1 /*
   2  * Copyright 1999-2009 Sun Microsystems, Inc.  All Rights Reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Sun designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Sun in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  22  * CA 95054 USA or visit www.sun.com if you need additional information or
  23  * have any questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 
  30 import com.sun.tools.javac.code.*;
  31 import com.sun.tools.javac.jvm.*;
  32 import com.sun.tools.javac.tree.*;
  33 import com.sun.tools.javac.util.*;
  34 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  35 import com.sun.tools.javac.util.List;
  36 
  37 import com.sun.tools.javac.code.Symbol.*;
  38 import com.sun.tools.javac.tree.JCTree.*;
  39 import com.sun.tools.javac.code.Type.*;
  40 
  41 import com.sun.tools.javac.jvm.Target;
  42 
  43 import static com.sun.tools.javac.code.Flags.*;
  44 import static com.sun.tools.javac.code.Kinds.*;
  45 import static com.sun.tools.javac.code.TypeTags.*;
  46 import static com.sun.tools.javac.jvm.ByteCodes.*;
  47 
  48 /** This pass translates away some syntactic sugar: inner classes,
  49  *  class literals, assertions, foreach loops, etc.
  50  *
  51  *  <p><b>This is NOT part of any API supported by Sun Microsystems.  If
  52  *  you write code that depends on this, you do so at your own risk.
  53  *  This code and its internal interfaces are subject to change or
  54  *  deletion without notice.</b>
  55  */
  56 public class Lower extends TreeTranslator {
  57     protected static final Context.Key<Lower> lowerKey =
  58         new Context.Key<Lower>();
  59 
  60     public static Lower instance(Context context) {
  61         Lower instance = context.get(lowerKey);
  62         if (instance == null)
  63             instance = new Lower(context);
  64         return instance;
  65     }
  66 
  67     private Names names;
  68     private Log log;
  69     private Symtab syms;
  70     private Resolve rs;
  71     private Check chk;
  72     private Attr attr;
  73     private TreeMaker make;
  74     private DiagnosticPosition make_pos;
  75     private ClassWriter writer;
  76     private ClassReader reader;
  77     private ConstFold cfolder;
  78     private Target target;
  79     private Source source;
  80     private boolean allowEnums;
  81     private final Name dollarAssertionsDisabled;
  82     private final Name classDollar;
  83     private Types types;
  84     private boolean debugLower;
  85 
  86     protected Lower(Context context) {
  87         context.put(lowerKey, this);
  88         names = Names.instance(context);
  89         log = Log.instance(context);
  90         syms = Symtab.instance(context);
  91         rs = Resolve.instance(context);
  92         chk = Check.instance(context);
  93         attr = Attr.instance(context);
  94         make = TreeMaker.instance(context);
  95         writer = ClassWriter.instance(context);
  96         reader = ClassReader.instance(context);
  97         cfolder = ConstFold.instance(context);
  98         target = Target.instance(context);
  99         source = Source.instance(context);
 100         allowEnums = source.allowEnums();
 101         dollarAssertionsDisabled = names.
 102             fromString(target.syntheticNameChar() + "assertionsDisabled");
 103         classDollar = names.
 104             fromString("class" + target.syntheticNameChar());
 105 
 106         types = Types.instance(context);
 107         Options options = Options.instance(context);
 108         debugLower = options.get("debuglower") != null;
 109     }
 110 
 111     /** The currently enclosing class.
 112      */
 113     ClassSymbol currentClass;
 114 
 115     /** A queue of all translated classes.
 116      */
 117     ListBuffer<JCTree> translated;
 118 
 119     /** Environment for symbol lookup, set by translateTopLevelClass.
 120      */
 121     Env<AttrContext> attrEnv;
 122 
 123     /** A hash table mapping syntax trees to their ending source positions.
 124      */
 125     Map<JCTree, Integer> endPositions;
 126 
 127 /**************************************************************************
 128  * Global mappings
 129  *************************************************************************/
 130 
 131     /** A hash table mapping local classes to their definitions.
 132      */
 133     Map<ClassSymbol, JCClassDecl> classdefs;
 134 
 135     /** A hash table mapping virtual accessed symbols in outer subclasses
 136      *  to the actually referred symbol in superclasses.
 137      */
 138     Map<Symbol,Symbol> actualSymbols;
 139 
 140     /** The current method definition.
 141      */
 142     JCMethodDecl currentMethodDef;
 143 
 144     /** The current method symbol.
 145      */
 146     MethodSymbol currentMethodSym;
 147 
 148     /** The currently enclosing outermost class definition.
 149      */
 150     JCClassDecl outermostClassDef;
 151 
 152     /** The currently enclosing outermost member definition.
 153      */
 154     JCTree outermostMemberDef;
 155 
 156     /** A navigator class for assembling a mapping from local class symbols
 157      *  to class definition trees.
 158      *  There is only one case; all other cases simply traverse down the tree.
 159      */
 160     class ClassMap extends TreeScanner {
 161 
 162         /** All encountered class defs are entered into classdefs table.
 163          */
 164         public void visitClassDef(JCClassDecl tree) {
 165             classdefs.put(tree.sym, tree);
 166             super.visitClassDef(tree);
 167         }
 168     }
 169     ClassMap classMap = new ClassMap();
 170 
 171     /** Map a class symbol to its definition.
 172      *  @param c    The class symbol of which we want to determine the definition.
 173      */
 174     JCClassDecl classDef(ClassSymbol c) {
 175         // First lookup the class in the classdefs table.
 176         JCClassDecl def = classdefs.get(c);
 177         if (def == null && outermostMemberDef != null) {
 178             // If this fails, traverse outermost member definition, entering all
 179             // local classes into classdefs, and try again.
 180             classMap.scan(outermostMemberDef);
 181             def = classdefs.get(c);
 182         }
 183         if (def == null) {
 184             // If this fails, traverse outermost class definition, entering all
 185             // local classes into classdefs, and try again.
 186             classMap.scan(outermostClassDef);
 187             def = classdefs.get(c);
 188         }
 189         return def;
 190     }
 191 
 192     /** A hash table mapping class symbols to lists of free variables.
 193      *  accessed by them. Only free variables of the method immediately containing
 194      *  a class are associated with that class.
 195      */
 196     Map<ClassSymbol,List<VarSymbol>> freevarCache;
 197 
 198     /** A navigator class for collecting the free variables accessed
 199      *  from a local class.
 200      *  There is only one case; all other cases simply traverse down the tree.
 201      */
 202     class FreeVarCollector extends TreeScanner {
 203 
 204         /** The owner of the local class.
 205          */
 206         Symbol owner;
 207 
 208         /** The local class.
 209          */
 210         ClassSymbol clazz;
 211 
 212         /** The list of owner's variables accessed from within the local class,
 213          *  without any duplicates.
 214          */
 215         List<VarSymbol> fvs;
 216 
 217         FreeVarCollector(ClassSymbol clazz) {
 218             this.clazz = clazz;
 219             this.owner = clazz.owner;
 220             this.fvs = List.nil();
 221         }
 222 
 223         /** Add free variable to fvs list unless it is already there.
 224          */
 225         private void addFreeVar(VarSymbol v) {
 226             for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail)
 227                 if (l.head == v) return;
 228             fvs = fvs.prepend(v);
 229         }
 230 
 231         /** Add all free variables of class c to fvs list
 232          *  unless they are already there.
 233          */
 234         private void addFreeVars(ClassSymbol c) {
 235             List<VarSymbol> fvs = freevarCache.get(c);
 236             if (fvs != null) {
 237                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
 238                     addFreeVar(l.head);
 239                 }
 240             }
 241         }
 242 
 243         /** If tree refers to a variable in owner of local class, add it to
 244          *  free variables list.
 245          */
 246         public void visitIdent(JCIdent tree) {
 247             result = tree;
 248             visitSymbol(tree.sym);
 249         }
 250         // where
 251         private void visitSymbol(Symbol _sym) {
 252             Symbol sym = _sym;
 253             if (sym.kind == VAR || sym.kind == MTH) {
 254                 while (sym != null && sym.owner != owner)
 255                     sym = proxies.lookup(proxyName(sym.name)).sym;
 256                 if (sym != null && sym.owner == owner) {
 257                     VarSymbol v = (VarSymbol)sym;
 258                     if (v.getConstValue() == null) {
 259                         addFreeVar(v);
 260                     }
 261                 } else {
 262                     if (outerThisStack.head != null &&
 263                         outerThisStack.head != _sym)
 264                         visitSymbol(outerThisStack.head);
 265                 }
 266             }
 267         }
 268 
 269         /** If tree refers to a class instance creation expression
 270          *  add all free variables of the freshly created class.
 271          */
 272         public void visitNewClass(JCNewClass tree) {
 273             ClassSymbol c = (ClassSymbol)tree.constructor.owner;
 274             addFreeVars(c);
 275             if (tree.encl == null &&
 276                 c.hasOuterInstance() &&
 277                 outerThisStack.head != null)
 278                 visitSymbol(outerThisStack.head);
 279             super.visitNewClass(tree);
 280         }
 281 
 282         /** If tree refers to a qualified this or super expression
 283          *  for anything but the current class, add the outer this
 284          *  stack as a free variable.
 285          */
 286         public void visitSelect(JCFieldAccess tree) {
 287             if ((tree.name == names._this || tree.name == names._super) &&
 288                 tree.selected.type.tsym != clazz &&
 289                 outerThisStack.head != null)
 290                 visitSymbol(outerThisStack.head);
 291             super.visitSelect(tree);
 292         }
 293 
 294         /** If tree refers to a superclass constructor call,
 295          *  add all free variables of the superclass.
 296          */
 297         public void visitApply(JCMethodInvocation tree) {
 298             if (TreeInfo.name(tree.meth) == names._super) {
 299                 addFreeVars((ClassSymbol) TreeInfo.symbol(tree.meth).owner);
 300                 Symbol constructor = TreeInfo.symbol(tree.meth);
 301                 ClassSymbol c = (ClassSymbol)constructor.owner;
 302                 if (c.hasOuterInstance() &&
 303                     tree.meth.getTag() != JCTree.SELECT &&
 304                     outerThisStack.head != null)
 305                     visitSymbol(outerThisStack.head);
 306             }
 307             super.visitApply(tree);
 308         }
 309     }
 310 
 311     /** Return the variables accessed from within a local class, which
 312      *  are declared in the local class' owner.
 313      *  (in reverse order of first access).
 314      */
 315     List<VarSymbol> freevars(ClassSymbol c)  {
 316         if ((c.owner.kind & (VAR | MTH)) != 0) {
 317             List<VarSymbol> fvs = freevarCache.get(c);
 318             if (fvs == null) {
 319                 FreeVarCollector collector = new FreeVarCollector(c);
 320                 collector.scan(classDef(c));
 321                 fvs = collector.fvs;
 322                 freevarCache.put(c, fvs);
 323             }
 324             return fvs;
 325         } else {
 326             return List.nil();
 327         }
 328     }
 329 
 330     static class LambdaFreeVarCollector extends TreeScanner {
 331         private final Symbol owner;
 332         List<VarSymbol> freeVars = List.nil();
 333         
 334         public LambdaFreeVarCollector(Symbol owner) {
 335             this.owner = owner;
 336         }
 337         
 338         @Override
 339         public void visitIdent(JCIdent tree) {
 340              Symbol sym = tree.sym;
 341              //FIXME Remi: wrong condition, should be investigated
 342              if (sym.kind == VAR && sym.owner.kind == MTH && sym.owner != owner) {
 343                  VarSymbol v = (VarSymbol)sym;
 344                  freeVars = freeVars.prepend(v);
 345              }
 346         }
 347     }
 348     
 349     Map<TypeSymbol,EnumMapping> enumSwitchMap = new LinkedHashMap<TypeSymbol,EnumMapping>();
 350 
 351     EnumMapping mapForEnum(DiagnosticPosition pos, TypeSymbol enumClass) {
 352         EnumMapping map = enumSwitchMap.get(enumClass);
 353         if (map == null)
 354             enumSwitchMap.put(enumClass, map = new EnumMapping(pos, enumClass));
 355         return map;
 356     }
 357 
 358     /** This map gives a translation table to be used for enum
 359      *  switches.
 360      *
 361      *  <p>For each enum that appears as the type of a switch
 362      *  expression, we maintain an EnumMapping to assist in the
 363      *  translation, as exemplified by the following example:
 364      *
 365      *  <p>we translate
 366      *  <pre>
 367      *          switch(colorExpression) {
 368      *          case red: stmt1;
 369      *          case green: stmt2;
 370      *          }
 371      *  </pre>
 372      *  into
 373      *  <pre>
 374      *          switch(Outer$0.$EnumMap$Color[colorExpression.ordinal()]) {
 375      *          case 1: stmt1;
 376      *          case 2: stmt2
 377      *          }
 378      *  </pre>
 379      *  with the auxiliary table initialized as follows:
 380      *  <pre>
 381      *          class Outer$0 {
 382      *              synthetic final int[] $EnumMap$Color = new int[Color.values().length];
 383      *              static {
 384      *                  try { $EnumMap$Color[red.ordinal()] = 1; } catch (NoSuchFieldError ex) {}
 385      *                  try { $EnumMap$Color[green.ordinal()] = 2; } catch (NoSuchFieldError ex) {}
 386      *              }
 387      *          }
 388      *  </pre>
 389      *  class EnumMapping provides mapping data and support methods for this translation.
