
 413             tree.accept(this);
 414             if (tree == breakTree)
 415                 throw new BreakAttr(env);
 416             return result;
 417         } catch (CompletionFailure ex) {
 418             tree.type = syms.errType;
 419             return chk.completionError(tree.pos(), ex);
 420         } finally {
 421             this.env = prevEnv;
 422             this.pkind = prevPkind;
 423             this.pt = prevPt;
 424         }
 425     }
 426 
 427     /** Derived visitor method: attribute an expression tree.
 428      */
 429     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 430         return attribTree(tree, env, VAL, pt.tag != ERROR ? pt : Type.noType);
 431     }
 432 
 433     /** Derived visitor method: attribute an expression tree with
 434      *  no constraints on the computed type.
 435      */
 436     Type attribExpr(JCTree tree, Env<AttrContext> env) {
 437         return attribTree(tree, env, VAL, Type.noType);
 438     }
 439 
 440     /** Derived visitor method: attribute a type tree.
 441      */
 442     Type attribType(JCTree tree, Env<AttrContext> env) {
 443         Type result = attribType(tree, env, Type.noType);
 444         return result;
 445     }
 446 
 447     /** Derived visitor method: attribute a type tree.
 448      */
 449     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 450         Type result = attribTree(tree, env, TYP, pt);
 451         return result;
 452     }
 453 
 454     /** Derived visitor method: attribute a statement or definition tree.
 455      */
 456     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 457         return attribTree(tree, env, NIL, Type.noType);
 458     }
 459 
 460     /** Attribute a list of expressions, returning a list of types.
 461      */
 462     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 463         ListBuffer<Type> ts = new ListBuffer<Type>();
 464         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 465             ts.append(attribExpr(l.head, env, pt));
 466         return ts.toList();
 467     }
 468 
 469     /** Attribute a list of statements, returning nothing.
 470      */
 471     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 472         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 473             attribStat(l.head, env);
 474     }
 475 
 476     /** Attribute the arguments in a method call, returning a list of types.
 477      */
 478     List<Type> attribArgs(List<JCExpression> trees, Env<AttrContext> env) {
 479         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 480         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 481             argtypes.append(chk.checkNonVoid(
 482                 l.head.pos(), types.upperBound(attribTree(l.head, env, VAL, Infer.anyPoly))));
 483         return argtypes.toList();
 484     }
 485 
 486     /** Attribute a type argument list, returning a list of types.
 487      *  Caller is responsible for calling checkRefTypes.
 488      */
 489     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 490         ListBuffer<Type> argtypes = new ListBuffer<Type>();
 491         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 492             argtypes.append(attribType(l.head, env));
 493         return argtypes.toList();
 494     }
 495 
 496     /** Attribute a type argument list, returning a list of types.
 497      *  Check that all the types are references.
 498      */
 499     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 500         List<Type> types = attribAnyTypes(trees, env);
 501         return chk.checkRefTypes(trees, types);
 502     }
 503 
 504     /**
 505      * Attribute type variables (of generic classes or methods).
 506      * Compound types are attributed later in attribBounds.
 507      * @param typarams the type variables to enter
 508      * @param env      the current environment
 509      */
 510     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env) {
 511         for (JCTypeParameter tvar : typarams) {
 512             TypeVar a = (TypeVar)tvar.type;
 513             a.tsym.flags_field |= UNATTRIBUTED;
 514             a.bound = Type.noType;
 515             if (!tvar.bounds.isEmpty()) {
 516                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 517                 for (JCExpression bound : tvar.bounds.tail)
 518                     bounds = bounds.prepend(attribType(bound, env));
 519                 types.setBounds(a, bounds.reverse());
 520             } else {
 521                 // if no bounds are given, assume a single bound of
 522                 // java.lang.Object.
 523                 types.setBounds(a, List.of(syms.objectType));
 524             }
 525             a.tsym.flags_field &= ~UNATTRIBUTED;
 526         }
 527         for (JCTypeParameter tvar : typarams)
 528             chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 529         attribStats(typarams, env);
 530     }
 531 
 532     void attribBounds(List<JCTypeParameter> typarams) {
 533         for (JCTypeParameter typaram : typarams) {
 534             Type bound = typaram.type.getUpperBound();
 535             if (bound != null && bound.tsym instanceof ClassSymbol) {
 536                 ClassSymbol c = (ClassSymbol)bound.tsym;
 537                 if ((c.flags_field & COMPOUND) != 0) {
 538                     assert (c.flags_field & UNATTRIBUTED) != 0 : c;
 539                     attribClass(typaram.pos(), c);
 540                 }
 541             }
 542         }
 543     }
 544 
 545     /**
 546      * Attribute the type references in a list of annotations.
 547      */
 548     void attribAnnotationTypes(List<JCAnnotation> annotations,
 549                                Env<AttrContext> env) {
 550         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 551             JCAnnotation a = al.head;
 552             attribType(a.annotationType, env);
 553         }
 554     }
 555 
 556     /** Attribute type reference in an `extends' or `implements' clause.
 557      *
 558      *  @param tree              The tree making up the type reference.
 559      *  @param env               The environment current at the reference.
 560      *  @param classExpected     true if only a class is expected here.
 561      *  @param interfaceExpected true if only an interface is expected here.
 562      */
 563     Type attribBase(JCTree tree,
 564                     Env<AttrContext> env,
 565                     boolean classExpected,
 566                     boolean interfaceExpected,
 567                     boolean checkExtensible) {
 568         Type t = attribType(tree, env);
 569         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 570     }
 571     Type checkBase(Type t,
 572                    JCTree tree,
 573                    Env<AttrContext> env,
 574                    boolean classExpected,
 575                    boolean interfaceExpected,
 576                    boolean checkExtensible) {
 577         if (t.tag == TYPEVAR && !classExpected && !interfaceExpected) {
 578             // check that type variable is already visible
 579             if (t.getUpperBound() == null) {
 580                 log.error(tree.pos(), "illegal.forward.ref");
 581                 return types.createErrorType(t);
 582             }
 583         } else {
 584             t = chk.checkClassType(tree.pos(), t, checkExtensible|!allowGenerics);
 585         }
 586         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 587             log.error(tree.pos(), "intf.expected.here");
 588             // return errType is necessary since otherwise there might
 589             // be undetected cycles which cause attribution to loop
 590             return types.createErrorType(t);
 591         } else if (checkExtensible &&
 592                    classExpected &&
 593                    (t.tsym.flags() & INTERFACE) != 0) {
 594             log.error(tree.pos(), "no.intf.expected.here");
 595             return types.createErrorType(t);
 596         }
 597         if (checkExtensible &&
 598             ((t.tsym.flags() & FINAL) != 0)) {
 599             log.error(tree.pos(),
 600                       "cant.inherit.from.final", t.tsym);
 601         }
 602         chk.checkNonCyclic(tree.pos(), t);
 603         return t;
 604     }
 605 
 606     public void visitClassDef(JCClassDecl tree) {
 607         // Local classes have not been entered yet, so we need to do it now:
 608         if ((env.info.scope.owner.kind & (VAR | MTH)) != 0)
 609             enter.classEnter(tree, env);
 610 
 611         ClassSymbol c = tree.sym;
 612         if (c == null) {
 613             // exit in case something drastic went wrong during enter.
 614             result = null;
 615         } else {
 616             // make sure class has been completed:
 617             c.complete();
 618 
 619             // If this class appears as an anonymous class
 620             // in a superclass constructor call where
 621             // no explicit outer instance is given,
 622             // disable implicit outer instance from being passed.
 623             // (This would be an illegal access to "this before super").
 624             if (env.info.isSelfCall &&
 625                 env.tree.getTag() == JCTree.NEWCLASS &&
 626                 ((JCNewClass) env.tree).encl == null)
 627             {
 628                 c.flags_field |= NOOUTERTHIS;
 629             }
 630             attribClass(tree.pos(), c);
 631             result = tree.type = c.type;
 632         }
 633     }
 634 
 635     public void visitMethodDef(JCMethodDecl tree) {
 636         MethodSymbol m = tree.sym;
 637 
 638         Lint lint = env.info.lint.augment(m.attributes_field, m.flags());
 639         Lint prevLint = chk.setLint(lint);
 640         try {
 641             chk.checkDeprecatedAnnotation(tree.pos(), m);
 642 
 643             attribBounds(tree.typarams);
 644 
 645             // If we override any other methods, check that we do so properly.
 646             // JLS ???
 647             chk.checkOverride(tree, m);
 648 
 649             // Create a new environment with local scope
 650             // for attributing the method.
 651             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 652 
 653             localEnv.info.lint = lint;
 654 
 655             // Enter all type parameters into the local method scope.
 656             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
 657                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
 658 
 659             ClassSymbol owner = env.enclClass.sym;
 660             if ((owner.flags() & ANNOTATION) != 0 &&
 661                 tree.params.nonEmpty())
 662                 log.error(tree.params.head.pos(),
 663                           "intf.annotation.members.cant.have.params");
 664 
 665             // Attribute all value parameters.
 666             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
 667                 attribStat(l.head, localEnv);
 668             }
 669 
 670             // Check that type parameters are well-formed.
 671             chk.validate(tree.typarams, localEnv);
 672             if ((owner.flags() & ANNOTATION) != 0 &&
 673                 tree.typarams.nonEmpty())
 674                 log.error(tree.typarams.head.pos(),
 675                           "intf.annotation.members.cant.have.type.params");
 676 
 677             // Check that result type is well-formed.
 678             chk.validate(tree.restype, localEnv);
 679             if ((owner.flags() & ANNOTATION) != 0)
 680                 chk.validateAnnotationType(tree.restype);
 681 
 682             if ((owner.flags() & ANNOTATION) != 0)
 683                 chk.validateAnnotationMethod(tree.pos(), m);
 684 
 685             // Check that all exceptions mentioned in the throws clause extend
 686             // java.lang.Throwable.
 687             if ((owner.flags() & ANNOTATION) != 0 && tree.thrown.nonEmpty())
 688                 log.error(tree.thrown.head.pos(),
 689                           "throws.not.allowed.in.intf.annotation");
 690             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
 691                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
 692 
 693             if (tree.body == null) {
 694                 // Empty bodies are only allowed for
 695                 // abstract, native, or interface methods, or for methods
 696                 // in a retrofit signature class.
 697                 if ((owner.flags() & INTERFACE) == 0 &&
 698                     (tree.mods.flags & (ABSTRACT | NATIVE)) == 0 &&
 699                     !relax)
 700                     log.error(tree.pos(), "missing.meth.body.or.decl.abstract");
 701                 if (tree.defaultValue != null) {
 702                     if ((owner.flags() & ANNOTATION) == 0)
 703                         log.error(tree.pos(),
 704                                   "default.allowed.in.intf.annotation.member");
 705                 }
 706             } else if ((owner.flags() & INTERFACE) != 0) {
 707                 log.error(tree.body.pos(), "intf.meth.cant.have.body");
 708             } else if ((tree.mods.flags & ABSTRACT) != 0) {
 709                 log.error(tree.pos(), "abstract.meth.cant.have.body");
 710             } else if ((tree.mods.flags & NATIVE) != 0) {
 711                 log.error(tree.pos(), "native.meth.cant.have.body");
 712             } else {
 713                 // Add an implicit super() call unless an explicit call to
 714                 // super(...) or this(...) is given
 715                 // or we are compiling class java.lang.Object.
 716                 if (tree.name == names.init && owner.type != syms.objectType) {
 717                     JCBlock body = tree.body;
 718                     if (body.stats.isEmpty() ||
 719                         !TreeInfo.isSelfCall(body.stats.head)) {
 720                         body.stats = body.stats.
 721                             prepend(memberEnter.SuperCall(make.at(body.pos),
 722                                                           List.<Type>nil(),
 723                                                           List.<JCVariableDecl>nil(),
 724                                                           false));
 725                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
 726                                (tree.mods.flags & GENERATEDCONSTR) == 0 &&
 727                                TreeInfo.isSuperCall(body.stats.head)) {
 728                         // enum constructors are not allowed to call super
 729                         // directly, so make sure there aren't any super calls
 730                         // in enum constructors, except in the compiler
 731                         // generated one.
 732                         log.error(tree.body.stats.head.pos(),
 733                                   "call.to.super.not.allowed.in.enum.ctor",
 734                                   env.enclClass.sym);
 735                     }
 736                 }
 737 
 738                 // Attribute method body.