 390      */
 391     class EnumMapping {
 392         EnumMapping(DiagnosticPosition pos, TypeSymbol forEnum) {
 393             this.forEnum = forEnum;
 394             this.values = new LinkedHashMap<VarSymbol,Integer>();
 395             this.pos = pos;
 396             Name varName = names
 397                 .fromString(target.syntheticNameChar() +
 398                             "SwitchMap" +
 399                             target.syntheticNameChar() +
 400                             writer.xClassName(forEnum.type).toString()
 401                             .replace('/', '.')
 402                             .replace('.', target.syntheticNameChar()));
 403             ClassSymbol outerCacheClass = outerCacheClass();
 404             this.mapVar = new VarSymbol(STATIC | SYNTHETIC | FINAL,
 405                                         varName,
 406                                         new ArrayType(syms.intType, syms.arrayClass),
 407                                         outerCacheClass);
 408             enterSynthetic(pos, mapVar, outerCacheClass.members());
 409         }
 410 
 411         DiagnosticPosition pos = null;
 412 
 413         // the next value to use
 414         int next = 1; // 0 (unused map elements) go to the default label
 415 
 416         // the enum for which this is a map
 417         final TypeSymbol forEnum;
 418 
 419         // the field containing the map
 420         final VarSymbol mapVar;
 421 
 422         // the mapped values
 423         final Map<VarSymbol,Integer> values;
 424 
 425         JCLiteral forConstant(VarSymbol v) {
 426             Integer result = values.get(v);
 427             if (result == null)
 428                 values.put(v, result = next++);
 429             return make.Literal(result);
 430         }
 431 
 432         // generate the field initializer for the map
 433         void translate() {
 434             make.at(pos.getStartPosition());
 435             JCClassDecl owner = classDef((ClassSymbol)mapVar.owner);
 436 
 437             // synthetic static final int[] $SwitchMap$Color = new int[Color.values().length];
 438             MethodSymbol valuesMethod = lookupMethod(pos,
 439                                                      names.values,
 440                                                      forEnum.type,
 441                                                      List.<Type>nil());
 442             JCExpression size = make // Color.values().length
 443                 .Select(make.App(make.QualIdent(valuesMethod)),
 444                         syms.lengthVar);
 445             JCExpression mapVarInit = make
 446                 .NewArray(make.Type(syms.intType), List.of(size), null)
 447                 .setType(new ArrayType(syms.intType, syms.arrayClass));
 448 
 449             // try { $SwitchMap$Color[red.ordinal()] = 1; } catch (java.lang.NoSuchFieldError ex) {}
 450             ListBuffer<JCStatement> stmts = new ListBuffer<JCStatement>();
 451             Symbol ordinalMethod = lookupMethod(pos,
 452                                                 names.ordinal,
 453                                                 forEnum.type,
 454                                                 List.<Type>nil());
 455             List<JCCatch> catcher = List.<JCCatch>nil()
 456                 .prepend(make.Catch(make.VarDef(new VarSymbol(PARAMETER, names.ex,
 457                                                               syms.noSuchFieldErrorType,
 458                                                               syms.noSymbol),
 459                                                 null),
 460                                     make.Block(0, List.<JCStatement>nil())));
 461             for (Map.Entry<VarSymbol,Integer> e : values.entrySet()) {
 462                 VarSymbol enumerator = e.getKey();
 463                 Integer mappedValue = e.getValue();
 464                 JCExpression assign = make
 465                     .Assign(make.Indexed(mapVar,
 466                                          make.App(make.Select(make.QualIdent(enumerator),
 467                                                               ordinalMethod))),
 468                             make.Literal(mappedValue))
 469                     .setType(syms.intType);
 470                 JCStatement exec = make.Exec(assign);
 471                 JCStatement _try = make.Try(make.Block(0, List.of(exec)), catcher, null);
 472                 stmts.append(_try);
 473             }
 474 
 475             owner.defs = owner.defs
 476                 .prepend(make.Block(STATIC, stmts.toList()))
 477                 .prepend(make.VarDef(mapVar, mapVarInit));
 478         }
 479     }
 480 
 481 
 482 /**************************************************************************
 483  * Tree building blocks
 484  *************************************************************************/
 485 
 486     /** Equivalent to make.at(pos.getStartPosition()) with side effect of caching
 487      *  pos as make_pos, for use in diagnostics.
 488      **/
 489     TreeMaker make_at(DiagnosticPosition pos) {
 490         make_pos = pos;
 491         return make.at(pos);
 492     }
 493 
 494     /** Make an attributed tree representing a literal. This will be an
 495      *  Ident node in the case of boolean literals, a Literal node in all
 496      *  other cases.
 497      *  @param type       The literal's type.
 498      *  @param value      The literal's value.
 499      */
 500     JCExpression makeLit(Type type, Object value) {
 501         return make.Literal(type.tag, value).setType(type.constType(value));
 502     }
 503 
 504     /** Make an attributed tree representing null.
 505      */
 506     JCExpression makeNull() {
 507         return makeLit(syms.botType, null);
 508     }
 509 
 510     /** Make an attributed class instance creation expression.
 511      *  @param ctype    The class type.
 512      *  @param args     The constructor arguments.
 513      */
 514     JCNewClass makeNewClass(Type ctype, List<JCExpression> args) {
 515         JCNewClass tree = make.NewClass(null,
 516             null, make.QualIdent(ctype.tsym), args, null);
 517         tree.constructor = rs.resolveConstructor(
 518             make_pos, attrEnv, ctype, TreeInfo.types(args), null, false, false);
 519         tree.type = ctype;
 520         return tree;
 521     }
 522 
 523     /** Make an attributed unary expression.
 524      *  @param optag    The operators tree tag.
 525      *  @param arg      The operator's argument.
 526      */
 527     JCUnary makeUnary(int optag, JCExpression arg) {
 528         JCUnary tree = make.Unary(optag, arg);
 529         tree.operator = rs.resolveUnaryOperator(
 530             make_pos, optag, attrEnv, arg.type);
 531         tree.type = tree.operator.type.getReturnType();
 532         return tree;
 533     }
 534 
 535     /** Make an attributed binary expression.
 536      *  @param optag    The operators tree tag.
 537      *  @param lhs      The operator's left argument.
 538      *  @param rhs      The operator's right argument.
 539      */
 540     JCBinary makeBinary(int optag, JCExpression lhs, JCExpression rhs) {
 541         JCBinary tree = make.Binary(optag, lhs, rhs);
 542         tree.operator = rs.resolveBinaryOperator(
 543             make_pos, optag, attrEnv, lhs.type, rhs.type);
 544         tree.type = tree.operator.type.getReturnType();
 545         return tree;
 546     }
 547 
 548     /** Make an attributed assignop expression.
 549      *  @param optag    The operators tree tag.
 550      *  @param lhs      The operator's left argument.
 551      *  @param rhs      The operator's right argument.
 552      */
 553     JCAssignOp makeAssignop(int optag, JCTree lhs, JCTree rhs) {
 554         JCAssignOp tree = make.Assignop(optag, lhs, rhs);
 555         tree.operator = rs.resolveBinaryOperator(
 556             make_pos, tree.getTag() - JCTree.ASGOffset, attrEnv, lhs.type, rhs.type);
 557         tree.type = lhs.type;
 558         return tree;
 559     }
 560 
 561     /** Convert tree into string object, unless it has already a
 562      *  reference type..
 563      */
 564     JCExpression makeString(JCExpression tree) {
 565         if (tree.type.tag >= CLASS) {
 566             return tree;
 567         } else {
 568             Symbol valueOfSym = lookupMethod(tree.pos(),
 569                                              names.valueOf,
 570                                              syms.stringType,
 571                                              List.of(tree.type));
 572             return make.App(make.QualIdent(valueOfSym), List.of(tree));
 573         }
 574     }
 575 
 576     /** Create an empty anonymous class definition and enter and complete
 577      *  its symbol. Return the class definition's symbol.
 578      *  and create
 579      *  @param flags    The class symbol's flags
 580      *  @param owner    The class symbol's owner
 581      */
 582     ClassSymbol makeEmptyClass(long flags, ClassSymbol owner) {
 583         // Create class symbol.
 584         ClassSymbol c = reader.defineClass(names.empty, owner);
 585         c.flatname = chk.localClassName(c);
 586         c.sourcefile = owner.sourcefile;
 587         c.completer = null;
 588         c.members_field = new Scope(c);
 589         c.flags_field = flags;
 590         ClassType ctype = (ClassType) c.type;
 591         ctype.supertype_field = syms.objectType;
 592         ctype.interfaces_field = List.nil();
 593 
 594         JCClassDecl odef = classDef(owner);
 595 
 596         // Enter class symbol in owner scope and compiled table.
 597         enterSynthetic(odef.pos(), c, owner.members());
 598         chk.compiled.put(c.flatname, c);
 599 
 600         // Create class definition tree.
 601         JCClassDecl cdef = make.ClassDef(
 602             make.Modifiers(flags), names.empty,
 603             List.<JCTypeParameter>nil(),
 604             null, List.<JCExpression>nil(), List.<JCTree>nil());
 605         cdef.sym = c;
 606         cdef.type = c.type;
 607 
 608         // Append class definition tree to owner's definitions.
 609         odef.defs = odef.defs.prepend(cdef);
 610 
 611         return c;
 612     }
 613 
 614 /**************************************************************************
 615  * Symbol manipulation utilities
 616  *************************************************************************/
 617 
 618     /** Enter a synthetic symbol in a given scope, but complain if there was already one there.
 619      *  @param pos           Position for error reporting.
 620      *  @param sym           The symbol.
 621      *  @param s             The scope.
 622      */
 623     private void enterSynthetic(DiagnosticPosition pos, Symbol sym, Scope s) {
 624         s.enter(sym);
 625     }
 626 
 627     /** Check whether synthetic symbols generated during lowering conflict
 628      *  with user-defined symbols.
 629      *
 630      *  @param translatedTrees lowered class trees
 631      */
 632     void checkConflicts(List<JCTree> translatedTrees) {
 633         for (JCTree t : translatedTrees) {
 634             t.accept(conflictsChecker);
 635         }
 636     }
 637 
 638     JCTree.Visitor conflictsChecker = new TreeScanner() {
 639 
 640         TypeSymbol currentClass;
 641 
 642         @Override
 643         public void visitMethodDef(JCMethodDecl that) {
 644             chk.checkConflicts(that.pos(), that.sym, currentClass);
 645             super.visitMethodDef(that);
 646         }
 647 
 648         @Override
 649         public void visitVarDef(JCVariableDecl that) {
 650             if (that.sym.owner.kind == TYP) {
 651                 chk.checkConflicts(that.pos(), that.sym, currentClass);
 652             }
 653             super.visitVarDef(that);
 654         }
 655 
 656         @Override
 657         public void visitClassDef(JCClassDecl that) {
 658             TypeSymbol prevCurrentClass = currentClass;
 659             currentClass = that.sym;
 660             try {
 661                 super.visitClassDef(that);
 662             }
 663             finally {
 664                 currentClass = prevCurrentClass;
 665             }
 666         }
 667     };
 668 
 669     /** Look up a synthetic name in a given scope.
 670      *  @param scope        The scope.
 671      *  @param name         The name.
 672      */
 673     private Symbol lookupSynthetic(Name name, Scope s) {
 674         Symbol sym = s.lookup(name).sym;
 675         return (sym==null || (sym.flags()&SYNTHETIC)==0) ? null : sym;
 676     }
 677 
 678     /** Look up a method in a given scope.
 679      */
 680     private MethodSymbol lookupMethod(DiagnosticPosition pos, Name name, Type qual, List<Type> args) {
 681         return rs.resolveInternalMethod(pos, attrEnv, qual, name, args, null);
 682     }
 683 
 684     /** Look up a constructor.
 685      */
 686     private MethodSymbol lookupConstructor(DiagnosticPosition pos, Type qual, List<Type> args) {
 687         return rs.resolveInternalConstructor(pos, attrEnv, qual, args, null);
 688     }
 689 
 690     /** Look up a field.
 691      */
 692     private VarSymbol lookupField(DiagnosticPosition pos, Type qual, Name name) {
 693         return rs.resolveInternalField(pos, attrEnv, qual, name);
 694     }
 695 
 696 /**************************************************************************
 697  * Access methods
 698  *************************************************************************/
 699 
 700     /** Access codes for dereferencing, assignment,
 701      *  and pre/post increment/decrement.
 702      *  Access codes for assignment operations are determined by method accessCode
 703      *  below.
 704      *
 705      *  All access codes for accesses to the current class are even.
 706      *  If a member of the superclass should be accessed instead (because
 707      *  access was via a qualified super), add one to the corresponding code
 708      *  for the current class, making the number odd.
 709      *  This numbering scheme is used by the backend to decide whether
 710      *  to issue an invokevirtual or invokespecial call.
 711      *
 712      *  @see Gen.visitSelect(Select tree)
 713      */
 714     private static final int
 715         DEREFcode = 0,
 716         ASSIGNcode = 2,
 717         PREINCcode = 4,
 718         PREDECcode = 6,
 719         POSTINCcode = 8,
 720         POSTDECcode = 10,
 721         FIRSTASGOPcode = 12;
 722 
 723     /** Number of access codes
 724      */
 725     private static final int NCODES = accessCode(ByteCodes.lushrl) + 2;
 726 
 727     /** A mapping from symbols to their access numbers.
 728      */
 729     private Map<Symbol,Integer> accessNums;
 730 
 731     /** A mapping from symbols to an array of access symbols, indexed by
 732      *  access code.
 733      */
 734     private Map<Symbol,MethodSymbol[]> accessSyms;
 735 
 736     /** A mapping from (constructor) symbols to access constructor symbols.
 737      */
 738     private Map<Symbol,MethodSymbol> accessConstrs;
 739 
 740     /** A queue for all accessed symbols.
 741      */
 742     private ListBuffer<Symbol> accessed;
 743 
 744     /** Map bytecode of binary operation to access code of corresponding
 745      *  assignment operation. This is always an even number.
 746      */
 747     private static int accessCode(int bytecode) {
 748         if (ByteCodes.iadd <= bytecode && bytecode <= ByteCodes.lxor)
 749             return (bytecode - iadd) * 2 + FIRSTASGOPcode;
 750         else if (bytecode == ByteCodes.string_add)
 751             return (ByteCodes.lxor + 1 - iadd) * 2 + FIRSTASGOPcode;
 752         else if (ByteCodes.ishll <= bytecode && bytecode <= ByteCodes.lushrl)
 753             return (bytecode - ishll + ByteCodes.lxor + 2 - iadd) * 2 + FIRSTASGOPcode;
 754         else
 755             return -1;
 756     }
 757 
 758     /** return access code for identifier,
 759      *  @param tree     The tree representing the identifier use.
 760      *  @param enclOp   The closest enclosing operation node of tree,
 761      *                  null if tree is not a subtree of an operation.
 762      */
 763     private static int accessCode(JCTree tree, JCTree enclOp) {
 764         if (enclOp == null)
 765             return DEREFcode;
 766         else if (enclOp.getTag() == JCTree.ASSIGN &&
 767                  tree == TreeInfo.skipParens(((JCAssign) enclOp).lhs))
 768             return ASSIGNcode;
 769         else if (JCTree.PREINC <= enclOp.getTag() && enclOp.getTag() <= JCTree.POSTDEC &&
 770                  tree == TreeInfo.skipParens(((JCUnary) enclOp).arg))
 771             return (enclOp.getTag() - JCTree.PREINC) * 2 + PREINCcode;
 772         else if (JCTree.BITOR_ASG <= enclOp.getTag() && enclOp.getTag() <= JCTree.MOD_ASG &&
 773                  tree == TreeInfo.skipParens(((JCAssignOp) enclOp).lhs))
 774             return accessCode(((OperatorSymbol) ((JCAssignOp) enclOp).operator).opcode);
 775         else
 776             return DEREFcode;
 777     }
 778 
 779     /** Return binary operator that corresponds to given access code.
 780      */
 781     private OperatorSymbol binaryAccessOperator(int acode) {
 782         for (Scope.Entry e = syms.predefClass.members().elems;
 783              e != null;
 784              e = e.sibling) {
 785             if (e.sym instanceof OperatorSymbol) {
 786                 OperatorSymbol op = (OperatorSymbol)e.sym;
 787                 if (accessCode(op.opcode) == acode) return op;
 788             }
 789         }
 790         return null;
 791     }
 792 
 793     /** Return tree tag for assignment operation corresponding
 794      *  to given binary operator.
 795      */
 796     private static int treeTag(OperatorSymbol operator) {
 797         switch (operator.opcode) {
 798         case ByteCodes.ior: case ByteCodes.lor:
 799             return JCTree.BITOR_ASG;
 800         case ByteCodes.ixor: case ByteCodes.lxor:
 801             return JCTree.BITXOR_ASG;
 802         case ByteCodes.iand: case ByteCodes.land:
 803             return JCTree.BITAND_ASG;
 804         case ByteCodes.ishl: case ByteCodes.lshl:
 805         case ByteCodes.ishll: case ByteCodes.lshll:
 806             return JCTree.SL_ASG;
 807         case ByteCodes.ishr: case ByteCodes.lshr:
 808         case ByteCodes.ishrl: case ByteCodes.lshrl:
 809             return JCTree.SR_ASG;
 810         case ByteCodes.iushr: case ByteCodes.lushr:
 811         case ByteCodes.iushrl: case ByteCodes.lushrl:
 812             return JCTree.USR_ASG;
 813         case ByteCodes.iadd: case ByteCodes.ladd:
 814         case ByteCodes.fadd: case ByteCodes.dadd:
 815         case ByteCodes.string_add:
 816             return JCTree.PLUS_ASG;
 817         case ByteCodes.isub: case ByteCodes.lsub:
 818         case ByteCodes.fsub: case ByteCodes.dsub:
 819             return JCTree.MINUS_ASG;
 820         case ByteCodes.imul: case ByteCodes.lmul:
 821         case ByteCodes.fmul: case ByteCodes.dmul:
 822             return JCTree.MUL_ASG;
 823         case ByteCodes.idiv: case ByteCodes.ldiv:
 824         case ByteCodes.fdiv: case ByteCodes.ddiv:
 825             return JCTree.DIV_ASG;
 826         case ByteCodes.imod: case ByteCodes.lmod:
 827         case ByteCodes.fmod: case ByteCodes.dmod:
 828             return JCTree.MOD_ASG;
 829         default:
 830             throw new AssertionError();
 831         }
 832     }
 833 
 834     /** The name of the access method with number `anum' and access code `acode'.
 835      */
 836     Name accessName(int anum, int acode) {
 837         return names.fromString(
 838             "access" + target.syntheticNameChar() + anum + acode / 10 + acode % 10);
 839     }
 840 
 841     /** Return access symbol for a private or protected symbol from an inner class.
 842      *  @param sym        The accessed private symbol.
 843      *  @param tree       The accessing tree.
 844      *  @param enclOp     The closest enclosing operation node of tree,
 845      *                    null if tree is not a subtree of an operation.
 846      *  @param protAccess Is access to a protected symbol in another
 847      *                    package?
 848      *  @param refSuper   Is access via a (qualified) C.super?
 849      */
 850     MethodSymbol accessSymbol(Symbol sym, JCTree tree, JCTree enclOp,
 851                               boolean protAccess, boolean refSuper) {
 852         ClassSymbol accOwner = refSuper && protAccess
 853             // For access via qualified super (T.super.x), place the
 854             // access symbol on T.
 855             ? (ClassSymbol)((JCFieldAccess) tree).selected.type.tsym
 856             // Otherwise pretend that the owner of an accessed
 857             // protected symbol is the enclosing class of the current
 858             // class which is a subclass of the symbol's owner.
 859             : accessClass(sym, protAccess, tree);
 860 
 861         Symbol vsym = sym;
 862         if (sym.owner != accOwner) {
 863             vsym = sym.clone(accOwner);
 864             actualSymbols.put(vsym, sym);
 865         }
 866 
 867         Integer anum              // The access number of the access method.
 868             = accessNums.get(vsym);
 869         if (anum == null) {
 870             anum = accessed.length();
 871             accessNums.put(vsym, anum);
 872             accessSyms.put(vsym, new MethodSymbol[NCODES]);
 873             accessed.append(vsym);
 874             // System.out.println("accessing " + vsym + " in " + vsym.location());
 875         }
 876 
 877         int acode;                // The access code of the access method.
 878         List<Type> argtypes;      // The argument types of the access method.
 879         Type restype;             // The result type of the access method.
 880         List<Type> thrown;        // The thrown exceptions of the access method.
 881         switch (vsym.kind) {
 882         case VAR:
 883             acode = accessCode(tree, enclOp);
 884             if (acode >= FIRSTASGOPcode) {
 885                 OperatorSymbol operator = binaryAccessOperator(acode);
 886                 if (operator.opcode == string_add)
 887                     argtypes = List.of(syms.objectType);
 888                 else
 889                     argtypes = operator.type.getParameterTypes().tail;
 890             } else if (acode == ASSIGNcode)
 891                 argtypes = List.of(vsym.erasure(types));
 892             else
 893                 argtypes = List.nil();
 894             restype = vsym.erasure(types);
 895             thrown = List.nil();
 896             break;
 897         case MTH:
 898             acode = DEREFcode;
 899             argtypes = vsym.erasure(types).getParameterTypes();
 900             restype = vsym.erasure(types).getReturnType();
 901             thrown = vsym.type.getThrownTypes();
 902             break;
 903         default:
 904             throw new AssertionError();
 905         }
 906 
 907         // For references via qualified super, increment acode by one,
 908         // making it odd.
 909         if (protAccess && refSuper) acode++;
 910 
 911         // Instance access methods get instance as first parameter.
 912         // For protected symbols this needs to be the instance as a member
 913         // of the type containing the accessed symbol, not the class
 914         // containing the access method.
 915         if ((vsym.flags() & STATIC) == 0) {
 916             argtypes = argtypes.prepend(vsym.owner.erasure(types));
 917         }
 918         MethodSymbol[] accessors = accessSyms.get(vsym);
 919         MethodSymbol accessor = accessors[acode];
 920         if (accessor == null) {
 921             accessor = new MethodSymbol(
 922                 STATIC | SYNTHETIC,
 923                 accessName(anum.intValue(), acode),
 924                 new MethodType(argtypes, restype, thrown, syms.methodClass),
 925                 accOwner);
 926             enterSynthetic(tree.pos(), accessor, accOwner.members());
 927             accessors[acode] = accessor;
 928         }
 929         return accessor;
 930     }
 931 
 932     /** The qualifier to be used for accessing a symbol in an outer class.
 933      *  This is either C.sym or C.this.sym, depending on whether or not
 934      *  sym is static.
 935      *  @param sym   The accessed symbol.
 936      */
 937     JCExpression accessBase(DiagnosticPosition pos, Symbol sym) {
 938         return (sym.flags() & STATIC) != 0
 939             ? access(make.at(pos.getStartPosition()).QualIdent(sym.owner))
 940             : makeOwnerThis(pos, sym, true);
 941     }
 942 
 943     /** Do we need an access method to reference private symbol?
 944      */
 945     boolean needsPrivateAccess(Symbol sym) {
 946         if ((sym.flags() & PRIVATE) == 0 || sym.owner == currentClass) {
 947             return false;
 948         } else if (sym.name == names.init && (sym.owner.owner.kind & (VAR | MTH)) != 0) {
 949             // private constructor in local class: relax protection
 950             sym.flags_field &= ~PRIVATE;
 951             return false;
 952         } else {
 953             return true;
 954         }
 955     }
 956 
 957     /** Do we need an access method to reference symbol in other package?
 958      */
 959     boolean needsProtectedAccess(Symbol sym, JCTree tree) {
 960         if ((sym.flags() & PROTECTED) == 0 ||
 961             sym.owner.owner == currentClass.owner || // fast special case
 962             sym.packge() == currentClass.packge())
 963             return false;
 964         if (!currentClass.isSubClass(sym.owner, types))
 965             return true;
 966         if ((sym.flags() & STATIC) != 0 ||
 967             tree.getTag() != JCTree.SELECT ||
 968             TreeInfo.name(((JCFieldAccess) tree).selected) == names._super)
 969             return false;
 970         return !((JCFieldAccess) tree).selected.type.tsym.isSubClass(currentClass, types);
 971     }
 972 
 973     /** The class in which an access method for given symbol goes.
 974      *  @param sym        The access symbol
 975      *  @param protAccess Is access to a protected symbol in another
 976      *                    package?
 977      */
 978     ClassSymbol accessClass(Symbol sym, boolean protAccess, JCTree tree) {
 979         if (protAccess) {
 980             Symbol qualifier = null;
 981             ClassSymbol c = currentClass;
 982             if (tree.getTag() == JCTree.SELECT && (sym.flags() & STATIC) == 0) {
 983                 qualifier = ((JCFieldAccess) tree).selected.type.tsym;
 984                 while (!qualifier.isSubClass(c, types)) {
 985                     c = c.owner.enclClass();
 986                 }
 987                 return c;
 988             } else {
 989                 while (!c.isSubClass(sym.owner, types)) {
 990                     c = c.owner.enclClass();
 991                 }
 992             }
 993             return c;
 994         } else {
 995             // the symbol is private
 996             return sym.owner.enclClass();
 997         }
 998     }
 999 
1000     /** Ensure that identifier is accessible, return tree accessing the identifier.
1001      *  @param sym      The accessed symbol.
1002      *  @param tree     The tree referring to the symbol.
1003      *  @param enclOp   The closest enclosing operation node of tree,
1004      *                  null if tree is not a subtree of an operation.
1005      *  @param refSuper Is access via a (qualified) C.super?
1006      */
1007     JCExpression access(Symbol sym, JCExpression tree, JCExpression enclOp, boolean refSuper) {
1008         // Access a free variable via its proxy, or its proxy's proxy
1009         while (sym.kind == VAR && sym.owner.kind == MTH &&
1010             sym.owner.enclClass() != currentClass) {
1011             // A constant is replaced by its constant value.