 739                 attribStat(tree.body, localEnv);
 740             }
 741             localEnv.info.scope.leave();
 742             result = tree.type = m.type;
 743             chk.validateAnnotations(tree.mods.annotations, m);
 744         }
 745         finally {
 746             chk.setLint(prevLint);
 747         }
 748     }
 749 
 750     public void visitVarDef(JCVariableDecl tree) {
 751         // Local variables have not been entered yet, so we need to do it now:
 752         if (env.info.scope.owner.kind == MTH) {
 753             if (tree.sym != null) {
 754                 // parameters have already been entered
 755                 env.info.scope.enter(tree.sym);
 756             } else {
 757                 memberEnter.memberEnter(tree, env);
 758                 annotate.flush();
 759             }
 760         }
 761 
 762         VarSymbol v = tree.sym;
 763         Lint lint = env.info.lint.augment(v.attributes_field, v.flags());
 764         Lint prevLint = chk.setLint(lint);
 765 
 766         // Check that the variable's declared type is well-formed.
 767         chk.validate(tree.vartype, env);
 768 
 769         try {
 770             chk.checkDeprecatedAnnotation(tree.pos(), v);
 771 
 772             if (tree.init != null) {
 773                 if ((v.flags_field & FINAL) != 0 && tree.init.getTag() != JCTree.NEWCLASS) {
 774                     // In this case, `v' is final.  Ensure that it's initializer is
 775                     // evaluated.
 776                     v.getConstValue(); // ensure initializer is evaluated
 777                 } else {
 778                     // Attribute initializer in a new environment
 779                     // with the declared variable as owner.
 780                     // Check that initializer conforms to variable's declared type.
 781                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
 782                     initEnv.info.lint = lint;
 783                     // In order to catch self-references, we set the variable's
 784                     // declaration position to maximal possible value, effectively
 785                     // marking the variable as undefined.
 786                     initEnv.info.enclVar = v;
 787                     attribExpr(tree.init, initEnv, v.type);
 788                 }
 789             }
 790             result = tree.type = v.type;
 791             chk.validateAnnotations(tree.mods.annotations, v);
 792         }
 793         finally {
 794             chk.setLint(prevLint);
 795         }
 796     }
 797 
 798     public void visitSkip(JCSkip tree) {
 799         result = null;
 800     }
 801 
 802     public void visitBlock(JCBlock tree) {
 803         if (env.info.scope.owner.kind == TYP) {
 804             // Block is a static or instance initializer;
 805             // let the owner of the environment be a freshly
 806             // created BLOCK-method.
 807             Env<AttrContext> localEnv =
 808                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared()));
 809             localEnv.info.scope.owner =
 810                 new MethodSymbol(tree.flags | BLOCK, names.empty, null,
 811                                  env.info.scope.owner);
 812             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
 813             attribStats(tree.stats, localEnv);
 814         } else {
 815             // Create a new local environment with a local scope.
 816             Env<AttrContext> localEnv =
 817                 env.dup(tree, env.info.dup(env.info.scope.dup()));
 818             attribStats(tree.stats, localEnv);
 819             localEnv.info.scope.leave();
 820         }
 821         result = null;
 822     }
 823 
 824     public void visitDoLoop(JCDoWhileLoop tree) {
 825         attribStat(tree.body, env.dup(tree));
 826         attribExpr(tree.cond, env, syms.booleanType);
 827         result = null;
 828     }
 829 
 830     public void visitWhileLoop(JCWhileLoop tree) {
 831         attribExpr(tree.cond, env, syms.booleanType);
 832         attribStat(tree.body, env.dup(tree));
 833         result = null;
 834     }
 835 
 836     public void visitForLoop(JCForLoop tree) {
 837         Env<AttrContext> loopEnv =
 838             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
 839         attribStats(tree.init, loopEnv);
 840         if (tree.cond != null) attribExpr(tree.cond, loopEnv, syms.booleanType);
 841         loopEnv.tree = tree; // before, we were not in loop!
 842         attribStats(tree.step, loopEnv);
 843         attribStat(tree.body, loopEnv);
 844         loopEnv.info.scope.leave();
 845         result = null;
 846     }
 847 
 848     public void visitForeachLoop(JCEnhancedForLoop tree) {
 849         Env<AttrContext> loopEnv =
 850             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
 851         attribStat(tree.var, loopEnv);
 852         Type exprType = types.upperBound(attribExpr(tree.expr, loopEnv));
 853         chk.checkNonVoid(tree.pos(), exprType);
 854         Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
 855         if (elemtype == null) {
 856             // or perhaps expr implements Iterable<T>?
 857             Type base = types.asSuper(exprType, syms.iterableType.tsym);
 858             if (base == null) {
 859                 log.error(tree.expr.pos(), "foreach.not.applicable.to.type");
 860                 elemtype = types.createErrorType(exprType);
 861             } else {
 862                 List<Type> iterableParams = base.allparams();
 863                 elemtype = iterableParams.isEmpty()
 864                     ? syms.objectType
 865                     : types.upperBound(iterableParams.head);
 866             }
 867         }
 868         chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
 869         loopEnv.tree = tree; // before, we were not in loop!
 870         attribStat(tree.body, loopEnv);
 871         loopEnv.info.scope.leave();
 872         result = null;
 873     }
 874 
 875     public void visitLabelled(JCLabeledStatement tree) {
 876         // Check that label is not used in an enclosing statement
 877         Env<AttrContext> env1 = env;
 878         while (env1 != null && env1.tree.getTag() != JCTree.CLASSDEF) {
 879             if (env1.tree.getTag() == JCTree.LABELLED &&
 880                 ((JCLabeledStatement) env1.tree).label == tree.label) {
 881                 log.error(tree.pos(), "label.already.in.use",
 882                           tree.label);
 883                 break;
 884             }
 885             env1 = env1.next;
 886         }
 887 
 888         attribStat(tree.body, env.dup(tree));
 889         result = null;
 890     }
 891 
 892     public void visitSwitch(JCSwitch tree) {
 893         Type seltype = attribExpr(tree.selector, env);
 894 
 895         Env<AttrContext> switchEnv =
 896             env.dup(tree, env.info.dup(env.info.scope.dup()));
 897 
 898         boolean enumSwitch =
 899             allowEnums &&
 900             (seltype.tsym.flags() & Flags.ENUM) != 0;
 901         boolean stringSwitch = false;
 902         if (types.isSameType(seltype, syms.stringType)) {
 903             if (allowStringsInSwitch) {
 904                 stringSwitch = true;
 905             } else {
 906                 log.error(tree.selector.pos(), "string.switch.not.supported.in.source", sourceName);
 907             }
 908         }
 909         if (!enumSwitch && !stringSwitch)
 910             seltype = chk.checkType(tree.selector.pos(), seltype, syms.intType);
 911 
 912         // Attribute all cases and
 913         // check that there are no duplicate case labels or default clauses.
 914         Set<Object> labels = new HashSet<Object>(); // The set of case labels.
 915         boolean hasDefault = false;      // Is there a default label?
 916         for (List<JCCase> l = tree.cases; l.nonEmpty(); l = l.tail) {
 917             JCCase c = l.head;
 918             Env<AttrContext> caseEnv =
 919                 switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
 920             if (c.pat != null) {
 921                 if (enumSwitch) {
 922                     Symbol sym = enumConstant(c.pat, seltype);
 923                     if (sym == null) {
 924                         log.error(c.pat.pos(), "enum.const.req");
 925                     } else if (!labels.add(sym)) {
 926                         log.error(c.pos(), "duplicate.case.label");
 927                     }
 928                 } else {
 929                     Type pattype = attribExpr(c.pat, switchEnv, seltype);
 930                     if (pattype.tag != ERROR) {
 931                         if (pattype.constValue() == null) {
 932                             log.error(c.pat.pos(),
 933                                       (stringSwitch ? "string.const.req" : "const.expr.req"));
 934                         } else if (labels.contains(pattype.constValue())) {
 935                             log.error(c.pos(), "duplicate.case.label");
 936                         } else {
 937                             labels.add(pattype.constValue());
 938                         }
 939                     }
 940                 }
 941             } else if (hasDefault) {
 942                 log.error(c.pos(), "duplicate.default.label");
 943             } else {
 944                 hasDefault = true;
 945             }
 946             attribStats(c.stats, caseEnv);
 947             caseEnv.info.scope.leave();
 948             addVars(c.stats, switchEnv.info.scope);
 949         }
 950 
 951         switchEnv.info.scope.leave();
 952         result = null;
 953     }
 954     // where
 955         /** Add any variables defined in stats to the switch scope. */
 956         private static void addVars(List<JCStatement> stats, Scope switchScope) {
 957             for (;stats.nonEmpty(); stats = stats.tail) {
 958                 JCTree stat = stats.head;
 959                 if (stat.getTag() == JCTree.VARDEF)
 960                     switchScope.enter(((JCVariableDecl) stat).sym);
 961             }
 962         }
 963     // where
 964     /** Return the selected enumeration constant symbol, or null. */
 965     private Symbol enumConstant(JCTree tree, Type enumType) {
 966         if (tree.getTag() != JCTree.IDENT) {
 967             log.error(tree.pos(), "enum.label.must.be.unqualified.enum");
 968             return syms.errSymbol;
 969         }
 970         JCIdent ident = (JCIdent)tree;
 971         Name name = ident.name;
 972         for (Scope.Entry e = enumType.tsym.members().lookup(name);
 973              e.scope != null; e = e.next()) {
 974             if (e.sym.kind == VAR) {
 975                 Symbol s = ident.sym = e.sym;
 976                 ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
 977                 ident.type = s.type;
 978                 return ((s.flags_field & Flags.ENUM) == 0)
 979                     ? null : s;
 980             }
 981         }
 982         return null;
 983     }
 984 
 985     public void visitSynchronized(JCSynchronized tree) {
 986         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
 987         attribStat(tree.body, env);
 988         result = null;
 989     }
 990 
 991     public void visitTry(JCTry tree) {
 992         // Attribute body
 993         attribStat(tree.body, env.dup(tree, env.info.dup()));
 994 
 995         // Attribute catch clauses
 996         for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
 997             JCCatch c = l.head;
 998             Env<AttrContext> catchEnv =
 999                 env.dup(c, env.info.dup(env.info.scope.dup()));
1000             Type ctype = attribStat(c.param, catchEnv);
1001             if (c.param.type.tsym.kind == Kinds.VAR) {
1002                 c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1003             }
1004             chk.checkType(c.param.vartype.pos(),
1005                           chk.checkClassType(c.param.vartype.pos(), ctype),
1006                           syms.throwableType);
1007             attribStat(c.body, catchEnv);
1008             catchEnv.info.scope.leave();
1009         }
1010 
1011         // Attribute finalizer
1012         if (tree.finalizer != null) attribStat(tree.finalizer, env);
1013         result = null;
1014     }
1015 
1016     public void visitConditional(JCConditional tree) {
1017         attribExpr(tree.cond, env, syms.booleanType);
1018         attribExpr(tree.truepart, env);
1019         attribExpr(tree.falsepart, env);
1020         result = check(tree,
1021                        capture(condType(tree.pos(), tree.cond.type,
1022                                         tree.truepart.type, tree.falsepart.type)),
1023                        VAL, pkind, pt);
1024     }
1025     //where
1026         /** Compute the type of a conditional expression, after
1027          *  checking that it exists. See Spec 15.25.
1028          *
1029          *  @param pos      The source position to be used for
1030          *                  error diagnostics.
1031          *  @param condtype The type of the expression's condition.
1032          *  @param thentype The type of the expression's then-part.
1033          *  @param elsetype The type of the expression's else-part.
1034          */
1035         private Type condType(DiagnosticPosition pos,
1036                               Type condtype,
1037                               Type thentype,
1038                               Type elsetype) {
1039             Type ctype = condType1(pos, condtype, thentype, elsetype);
1040 
1041             // If condition and both arms are numeric constants,
1042             // evaluate at compile-time.
1043             return ((condtype.constValue() != null) &&
1044                     (thentype.constValue() != null) &&
1045                     (elsetype.constValue() != null))
1046                 ? cfolder.coerce(condtype.isTrue()?thentype:elsetype, ctype)
1047                 : ctype;
1048         }
1049         /** Compute the type of a conditional expression, after
1050          *  checking that it exists.  Does not take into
1051          *  account the special case where condition and both arms
1052          *  are constants.
1053          *
1054          *  @param pos      The source position to be used for error
1055          *                  diagnostics.
1056          *  @param condtype The type of the expression's condition.
1057          *  @param thentype The type of the expression's then-part.
1058          *  @param elsetype The type of the expression's else-part.
1059          */
1060         private Type condType1(DiagnosticPosition pos, Type condtype,
1061                                Type thentype, Type elsetype) {
1062             // If same type, that is the result
1063             if (types.isSameType(thentype, elsetype))
1064                 return thentype.baseType();
1065 
1066             Type thenUnboxed = (!allowBoxing || thentype.isPrimitive())
1067                 ? thentype : types.unboxedType(thentype);
1068             Type elseUnboxed = (!allowBoxing || elsetype.isPrimitive())
1069                 ? elsetype : types.unboxedType(elsetype);
1070 
1071             // Otherwise, if both arms can be converted to a numeric
1072             // type, return the least numeric type that fits both arms
1073             // (i.e. return larger of the two, or return int if one
1074             // arm is short, the other is char).
1075             if (thenUnboxed.isPrimitive() && elseUnboxed.isPrimitive()) {
1076                 // If one arm has an integer subrange type (i.e., byte,
1077                 // short, or char), and the other is an integer constant
1078                 // that fits into the subrange, return the subrange type.
1079                 if (thenUnboxed.tag < INT && elseUnboxed.tag == INT &&
1080                     types.isAssignable(elseUnboxed, thenUnboxed))
1081                     return thenUnboxed.baseType();
1082                 if (elseUnboxed.tag < INT && thenUnboxed.tag == INT &&
1083                     types.isAssignable(thenUnboxed, elseUnboxed))
1084                     return elseUnboxed.baseType();
1085 
1086                 for (int i = BYTE; i < VOID; i++) {
1087                     Type candidate = syms.typeOfTag[i];
1088                     if (types.isSubtype(thenUnboxed, candidate) &&
1089                         types.isSubtype(elseUnboxed, candidate))
1090                         return candidate;
1091                 }
1092             }
1093 
1094             // Those were all the cases that could result in a primitive
1095             if (allowBoxing) {
1096                 if (thentype.isPrimitive())
1097                     thentype = types.boxedClass(thentype).type;
1098                 if (elsetype.isPrimitive())
1099                     elsetype = types.boxedClass(elsetype).type;
1100             }
1101 
1102             if (types.isSubtype(thentype, elsetype))
1103                 return elsetype.baseType();
1104             if (types.isSubtype(elsetype, thentype))
1105                 return thentype.baseType();
1106 
1107             if (!allowBoxing || thentype.tag == VOID || elsetype.tag == VOID) {
1108                 log.error(pos, "neither.conditional.subtype",
1109                           thentype, elsetype);
1110                 return thentype.baseType();
1111             }
1112 
1113             // both are known to be reference types.  The result is
1114             // lub(thentype,elsetype). This cannot fail, as it will
1115             // always be possible to infer "Object" if nothing better.
1116             return types.lub(thentype.baseType(), elsetype.baseType());
1117         }
1118 
1119     public void visitIf(JCIf tree) {
1120         attribExpr(tree.cond, env, syms.booleanType);
1121         attribStat(tree.thenpart, env);
1122         if (tree.elsepart != null)
1123             attribStat(tree.elsepart, env);
1124         chk.checkEmptyIf(tree);
1125         result = null;
1126     }
1127 
1128     public void visitExec(JCExpressionStatement tree) {
1129         attribExpr(tree.expr, env);
1130         result = null;
1131     }
1132 
1133     public void visitBreak(JCBreak tree) {
1134         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1135         result = null;
1136     }
1137 
1138     public void visitContinue(JCContinue tree) {
1139         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
1140         result = null;
1141     }
1142     //where
1143         /** Return the target of a break or continue statement, if it exists,
1144          *  report an error if not.
1145          *  Note: The target of a labelled break or continue is the
1146          *  (non-labelled) statement tree referred to by the label,
1147          *  not the tree representing the labelled statement itself.
1148          *
1149          *  @param pos     The position to be used for error diagnostics
1150          *  @param tag     The tag of the jump statement. This is either
1151          *                 Tree.BREAK or Tree.CONTINUE.
1152          *  @param label   The label of the jump statement, or null if no
1153          *                 label is given.
1154          *  @param env     The environment current at the jump statement.
1155          */
1156         private JCTree findJumpTarget(DiagnosticPosition pos,
1157                                     int tag,
1158                                     Name label,
1159                                     Env<AttrContext> env) {
1160             // Search environments outwards from the point of jump.
1161             Env<AttrContext> env1 = env;
1162             LOOP:
1163             while (env1 != null) {
1164                 switch (env1.tree.getTag()) {
1165                 case JCTree.LABELLED:
1166                     JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
1167                     if (label == labelled.label) {
1168                         // If jump is a continue, check that target is a loop.
1169                         if (tag == JCTree.CONTINUE) {
1170                             if (labelled.body.getTag() != JCTree.DOLOOP &&
1171                                 labelled.body.getTag() != JCTree.WHILELOOP &&
1172                                 labelled.body.getTag() != JCTree.FORLOOP &&
1173                                 labelled.body.getTag() != JCTree.FOREACHLOOP)
1174                                 log.error(pos, "not.loop.label", label);
1175                             // Found labelled statement target, now go inwards
1176                             // to next non-labelled tree.
1177                             return TreeInfo.referencedStatement(labelled);
1178                         } else {
1179                             return labelled;
1180                         }
1181                     }
1182                     break;
1183                 case JCTree.DOLOOP:
1184                 case JCTree.WHILELOOP:
1185                 case JCTree.FORLOOP:
1186                 case JCTree.FOREACHLOOP:
1187                     if (label == null) return env1.tree;
1188                     break;
1189                 case JCTree.SWITCH:
1190                     if (label == null && tag == JCTree.BREAK) return env1.tree;
1191                     break;
1192                 case JCTree.METHODDEF:
1193                 case JCTree.CLASSDEF:
1194                     break LOOP;
1195                 default:
1196                 }
1197                 env1 = env1.next;
1198             }
1199             if (label != null)
1200                 log.error(pos, "undef.label", label);
1201             else if (tag == JCTree.CONTINUE)
1202                 log.error(pos, "cont.outside.loop");
1203             else
1204                 log.error(pos, "break.outside.switch.loop");
1205             return null;
1206         }
1207 
1208     public void visitReturn(JCReturn tree) {
1209         // Check that there is an enclosing method which is
1210         // nested within than the enclosing class.
1211         if (env.enclMethod == null ||
1212             env.enclMethod.sym.owner != env.enclClass.sym) {
1213             log.error(tree.pos(), "ret.outside.meth");
1214 
1215         } else {
1216             // Attribute return expression, if it exists, and check that
1217             // it conforms to result type of enclosing method.
1218             Symbol m = env.enclMethod.sym;
1219             if (m.type.getReturnType().tag == VOID) {
1220                 if (tree.expr != null)
1221                     log.error(tree.expr.pos(),
1222                               "cant.ret.val.from.meth.decl.void");
1223             } else if (tree.expr == null) {
1224                 log.error(tree.pos(), "missing.ret.val");
1225             } else {
1226                 attribExpr(tree.expr, env, m.type.getReturnType());
1227             }
1228         }
1229         result = null;
1230     }
1231 
1232     public void visitThrow(JCThrow tree) {
1233         attribExpr(tree.expr, env, syms.throwableType);
1234         result = null;
1235     }
1236 
1237     public void visitAssert(JCAssert tree) {
1238         attribExpr(tree.cond, env, syms.booleanType);
1239         if (tree.detail != null) {
1240             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
1241         }
1242         result = null;
1243     }
1244 
1245      /** Visitor method for method invocations.
1246      *  NOTE: The method part of an application will have in its type field
1247      *        the return type of the method, not the method's type itself!
1248      */
1249     public void visitApply(JCMethodInvocation tree) {
1250         // The local environment of a method application is
1251         // a new environment nested in the current one.
1252         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1253 
1254         // The types of the actual method arguments.
1255         List<Type> argtypes;
1256 
1257         // The types of the actual method type arguments.
1258         List<Type> typeargtypes = null;
1259         boolean typeargtypesNonRefOK = false;
1260 
1261         Name methName = TreeInfo.name(tree.meth);
1262 
1263         boolean isConstructorCall =
1264             methName == names._this || methName == names._super;
1265 
1266         if (isConstructorCall) {
1267             // We are seeing a ...this(...) or ...super(...) call.
1268             // Check that this is the first statement in a constructor.
1269             if (checkFirstConstructorStat(tree, env)) {
1270 
1271                 // Record the fact
1272                 // that this is a constructor call (using isSelfCall).
1273                 localEnv.info.isSelfCall = true;
1274 
1275                 // Attribute arguments, yielding list of argument types.
1276                 argtypes = attribArgs(tree.args, localEnv);
1277                 typeargtypes = attribTypes(tree.typeargs, localEnv);
1278 
1279                 // Variable `site' points to the class in which the called
1280                 // constructor is defined.
1281                 Type site = env.enclClass.sym.type;
1282                 if (methName == names._super) {
1283                     if (site == syms.objectType) {
1284                         log.error(tree.meth.pos(), "no.superclass", site);
1285                         site = types.createErrorType(syms.objectType);
1286                     } else {
1287                         site = types.supertype(site);
1288                     }
1289                 }
1290 
1291                 if (site.tag == CLASS) {
1292                     Type encl = site.getEnclosingType();
1293                     while (encl != null && encl.tag == TYPEVAR)
1294                         encl = encl.getUpperBound();
1295                     if (encl.tag == CLASS) {
1296                         // we are calling a nested class
1297 
1298                         if (tree.meth.getTag() == JCTree.SELECT) {
1299                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
1300 
1301                             // We are seeing a prefixed call, of the form
1302                             //     <expr>.super(...).
1303                             // Check that the prefix expression conforms
1304                             // to the outer instance type of the class.
1305                             chk.checkRefType(qualifier.pos(),
1306                                              attribExpr(qualifier, localEnv,
1307                                                         encl));
1308                         } else if (methName == names._super) {
1309                             // qualifier omitted; check for existence
1310                             // of an appropriate implicit qualifier.
1311                             rs.resolveImplicitThis(tree.meth.pos(),
1312                                                    localEnv, site);
1313                         }
1314                     } else if (tree.meth.getTag() == JCTree.SELECT) {
1315                         log.error(tree.meth.pos(), "illegal.qual.not.icls",
1316                                   site.tsym);
1317                     }
1318 
1319                     // if we're calling a java.lang.Enum constructor,
1320                     // prefix the implicit String and int parameters
1321                     if (site.tsym == syms.enumSym && allowEnums)
1322                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
1323 
1324                     // Resolve the called constructor under the assumption
1325                     // that we are referring to a superclass instance of the
1326                     // current instance (JLS ???).
1327                     boolean selectSuperPrev = localEnv.info.selectSuper;
1328                     localEnv.info.selectSuper = true;
1329                     localEnv.info.varArgs = false;
1330                     Symbol sym = rs.resolveConstructor(
1331                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
1332                     localEnv.info.selectSuper = selectSuperPrev;
1333 
1334                     // Set method symbol to resolved constructor...
1335                     TreeInfo.setSymbol(tree.meth, sym);
1336 
1337                     // ...and check that it is legal in the current context.
1338                     // (this will also set the tree's type)
1339                     Type mpt = newMethTemplate(argtypes, typeargtypes);
1340                     checkId(tree.meth, site, sym, localEnv, MTH,
1341                             mpt, tree.varargsElement != null);
1342                 }
1343                 // Otherwise, `site' is an error type and we do nothing
1344             }
1345             result = tree.type = syms.voidType;
1346         } else {
1347             // Otherwise, we are seeing a regular method call.
1348             // Attribute the arguments, yielding list of argument types, ...
1349             argtypes = attribArgs(tree.args, localEnv);
1350             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
1351 
1352             // ... and attribute the method using as a prototype a methodtype
1353             // whose formal argument types is exactly the list of actual
1354             // arguments (this will also set the method symbol).
1355             Type mpt = newMethTemplate(argtypes, typeargtypes);
1356             localEnv.info.varArgs = false;
1357             Type mtype = attribExpr(tree.meth, localEnv, mpt);
1358             if (localEnv.info.varArgs)
1359                 assert mtype.isErroneous() || tree.varargsElement != null;
1360 
1361             // Compute the result type.
1362             Type restype = mtype.getReturnType();
1363             assert restype.tag != WILDCARD : mtype;
1364 
1365             // as a special case, array.clone() has a result that is
1366             // the same as static type of the array being cloned
1367             if (tree.meth.getTag() == JCTree.SELECT &&
1368                 allowCovariantReturns &&
1369                 methName == names.clone &&
1370                 types.isArray(((JCFieldAccess) tree.meth).selected.type))
1371                 restype = ((JCFieldAccess) tree.meth).selected.type;
1372 
1373             // as a special case, x.getClass() has type Class<? extends |X|>
1374             if (allowGenerics &&
1375                 methName == names.getClass && tree.args.isEmpty()) {
1376                 Type qualifier = (tree.meth.getTag() == JCTree.SELECT)
1377                     ? ((JCFieldAccess) tree.meth).selected.type
1378                     : env.enclClass.sym.type;
1379                 restype = new
1380                     ClassType(restype.getEnclosingType(),
1381                               List.<Type>of(new WildcardType(types.erasure(qualifier),
1382                                                                BoundKind.EXTENDS,
1383                                                                syms.boundClass)),
1384                               restype.tsym);
1385             }
1386 
1387             // as a special case, MethodHandle.<T>invoke(abc) and InvokeDynamic.<T>foo(abc)
1388             // has type <T>, and T can be a primitive type.