1012             Object cv = ((VarSymbol)sym).getConstValue();
1013             if (cv != null) {
1014                 make.at(tree.pos);
1015                 return makeLit(sym.type, cv);
1016             }
1017             // Otherwise replace the variable by its proxy.
1018             sym = proxies.lookup(proxyName(sym.name)).sym;
1019             assert sym != null && (sym.flags_field & FINAL) != 0;
1020             tree = make.at(tree.pos).Ident(sym);
1021         }
1022         JCExpression base = (tree.getTag() == JCTree.SELECT) ? ((JCFieldAccess) tree).selected : null;
1023         switch (sym.kind) {
1024         case TYP:
1025             if (sym.owner.kind != PCK) {
1026                 // Convert type idents to
1027                 // <flat name> or <package name> . <flat name>
1028                 Name flatname = Convert.shortName(sym.flatName());
1029                 while (base != null &&
1030                        TreeInfo.symbol(base) != null &&
1031                        TreeInfo.symbol(base).kind != PCK) {
1032                     base = (base.getTag() == JCTree.SELECT)
1033                         ? ((JCFieldAccess) base).selected
1034                         : null;
1035                 }
1036                 if (tree.getTag() == JCTree.IDENT) {
1037                     ((JCIdent) tree).name = flatname;
1038                 } else if (base == null) {
1039                     tree = make.at(tree.pos).Ident(sym);
1040                     ((JCIdent) tree).name = flatname;
1041                 } else {
1042                     ((JCFieldAccess) tree).selected = base;
1043                     ((JCFieldAccess) tree).name = flatname;
1044                 }
1045             }
1046             break;
1047         case MTH: case VAR:
1048             if (sym.owner.kind == TYP) {
1049 
1050                 // Access methods are required for
1051                 //  - private members,
1052                 //  - protected members in a superclass of an
1053                 //    enclosing class contained in another package.
1054                 //  - all non-private members accessed via a qualified super.
1055                 boolean protAccess = refSuper && !needsPrivateAccess(sym)
1056                     || needsProtectedAccess(sym, tree);
1057                 boolean accReq = protAccess || needsPrivateAccess(sym);
1058 
1059                 // A base has to be supplied for
1060                 //  - simple identifiers accessing variables in outer classes.
1061                 boolean baseReq =
1062                     base == null &&
1063                     sym.owner != syms.predefClass &&
1064                     !sym.isMemberOf(currentClass, types);
1065 
1066                 if (accReq || baseReq) {
1067                     make.at(tree.pos);
1068 
1069                     // Constants are replaced by their constant value.
1070                     if (sym.kind == VAR) {
1071                         Object cv = ((VarSymbol)sym).getConstValue();
1072                         if (cv != null) return makeLit(sym.type, cv);
1073                     }
1074 
1075                     // Private variables and methods are replaced by calls
1076                     // to their access methods.
1077                     if (accReq) {
1078                         List<JCExpression> args = List.nil();
1079                         if ((sym.flags() & STATIC) == 0) {
1080                             // Instance access methods get instance
1081                             // as first parameter.
1082                             if (base == null)
1083                                 base = makeOwnerThis(tree.pos(), sym, true);
1084                             args = args.prepend(base);
1085                             base = null;   // so we don't duplicate code
1086                         }
1087                         Symbol access = accessSymbol(sym, tree,
1088                                                      enclOp, protAccess,
1089                                                      refSuper);
1090                         JCExpression receiver = make.Select(
1091                             base != null ? base : make.QualIdent(access.owner),
1092                             access);
1093                         return make.App(receiver, args);
1094 
1095                     // Other accesses to members of outer classes get a
1096                     // qualifier.
1097                     } else if (baseReq) {
1098                         return make.at(tree.pos).Select(
1099                             accessBase(tree.pos(), sym), sym).setType(tree.type);
1100                     }
1101                 }
1102             }
1103         }
1104         return tree;
1105     }
1106 
1107     /** Ensure that identifier is accessible, return tree accessing the identifier.
1108      *  @param tree     The identifier tree.
1109      */
1110     JCExpression access(JCExpression tree) {
1111         Symbol sym = TreeInfo.symbol(tree);
1112         return sym == null ? tree : access(sym, tree, null, false);
1113     }
1114 
1115     /** Return access constructor for a private constructor,
1116      *  or the constructor itself, if no access constructor is needed.
1117      *  @param pos       The position to report diagnostics, if any.
1118      *  @param constr    The private constructor.
1119      */
1120     Symbol accessConstructor(DiagnosticPosition pos, Symbol constr) {
1121         if (needsPrivateAccess(constr)) {
1122             ClassSymbol accOwner = constr.owner.enclClass();
1123             MethodSymbol aconstr = accessConstrs.get(constr);
1124             if (aconstr == null) {
1125                 List<Type> argtypes = constr.type.getParameterTypes();
1126                 if ((accOwner.flags_field & ENUM) != 0)
1127                     argtypes = argtypes
1128                         .prepend(syms.intType)
1129                         .prepend(syms.stringType);
1130                 aconstr = new MethodSymbol(
1131                     SYNTHETIC,
1132                     names.init,
1133                     new MethodType(
1134                         argtypes.append(
1135                             accessConstructorTag().erasure(types)),
1136                         constr.type.getReturnType(),
1137                         constr.type.getThrownTypes(),
1138                         syms.methodClass),
1139                     accOwner);
1140                 enterSynthetic(pos, aconstr, accOwner.members());
1141                 accessConstrs.put(constr, aconstr);
1142                 accessed.append(constr);
1143             }
1144             return aconstr;
1145         } else {
1146             return constr;
1147         }
1148     }
1149 
1150     /** Return an anonymous class nested in this toplevel class.
1151      */
1152     ClassSymbol accessConstructorTag() {
1153         ClassSymbol topClass = currentClass.outermostClass();
1154         Name flatname = names.fromString("" + topClass.getQualifiedName() +
1155                                          target.syntheticNameChar() +
1156                                          "1");
1157         ClassSymbol ctag = chk.compiled.get(flatname);
1158         if (ctag == null)
1159             ctag = makeEmptyClass(STATIC | SYNTHETIC, topClass);
1160         return ctag;
1161     }
1162 
1163     /** Add all required access methods for a private symbol to enclosing class.
1164      *  @param sym       The symbol.
1165      */
1166     void makeAccessible(Symbol sym) {
1167         JCClassDecl cdef = classDef(sym.owner.enclClass());
1168         assert cdef != null : "class def not found: " + sym + " in " + sym.owner;
1169         if (sym.name == names.init) {
1170             cdef.defs = cdef.defs.prepend(
1171                 accessConstructorDef(cdef.pos, sym, accessConstrs.get(sym)));
1172         } else {
1173             MethodSymbol[] accessors = accessSyms.get(sym);
1174             for (int i = 0; i < NCODES; i++) {
1175                 if (accessors[i] != null)
1176                     cdef.defs = cdef.defs.prepend(
1177                         accessDef(cdef.pos, sym, accessors[i], i));
1178             }
1179         }
1180     }
1181 
1182     /** Construct definition of an access method.
1183      *  @param pos        The source code position of the definition.
1184      *  @param vsym       The private or protected symbol.
1185      *  @param accessor   The access method for the symbol.
1186      *  @param acode      The access code.
1187      */
1188     JCTree accessDef(int pos, Symbol vsym, MethodSymbol accessor, int acode) {
1189 //      System.err.println("access " + vsym + " with " + accessor);//DEBUG
1190         currentClass = vsym.owner.enclClass();
1191         make.at(pos);
1192         JCMethodDecl md = make.MethodDef(accessor, null);
1193 
1194         // Find actual symbol
1195         Symbol sym = actualSymbols.get(vsym);
1196         if (sym == null) sym = vsym;
1197 
1198         JCExpression ref;           // The tree referencing the private symbol.
1199         List<JCExpression> args;    // Any additional arguments to be passed along.
1200         if ((sym.flags() & STATIC) != 0) {
1201             ref = make.Ident(sym);
1202             args = make.Idents(md.params);
1203         } else {
1204             ref = make.Select(make.Ident(md.params.head), sym);
1205             args = make.Idents(md.params.tail);
1206         }
1207         JCStatement stat;          // The statement accessing the private symbol.
1208         if (sym.kind == VAR) {
1209             // Normalize out all odd access codes by taking floor modulo 2:
1210             int acode1 = acode - (acode & 1);
1211 
1212             JCExpression expr;      // The access method's return value.
1213             switch (acode1) {
1214             case DEREFcode:
1215                 expr = ref;
1216                 break;
1217             case ASSIGNcode:
1218                 expr = make.Assign(ref, args.head);
1219                 break;
1220             case PREINCcode: case POSTINCcode: case PREDECcode: case POSTDECcode:
1221                 expr = makeUnary(
1222                     ((acode1 - PREINCcode) >> 1) + JCTree.PREINC, ref);
1223                 break;
1224             default:
1225                 expr = make.Assignop(
1226                     treeTag(binaryAccessOperator(acode1)), ref, args.head);
1227                 ((JCAssignOp) expr).operator = binaryAccessOperator(acode1);
1228             }
1229             stat = make.Return(expr.setType(sym.type));
1230         } else {
1231             stat = make.Call(make.App(ref, args));
1232         }
1233         md.body = make.Block(0, List.of(stat));
1234 
1235         // Make sure all parameters, result types and thrown exceptions
1236         // are accessible.
1237         for (List<JCVariableDecl> l = md.params; l.nonEmpty(); l = l.tail)
1238             l.head.vartype = access(l.head.vartype);
1239         md.restype = access(md.restype);
1240         for (List<JCExpression> l = md.thrown; l.nonEmpty(); l = l.tail)
1241             l.head = access(l.head);
1242 
1243         return md;
1244     }
1245 
1246     /** Construct definition of an access constructor.
1247      *  @param pos        The source code position of the definition.
1248      *  @param constr     The private constructor.
1249      *  @param accessor   The access method for the constructor.
1250      */
1251     JCTree accessConstructorDef(int pos, Symbol constr, MethodSymbol accessor) {
1252         make.at(pos);
1253         JCMethodDecl md = make.MethodDef(accessor,
1254                                       accessor.externalType(types),
1255                                       null);
1256         JCIdent callee = make.Ident(names._this);
1257         callee.sym = constr;
1258         callee.type = constr.type;
1259         md.body =
1260             make.Block(0, List.<JCStatement>of(
1261                 make.Call(
1262                     make.App(
1263                         callee,
1264                         make.Idents(md.params.reverse().tail.reverse())))));
1265         return md;
1266     }
1267 
1268 /**************************************************************************
1269  * Free variables proxies and this$n
1270  *************************************************************************/
1271 
1272     /** A scope containing all free variable proxies for currently translated
1273      *  class, as well as its this$n symbol (if needed).
1274      *  Proxy scopes are nested in the same way classes are.
1275      *  Inside a constructor, proxies and any this$n symbol are duplicated
1276      *  in an additional innermost scope, where they represent the constructor
1277      *  parameters.
1278      */
1279     Scope proxies;
1280 
1281     /** A stack containing the this$n field of the currently translated
1282      *  classes (if needed) in innermost first order.
1283      *  Inside a constructor, proxies and any this$n symbol are duplicated
1284      *  in an additional innermost scope, where they represent the constructor
1285      *  parameters.
1286      */
1287     List<VarSymbol> outerThisStack;
1288 
1289     /** The name of a free variable proxy.
1290      */
1291     Name proxyName(Name name) {
1292         return names.fromString("val" + target.syntheticNameChar() + name);
1293     }
1294 
1295     /** Proxy definitions for all free variables in given list, in reverse order.
1296      *  @param pos        The source code position of the definition.
1297      *  @param freevars   The free variables.
1298      *  @param owner      The class in which the definitions go.
1299      */
1300     List<JCVariableDecl> freevarDefs(int pos, List<VarSymbol> freevars, Symbol owner) {
1301         long flags = FINAL | SYNTHETIC;
1302         if (owner.kind == TYP &&
1303             target.usePrivateSyntheticFields())
1304             flags |= PRIVATE;
1305         List<JCVariableDecl> defs = List.nil();
1306         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail) {
1307             VarSymbol v = l.head;
1308             VarSymbol proxy = new VarSymbol(
1309                 flags, proxyName(v.name), v.erasure(types), owner);
1310             proxies.enter(proxy);
1311             JCVariableDecl vd = make.at(pos).VarDef(proxy, null);
1312             vd.vartype = access(vd.vartype);
1313             defs = defs.prepend(vd);
1314         }
1315         return defs;
1316     }
1317 
1318     /** The name of a this$n field
1319      *  @param type   The class referenced by the this$n field
1320      */
1321     Name outerThisName(Type type, Symbol owner) {
1322         Type t = type.getEnclosingType();
1323         int nestingLevel = 0;
1324         while (t.tag == CLASS) {
1325             t = t.getEnclosingType();
1326             nestingLevel++;
1327         }
1328         Name result = names.fromString("this" + target.syntheticNameChar() + nestingLevel);
1329         while (owner.kind == TYP && ((ClassSymbol)owner).members().lookup(result).scope != null)
1330             result = names.fromString(result.toString() + target.syntheticNameChar());
1331         return result;
1332     }
1333 
1334     /** Definition for this$n field.
1335      *  @param pos        The source code position of the definition.