1389             if (tree.meth.getTag() == JCTree.SELECT && !typeargtypes.isEmpty()) {
1390               Type selt = ((JCFieldAccess) tree.meth).selected.type;
1391               if ((selt == syms.methodHandleType && methName == names.invoke) || selt == syms.invokeDynamicType) {
1392                   assert types.isSameType(restype, typeargtypes.head) : mtype;
1393                   typeargtypesNonRefOK = true;
1394               }
1395             }
1396 
1397             if (!typeargtypesNonRefOK) {
1398                 chk.checkRefTypes(tree.typeargs, typeargtypes);
1399             }
1400 
1401             // Check that value of resulting type is admissible in the
1402             // current context.  Also, capture the return type
1403             result = checkReturn(tree, capture(restype), VAL, pkind, pt);
1404         }
1405         chk.validate(tree.typeargs, localEnv);
1406     }
1407     //where
1408         /** Check that given application node appears as first statement
1409          *  in a constructor call.
1410          *  @param tree   The application node
1411          *  @param env    The environment current at the application.
1412          */
1413         boolean checkFirstConstructorStat(JCMethodInvocation tree, Env<AttrContext> env) {
1414             JCMethodDecl enclMethod = env.enclMethod;
1415             if (enclMethod != null && enclMethod.name == names.init) {
1416                 JCBlock body = enclMethod.body;
1417                 if (body.stats.head.getTag() == JCTree.EXEC &&
1418                     ((JCExpressionStatement) body.stats.head).expr == tree)
1419                     return true;
1420             }
1421             log.error(tree.pos(),"call.must.be.first.stmt.in.ctor",
1422                       TreeInfo.name(tree.meth));
1423             return false;
1424         }
1425 
1426         /** Obtain a method type with given argument types.
1427          */
1428         Type newMethTemplate(List<Type> argtypes, List<Type> typeargtypes) {
1429             MethodType mt = new MethodType(argtypes, null, null, syms.methodClass);
1430             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
1431         }
1432 
1433     public void visitNewClass(JCNewClass tree) {
1434         Type owntype = types.createErrorType(tree.type);
1435 
1436         // The local environment of a class creation is
1437         // a new environment nested in the current one.
1438         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
1439 
1440         // The anonymous inner class definition of the new expression,
1441         // if one is defined by it.
1442         JCClassDecl cdef = tree.def;
1443 
1444         // If enclosing class is given, attribute it, and
1445         // complete class name to be fully qualified
1446         JCExpression clazz = tree.clazz; // Class field following new
1447         JCExpression clazzid =          // Identifier in class field
1448             (clazz.getTag() == JCTree.TYPEAPPLY)
1449             ? ((JCTypeApply) clazz).clazz
1450             : clazz;
1451 
1452         JCExpression clazzid1 = clazzid; // The same in fully qualified form
1453 
1454         if (tree.encl != null) {
1455             // We are seeing a qualified new, of the form
1456             //    <expr>.new C <...> (...) ...
1457             // In this case, we let clazz stand for the name of the
1458             // allocated class C prefixed with the type of the qualifier
1459             // expression, so that we can
1460             // resolve it with standard techniques later. I.e., if
1461             // <expr> has type T, then <expr>.new C <...> (...)
1462             // yields a clazz T.C.
1463             Type encltype = chk.checkRefType(tree.encl.pos(),
1464                                              attribExpr(tree.encl, env));
1465             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
1466                                                  ((JCIdent) clazzid).name);
1467             if (clazz.getTag() == JCTree.TYPEAPPLY)
1468                 clazz = make.at(tree.pos).
1469                     TypeApply(clazzid1,
1470                               ((JCTypeApply) clazz).arguments);
1471             else
1472                 clazz = clazzid1;
1473 //          System.out.println(clazz + " generated.");//DEBUG
1474         }
1475 
1476         // Attribute clazz expression and store
1477         // symbol + type back into the attributed tree.
1478         Type clazztype = attribType(clazz, env);
1479         chk.validate(clazz, localEnv);
1480         clazztype = chk.checkNewClassType(clazz.pos(), clazztype, true, pt);
1481         if (tree.encl != null) {
1482             // We have to work in this case to store
1483             // symbol + type back into the attributed tree.
1484             tree.clazz.type = clazztype;
1485             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
1486             clazzid.type = ((JCIdent) clazzid).sym.type;
1487             if (!clazztype.isErroneous()) {
1488                 if (cdef != null && clazztype.tsym.isInterface()) {
1489                     log.error(tree.encl.pos(), "anon.class.impl.intf.no.qual.for.new");
1490                 } else if (clazztype.tsym.isStatic()) {
1491                     log.error(tree.encl.pos(), "qualified.new.of.static.class", clazztype.tsym);
1492                 }
1493             }
1494         } else if (!clazztype.tsym.isInterface() &&
1495                    clazztype.getEnclosingType().tag == CLASS) {
1496             // Check for the existence of an apropos outer instance
1497             rs.resolveImplicitThis(tree.pos(), env, clazztype);
1498         }
1499 
1500         // Attribute constructor arguments.
1501         List<Type> argtypes = attribArgs(tree.args, localEnv);
1502         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
1503 
1504         // If we have made no mistakes in the class type...
1505         if (clazztype.tag == CLASS) {
1506             // Enums may not be instantiated except implicitly
1507             if (allowEnums &&
1508                 (clazztype.tsym.flags_field&Flags.ENUM) != 0 &&
1509                 (env.tree.getTag() != JCTree.VARDEF ||
1510                  (((JCVariableDecl) env.tree).mods.flags&Flags.ENUM) == 0 ||
1511                  ((JCVariableDecl) env.tree).init != tree))
1512                 log.error(tree.pos(), "enum.cant.be.instantiated");
1513             // Check that class is not abstract
1514             if (cdef == null &&
1515                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
1516                 log.error(tree.pos(), "abstract.cant.be.instantiated",
1517                           clazztype.tsym);
1518             } else if (cdef != null && clazztype.tsym.isInterface()) {
1519                 // Check that no constructor arguments are given to
1520                 // anonymous classes implementing an interface
1521                 if (!argtypes.isEmpty())
1522                     log.error(tree.args.head.pos(), "anon.class.impl.intf.no.args");
1523 
1524                 if (!typeargtypes.isEmpty())
1525                     log.error(tree.typeargs.head.pos(), "anon.class.impl.intf.no.typeargs");
1526 
1527                 // Error recovery: pretend no arguments were supplied.
1528                 argtypes = List.nil();
1529                 typeargtypes = List.nil();
1530             }
1531 
1532             // Resolve the called constructor under the assumption
1533             // that we are referring to a superclass instance of the
1534             // current instance (JLS ???).
1535             else {
1536                 localEnv.info.selectSuper = cdef != null;
1537                 localEnv.info.varArgs = false;
1538                 tree.constructor = rs.resolveConstructor(
1539                     tree.pos(), localEnv, clazztype, argtypes, typeargtypes);
1540                 tree.constructorType = checkMethod(clazztype,
1541                                             tree.constructor,
1542                                             localEnv,
1543                                             tree.args,
1544                                             argtypes,
1545                                             typeargtypes,
1546                                             localEnv.info.varArgs);
1547                 if (localEnv.info.varArgs)
1548                     assert tree.constructorType.isErroneous() || tree.varargsElement != null;
1549             }
1550 
1551             if (cdef != null) {
1552                 // We are seeing an anonymous class instance creation.
1553                 // In this case, the class instance creation
1554                 // expression
1555                 //
1556                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1557                 //
1558                 // is represented internally as
1559                 //
1560                 //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
1561                 //
1562                 // This expression is then *transformed* as follows:
1563                 //
1564                 // (1) add a STATIC flag to the class definition
1565                 //     if the current environment is static
1566                 // (2) add an extends or implements clause
1567                 // (3) add a constructor.
1568                 //
1569                 // For instance, if C is a class, and ET is the type of E,
1570                 // the expression
1571                 //
1572                 //    E.new <typeargs1>C<typargs2>(args) { ... }
1573                 //
1574                 // is translated to (where X is a fresh name and typarams is the
1575                 // parameter list of the super constructor):
1576                 //
1577                 //   new <typeargs1>X(<*nullchk*>E, args) where
1578                 //     X extends C<typargs2> {
1579                 //       <typarams> X(ET e, args) {
1580                 //         e.<typeargs1>super(args)
1581                 //       }
1582                 //       ...
1583                 //     }
1584                 if (Resolve.isStatic(env)) cdef.mods.flags |= STATIC;
1585                 clazz = TreeInfo.isDiamond(tree) ?
1586                     make.Type(clazztype)
1587                     : clazz;
1588                 if (clazztype.tsym.isInterface()) {
1589                     cdef.implementing = List.of(clazz);
1590                 } else {
1591                     cdef.extending = clazz;
1592                 }
1593 
1594                 attribStat(cdef, localEnv);
1595 
1596                 // If an outer instance is given,
1597                 // prefix it to the constructor arguments
1598                 // and delete it from the new expression
1599                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
1600                     tree.args = tree.args.prepend(makeNullCheck(tree.encl));
1601                     argtypes = argtypes.prepend(tree.encl.type);
1602                     tree.encl = null;
1603                 }
1604 
1605                 // Reassign clazztype and recompute constructor.
1606                 clazztype = cdef.sym.type;
1607                 Symbol sym = rs.resolveConstructor(
1608                     tree.pos(), localEnv, clazztype, argtypes,
1609                     typeargtypes, true, tree.varargsElement != null);
1610                 assert sym.kind < AMBIGUOUS || tree.constructor.type.isErroneous();
1611                 tree.constructor = sym;
1612                 if (tree.constructor.kind > ERRONEOUS) {
1613                     tree.constructorType =  syms.errType;
1614                 }
1615                 else {
1616                     tree.constructorType = checkMethod(clazztype,
1617                             tree.constructor,
1618                             localEnv,
1619                             tree.args,
1620                             argtypes,
1621                             typeargtypes,
1622                             localEnv.info.varArgs);
1623                 }
1624             }
1625 
1626             if (tree.constructor != null && tree.constructor.kind == MTH)
1627                 owntype = clazztype;
1628         }
1629         result = check(tree, owntype, VAL, pkind, pt);
1630         chk.validate(tree.typeargs, localEnv);
1631     }
1632 
1633     /** Make an attributed null check tree.
1634      */
1635     public JCExpression makeNullCheck(JCExpression arg) {
1636         // optimization: X.this is never null; skip null check
1637         Name name = TreeInfo.name(arg);
1638         if (name == names._this || name == names._super) return arg;
1639 
1640         int optag = JCTree.NULLCHK;
1641         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
1642         tree.operator = syms.nullcheck;
1643         tree.type = arg.type;
1644         return tree;
1645     }
1646 
1647     public void visitNewArray(JCNewArray tree) {
1648         Type owntype = types.createErrorType(tree.type);
1649         Type elemtype;
1650         if (tree.elemtype != null) {
1651             elemtype = attribType(tree.elemtype, env);
1652             chk.validate(tree.elemtype, env);
1653             owntype = elemtype;
1654             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
1655                 attribExpr(l.head, env, syms.intType);
1656                 owntype = new ArrayType(owntype, syms.arrayClass);
1657             }
1658         } else {
1659             // we are seeing an untyped aggregate { ... }
1660             // this is allowed only if the prototype is an array
1661             if (pt.tag == ARRAY) {
1662                 elemtype = types.elemtype(pt);
1663             } else {
1664                 if (pt.tag != ERROR) {
1665                     log.error(tree.pos(), "illegal.initializer.for.type",
1666                               pt);
1667                 }
1668                 elemtype = types.createErrorType(pt);
1669             }
1670         }
1671         if (tree.elems != null) {
1672             attribExprs(tree.elems, env, elemtype);
1673             owntype = new ArrayType(elemtype, syms.arrayClass);
1674         }
1675         if (!types.isReifiable(elemtype))
1676             log.error(tree.pos(), "generic.array.creation");
1677         result = check(tree, owntype, VAL, pkind, pt);
1678     }
1679 
1680     public void visitParens(JCParens tree) {
1681         Type owntype = attribTree(tree.expr, env, pkind, pt);
1682         result = check(tree, owntype, pkind, pkind, pt);
1683         Symbol sym = TreeInfo.symbol(tree);
1684         if (sym != null && (sym.kind&(TYP|PCK)) != 0)
1685             log.error(tree.pos(), "illegal.start.of.type");
1686     }
1687 
1688     public void visitAssign(JCAssign tree) {
1689         Type owntype = attribTree(tree.lhs, env.dup(tree), VAR, Type.noType);
1690         Type capturedType = capture(owntype);
1691         attribExpr(tree.rhs, env, owntype);
1692         result = check(tree, capturedType, VAL, pkind, pt);
1693     }
1694 
1695     public void visitAssignop(JCAssignOp tree) {
1696         // Attribute arguments.
1697         Type owntype = attribTree(tree.lhs, env, VAR, Type.noType);
1698         Type operand = attribExpr(tree.rhs, env);
1699         // Find operator.