1336      *  @param owner      The class in which the definition goes.
1337      */
1338     JCVariableDecl outerThisDef(int pos, Symbol owner) {
1339         long flags = FINAL | SYNTHETIC;
1340         if (owner.kind == TYP &&
1341             target.usePrivateSyntheticFields())
1342             flags |= PRIVATE;
1343         Type target = types.erasure(owner.enclClass().type.getEnclosingType());
1344         VarSymbol outerThis = new VarSymbol(
1345             flags, outerThisName(target, owner), target, owner);
1346         outerThisStack = outerThisStack.prepend(outerThis);
1347         JCVariableDecl vd = make.at(pos).VarDef(outerThis, null);
1348         vd.vartype = access(vd.vartype);
1349         return vd;
1350     }
1351 
1352     /** Return a list of trees that load the free variables in given list,
1353      *  in reverse order.
1354      *  @param pos          The source code position to be used for the trees.
1355      *  @param freevars     The list of free variables.
1356      */
1357     List<JCExpression> loadFreevars(DiagnosticPosition pos, List<VarSymbol> freevars) {
1358         List<JCExpression> args = List.nil();
1359         for (List<VarSymbol> l = freevars; l.nonEmpty(); l = l.tail)
1360             args = args.prepend(loadFreevar(pos, l.head));
1361         return args;
1362     }
1363 //where
1364         JCExpression loadFreevar(DiagnosticPosition pos, VarSymbol v) {
1365             return access(v, make.at(pos).Ident(v), null, false);
1366         }
1367 
1368     /** Construct a tree simulating the expression <C.this>.
1369      *  @param pos           The source code position to be used for the tree.
1370      *  @param c             The qualifier class.
1371      */
1372     JCExpression makeThis(DiagnosticPosition pos, TypeSymbol c) {
1373         if (currentClass == c) {
1374             // in this case, `this' works fine
1375             return make.at(pos).This(c.erasure(types));
1376         } else {
1377             // need to go via this$n
1378             return makeOuterThis(pos, c);
1379         }
1380     }
1381 
1382     /** Construct a tree that represents the outer instance
1383      *  <C.this>. Never pick the current `this'.
1384      *  @param pos           The source code position to be used for the tree.
1385      *  @param c             The qualifier class.
1386      */
1387     JCExpression makeOuterThis(DiagnosticPosition pos, TypeSymbol c) {
1388         List<VarSymbol> ots = outerThisStack;
1389         if (ots.isEmpty()) {
1390             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1391             assert false;
1392             return makeNull();
1393         }
1394         VarSymbol ot = ots.head;
1395         JCExpression tree = access(make.at(pos).Ident(ot));
1396         TypeSymbol otc = ot.type.tsym;
1397         while (otc != c) {
1398             do {
1399                 ots = ots.tail;
1400                 if (ots.isEmpty()) {
1401                     log.error(pos,
1402                               "no.encl.instance.of.type.in.scope",
1403                               c);
1404                     assert false; // should have been caught in Attr
1405                     return tree;
1406                 }
1407                 ot = ots.head;
1408             } while (ot.owner != otc);
1409             if (otc.owner.kind != PCK && !otc.hasOuterInstance()) {
1410                 chk.earlyRefError(pos, c);
1411                 assert false; // should have been caught in Attr
1412                 return makeNull();
1413             }
1414             tree = access(make.at(pos).Select(tree, ot));
1415             otc = ot.type.tsym;
1416         }
1417         return tree;
1418     }
1419 
1420     /** Construct a tree that represents the closest outer instance
1421      *  <C.this> such that the given symbol is a member of C.
1422      *  @param pos           The source code position to be used for the tree.
1423      *  @param sym           The accessed symbol.
1424      *  @param preciseMatch  should we accept a type that is a subtype of
1425      *                       sym's owner, even if it doesn't contain sym
1426      *                       due to hiding, overriding, or non-inheritance
1427      *                       due to protection?
1428      */
1429     JCExpression makeOwnerThis(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1430         Symbol c = sym.owner;
1431         if (preciseMatch ? sym.isMemberOf(currentClass, types)
1432                          : currentClass.isSubClass(sym.owner, types)) {
1433             // in this case, `this' works fine
1434             return make.at(pos).This(c.erasure(types));
1435         } else {
1436             // need to go via this$n
1437             return makeOwnerThisN(pos, sym, preciseMatch);
1438         }
1439     }
1440 
1441     /**
1442      * Similar to makeOwnerThis but will never pick "this".
1443      */
1444     JCExpression makeOwnerThisN(DiagnosticPosition pos, Symbol sym, boolean preciseMatch) {
1445         Symbol c = sym.owner;
1446         List<VarSymbol> ots = outerThisStack;
1447         if (ots.isEmpty()) {
1448             log.error(pos, "no.encl.instance.of.type.in.scope", c);
1449             assert false;
1450             return makeNull();
1451         }
1452         VarSymbol ot = ots.head;
1453         JCExpression tree = access(make.at(pos).Ident(ot));
1454         TypeSymbol otc = ot.type.tsym;
1455         while (!(preciseMatch ? sym.isMemberOf(otc, types) : otc.isSubClass(sym.owner, types))) {
1456             do {
1457                 ots = ots.tail;
1458                 if (ots.isEmpty()) {
1459                     log.error(pos,
1460                         "no.encl.instance.of.type.in.scope",
1461                         c);
1462                     assert false;
1463                     return tree;
1464                 }
1465                 ot = ots.head;
1466             } while (ot.owner != otc);
1467             tree = access(make.at(pos).Select(tree, ot));
1468             otc = ot.type.tsym;
1469         }
1470         return tree;
1471     }
1472 
1473     /** Return tree simulating the assignment <this.name = name>, where
1474      *  name is the name of a free variable.
1475      */
1476     JCStatement initField(int pos, Name name) {
1477         Scope.Entry e = proxies.lookup(name);
1478         Symbol rhs = e.sym;
1479         assert rhs.owner.kind == MTH;
1480         Symbol lhs = e.next().sym;
1481         assert rhs.owner.owner == lhs.owner;
1482         make.at(pos);
1483         return
1484             make.Exec(
1485                 make.Assign(
1486                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1487                     make.Ident(rhs)).setType(lhs.erasure(types)));
1488     }
1489 
1490     /** Return tree simulating the assignment <this.this$n = this$n>.
1491      */
1492     JCStatement initOuterThis(int pos) {
1493         VarSymbol rhs = outerThisStack.head;
1494         assert rhs.owner.kind == MTH;
1495         VarSymbol lhs = outerThisStack.tail.head;
1496         assert rhs.owner.owner == lhs.owner;
1497         make.at(pos);
1498         return
1499             make.Exec(
1500                 make.Assign(
1501                     make.Select(make.This(lhs.owner.erasure(types)), lhs),
1502                     make.Ident(rhs)).setType(lhs.erasure(types)));
1503     }
1504 
1505 /**************************************************************************
1506  * Code for .class
1507  *************************************************************************/
1508 
1509     /** Return the symbol of a class to contain a cache of
1510      *  compiler-generated statics such as class$ and the
1511      *  $assertionsDisabled flag.  We create an anonymous nested class
1512      *  (unless one already exists) and return its symbol.  However,
1513      *  for backward compatibility in 1.4 and earlier we use the
1514      *  top-level class itself.
1515      */
1516     private ClassSymbol outerCacheClass() {
1517         ClassSymbol clazz = outermostClassDef.sym;
1518         if ((clazz.flags() & INTERFACE) == 0 &&
1519             !target.useInnerCacheClass()) return clazz;
1520         Scope s = clazz.members();
1521         for (Scope.Entry e = s.elems; e != null; e = e.sibling)
1522             if (e.sym.kind == TYP &&
1523                 e.sym.name == names.empty &&
1524                 (e.sym.flags() & INTERFACE) == 0) return (ClassSymbol) e.sym;
1525         return makeEmptyClass(STATIC | SYNTHETIC, clazz);
1526     }
1527 
1528     /** Return symbol for "class$" method. If there is no method definition
1529      *  for class$, construct one as follows:
1530      *
1531      *    class class$(String x0) {
1532      *      try {
1533      *        return Class.forName(x0);
1534      *      } catch (ClassNotFoundException x1) {
1535      *        throw new NoClassDefFoundError(x1.getMessage());
1536      *      }
1537      *    }
1538      */
1539     private MethodSymbol classDollarSym(DiagnosticPosition pos) {
1540         ClassSymbol outerCacheClass = outerCacheClass();
1541         MethodSymbol classDollarSym =
1542             (MethodSymbol)lookupSynthetic(classDollar,
1543                                           outerCacheClass.members());
1544         if (classDollarSym == null) {
1545             classDollarSym = new MethodSymbol(
1546                 STATIC | SYNTHETIC,
1547                 classDollar,
1548                 new MethodType(
1549                     List.of(syms.stringType),
1550                     types.erasure(syms.classType),
1551                     List.<Type>nil(),
1552                     syms.methodClass),
1553                 outerCacheClass);
1554             enterSynthetic(pos, classDollarSym, outerCacheClass.members());
1555 
1556             JCMethodDecl md = make.MethodDef(classDollarSym, null);
1557             try {
1558                 md.body = classDollarSymBody(pos, md);
1559             } catch (CompletionFailure ex) {
1560                 md.body = make.Block(0, List.<JCStatement>nil());
1561                 chk.completionError(pos, ex);
1562             }
1563             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1564             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(md);
1565         }
1566         return classDollarSym;
1567     }
1568 
1569     /** Generate code for class$(String name). */
1570     JCBlock classDollarSymBody(DiagnosticPosition pos, JCMethodDecl md) {
1571         MethodSymbol classDollarSym = md.sym;
1572         ClassSymbol outerCacheClass = (ClassSymbol)classDollarSym.owner;
1573 
1574         JCBlock returnResult;
1575 
1576         // in 1.4.2 and above, we use
1577         // Class.forName(String name, boolean init, ClassLoader loader);
1578         // which requires we cache the current loader in cl$
1579         if (target.classLiteralsNoInit()) {
1580             // clsym = "private static ClassLoader cl$"
1581             VarSymbol clsym = new VarSymbol(STATIC|SYNTHETIC,
1582                                             names.fromString("cl" + target.syntheticNameChar()),
1583                                             syms.classLoaderType,
1584                                             outerCacheClass);
1585             enterSynthetic(pos, clsym, outerCacheClass.members());
1586 
1587             // emit "private static ClassLoader cl$;"
1588             JCVariableDecl cldef = make.VarDef(clsym, null);
1589             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1590             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cldef);
1591 
1592             // newcache := "new cache$1[0]"
1593             JCNewArray newcache = make.
1594                 NewArray(make.Type(outerCacheClass.type),
1595                          List.<JCExpression>of(make.Literal(INT, 0).setType(syms.intType)),
1596                          null);
1597             newcache.type = new ArrayType(types.erasure(outerCacheClass.type),
1598                                           syms.arrayClass);
1599 
1600             // forNameSym := java.lang.Class.forName(
1601             //     String s,boolean init,ClassLoader loader)
1602             Symbol forNameSym = lookupMethod(make_pos, names.forName,
1603                                              types.erasure(syms.classType),
1604                                              List.of(syms.stringType,
1605                                                      syms.booleanType,
1606                                                      syms.classLoaderType));
1607             // clvalue := "(cl$ == null) ?
1608             // $newcache.getClass().getComponentType().getClassLoader() : cl$"
1609             JCExpression clvalue =
1610                 make.Conditional(
1611                     makeBinary(JCTree.EQ, make.Ident(clsym), makeNull()),
1612                     make.Assign(
1613                         make.Ident(clsym),
1614                         makeCall(
1615                             makeCall(makeCall(newcache,
1616                                               names.getClass,
1617                                               List.<JCExpression>nil()),
1618                                      names.getComponentType,
1619                                      List.<JCExpression>nil()),
1620                             names.getClassLoader,
1621                             List.<JCExpression>nil())).setType(syms.classLoaderType),
1622                     make.Ident(clsym)).setType(syms.classLoaderType);
1623 
1624             // returnResult := "{ return Class.forName(param1, false, cl$); }"
1625             List<JCExpression> args = List.of(make.Ident(md.params.head.sym),
1626                                               makeLit(syms.booleanType, 0),
1627                                               clvalue);
1628             returnResult = make.
1629                 Block(0, List.<JCStatement>of(make.
1630                               Call(make. // return
1631                                    App(make.
1632                                        Ident(forNameSym), args))));
1633         } else {
1634             // forNameSym := java.lang.Class.forName(String s)
1635             Symbol forNameSym = lookupMethod(make_pos,
1636                                              names.forName,
1637                                              types.erasure(syms.classType),
1638                                              List.of(syms.stringType));
1639             // returnResult := "{ return Class.forName(param1); }"
1640             returnResult = make.