1700         Symbol operator = tree.operator = rs.resolveBinaryOperator(
1701             tree.pos(), tree.getTag() - JCTree.ASGOffset, env,
1702             owntype, operand);
1703 
1704         if (operator.kind == MTH) {
1705             chk.checkOperator(tree.pos(),
1706                               (OperatorSymbol)operator,
1707                               tree.getTag() - JCTree.ASGOffset,
1708                               owntype,
1709                               operand);
1710             chk.checkDivZero(tree.rhs.pos(), operator, operand);
1711             chk.checkCastable(tree.rhs.pos(),
1712                               operator.type.getReturnType(),
1713                               owntype);
1714         }
1715         result = check(tree, owntype, VAL, pkind, pt);
1716     }
1717 
1718     public void visitUnary(JCUnary tree) {
1719         // Attribute arguments.
1720         Type argtype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
1721             ? attribTree(tree.arg, env, VAR, Type.noType)
1722             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
1723 
1724         // Find operator.
1725         Symbol operator = tree.operator =
1726             rs.resolveUnaryOperator(tree.pos(), tree.getTag(), env, argtype);
1727 
1728         Type owntype = types.createErrorType(tree.type);
1729         if (operator.kind == MTH) {
1730             owntype = (JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC)
1731                 ? tree.arg.type
1732                 : operator.type.getReturnType();
1733             int opc = ((OperatorSymbol)operator).opcode;
1734 
1735             // If the argument is constant, fold it.
1736             if (argtype.constValue() != null) {
1737                 Type ctype = cfolder.fold1(opc, argtype);
1738                 if (ctype != null) {
1739                     owntype = cfolder.coerce(ctype, owntype);
1740 
1741                     // Remove constant types from arguments to
1742                     // conserve space. The parser will fold concatenations
1743                     // of string literals; the code here also
1744                     // gets rid of intermediate results when some of the
1745                     // operands are constant identifiers.
1746                     if (tree.arg.type.tsym == syms.stringType.tsym) {
1747                         tree.arg.type = syms.stringType;
1748                     }
1749                 }
1750             }
1751         }
1752         result = check(tree, owntype, VAL, pkind, pt);
1753     }
1754 
1755     public void visitBinary(JCBinary tree) {
1756         // Attribute arguments.
1757         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
1758         Type right = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.rhs, env));
1759 
1760         // Find operator.
1761         Symbol operator = tree.operator =
1762             rs.resolveBinaryOperator(tree.pos(), tree.getTag(), env, left, right);
1763 
1764         Type owntype = types.createErrorType(tree.type);
1765         if (operator.kind == MTH) {
1766             owntype = operator.type.getReturnType();
1767             int opc = chk.checkOperator(tree.lhs.pos(),
1768                                         (OperatorSymbol)operator,
1769                                         tree.getTag(),
1770                                         left,
1771                                         right);
1772 
1773             // If both arguments are constants, fold them.
1774             if (left.constValue() != null && right.constValue() != null) {
1775                 Type ctype = cfolder.fold2(opc, left, right);
1776                 if (ctype != null) {
1777                     owntype = cfolder.coerce(ctype, owntype);
1778 
1779                     // Remove constant types from arguments to
1780                     // conserve space. The parser will fold concatenations
1781                     // of string literals; the code here also
1782                     // gets rid of intermediate results when some of the
1783                     // operands are constant identifiers.
1784                     if (tree.lhs.type.tsym == syms.stringType.tsym) {
1785                         tree.lhs.type = syms.stringType;
1786                     }
1787                     if (tree.rhs.type.tsym == syms.stringType.tsym) {
1788                         tree.rhs.type = syms.stringType;
1789                     }
1790                 }
1791             }
1792 
1793             // Check that argument types of a reference ==, != are
1794             // castable to each other, (JLS???).
1795             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
1796                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
1797                     log.error(tree.pos(), "incomparable.types", left, right);
1798                 }
1799             }
1800 
1801             chk.checkDivZero(tree.rhs.pos(), operator, right);
1802         }
1803         result = check(tree, owntype, VAL, pkind, pt);
1804     }
1805 
1806     public void visitTypeCast(JCTypeCast tree) {
1807         Type clazztype = attribType(tree.clazz, env);
1808         chk.validate(tree.clazz, env);
1809         Type exprtype = attribExpr(tree.expr, env, Infer.anyPoly);
1810         Type owntype = chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
1811         if (exprtype.constValue() != null)
1812             owntype = cfolder.coerce(exprtype, owntype);
1813         result = check(tree, capture(owntype), VAL, pkind, pt);
1814     }
1815 
1816     public void visitTypeTest(JCInstanceOf tree) {
1817         Type exprtype = chk.checkNullOrRefType(
1818             tree.expr.pos(), attribExpr(tree.expr, env));
1819         Type clazztype = chk.checkReifiableReferenceType(
1820             tree.clazz.pos(), attribType(tree.clazz, env));
1821         chk.validate(tree.clazz, env);
1822         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
1823         result = check(tree, syms.booleanType, VAL, pkind, pt);
1824     }
1825 
1826     public void visitIndexed(JCArrayAccess tree) {
1827         Type owntype = types.createErrorType(tree.type);
1828         Type atype = attribExpr(tree.indexed, env);
1829         attribExpr(tree.index, env, syms.intType);
1830         if (types.isArray(atype))
1831             owntype = types.elemtype(atype);
1832         else if (atype.tag != ERROR)
1833             log.error(tree.pos(), "array.req.but.found", atype);
1834         if ((pkind & VAR) == 0) owntype = capture(owntype);
1835         result = check(tree, owntype, VAR, pkind, pt);
1836     }
1837 
1838     public void visitIdent(JCIdent tree) {
1839         Symbol sym;
1840         boolean varArgs = false;
1841 
1842         // Find symbol
1843         if (pt.tag == METHOD || pt.tag == FORALL) {
1844             // If we are looking for a method, the prototype `pt' will be a
1845             // method type with the type of the call's arguments as parameters.
1846             env.info.varArgs = false;
1847             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt.getParameterTypes(), pt.getTypeArguments());
1848             varArgs = env.info.varArgs;
1849         } else if (tree.sym != null && tree.sym.kind != VAR) {
1850             sym = tree.sym;
1851         } else {
1852             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind);
1853         }
1854         tree.sym = sym;
1855 
1856         // (1) Also find the environment current for the class where
1857         //     sym is defined (`symEnv').
1858         // Only for pre-tiger versions (1.4 and earlier):
1859         // (2) Also determine whether we access symbol out of an anonymous
1860         //     class in a this or super call.  This is illegal for instance
1861         //     members since such classes don't carry a this$n link.
1862         //     (`noOuterThisPath').
1863         Env<AttrContext> symEnv = env;
1864         boolean noOuterThisPath = false;
1865         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
1866             (sym.kind & (VAR | MTH | TYP)) != 0 &&
1867             sym.owner.kind == TYP &&
1868             tree.name != names._this && tree.name != names._super) {
1869 
1870             // Find environment in which identifier is defined.
1871             while (symEnv.outer != null &&
1872                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
1873                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
1874                     noOuterThisPath = !allowAnonOuterThis;
1875                 symEnv = symEnv.outer;
1876             }
1877         }
1878 
1879         // If symbol is a variable, ...
1880         if (sym.kind == VAR) {
1881             VarSymbol v = (VarSymbol)sym;
1882 
1883             // ..., evaluate its initializer, if it has one, and check for
1884             // illegal forward reference.
1885             checkInit(tree, env, v, false);
1886 
1887             // If symbol is a local variable accessed from an embedded
1888             // inner class check that it is final.
1889             if (v.owner.kind == MTH &&
1890                 v.owner != env.info.scope.owner &&
1891                 (v.flags_field & FINAL) == 0) {
1892                 log.error(tree.pos(),
1893                           "local.var.accessed.from.icls.needs.final",
1894                           v);
1895             }
1896 
1897             // If we are expecting a variable (as opposed to a value), check
1898             // that the variable is assignable in the current environment.
1899             if (pkind == VAR)
1900                 checkAssignable(tree.pos(), v, null, env);
1901         }
1902 
1903         // In a constructor body,
1904         // if symbol is a field or instance method, check that it is
1905         // not accessed before the supertype constructor is called.
1906         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
1907             (sym.kind & (VAR | MTH)) != 0 &&
1908             sym.owner.kind == TYP &&
1909             (sym.flags() & STATIC) == 0) {
1910             chk.earlyRefError(tree.pos(), sym.kind == VAR ? sym : thisSym(tree.pos(), env));
1911         }
1912         Env<AttrContext> env1 = env;
1913         if (sym.kind != ERR && sym.kind != TYP && sym.owner != null && sym.owner != env1.enclClass.sym) {
1914             // If the found symbol is inaccessible, then it is
1915             // accessed through an enclosing instance.  Locate this
1916             // enclosing instance:
1917             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
1918                 env1 = env1.outer;
1919         }
1920         result = checkId(tree, env1.enclClass.sym.type, sym, env, pkind, pt, varArgs);
1921     }
1922 
1923     public void visitSelect(JCFieldAccess tree) {
1924         // Determine the expected kind of the qualifier expression.
1925         int skind = 0;
1926         if (tree.name == names._this || tree.name == names._super ||
1927             tree.name == names._class)
1928         {
1929             skind = TYP;
1930         } else {
1931             if ((pkind & PCK) != 0) skind = skind | PCK;
1932             if ((pkind & TYP) != 0) skind = skind | TYP | PCK;
1933             if ((pkind & (VAL | MTH)) != 0) skind = skind | VAL | TYP;
1934         }
1935 
1936         // Attribute the qualifier expression, and determine its symbol (if any).
1937         Type site = attribTree(tree.selected, env, skind, Infer.anyPoly);
1938         if ((pkind & (PCK | TYP)) == 0)
1939             site = capture(site); // Capture field access
1940 
1941         // don't allow T.class T[].class, etc
1942         if (skind == TYP) {
1943             Type elt = site;
1944             while (elt.tag == ARRAY)
1945                 elt = ((ArrayType)elt).elemtype;
1946             if (elt.tag == TYPEVAR) {
1947                 log.error(tree.pos(), "type.var.cant.be.deref");
1948                 result = types.createErrorType(tree.type);
1949                 return;
1950             }
1951         }
1952 
1953         // If qualifier symbol is a type or `super', assert `selectSuper'
1954         // for the selection. This is relevant for determining whether
1955         // protected symbols are accessible.
1956         Symbol sitesym = TreeInfo.symbol(tree.selected);
1957         boolean selectSuperPrev = env.info.selectSuper;
1958         env.info.selectSuper =
1959             sitesym != null &&
1960             sitesym.name == names._super;
1961 
1962         // If selected expression is polymorphic, strip
1963         // type parameters and remember in env.info.tvars, so that
1964         // they can be added later (in Attr.checkId and Infer.instantiateMethod).
1965         if (tree.selected.type.tag == FORALL) {
1966             ForAll pstype = (ForAll)tree.selected.type;
1967             env.info.tvars = pstype.tvars;
1968             site = tree.selected.type = pstype.qtype;
1969         }
1970 
1971         // Determine the symbol represented by the selection.
1972         env.info.varArgs = false;
1973         Symbol sym = selectSym(tree, site, env, pt, pkind);
1974         if (sym.exists() && !isType(sym) && (pkind & (PCK | TYP)) != 0) {
1975             site = capture(site);
1976             sym = selectSym(tree, site, env, pt, pkind);
1977         }
1978         boolean varArgs = env.info.varArgs;
1979         tree.sym = sym;
1980 
1981         if (site.tag == TYPEVAR && !isType(sym) && sym.kind != ERR) {
1982             while (site.tag == TYPEVAR) site = site.getUpperBound();
1983             site = capture(site);
1984         }
1985 
1986         // If that symbol is a variable, ...
1987         if (sym.kind == VAR) {
1988             VarSymbol v = (VarSymbol)sym;
1989 
1990             // ..., evaluate its initializer, if it has one, and check for
1991             // illegal forward reference.
1992             checkInit(tree, env, v, true);
1993 
1994             // If we are expecting a variable (as opposed to a value), check
1995             // that the variable is assignable in the current environment.
1996             if (pkind == VAR)
1997                 checkAssignable(tree.pos(), v, tree.selected, env);
1998         }
1999 
2000         // Disallow selecting a type from an expression
2001         if (isType(sym) && (sitesym==null || (sitesym.kind&(TYP|PCK)) == 0)) {
2002             tree.type = check(tree.selected, pt,
2003                               sitesym == null ? VAL : sitesym.kind, TYP|PCK, pt);
2004         }
2005 
2006         if (isType(sitesym)) {
2007             if (sym.name == names._this) {
2008                 // If `C' is the currently compiled class, check that
2009                 // C.this' does not appear in a call to a super(...)
2010                 if (env.info.isSelfCall &&
2011                     site.tsym == env.enclClass.sym) {
2012                     chk.earlyRefError(tree.pos(), sym);
2013                 }
2014             } else {
2015                 // Check if type-qualified fields or methods are static (JLS)
2016                 if ((sym.flags() & STATIC) == 0 &&
2017                     sym.name != names._super &&
2018                     (sym.kind == VAR || sym.kind == MTH)) {
2019                     rs.access(rs.new StaticError(sym),
2020                               tree.pos(), site, sym.name, true);
2021                 }
2022             }
2023         }
2024 
2025         // If we are selecting an instance member via a `super', ...
2026         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
2027 
2028             // Check that super-qualified symbols are not abstract (JLS)
2029             rs.checkNonAbstract(tree.pos(), sym);
2030 
2031             if (site.isRaw()) {
2032                 // Determine argument types for site.
2033                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
2034                 if (site1 != null) site = site1;
2035             }
2036         }
2037 
2038         env.info.selectSuper = selectSuperPrev;
2039         result = checkId(tree, site, sym, env, pkind, pt, varArgs);
2040         env.info.tvars = List.nil();
2041     }
2042     //where
2043         /** Determine symbol referenced by a Select expression,
2044          *
2045          *  @param tree   The select tree.
2046          *  @param site   The type of the selected expression,
2047          *  @param env    The current environment.
2048          *  @param pt     The current prototype.
2049          *  @param pkind  The expected kind(s) of the Select expression.
2050          */
2051         private Symbol selectSym(JCFieldAccess tree,
2052                                  Type site,
2053                                  Env<AttrContext> env,
2054                                  Type pt,
2055                                  int pkind) {
2056             DiagnosticPosition pos = tree.pos();
2057             Name name = tree.name;
2058 
2059             switch (site.tag) {
2060             case PACKAGE:
2061                 return rs.access(
2062                     rs.findIdentInPackage(env, site.tsym, name, pkind),
2063                     pos, site, name, true);
2064             case ARRAY:
2065             case CLASS:
2066                 if (pt.tag == METHOD || pt.tag == FORALL) {
2067                     return rs.resolveQualifiedMethod(
2068                         pos, env, site, name, pt.getParameterTypes(), pt.getTypeArguments());
2069                 } else if (name == names._this || name == names._super) {
2070                     return rs.resolveSelf(pos, env, site.tsym, name);
2071                 } else if (name == names._class) {
2072                     // In this case, we have already made sure in
2073                     // visitSelect that qualifier expression is a type.
2074                     Type t = syms.classType;
2075                     List<Type> typeargs = allowGenerics
2076                         ? List.of(types.erasure(site))
2077                         : List.<Type>nil();
2078                     t = new ClassType(t.getEnclosingType(), typeargs, t.tsym);
2079                     return new VarSymbol(
2080                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
2081                 } else {
2082                     // We are seeing a plain identifier as selector.
2083                     Symbol sym = rs.findIdentInType(env, site, name, pkind);
2084                     if ((pkind & ERRONEOUS) == 0)
2085                         sym = rs.access(sym, pos, site, name, true);
2086                     return sym;
2087                 }
2088             case WILDCARD:
2089                 throw new AssertionError(tree);
2090             case TYPEVAR:
2091                 // Normally, site.getUpperBound() shouldn't be null.
2092                 // It should only happen during memberEnter/attribBase
2093                 // when determining the super type which *must* be
2094                 // done before attributing the type variables.  In
2095                 // other words, we are seeing this illegal program:
2096                 // class B<T> extends A<T.foo> {}
2097                 Symbol sym = (site.getUpperBound() != null)
2098                     ? selectSym(tree, capture(site.getUpperBound()), env, pt, pkind)
2099                     : null;
2100                 if (sym == null) {
2101                     log.error(pos, "type.var.cant.be.deref");
2102                     return syms.errSymbol;
2103                 } else {
2104                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
2105                         rs.new AccessError(env, site, sym) :
2106                                 sym;
2107                     rs.access(sym2, pos, site, name, true);
2108                     return sym;
2109                 }
2110             case ERROR:
2111                 // preserve identifier names through errors
2112                 return types.createErrorType(name, site.tsym, site).tsym;
2113             default:
2114                 // The qualifier expression is of a primitive type -- only
2115                 // .class is allowed for these.
2116                 if (name == names._class) {
2117                     // In this case, we have already made sure in Select that
2118                     // qualifier expression is a type.
2119                     Type t = syms.classType;
2120                     Type arg = types.boxedClass(site).type;
2121                     t = new ClassType(t.getEnclosingType(), List.of(arg), t.tsym);
2122                     return new VarSymbol(
2123                         STATIC | PUBLIC | FINAL, names._class, t, site.tsym);
2124                 } else {
2125                     log.error(pos, "cant.deref", site);
2126                     return syms.errSymbol;
2127                 }
2128             }
2129         }
2130 
2131         /** Determine type of identifier or select expression and check that
2132          *  (1) the referenced symbol is not deprecated
2133          *  (2) the symbol's type is safe (@see checkSafe)
2134          *  (3) if symbol is a variable, check that its type and kind are
2135          *      compatible with the prototype and protokind.
2136          *  (4) if symbol is an instance field of a raw type,
2137          *      which is being assigned to, issue an unchecked warning if its
2138          *      type changes under erasure.
2139          *  (5) if symbol is an instance method of a raw type, issue an
2140          *      unchecked warning if its argument types change under erasure.
2141          *  If checks succeed:
2142          *    If symbol is a constant, return its constant type
2143          *    else if symbol is a method, return its result type
2144          *    otherwise return its type.
2145          *  Otherwise return errType.
2146          *
2147          *  @param tree       The syntax tree representing the identifier
2148          *  @param site       If this is a select, the type of the selected
2149          *                    expression, otherwise the type of the current class.
2150          *  @param sym        The symbol representing the identifier.
2151          *  @param env        The current environment.
2152          *  @param pkind      The set of expected kinds.
2153          *  @param pt         The expected type.
2154          */
2155         Type checkId(JCTree tree,
2156                      Type site,
2157                      Symbol sym,
2158                      Env<AttrContext> env,
2159                      int pkind,
2160                      Type pt,
2161                      boolean useVarargs) {
2162             if (pt.isErroneous()) return types.createErrorType(site);
2163             Type owntype; // The computed type of this identifier occurrence.
2164             switch (sym.kind) {
2165             case TYP:
2166                 // For types, the computed type equals the symbol's type,
2167                 // except for two situations:
2168                 owntype = sym.type;
2169                 if (owntype.tag == CLASS) {
2170                     Type ownOuter = owntype.getEnclosingType();
2171 
2172                     // (a) If the symbol's type is parameterized, erase it
2173                     // because no type parameters were given.
2174                     // We recover generic outer type later in visitTypeApply.
2175                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
2176                         owntype = types.erasure(owntype);
2177                     }
2178 
2179                     // (b) If the symbol's type is an inner class, then
2180                     // we have to interpret its outer type as a superclass
2181                     // of the site type. Example:
2182                     //
2183                     // class Tree<A> { class Visitor { ... } }
2184                     // class PointTree extends Tree<Point> { ... }
2185                     // ...PointTree.Visitor...
2186                     //
2187                     // Then the type of the last expression above is
2188                     // Tree<Point>.Visitor.
2189                     else if (ownOuter.tag == CLASS && site != ownOuter) {
2190                         Type normOuter = site;
2191                         if (normOuter.tag == CLASS)
2192                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
2193                         if (normOuter == null) // perhaps from an import
2194                             normOuter = types.erasure(ownOuter);
2195                         if (normOuter != ownOuter)
2196                             owntype = new ClassType(
2197                                 normOuter, List.<Type>nil(), owntype.tsym);
2198                     }
2199                 }
2200                 break;
2201             case VAR:
2202                 VarSymbol v = (VarSymbol)sym;
2203                 // Test (4): if symbol is an instance field of a raw type,
2204                 // which is being assigned to, issue an unchecked warning if
2205                 // its type changes under erasure.
2206                 if (allowGenerics &&
2207                     pkind == VAR &&
2208                     v.owner.kind == TYP &&
2209                     (v.flags() & STATIC) == 0 &&
2210                     (site.tag == CLASS || site.tag == TYPEVAR)) {
2211                     Type s = types.asOuterSuper(site, v.owner);
2212                     if (s != null &&
2213                         s.isRaw() &&
2214                         !types.isSameType(v.type, v.erasure(types))) {
2215                         chk.warnUnchecked(tree.pos(),
2216                                           "unchecked.assign.to.var",
2217                                           v, s);
2218                     }
2219                 }
2220                 // The computed type of a variable is the type of the
2221                 // variable symbol, taken as a member of the site type.
2222                 owntype = (sym.owner.kind == TYP &&
2223                            sym.name != names._this && sym.name != names._super)
2224                     ? types.memberType(site, sym)
2225                     : sym.type;
2226 
2227                 if (env.info.tvars.nonEmpty()) {
2228                     Type owntype1 = new ForAll(env.info.tvars, owntype);
2229                     for (List<Type> l = env.info.tvars; l.nonEmpty(); l = l.tail)
2230                         if (!owntype.contains(l.head)) {
2231                             log.error(tree.pos(), "undetermined.type", owntype1);
2232                             owntype1 = types.createErrorType(owntype1);
2233                         }
2234                     owntype = owntype1;
2235                 }
2236 
2237                 // If the variable is a constant, record constant value in
2238                 // computed type.
2239                 if (v.getConstValue() != null && isStaticReference(tree))
2240                     owntype = owntype.constType(v.getConstValue());
2241 
2242                 if (pkind == VAL) {
2243                     owntype = capture(owntype); // capture "names as expressions"
2244                 }
2245                 break;
2246             case MTH: {
2247                 JCMethodInvocation app = (JCMethodInvocation)env.tree;
2248                 owntype = checkMethod(site, sym, env, app.args,
2249                                       pt.getParameterTypes(), pt.getTypeArguments(),
2250                                       env.info.varArgs);
2251                 break;
2252             }
2253             case PCK: case ERR:
2254                 owntype = sym.type;
2255                 break;
2256             default:
2257                 throw new AssertionError("unexpected kind: " + sym.kind +
2258                                          " in tree " + tree);
2259             }
2260 
2261             // Test (1): emit a `deprecation' warning if symbol is deprecated.
2262             // (for constructors, the error was given when the constructor was
2263             // resolved)
2264             if (sym.name != names.init &&
2265                 (sym.flags() & DEPRECATED) != 0 &&
2266                 (env.info.scope.owner.flags() & DEPRECATED) == 0 &&
2267                 sym.outermostClass() != env.info.scope.owner.outermostClass())
2268                 chk.warnDeprecated(tree.pos(), sym);
2269 
2270             if ((sym.flags() & PROPRIETARY) != 0) {
2271                 if (enableSunApiLintControl)
2272                   chk.warnSunApi(tree.pos(), "sun.proprietary", sym);
2273                 else
2274                   log.strictWarning(tree.pos(), "sun.proprietary", sym);
2275             }
2276 
2277             // Test (3): if symbol is a variable, check that its type and
2278             // kind are compatible with the prototype and protokind.
2279             return check(tree, owntype, sym.kind, pkind, pt);
2280         }
2281 
2282         /** Check that variable is initialized and evaluate the variable's
2283          *  initializer, if not yet done. Also check that variable is not
2284          *  referenced before it is defined.
2285          *  @param tree    The tree making up the variable reference.
2286          *  @param env     The current environment.
2287          *  @param v       The variable's symbol.
2288          */
2289         private void checkInit(JCTree tree,
2290                                Env<AttrContext> env,
2291                                VarSymbol v,
2292                                boolean onlyWarning) {
2293 //          System.err.println(v + " " + ((v.flags() & STATIC) != 0) + " " +
2294 //                             tree.pos + " " + v.pos + " " +
2295 //                             Resolve.isStatic(env));//DEBUG
2296 
2297             // A forward reference is diagnosed if the declaration position
2298             // of the variable is greater than the current tree position
2299             // and the tree and variable definition occur in the same class
2300             // definition.  Note that writes don't count as references.
2301             // This check applies only to class and instance
2302             // variables.  Local variables follow different scope rules,
2303             // and are subject to definite assignment checking.
2304             if ((env.info.enclVar == v || v.pos > tree.pos) &&
2305                 v.owner.kind == TYP &&
2306                 canOwnInitializer(env.info.scope.owner) &&
2307                 v.owner == env.info.scope.owner.enclClass() &&
2308                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
2309                 (env.tree.getTag() != JCTree.ASSIGN ||
2310                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
2311                 String suffix = (env.info.enclVar == v) ?
2312                                 "self.ref" : "forward.ref";
2313                 if (!onlyWarning || isStaticEnumField(v)) {
2314                     log.error(tree.pos(), "illegal." + suffix);
2315                 } else if (useBeforeDeclarationWarning) {
2316                     log.warning(tree.pos(), suffix, v);
2317                 }
2318             }
2319 
2320             v.getConstValue(); // ensure initializer is evaluated
2321 
2322             checkEnumInitializer(tree, env, v);
2323         }
2324 
2325         /**
2326          * Check for illegal references to static members of enum.  In
2327          * an enum type, constructors and initializers may not
2328          * reference its static members unless they are constant.