1641                 Block(0, List.of(make.
1642                           Call(make. // return
1643                               App(make.
1644                                   QualIdent(forNameSym),
1645                                   List.<JCExpression>of(make.
1646                                                         Ident(md.params.
1647                                                               head.sym))))));
1648         }
1649 
1650         // catchParam := ClassNotFoundException e1
1651         VarSymbol catchParam =
1652             new VarSymbol(0, make.paramName(1),
1653                           syms.classNotFoundExceptionType,
1654                           classDollarSym);
1655 
1656         JCStatement rethrow;
1657         if (target.hasInitCause()) {
1658             // rethrow = "throw new NoClassDefFoundError().initCause(e);
1659             JCTree throwExpr =
1660                 makeCall(makeNewClass(syms.noClassDefFoundErrorType,
1661                                       List.<JCExpression>nil()),
1662                          names.initCause,
1663                          List.<JCExpression>of(make.Ident(catchParam)));
1664             rethrow = make.Throw(throwExpr);
1665         } else {
1666             // getMessageSym := ClassNotFoundException.getMessage()
1667             Symbol getMessageSym = lookupMethod(make_pos,
1668                                                 names.getMessage,
1669                                                 syms.classNotFoundExceptionType,
1670                                                 List.<Type>nil());
1671             // rethrow = "throw new NoClassDefFoundError(e.getMessage());"
1672             rethrow = make.
1673                 Throw(makeNewClass(syms.noClassDefFoundErrorType,
1674                           List.<JCExpression>of(make.App(make.Select(make.Ident(catchParam),
1675                                                                      getMessageSym),
1676                                                          List.<JCExpression>nil()))));
1677         }
1678 
1679         // rethrowStmt := "( $rethrow )"
1680         JCBlock rethrowStmt = make.Block(0, List.of(rethrow));
1681 
1682         // catchBlock := "catch ($catchParam) $rethrowStmt"
1683         JCCatch catchBlock = make.Catch(make.VarDef(catchParam, null),
1684                                       rethrowStmt);
1685 
1686         // tryCatch := "try $returnResult $catchBlock"
1687         JCStatement tryCatch = make.Try(returnResult,
1688                                         List.of(catchBlock), null);
1689 
1690         return make.Block(0, List.of(tryCatch));
1691     }
1692     // where
1693         /** Create an attributed tree of the form left.name(). */
1694         private JCMethodInvocation makeCall(JCExpression left, Name name, List<JCExpression> args) {
1695             assert left.type != null;
1696             Symbol funcsym = lookupMethod(make_pos, name, left.type,
1697                                           TreeInfo.types(args));
1698             return make.App(make.Select(left, funcsym), args);
1699         }
1700 
1701     /** The Name Of The variable to cache T.class values.
1702      *  @param sig      The signature of type T.
1703      */
1704     private Name cacheName(String sig) {
1705         StringBuffer buf = new StringBuffer();
1706         if (sig.startsWith("[")) {
1707             buf = buf.append("array");
1708             while (sig.startsWith("[")) {
1709                 buf = buf.append(target.syntheticNameChar());
1710                 sig = sig.substring(1);
1711             }
1712             if (sig.startsWith("L")) {
1713                 sig = sig.substring(0, sig.length() - 1);
1714             }
1715         } else {
1716             buf = buf.append("class" + target.syntheticNameChar());
1717         }
1718         buf = buf.append(sig.replace('.', target.syntheticNameChar()));
1719         return names.fromString(buf.toString());
1720     }
1721 
1722     /** The variable symbol that caches T.class values.
1723      *  If none exists yet, create a definition.
1724      *  @param sig      The signature of type T.
1725      *  @param pos      The position to report diagnostics, if any.
1726      */
1727     private VarSymbol cacheSym(DiagnosticPosition pos, String sig) {
1728         ClassSymbol outerCacheClass = outerCacheClass();
1729         Name cname = cacheName(sig);
1730         VarSymbol cacheSym =
1731             (VarSymbol)lookupSynthetic(cname, outerCacheClass.members());
1732         if (cacheSym == null) {
1733             cacheSym = new VarSymbol(
1734                 STATIC | SYNTHETIC, cname, types.erasure(syms.classType), outerCacheClass);
1735             enterSynthetic(pos, cacheSym, outerCacheClass.members());
1736 
1737             JCVariableDecl cacheDef = make.VarDef(cacheSym, null);
1738             JCClassDecl outerCacheClassDef = classDef(outerCacheClass);
1739             outerCacheClassDef.defs = outerCacheClassDef.defs.prepend(cacheDef);
1740         }
1741         return cacheSym;
1742     }
1743 
1744     /** The tree simulating a T.class expression.
1745      *  @param clazz      The tree identifying type T.
1746      */
1747     private JCExpression classOf(JCTree clazz) {
1748         return classOfType(clazz.type, clazz.pos());
1749     }
1750 
1751     private JCExpression classOfType(Type type, DiagnosticPosition pos) {
1752         switch (type.tag) {
1753         case BYTE: case SHORT: case CHAR: case INT: case LONG: case FLOAT:
1754         case DOUBLE: case BOOLEAN: case VOID:
1755             // replace with <BoxedClass>.TYPE
1756             ClassSymbol c = types.boxedClass(type);
1757             Symbol typeSym =
1758                 rs.access(
1759                     rs.findIdentInType(attrEnv, c.type, names.TYPE, VAR),
1760                     pos, c.type, names.TYPE, true);
1761             if (typeSym.kind == VAR)
1762                 ((VarSymbol)typeSym).getConstValue(); // ensure initializer is evaluated
1763             return make.QualIdent(typeSym);
1764         case CLASS: case ARRAY:
1765             if (target.hasClassLiterals()) {
1766                 VarSymbol sym = new VarSymbol(
1767                         STATIC | PUBLIC | FINAL, names._class,
1768                         syms.classType, type.tsym);
1769                 return make_at(pos).Select(make.Type(type), sym);
1770             }
1771             // replace with <cache == null ? cache = class$(tsig) : cache>
1772             // where
1773             //  - <tsig>  is the type signature of T,
1774             //  - <cache> is the cache variable for tsig.
1775             String sig =
1776                 writer.xClassName(type).toString().replace('/', '.');
1777             Symbol cs = cacheSym(pos, sig);
1778             return make_at(pos).Conditional(
1779                 makeBinary(JCTree.EQ, make.Ident(cs), makeNull()),
1780                 make.Assign(
1781                     make.Ident(cs),
1782                     make.App(
1783                         make.Ident(classDollarSym(pos)),
1784                         List.<JCExpression>of(make.Literal(CLASS, sig)
1785                                               .setType(syms.stringType))))
1786                 .setType(types.erasure(syms.classType)),
1787                 make.Ident(cs)).setType(types.erasure(syms.classType));
1788         default:
1789             throw new AssertionError();
1790         }
1791     }
1792 
1793 /**************************************************************************
1794  * Code for enabling/disabling assertions.
1795  *************************************************************************/
1796 
1797     // This code is not particularly robust if the user has
1798     // previously declared a member named '$assertionsDisabled'.
1799     // The same faulty idiom also appears in the translation of
1800     // class literals above.  We should report an error if a
1801     // previous declaration is not synthetic.
1802 
1803     private JCExpression assertFlagTest(DiagnosticPosition pos) {
1804         // Outermost class may be either true class or an interface.
1805         ClassSymbol outermostClass = outermostClassDef.sym;
1806 
1807         // note that this is a class, as an interface can't contain a statement.
1808         ClassSymbol container = currentClass;
1809 
1810         VarSymbol assertDisabledSym =
1811             (VarSymbol)lookupSynthetic(dollarAssertionsDisabled,
1812                                        container.members());
1813         if (assertDisabledSym == null) {
1814             assertDisabledSym =
1815                 new VarSymbol(STATIC | FINAL | SYNTHETIC,
1816                               dollarAssertionsDisabled,
1817                               syms.booleanType,
1818                               container);
1819             enterSynthetic(pos, assertDisabledSym, container.members());
1820             Symbol desiredAssertionStatusSym = lookupMethod(pos,
1821                                                             names.desiredAssertionStatus,
1822                                                             types.erasure(syms.classType),
1823                                                             List.<Type>nil());
1824             JCClassDecl containerDef = classDef(container);
1825             make_at(containerDef.pos());
1826             JCExpression notStatus = makeUnary(JCTree.NOT, make.App(make.Select(
1827                     classOfType(types.erasure(outermostClass.type),
1828                                 containerDef.pos()),
1829                     desiredAssertionStatusSym)));
1830             JCVariableDecl assertDisabledDef = make.VarDef(assertDisabledSym,
1831                                                    notStatus);
1832             containerDef.defs = containerDef.defs.prepend(assertDisabledDef);
1833         }
1834         make_at(pos);
1835         return makeUnary(JCTree.NOT, make.Ident(assertDisabledSym));
1836     }
1837 
1838 
1839 /**************************************************************************
1840  * Building blocks for let expressions
1841  *************************************************************************/
1842 
1843     interface TreeBuilder {
1844         JCTree build(JCTree arg);
1845     }
1846 
1847     /** Construct an expression using the builder, with the given rval
1848      *  expression as an argument to the builder.  However, the rval
1849      *  expression must be computed only once, even if used multiple
1850      *  times in the result of the builder.  We do that by
1851      *  constructing a "let" expression that saves the rvalue into a
1852      *  temporary variable and then uses the temporary variable in
1853      *  place of the expression built by the builder.  The complete
1854      *  resulting expression is of the form
1855      *  <pre>
1856      *    (let <b>TYPE</b> <b>TEMP</b> = <b>RVAL</b>;
1857      *     in (<b>BUILDER</b>(<b>TEMP</b>)))
1858      *  </pre>
1859      *  where <code><b>TEMP</b></code> is a newly declared variable
1860      *  in the let expression.
1861      */
1862     JCTree abstractRval(JCTree rval, Type type, TreeBuilder builder) {
1863         rval = TreeInfo.skipParens(rval);
1864         switch (rval.getTag()) {
1865         case JCTree.LITERAL:
1866             return builder.build(rval);
1867         case JCTree.IDENT:
1868             JCIdent id = (JCIdent) rval;
1869             if ((id.sym.flags() & FINAL) != 0 && id.sym.owner.kind == MTH)
1870                 return builder.build(rval);
1871         }
1872         VarSymbol var =
1873             new VarSymbol(FINAL|SYNTHETIC,
1874                           names.fromString(
1875                                           target.syntheticNameChar()
1876                                           + "" + rval.hashCode()),
1877                                       type,
1878                                       currentMethodSym);
1879         rval = convert(rval,type);
1880         JCVariableDecl def = make.VarDef(var, (JCExpression)rval); // XXX cast
1881         JCTree built = builder.build(make.Ident(var));
1882         JCTree res = make.LetExpr(def, built);
1883         res.type = built.type;
1884         return res;
1885     }
1886 
1887     // same as above, with the type of the temporary variable computed
1888     JCTree abstractRval(JCTree rval, TreeBuilder builder) {
1889         return abstractRval(rval, rval.type, builder);
1890     }
1891 
1892     // same as above, but for an expression that may be used as either
1893     // an rvalue or an lvalue.  This requires special handling for
1894     // Select expressions, where we place the left-hand-side of the
1895     // select in a temporary, and for Indexed expressions, where we
1896     // place both the indexed expression and the index value in temps.
1897     JCTree abstractLval(JCTree lval, final TreeBuilder builder) {
1898         lval = TreeInfo.skipParens(lval);
1899         switch (lval.getTag()) {
1900         case JCTree.IDENT:
1901             return builder.build(lval);
1902         case JCTree.SELECT: {
1903             final JCFieldAccess s = (JCFieldAccess)lval;
1904             JCTree selected = TreeInfo.skipParens(s.selected);
1905             Symbol lid = TreeInfo.symbol(s.selected);
1906             if (lid != null && lid.kind == TYP) return builder.build(lval);
1907             return abstractRval(s.selected, new TreeBuilder() {
1908                     public JCTree build(final JCTree selected) {
1909                         return builder.build(make.Select((JCExpression)selected, s.sym));
1910                     }
1911                 });
1912         }
1913         case JCTree.INDEXED: {
1914             final JCArrayAccess i = (JCArrayAccess)lval;
1915             return abstractRval(i.indexed, new TreeBuilder() {
1916                     public JCTree build(final JCTree indexed) {
1917                         return abstractRval(i.index, syms.intType, new TreeBuilder() {
1918                                 public JCTree build(final JCTree index) {
1919                                     JCTree newLval = make.Indexed((JCExpression)indexed,
1920                                                                 (JCExpression)index);
1921                                     newLval.setType(i.type);
1922                                     return builder.build(newLval);
1923                                 }
1924                             });
1925                     }
1926                 });
1927         }
1928         case JCTree.TYPECAST: {
1929             return abstractLval(((JCTypeCast)lval).expr, builder);
1930         }
1931         }
1932         throw new AssertionError(lval);
1933     }
1934 
1935     // evaluate and discard the first expression, then evaluate the second.
1936     JCTree makeComma(final JCTree expr1, final JCTree expr2) {
1937         return abstractRval(expr1, new TreeBuilder() {
1938                 public JCTree build(final JCTree discarded) {
1939                     return expr2;
1940                 }
1941             });
1942     }
1943 
1944 /**************************************************************************
1945  * Translation methods
1946  *************************************************************************/
1947 
1948     /** Visitor argument: enclosing operator node.
1949      */
1950     private JCExpression enclOp;
1951 
1952     /** Visitor method: Translate a single node.
1953      *  Attach the source position from the old tree to its replacement tree.