2329          *
2330          * @param tree    The tree making up the variable reference.
2331          * @param env     The current environment.
2332          * @param v       The variable's symbol.
2333          * @see JLS 3rd Ed. (8.9 Enums)
2334          */
2335         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
2336             // JLS 3rd Ed.:
2337             //
2338             // "It is a compile-time error to reference a static field
2339             // of an enum type that is not a compile-time constant
2340             // (15.28) from constructors, instance initializer blocks,
2341             // or instance variable initializer expressions of that
2342             // type. It is a compile-time error for the constructors,
2343             // instance initializer blocks, or instance variable
2344             // initializer expressions of an enum constant e to refer
2345             // to itself or to an enum constant of the same type that
2346             // is declared to the right of e."
2347             if (isStaticEnumField(v)) {
2348                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
2349 
2350                 if (enclClass == null || enclClass.owner == null)
2351                     return;
2352 
2353                 // See if the enclosing class is the enum (or a
2354                 // subclass thereof) declaring v.  If not, this
2355                 // reference is OK.
2356                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
2357                     return;
2358 
2359                 // If the reference isn't from an initializer, then
2360                 // the reference is OK.
2361                 if (!Resolve.isInitializer(env))
2362                     return;
2363 
2364                 log.error(tree.pos(), "illegal.enum.static.ref");
2365             }
2366         }
2367 
2368         /** Is the given symbol a static, non-constant field of an Enum?
2369          *  Note: enum literals should not be regarded as such
2370          */
2371         private boolean isStaticEnumField(VarSymbol v) {
2372             return Flags.isEnum(v.owner) &&
2373                    Flags.isStatic(v) &&
2374                    !Flags.isConstant(v) &&
2375                    v.name != names._class;
2376         }
2377 
2378         /** Can the given symbol be the owner of code which forms part
2379          *  if class initialization? This is the case if the symbol is
2380          *  a type or field, or if the symbol is the synthetic method.
2381          *  owning a block.
2382          */
2383         private boolean canOwnInitializer(Symbol sym) {
2384             return
2385                 (sym.kind & (VAR | TYP)) != 0 ||
2386                 (sym.kind == MTH && (sym.flags() & BLOCK) != 0);
2387         }
2388 
2389     Warner noteWarner = new Warner();
2390 
2391     /**
2392      * Check that method arguments conform to its instantation.
2393      **/
2394     public Type checkMethod(Type site,
2395                             Symbol sym,
2396                             Env<AttrContext> env,
2397                             final List<JCExpression> argtrees,
2398                             List<Type> argtypes,
2399                             List<Type> typeargtypes,
2400                             boolean useVarargs) {
2401         // Test (5): if symbol is an instance method of a raw type, issue
2402         // an unchecked warning if its argument types change under erasure.
2403         if (allowGenerics &&
2404             (sym.flags() & STATIC) == 0 &&
2405             (site.tag == CLASS || site.tag == TYPEVAR)) {
2406             Type s = types.asOuterSuper(site, sym.owner);
2407             if (s != null && s.isRaw() &&
2408                 !types.isSameTypes(sym.type.getParameterTypes(),
2409                                    sym.erasure(types).getParameterTypes())) {
2410                 chk.warnUnchecked(env.tree.pos(),
2411                                   "unchecked.call.mbr.of.raw.type",
2412                                   sym, s);
2413             }
2414         }
2415 
2416         // Compute the identifier's instantiated type.
2417         // For methods, we need to compute the instance type by
2418         // Resolve.instantiate from the symbol's type as well as
2419         // any type arguments and value arguments.
2420         noteWarner.warned = false;
2421         Type owntype = rs.instantiate(env,
2422                                       site,
2423                                       sym,
2424                                       argtypes,
2425                                       typeargtypes,
2426                                       true,
2427                                       useVarargs,
2428                                       noteWarner);
2429         boolean warned = noteWarner.warned;
2430 
2431         // If this fails, something went wrong; we should not have
2432         // found the identifier in the first place.
2433         if (owntype == null) {
2434             if (!pt.isErroneous())
2435                 log.error(env.tree.pos(),
2436                           "internal.error.cant.instantiate",
2437                           sym, site,
2438                           Type.toString(pt.getParameterTypes()));
2439             owntype = types.createErrorType(site);
2440         } else {
2441             // System.out.println("call   : " + env.tree);
2442             // System.out.println("method : " + owntype);
2443             // System.out.println("actuals: " + argtypes);
2444             List<Type> formals = owntype.getParameterTypes();
2445             Type last = useVarargs ? formals.last() : null;
2446             if (sym.name==names.init &&
2447                 sym.owner == syms.enumSym)
2448                 formals = formals.tail.tail;
2449             List<JCExpression> args = argtrees;
2450             while (formals.head != last) {
2451                 JCTree arg = args.head;
2452                 Warner warn = chk.convertWarner(arg.pos(), arg.type, formals.head);
2453                 assertConvertible(arg, arg.type, formals.head, warn);
2454                 warned |= warn.warned;
2455                 args = args.tail;
2456                 formals = formals.tail;
2457             }
2458             if (useVarargs) {
2459                 Type varArg = types.elemtype(last);
2460                 while (args.tail != null) {
2461                     JCTree arg = args.head;
2462                     Warner warn = chk.convertWarner(arg.pos(), arg.type, varArg);
2463                     assertConvertible(arg, arg.type, varArg, warn);
2464                     warned |= warn.warned;
2465                     args = args.tail;
2466                 }
2467             } else if ((sym.flags() & VARARGS) != 0 && allowVarargs) {
2468                 // non-varargs call to varargs method
2469                 Type varParam = owntype.getParameterTypes().last();
2470                 Type lastArg = argtypes.last();
2471                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
2472                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
2473                     log.warning(argtrees.last().pos(), "inexact.non-varargs.call",
2474                                 types.elemtype(varParam),
2475                                 varParam);
2476             }
2477 
2478             if (warned && sym.type.tag == FORALL) {
2479                 chk.warnUnchecked(env.tree.pos(),
2480                                   "unchecked.meth.invocation.applied",
2481                                   kindName(sym),
2482                                   sym.name,
2483                                   rs.methodArguments(sym.type.getParameterTypes()),
2484                                   rs.methodArguments(argtypes),
2485                                   kindName(sym.location()),
2486                                   sym.location());
2487                 owntype = new MethodType(owntype.getParameterTypes(),
2488                                          types.erasure(owntype.getReturnType()),
2489                                          owntype.getThrownTypes(),
2490                                          syms.methodClass);
2491             }
2492             if (useVarargs) {
2493                 JCTree tree = env.tree;
2494                 Type argtype = owntype.getParameterTypes().last();
2495                 if (!types.isReifiable(argtype))
2496                     chk.warnUnchecked(env.tree.pos(),
2497                                       "unchecked.generic.array.creation",
2498                                       argtype);
2499                 Type elemtype = types.elemtype(argtype);
2500                 switch (tree.getTag()) {
2501                 case JCTree.APPLY:
2502                     ((JCMethodInvocation) tree).varargsElement = elemtype;
2503                     break;
2504                 case JCTree.NEWCLASS:
2505                     ((JCNewClass) tree).varargsElement = elemtype;
2506                     break;
2507                 default:
2508                     throw new AssertionError(""+tree);
2509                 }
2510             }
2511         }
2512         return owntype;
2513     }
2514 
2515     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
2516         if (types.isConvertible(actual, formal, warn))
2517             return;
2518 
2519         if (formal.isCompound()
2520             && types.isSubtype(actual, types.supertype(formal))
2521             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
2522             return;
2523 
2524         if (false) {
2525             // TODO: make assertConvertible work
2526             chk.typeError(tree.pos(), diags.fragment("incompatible.types"), actual, formal);
2527             throw new AssertionError("Tree: " + tree
2528                                      + " actual:" + actual
2529                                      + " formal: " + formal);
2530         }
2531     }
2532 
2533     public void visitLiteral(JCLiteral tree) {
2534         result = check(
2535             tree, litType(tree.typetag).constType(tree.value), VAL, pkind, pt);
2536     }
2537     //where
2538     /** Return the type of a literal with given type tag.
2539      */
2540     Type litType(int tag) {
2541         return (tag == TypeTags.CLASS) ? syms.stringType : syms.typeOfTag[tag];
2542     }
2543 
2544     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
2545         result = check(tree, syms.typeOfTag[tree.typetag], TYP, pkind, pt);
2546     }
2547 
2548     public void visitTypeArray(JCArrayTypeTree tree) {
2549         Type etype = attribType(tree.elemtype, env);
2550         Type type = new ArrayType(etype, syms.arrayClass);
2551         result = check(tree, type, TYP, pkind, pt);
2552     }
2553 
2554     /** Visitor method for parameterized types.
2555      *  Bound checking is left until later, since types are attributed
2556      *  before supertype structure is completely known
2557      */
2558     public void visitTypeApply(JCTypeApply tree) {
2559         Type owntype = types.createErrorType(tree.type);
2560 
2561         // Attribute functor part of application and make sure it's a class.
2562         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
2563 
2564         // Attribute type parameters
2565         List<Type> actuals = attribTypes(tree.arguments, env);
2566 
2567         if (clazztype.tag == CLASS) {
2568             List<Type> formals = clazztype.tsym.type.getTypeArguments();
2569 
2570             if (actuals.length() == formals.length() || actuals.isEmpty()) {
2571                 List<Type> a = actuals;
2572                 List<Type> f = formals;
2573                 while (a.nonEmpty()) {
2574                     a.head = a.head.withTypeVar(f.head);
2575                     a = a.tail;
2576                     f = f.tail;
2577                 }
2578                 // Compute the proper generic outer
2579                 Type clazzOuter = clazztype.getEnclosingType();
2580                 if (clazzOuter.tag == CLASS) {
2581                     Type site;
2582                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
2583                     if (clazz.getTag() == JCTree.IDENT) {
2584                         site = env.enclClass.sym.type;
2585                     } else if (clazz.getTag() == JCTree.SELECT) {
2586                         site = ((JCFieldAccess) clazz).selected.type;
2587                     } else throw new AssertionError(""+tree);
2588                     if (clazzOuter.tag == CLASS && site != clazzOuter) {
2589                         if (site.tag == CLASS)
2590                             site = types.asOuterSuper(site, clazzOuter.tsym);
2591                         if (site == null)
2592                             site = types.erasure(clazzOuter);
2593                         clazzOuter = site;
2594                     }
2595                 }
2596                 if (actuals.nonEmpty()) {
2597                     owntype = new ClassType(clazzOuter, actuals, clazztype.tsym);
2598                 }
2599                 else if (TreeInfo.isDiamond(tree)) {
2600                     //a type apply with no explicit type arguments - diamond operator
2601                     //the result type is a forall F where F's tvars are the type-variables
2602                     //that will be inferred when F is checked against the expected type
2603                     List<Type> ftvars = clazztype.tsym.type.getTypeArguments();
2604                     List<Type> new_tvars = types.newInstances(ftvars);
2605                     clazztype = new ClassType(clazzOuter, new_tvars, clazztype.tsym);
2606                     owntype = new ForAll(new_tvars, clazztype);
2607                 }
2608             } else {
2609                 if (formals.length() != 0) {
2610                     log.error(tree.pos(), "wrong.number.type.args",
2611                               Integer.toString(formals.length()));
2612                 } else {
2613                     log.error(tree.pos(), "type.doesnt.take.params", clazztype.tsym);
2614                 }
2615                 owntype = types.createErrorType(tree.type);
2616             }
2617         }
2618         result = check(tree, owntype, TYP, pkind, pt);
2619     }
2620 
2621     public void visitTypeParameter(JCTypeParameter tree) {
2622         TypeVar a = (TypeVar)tree.type;
2623         Set<Type> boundSet = new HashSet<Type>();
2624         if (a.bound.isErroneous())
2625             return;
2626         List<Type> bs = types.getBounds(a);
2627         if (tree.bounds.nonEmpty()) {
2628             // accept class or interface or typevar as first bound.
2629             Type b = checkBase(bs.head, tree.bounds.head, env, false, false, false);
2630             boundSet.add(types.erasure(b));
2631             if (b.isErroneous()) {
2632                 a.bound = b;
2633             }
2634             else if (b.tag == TYPEVAR) {
2635                 // if first bound was a typevar, do not accept further bounds.
2636                 if (tree.bounds.tail.nonEmpty()) {
2637                     log.error(tree.bounds.tail.head.pos(),
2638                               "type.var.may.not.be.followed.by.other.bounds");
2639                     tree.bounds = List.of(tree.bounds.head);
2640                     a.bound = bs.head;
2641                 }
2642             } else {
2643                 // if first bound was a class or interface, accept only interfaces
2644                 // as further bounds.
2645                 for (JCExpression bound : tree.bounds.tail) {
2646                     bs = bs.tail;
2647                     Type i = checkBase(bs.head, bound, env, false, true, false);
2648                     if (i.isErroneous())
2649                         a.bound = i;
2650                     else if (i.tag == CLASS)
2651                         chk.checkNotRepeated(bound.pos(), types.erasure(i), boundSet);
2652                 }
2653             }
2654         }
2655         bs = types.getBounds(a);
2656 
2657         // in case of multiple bounds ...
2658         if (bs.length() > 1) {
2659             // ... the variable's bound is a class type flagged COMPOUND
2660             // (see comment for TypeVar.bound).
2661             // In this case, generate a class tree that represents the
2662             // bound class, ...
2663             JCTree extending;
2664             List<JCExpression> implementing;
2665             if ((bs.head.tsym.flags() & INTERFACE) == 0) {
2666                 extending = tree.bounds.head;
2667                 implementing = tree.bounds.tail;
2668             } else {
2669                 extending = null;
2670                 implementing = tree.bounds;
2671             }
2672             JCClassDecl cd = make.at(tree.pos).ClassDef(
2673                 make.Modifiers(PUBLIC | ABSTRACT),
2674                 tree.name, List.<JCTypeParameter>nil(),
2675                 extending, implementing, List.<JCTree>nil());
2676 
2677             ClassSymbol c = (ClassSymbol)a.getUpperBound().tsym;
2678             assert (c.flags() & COMPOUND) != 0;
2679             cd.sym = c;
2680             c.sourcefile = env.toplevel.sourcefile;
2681 
2682             // ... and attribute the bound class
2683             c.flags_field |= UNATTRIBUTED;
2684             Env<AttrContext> cenv = enter.classEnv(cd, env);
2685             enter.typeEnvs.put(c, cenv);
2686         }
2687     }
2688 
2689 
2690     public void visitWildcard(JCWildcard tree) {
2691         //- System.err.println("visitWildcard("+tree+");");//DEBUG
2692         Type type = (tree.kind.kind == BoundKind.UNBOUND)
2693             ? syms.objectType
2694             : attribType(tree.inner, env);
2695         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
2696                                               tree.kind.kind,
2697                                               syms.boundClass),
2698                        TYP, pkind, pt);
2699     }
2700 
2701     public void visitAnnotation(JCAnnotation tree) {
2702         log.error(tree.pos(), "annotation.not.valid.for.type", pt);
2703         result = tree.type = syms.errType;
2704     }
2705 
2706     public void visitAnnotatedType(JCAnnotatedType tree) {
2707         result = tree.type = attribType(tree.getUnderlyingType(), env);
2708     }
2709 
2710     public void visitErroneous(JCErroneous tree) {
2711         if (tree.errs != null)
2712             for (JCTree err : tree.errs)
2713                 attribTree(err, env, ERR, pt);
2714         result = tree.type = syms.errType;
2715     }
2716 
2717     /** Default visitor method for all other trees.
2718      */
2719     public void visitTree(JCTree tree) {
2720         throw new AssertionError();
2721     }
2722 
2723     /** Main method: attribute class definition associated with given class symbol.
2724      *  reporting completion failures at the given position.
2725      *  @param pos The source position at which completion errors are to be
2726      *             reported.
2727      *  @param c   The class symbol whose definition will be attributed.
2728      */
2729     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
2730         try {
2731             annotate.flush();
2732             attribClass(c);
2733         } catch (CompletionFailure ex) {
2734             chk.completionError(pos, ex);
2735         }
2736     }
2737 
2738     /** Attribute class definition associated with given class symbol.
2739      *  @param c   The class symbol whose definition will be attributed.
2740      */
2741     void attribClass(ClassSymbol c) throws CompletionFailure {
2742         if (c.type.tag == ERROR) return;
2743 
2744         // Check for cycles in the inheritance graph, which can arise from
2745         // ill-formed class files.
2746         chk.checkNonCyclic(null, c.type);
2747 
2748         Type st = types.supertype(c.type);
2749         if ((c.flags_field & Flags.COMPOUND) == 0) {
2750             // First, attribute superclass.
2751             if (st.tag == CLASS)
2752                 attribClass((ClassSymbol)st.tsym);
2753 
2754             // Next attribute owner, if it is a class.
2755             if (c.owner.kind == TYP && c.owner.type.tag == CLASS)
2756                 attribClass((ClassSymbol)c.owner);
2757         }
2758 
2759         // The previous operations might have attributed the current class
2760         // if there was a cycle. So we test first whether the class is still
2761         // UNATTRIBUTED.
2762         if ((c.flags_field & UNATTRIBUTED) != 0) {
2763             c.flags_field &= ~UNATTRIBUTED;
2764 
2765             // Get environment current at the point of class definition.
2766             Env<AttrContext> env = enter.typeEnvs.get(c);
2767 
2768             // The info.lint field in the envs stored in enter.typeEnvs is deliberately uninitialized,
2769             // because the annotations were not available at the time the env was created. Therefore,
2770             // we look up the environment chain for the first enclosing environment for which the
2771             // lint value is set. Typically, this is the parent env, but might be further if there
2772             // are any envs created as a result of TypeParameter nodes.
2773             Env<AttrContext> lintEnv = env;
2774             while (lintEnv.info.lint == null)
2775                 lintEnv = lintEnv.next;
2776 
2777             // Having found the enclosing lint value, we can initialize the lint value for this class
2778             env.info.lint = lintEnv.info.lint.augment(c.attributes_field, c.flags());
2779 
2780             Lint prevLint = chk.setLint(env.info.lint);
2781             JavaFileObject prev = log.useSource(c.sourcefile);
2782 
2783             try {
2784                 // java.lang.Enum may not be subclassed by a non-enum
2785                 if (st.tsym == syms.enumSym &&
2786                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
2787                     log.error(env.tree.pos(), "enum.no.subclassing");
2788 
2789                 // Enums may not be extended by source-level classes
2790                 if (st.tsym != null &&
2791                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
2792                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0) &&
2793                     !target.compilerBootstrap(c)) {
2794                     log.error(env.tree.pos(), "enum.types.not.extensible");
2795                 }
2796                 attribClassBody(env, c);
2797 
2798                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
2799             } finally {
2800                 log.useSource(prev);
2801                 chk.setLint(prevLint);
2802             }
2803 
2804         }
2805     }
2806 
2807     public void visitImport(JCImport tree) {
2808         // nothing to do
2809     }
2810 
2811     /** Finish the attribution of a class. */
2812     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
2813         JCClassDecl tree = (JCClassDecl)env.tree;
2814         assert c == tree.sym;
2815 
2816         // Validate annotations
2817         chk.validateAnnotations(tree.mods.annotations, c);
2818 
2819         // Validate type parameters, supertype and interfaces.
2820         attribBounds(tree.typarams);
2821         chk.validate(tree.typarams, env);
2822         chk.validate(tree.extending, env);
2823         chk.validate(tree.implementing, env);
2824 
2825         // If this is a non-abstract class, check that it has no abstract
2826         // methods or unimplemented methods of an implemented interface.
2827         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
2828             if (!relax)
2829                 chk.checkAllDefined(tree.pos(), c);
2830         }
2831 
2832         if ((c.flags() & ANNOTATION) != 0) {
2833             if (tree.implementing.nonEmpty())
2834                 log.error(tree.implementing.head.pos(),
2835                           "cant.extend.intf.annotation");
2836             if (tree.typarams.nonEmpty())
2837                 log.error(tree.typarams.head.pos(),
2838                           "intf.annotation.cant.have.type.params");
2839         } else {
2840             // Check that all extended classes and interfaces
2841             // are compatible (i.e. no two define methods with same arguments
2842             // yet different return types).  (JLS 8.4.6.3)
2843             chk.checkCompatibleSupertypes(tree.pos(), c.type);
2844         }
2845 
2846         // Check that class does not import the same parameterized interface
2847         // with two different argument lists.
2848         chk.checkClassBounds(tree.pos(), c.type);
2849 
2850         tree.type = c.type;
2851 
2852         boolean assertsEnabled = false;
2853         assert assertsEnabled = true;
2854         if (assertsEnabled) {
2855             for (List<JCTypeParameter> l = tree.typarams;
2856                  l.nonEmpty(); l = l.tail)
2857                 assert env.info.scope.lookup(l.head.name).scope != null;
2858         }
2859 
2860         // Check that a generic class doesn't extend Throwable
2861         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
2862             log.error(tree.extending.pos(), "generic.throwable");
2863 
2864         // Check that all methods which implement some
2865         // method conform to the method they implement.
2866         chk.checkImplementations(tree);
2867 
2868         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
2869             // Attribute declaration
2870             attribStat(l.head, env);
2871             // Check that declarations in inner classes are not static (JLS 8.1.2)
2872             // Make an exception for static constants.
2873             if (c.owner.kind != PCK &&
2874                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
2875                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
2876                 Symbol sym = null;
2877                 if (l.head.getTag() == JCTree.VARDEF) sym = ((JCVariableDecl) l.head).sym;
2878                 if (sym == null ||
2879                     sym.kind != VAR ||
2880                     ((VarSymbol) sym).getConstValue() == null)
2881                     log.error(l.head.pos(), "icls.cant.have.static.decl");
2882             }
2883         }
2884 
2885         // Check for cycles among non-initial constructors.
2886         chk.checkCyclicConstructors(tree);
2887 
2888         // Check for cycles among annotation elements.
2889         chk.checkNonCyclicElements(tree);
2890 
2891         // Check for proper use of serialVersionUID
2892         if (env.info.lint.isEnabled(Lint.LintCategory.SERIAL) &&
2893             isSerializable(c) &&
2894             (c.flags() & Flags.ENUM) == 0 &&
2895             (c.flags() & ABSTRACT) == 0) {
2896             checkSerialVersionUID(tree, c);
2897         }
2898 
2899         // Check type annotations applicability rules
2900         validateTypeAnnotations(tree);
2901     }
2902         // where
2903         /** check if a class is a subtype of Serializable, if that is available. */
2904         private boolean isSerializable(ClassSymbol c) {
2905             try {
2906                 syms.serializableType.complete();
2907             }
2908             catch (CompletionFailure e) {
2909                 return false;
2910             }
2911             return types.isSubtype(c.type, syms.serializableType);
2912         }
2913 
2914         /** Check that an appropriate serialVersionUID member is defined. */
2915         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
2916 
2917             // check for presence of serialVersionUID
2918             Scope.Entry e = c.members().lookup(names.serialVersionUID);
2919             while (e.scope != null && e.sym.kind != VAR) e = e.next();
2920             if (e.scope == null) {
2921                 log.warning(tree.pos(), "missing.SVUID", c);
2922                 return;
2923             }
2924 
2925             // check that it is static final
2926             VarSymbol svuid = (VarSymbol)e.sym;
2927             if ((svuid.flags() & (STATIC | FINAL)) !=
2928                 (STATIC | FINAL))
2929                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "improper.SVUID", c);
2930 
2931             // check that it is long
2932             else if (svuid.type.tag != TypeTags.LONG)
2933                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "long.SVUID", c);
2934 
2935             // check constant
2936             else if (svuid.getConstValue() == null)
2937                 log.warning(TreeInfo.diagnosticPositionFor(svuid, tree), "constant.SVUID", c);
2938         }
2939 
2940     private Type capture(Type type) {
2941         return types.capture(type);
2942     }
2943 
2944     private void validateTypeAnnotations(JCTree tree) {
2945         tree.accept(typeAnnotationsValidator);
2946     }
2947     //where
2948     private final JCTree.Visitor typeAnnotationsValidator =
2949         new TreeScanner() {
2950         public void visitAnnotation(JCAnnotation tree) {
2951             if (tree instanceof JCTypeAnnotation) {
2952                 chk.validateTypeAnnotation((JCTypeAnnotation)tree, false);
2953             }
2954             super.visitAnnotation(tree);
2955         }
2956         public void visitTypeParameter(JCTypeParameter tree) {
2957             chk.validateTypeAnnotations(tree.annotations, true);
2958             // don't call super. skip type annotations
2959             scan(tree.bounds);
2960         }
2961         public void visitMethodDef(JCMethodDecl tree) {
2962             // need to check static methods
2963             if ((tree.sym.flags() & Flags.STATIC) != 0) {
2964                 for (JCTypeAnnotation a : tree.receiverAnnotations) {
2965                     if (chk.isTypeAnnotation(a, false))
2966                         log.error(a.pos(), "annotation.type.not.applicable");
2967                 }
2968             }
2969             super.visitMethodDef(tree);
2970         }
2971     };
2972 }