1954      */
1955     public <T extends JCTree> T translate(T tree) {
1956         if (tree == null) {
1957             return null;
1958         } else {
1959             make_at(tree.pos());
1960             T result = super.translate(tree);
1961             if (endPositions != null && result != tree) {
1962                 Integer endPos = endPositions.remove(tree);
1963                 if (endPos != null) endPositions.put(result, endPos);
1964             }
1965             return result;
1966         }
1967     }
1968 
1969     /** Visitor method: Translate a single node, boxing or unboxing if needed.
1970      */
1971     public <T extends JCTree> T translate(T tree, Type type) {
1972         return (tree == null) ? null : boxIfNeeded(translate(tree), type);
1973     }
1974 
1975     /** Visitor method: Translate tree.
1976      */
1977     public <T extends JCTree> T translate(T tree, JCExpression enclOp) {
1978         JCExpression prevEnclOp = this.enclOp;
1979         this.enclOp = enclOp;
1980         T res = translate(tree);
1981         this.enclOp = prevEnclOp;
1982         return res;
1983     }
1984 
1985     /** Visitor method: Translate list of trees.
1986      */
1987     public <T extends JCTree> List<T> translate(List<T> trees, JCExpression enclOp) {
1988         JCExpression prevEnclOp = this.enclOp;
1989         this.enclOp = enclOp;
1990         List<T> res = translate(trees);
1991         this.enclOp = prevEnclOp;
1992         return res;
1993     }
1994 
1995     /** Visitor method: Translate list of trees.
1996      */
1997     public <T extends JCTree> List<T> translate(List<T> trees, Type type) {
1998         if (trees == null) return null;
1999         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
2000             l.head = translate(l.head, type);
2001         return trees;
2002     }
2003 
2004     public void visitTopLevel(JCCompilationUnit tree) {
2005         if (tree.packageAnnotations.nonEmpty()) {
2006             Name name = names.package_info;
2007             long flags = Flags.ABSTRACT | Flags.INTERFACE;
2008             if (target.isPackageInfoSynthetic())
2009                 // package-info is marked SYNTHETIC in JDK 1.6 and later releases
2010                 flags = flags | Flags.SYNTHETIC;
2011             JCClassDecl packageAnnotationsClass
2012                 = make.ClassDef(make.Modifiers(flags,
2013                                                tree.packageAnnotations),
2014                                 name, List.<JCTypeParameter>nil(),
2015                                 null, List.<JCExpression>nil(), List.<JCTree>nil());
2016             ClassSymbol c = reader.enterClass(name, tree.packge);
2017             c.flatname = names.fromString(tree.packge + "." + name);
2018             c.sourcefile = tree.sourcefile;
2019             c.completer = null;
2020             c.members_field = new Scope(c);
2021             c.flags_field = flags;
2022             c.attributes_field = tree.packge.attributes_field;
2023             ClassType ctype = (ClassType) c.type;
2024             ctype.supertype_field = syms.objectType;
2025             ctype.interfaces_field = List.nil();
2026             packageAnnotationsClass.sym = c;
2027 
2028 
2029             translated.append(packageAnnotationsClass);
2030         }
2031     }
2032 
2033     public void visitClassDef(JCClassDecl tree) {
2034         ClassSymbol currentClassPrev = currentClass;
2035         MethodSymbol currentMethodSymPrev = currentMethodSym;
2036         currentClass = tree.sym;
2037         currentMethodSym = null;
2038         classdefs.put(currentClass, tree);
2039 
2040         proxies = proxies.dup(currentClass);
2041         List<VarSymbol> prevOuterThisStack = outerThisStack;
2042 
2043         // If this is an enum definition
2044         if ((tree.mods.flags & ENUM) != 0 &&
2045             (types.supertype(currentClass.type).tsym.flags() & ENUM) == 0)
2046             visitEnumDef(tree);
2047 
2048         // If this is a nested class, define a this$n field for
2049         // it and add to proxies.
2050         JCVariableDecl otdef = null;
2051         if (currentClass.hasOuterInstance())
2052             otdef = outerThisDef(tree.pos, currentClass);
2053 
2054         // If this is a local class, define proxies for all its free variables.
2055         List<JCVariableDecl> fvdefs = freevarDefs(
2056             tree.pos, freevars(currentClass), currentClass);
2057 
2058         // Recursively translate superclass, interfaces.
2059         tree.extending = translate(tree.extending);
2060         tree.implementing = translate(tree.implementing);
2061 
2062         // Recursively translate members, taking into account that new members
2063         // might be created during the translation and prepended to the member
2064         // list `tree.defs'.
2065         List<JCTree> seen = List.nil();
2066         while (tree.defs != seen) {
2067             List<JCTree> unseen = tree.defs;
2068             for (List<JCTree> l = unseen; l.nonEmpty() && l != seen; l = l.tail) {
2069                 JCTree outermostMemberDefPrev = outermostMemberDef;
2070                 if (outermostMemberDefPrev == null) outermostMemberDef = l.head;
2071                 l.head = translate(l.head);
2072                 outermostMemberDef = outermostMemberDefPrev;
2073             }
2074             seen = unseen;
2075         }
2076 
2077         // Convert a protected modifier to public, mask static modifier.
2078         if ((tree.mods.flags & PROTECTED) != 0) tree.mods.flags |= PUBLIC;
2079         tree.mods.flags &= ClassFlags;
2080 
2081         // Convert name to flat representation, replacing '.' by '$'.
2082         tree.name = Convert.shortName(currentClass.flatName());
2083 
2084         // Add this$n and free variables proxy definitions to class.
2085         for (List<JCVariableDecl> l = fvdefs; l.nonEmpty(); l = l.tail) {
2086             tree.defs = tree.defs.prepend(l.head);
2087             enterSynthetic(tree.pos(), l.head.sym, currentClass.members());
2088         }
2089         if (currentClass.hasOuterInstance()) {
2090             tree.defs = tree.defs.prepend(otdef);
2091             enterSynthetic(tree.pos(), otdef.sym, currentClass.members());
2092         }
2093 
2094         proxies = proxies.leave();
2095         outerThisStack = prevOuterThisStack;
2096 
2097         // Append translated tree to `translated' queue.
2098         translated.append(tree);
2099 
2100         currentClass = currentClassPrev;
2101         currentMethodSym = currentMethodSymPrev;
2102 
2103         // Return empty block {} as a placeholder for an inner class.
2104         result = make_at(tree.pos()).Block(0, List.<JCStatement>nil());
2105     }
2106 
2107     /** Translate an enum class. */
2108     private void visitEnumDef(JCClassDecl tree) {
2109         make_at(tree.pos());
2110 
2111         // add the supertype, if needed
2112         if (tree.extending == null)
2113             tree.extending = make.Type(types.supertype(tree.type));
2114 
2115         // classOfType adds a cache field to tree.defs unless
2116         // target.hasClassLiterals().
2117         JCExpression e_class = classOfType(tree.sym.type, tree.pos()).
2118             setType(types.erasure(syms.classType));
2119 
2120         // process each enumeration constant, adding implicit constructor parameters
2121         int nextOrdinal = 0;
2122         ListBuffer<JCExpression> values = new ListBuffer<JCExpression>();
2123         ListBuffer<JCTree> enumDefs = new ListBuffer<JCTree>();
2124         ListBuffer<JCTree> otherDefs = new ListBuffer<JCTree>();
2125         for (List<JCTree> defs = tree.defs;
2126              defs.nonEmpty();
2127              defs=defs.tail) {
2128             if (defs.head.getTag() == JCTree.VARDEF && (((JCVariableDecl) defs.head).mods.flags & ENUM) != 0) {
2129                 JCVariableDecl var = (JCVariableDecl)defs.head;
2130                 visitEnumConstantDef(var, nextOrdinal++);
2131                 values.append(make.QualIdent(var.sym));
2132                 enumDefs.append(var);
2133             } else {
2134                 otherDefs.append(defs.head);
2135             }
2136         }
2137 
2138         // private static final T[] #VALUES = { a, b, c };
2139         Name valuesName = names.fromString(target.syntheticNameChar() + "VALUES");
2140         while (tree.sym.members().lookup(valuesName).scope != null) // avoid name clash
2141             valuesName = names.fromString(valuesName + "" + target.syntheticNameChar());
2142         Type arrayType = new ArrayType(types.erasure(tree.type), syms.arrayClass);
2143         VarSymbol valuesVar = new VarSymbol(PRIVATE|FINAL|STATIC|SYNTHETIC,
2144                                             valuesName,
2145                                             arrayType,
2146                                             tree.type.tsym);
2147         JCNewArray newArray = make.NewArray(make.Type(types.erasure(tree.type)),
2148                                           List.<JCExpression>nil(),
2149                                           values.toList());
2150         newArray.type = arrayType;
2151         enumDefs.append(make.VarDef(valuesVar, newArray));
2152         tree.sym.members().enter(valuesVar);
2153 
2154         Symbol valuesSym = lookupMethod(tree.pos(), names.values,
2155                                         tree.type, List.<Type>nil());
2156         List<JCStatement> valuesBody;
2157         if (useClone()) {
2158             // return (T[]) $VALUES.clone();
2159             JCTypeCast valuesResult =
2160                 make.TypeCast(valuesSym.type.getReturnType(),
2161                               make.App(make.Select(make.Ident(valuesVar),
2162                                                    syms.arrayCloneMethod)));
2163             valuesBody = List.<JCStatement>of(make.Return(valuesResult));
2164         } else {
2165             // template: T[] $result = new T[$values.length];
2166             Name resultName = names.fromString(target.syntheticNameChar() + "result");
2167             while (tree.sym.members().lookup(resultName).scope != null) // avoid name clash
2168                 resultName = names.fromString(resultName + "" + target.syntheticNameChar());
2169             VarSymbol resultVar = new VarSymbol(FINAL|SYNTHETIC,
2170                                                 resultName,
2171                                                 arrayType,
2172                                                 valuesSym);
2173             JCNewArray resultArray = make.NewArray(make.Type(types.erasure(tree.type)),
2174                                   List.of(make.Select(make.Ident(valuesVar), syms.lengthVar)),
2175                                   null);
2176             resultArray.type = arrayType;
2177             JCVariableDecl decl = make.VarDef(resultVar, resultArray);
2178 
2179             // template: System.arraycopy($VALUES, 0, $result, 0, $VALUES.length);
2180             if (systemArraycopyMethod == null) {
2181                 systemArraycopyMethod =
2182                     new MethodSymbol(PUBLIC | STATIC,
2183                                      names.fromString("arraycopy"),
2184                                      new MethodType(List.<Type>of(syms.objectType,
2185                                                             syms.intType,
2186                                                             syms.objectType,
2187                                                             syms.intType,
2188                                                             syms.intType),
2189                                                     syms.voidType,
2190                                                     List.<Type>nil(),
2191                                                     syms.methodClass),
2192                                      syms.systemType.tsym);
2193             }
2194             JCStatement copy =
2195                 make.Exec(make.App(make.Select(make.Ident(syms.systemType.tsym),
2196                                                systemArraycopyMethod),
2197                           List.of(make.Ident(valuesVar), make.Literal(0),
2198                                   make.Ident(resultVar), make.Literal(0),
2199                                   make.Select(make.Ident(valuesVar), syms.lengthVar))));
2200 
2201             // template: return $result;
2202             JCStatement ret = make.Return(make.Ident(resultVar));
2203             valuesBody = List.<JCStatement>of(decl, copy, ret);
2204         }
2205 
2206         JCMethodDecl valuesDef =
2207              make.MethodDef((MethodSymbol)valuesSym, make.Block(0, valuesBody));
2208 
2209         enumDefs.append(valuesDef);
2210 
2211         if (debugLower)
2212             System.err.println(tree.sym + ".valuesDef = " + valuesDef);
2213 
2214         /** The template for the following code is:
2215          *
2216          *     public static E valueOf(String name) {
2217          *         return (E)Enum.valueOf(E.class, name);
2218          *     }
2219          *
2220          *  where E is tree.sym
2221          */
2222         MethodSymbol valueOfSym = lookupMethod(tree.pos(),
2223                          names.valueOf,
2224                          tree.sym.type,
2225                          List.of(syms.stringType));
2226         assert (valueOfSym.flags() & STATIC) != 0;
2227         VarSymbol nameArgSym = valueOfSym.params.head;
2228         JCIdent nameVal = make.Ident(nameArgSym);
2229         JCStatement enum_ValueOf =
2230             make.Return(make.TypeCast(tree.sym.type,
2231                                       makeCall(make.Ident(syms.enumSym),
2232                                                names.valueOf,
2233                                                List.of(e_class, nameVal))));
2234         JCMethodDecl valueOf = make.MethodDef(valueOfSym,
2235                                            make.Block(0, List.of(enum_ValueOf)));
2236         nameVal.sym = valueOf.params.head.sym;
2237         if (debugLower)
2238             System.err.println(tree.sym + ".valueOf = " + valueOf);
2239         enumDefs.append(valueOf);
2240 
2241         enumDefs.appendList(otherDefs.toList());
2242         tree.defs = enumDefs.toList();
2243 
2244         // Add the necessary members for the EnumCompatibleMode
2245         if (target.compilerBootstrap(tree.sym)) {
2246             addEnumCompatibleMembers(tree);
2247         }
2248     }
2249         // where
2250         private MethodSymbol systemArraycopyMethod;
2251         private boolean useClone() {
2252             try {
2253                 Scope.Entry e = syms.objectType.tsym.members().lookup(names.clone);
2254                 return (e.sym != null);
2255             }
2256             catch (CompletionFailure e) {
2257                 return false;
2258             }
2259         }
2260 
2261     /** Translate an enumeration constant and its initializer. */
2262     private void visitEnumConstantDef(JCVariableDecl var, int ordinal) {
2263         JCNewClass varDef = (JCNewClass)var.init;
2264         varDef.args = varDef.args.
2265             prepend(makeLit(syms.intType, ordinal)).
2266             prepend(makeLit(syms.stringType, var.name.toString()));
2267     }
2268 
2269     public void visitMethodDef(JCMethodDecl tree) {
2270         if (tree.name == names.init && (currentClass.flags_field&ENUM) != 0) {
2271             // Add "String $enum$name, int $enum$ordinal" to the beginning of the
2272             // argument list for each constructor of an enum.
2273             JCVariableDecl nameParam = make_at(tree.pos()).
2274                 Param(names.fromString(target.syntheticNameChar() +
2275                                        "enum" + target.syntheticNameChar() + "name"),
2276                       syms.stringType, tree.sym);
2277             nameParam.mods.flags |= SYNTHETIC; nameParam.sym.flags_field |= SYNTHETIC;
2278 
2279             JCVariableDecl ordParam = make.
2280                 Param(names.fromString(target.syntheticNameChar() +
2281                                        "enum" + target.syntheticNameChar() +
2282                                        "ordinal"),
2283                       syms.intType, tree.sym);
2284             ordParam.mods.flags |= SYNTHETIC; ordParam.sym.flags_field |= SYNTHETIC;
2285 
2286             tree.params = tree.params.prepend(ordParam).prepend(nameParam);
2287 
2288             MethodSymbol m = tree.sym;
2289             Type olderasure = m.erasure(types);
2290             m.erasure_field = new MethodType(
2291                 olderasure.getParameterTypes().prepend(syms.intType).prepend(syms.stringType),
2292                 olderasure.getReturnType(),
2293                 olderasure.getThrownTypes(),
2294                 syms.methodClass);
2295 
2296             if (target.compilerBootstrap(m.owner)) {
2297                 // Initialize synthetic name field
2298                 Symbol nameVarSym = lookupSynthetic(names.fromString("$name"),
2299                                                     tree.sym.owner.members());
2300                 JCIdent nameIdent = make.Ident(nameParam.sym);
2301                 JCIdent id1 = make.Ident(nameVarSym);
2302                 JCAssign newAssign = make.Assign(id1, nameIdent);
2303                 newAssign.type = id1.type;
2304                 JCExpressionStatement nameAssign = make.Exec(newAssign);
2305                 nameAssign.type = id1.type;
2306                 tree.body.stats = tree.body.stats.prepend(nameAssign);
2307 
2308                 // Initialize synthetic ordinal field
2309                 Symbol ordinalVarSym = lookupSynthetic(names.fromString("$ordinal"),
2310                                                        tree.sym.owner.members());
2311                 JCIdent ordIdent = make.Ident(ordParam.sym);
2312                 id1 = make.Ident(ordinalVarSym);
2313                 newAssign = make.Assign(id1, ordIdent);
2314                 newAssign.type = id1.type;
2315                 JCExpressionStatement ordinalAssign = make.Exec(newAssign);
2316                 ordinalAssign.type = id1.type;
2317                 tree.body.stats = tree.body.stats.prepend(ordinalAssign);
2318             }
2319         }
2320 
2321         JCMethodDecl prevMethodDef = currentMethodDef;
2322         MethodSymbol prevMethodSym = currentMethodSym;
2323         try {
2324             currentMethodDef = tree;
2325             currentMethodSym = tree.sym;
2326             visitMethodDefInternal(tree);
2327         } finally {
2328             currentMethodDef = prevMethodDef;
2329             currentMethodSym = prevMethodSym;
2330         }
2331     }
2332     //where
2333     private void visitMethodDefInternal(JCMethodDecl tree) {
2334         if (tree.name == names.init &&
2335             (currentClass.isInner() ||
2336              (currentClass.owner.kind & (VAR | MTH)) != 0)) {
2337             // We are seeing a constructor of an inner class.
2338             MethodSymbol m = tree.sym;
2339 
2340             // Push a new proxy scope for constructor parameters.
2341             // and create definitions for any this$n and proxy parameters.
2342             proxies = proxies.dup(m);
2343             List<VarSymbol> prevOuterThisStack = outerThisStack;
2344             List<VarSymbol> fvs = freevars(currentClass);
2345             JCVariableDecl otdef = null;
2346             if (currentClass.hasOuterInstance())
2347                 otdef = outerThisDef(tree.pos, m);
2348             List<JCVariableDecl> fvdefs = freevarDefs(tree.pos, fvs, m);
2349 
2350             // Recursively translate result type, parameters and thrown list.
2351             tree.restype = translate(tree.restype);
2352             tree.params = translateVarDefs(tree.params);
2353             tree.thrown = translate(tree.thrown);
2354 
2355             // when compiling stubs, don't process body
2356             if (tree.body == null) {
2357                 result = tree;
2358                 return;
2359             }
2360 
2361             // Add this$n (if needed) in front of and free variables behind
2362             // constructor parameter list.
2363             tree.params = tree.params.appendList(fvdefs);
2364             if (currentClass.hasOuterInstance())
2365                 tree.params = tree.params.prepend(otdef);
2366 
2367             // If this is an initial constructor, i.e., it does not start with
2368             // this(...), insert initializers for this$n and proxies
2369             // before (pre-1.4, after) the call to superclass constructor.
2370             JCStatement selfCall = translate(tree.body.stats.head);
2371 
2372             List<JCStatement> added = List.nil();
2373             if (fvs.nonEmpty()) {
2374                 List<Type> addedargtypes = List.nil();
2375                 for (List<VarSymbol> l = fvs; l.nonEmpty(); l = l.tail) {
2376                     if (TreeInfo.isInitialConstructor(tree))
2377                         added = added.prepend(
2378                             initField(tree.body.pos, proxyName(l.head.name)));
2379                     addedargtypes = addedargtypes.prepend(l.head.erasure(types));
2380                 }
2381                 Type olderasure = m.erasure(types);
2382                 m.erasure_field = new MethodType(
2383                     olderasure.getParameterTypes().appendList(addedargtypes),
2384                     olderasure.getReturnType(),
2385                     olderasure.getThrownTypes(),
2386                     syms.methodClass);
2387             }
2388             if (currentClass.hasOuterInstance() &&
2389                 TreeInfo.isInitialConstructor(tree))
2390             {
2391                 added = added.prepend(initOuterThis(tree.body.pos));
2392             }
2393 
2394             // pop local variables from proxy stack
2395             proxies = proxies.leave();
2396 
2397             // recursively translate following local statements and
2398             // combine with this- or super-call
2399             List<JCStatement> stats = translate(tree.body.stats.tail);
2400             if (target.initializeFieldsBeforeSuper())
2401                 tree.body.stats = stats.prepend(selfCall).prependList(added);
2402             else
2403                 tree.body.stats = stats.prependList(added).prepend(selfCall);
2404 
2405             outerThisStack = prevOuterThisStack;
2406         } else {
2407             super.visitMethodDef(tree);
2408         }
2409         result = tree;
2410     }
2411 
2412     int lambdaNum = 0;
2413     
2414     public void visitLambda(JCLambda tree) {
2415       MethodSymbol symbol = tree.sym;
2416       symbol.name = names.fromString("$lambda$"+lambdaNum++);
2417       symbol.erasure_field = null;
2418       
2419       // collect free variables
2420       LambdaFreeVarCollector freeVarCollector =
2421         new LambdaFreeVarCollector(symbol);
2422       freeVarCollector.scan(tree.bodyOrExpr);
2423       List<VarSymbol> freeVars = freeVarCollector.freeVars;
2424       
2425       //FIXME Remi: should be removed
2426       if (freeVars.nonEmpty()) {
2427           log.rawError(tree.pos, "reference to free variable isn't implemented yet");
2428           result = make.Erroneous();
2429           return;
2430       }
2431       
2432       MethodType mtype = (MethodType)symbol.type;
2433       mtype.tag = METHOD;
2434       List<Type> argtypes = mtype.argtypes;
2435       
2436       // freevars are parameters
2437       for(List<VarSymbol> l = freeVars; l.nonEmpty(); l = l.tail) {
2438         VarSymbol v = l.head;
2439         argtypes = argtypes.prepend(v.type);
2440       }
2441       mtype.argtypes = argtypes;
2442       
2443       // create a fake method
2444       JCBlock body;
2445       if (tree.bodyOrExpr.getTag() == JCTree.BLOCK) {
2446           body = (JCBlock) tree.bodyOrExpr;
2447       } else {
2448           JCReturn _return = make.at(tree.pos).Return((JCExpression)tree.bodyOrExpr);
2449           _return.setType(tree.bodyOrExpr.type);
2450           body = make.at(tree.pos).Block(0, List.<JCStatement>of(_return));
2451       }
2452       
2453       List<Type> varTypes;
2454       if (mtype.restype.tag == TYPEVAR) {
2455           varTypes  = List.of(mtype.restype);
2456       } else {
2457           varTypes = List.nil();
2458       }
2459       for(List<Type> l = mtype.argtypes; l.nonEmpty(); l = l.tail) {
2460           if (l.head.tag == TYPEVAR)
2461               varTypes.prepend(l.head);  //FIXME Remi: need to remove duplicate, also remove type variables
2462       }                                  //            of current class
2463       
2464       JCMethodDecl method = make.at(tree.pos).MethodDef(make.at(tree.pos).Modifiers(PRIVATE|symbol.flags()),
2465           symbol.name,
2466           make.at(tree.pos).Type(mtype.restype),
2467           make.at(tree.pos).TypeParams(varTypes),
2468           tree.parameters,
2469           List.<JCExpression>nil(),
2470           body,
2471           null);
2472       
2473       Type methodType = (varTypes.isEmpty())? mtype: new ForAll(varTypes, mtype);
2474       method.sym = symbol;
2475       method.type = symbol.type = methodType;  
2476         
2477       JCClassDecl classDef = classDef(currentClass);
2478       classDef.defs = classDef.defs.prepend(method);
2479       enterSynthetic(tree.pos(), symbol, currentClass.members());
2480       
2481       // lower method def
2482       JCMethodDecl prevMethodDef = currentMethodDef;
2483       MethodSymbol prevMethodSym = currentMethodSym;
2484       try {
2485           currentMethodDef = method;
2486           currentMethodSym = symbol;
2487           super.visitMethodDef(method);
2488       } finally {
2489           currentMethodDef = prevMethodDef;
2490           currentMethodSym = prevMethodSym;
2491       }
2492       
2493       // lambda should be lower as a ldc
2494       // but VM support not available on jdk7 VM, we have to wait approval of Da Vinci patches
2495       // so lower into method call on MethodHandles.lookup().bind/findStatic
2496       result = lowerExprLambda(tree.pos, symbol.name, (symbol.flags() & STATIC) != 0, mtype);
2497     }
2498     
2499     private JCTree lowerExprLambda(int lambdaPos, Name lambdaName, boolean isStatic, MethodType functionType) { 
2500         MethodSymbol lookupSym = new MethodSymbol(PUBLIC|STATIC,
2501             names.fromString("lookup"), // "lookup" should be interned
2502             new MethodType(METHOD,
2503                 List.<Type>nil(),
2504                 syms.methodHandlesLookupType,
2505                 List.<Type>nil(),
2506                 syms.methodClass),
2507             syms.methodHandlesType.tsym);
2508         
2509         JCExpression lookup = make.at(lambdaPos).Select(
2510             make.QualIdent(syms.methodHandlesType.tsym),
2511             lookupSym);
2512             
2513         JCExpression lookupApply = make.Apply(List.<JCExpression>nil(), lookup, List.<JCExpression>nil());
2514         lookupApply.type = syms.methodHandlesLookupType;
2515       
2516         ListBuffer<JCExpression> rtClasses = ListBuffer.lb();
2517         rtClasses.append(classOfType(types.erasure(functionType.restype), lookup.pos()));
2518         for(List<Type> l = functionType.argtypes; !l.isEmpty(); l=l.tail) {
2519             rtClasses.append(classOfType(types.erasure(l.head), lookup.pos()));
2520         }
2521         
2522         MethodType makeType = new MethodType(METHOD,
2523             List.of(syms.classType, new ArrayType(syms.classType, syms.arraysType.tsym)),
2524             syms.methodTypeType,
2525             List.<Type>nil(),
2526             syms.methodClass);
2527         MethodSymbol makeSym = new MethodSymbol(PUBLIC|STATIC|VARARGS,
2528             names.fromString("make"), // "make" should be interned
2529             makeType,
2530             syms.methodTypeType.tsym);
2531         
2532         // box varags
2533         List<JCExpression> rtClassList = boxArgs(makeType.argtypes, rtClasses.toList(), syms.classType);
2534         
2535         JCExpression methodTypeMake = make.Select(
2536             make.QualIdent(syms.methodTypeType.tsym),
2537             makeSym);
2538         
2539         JCExpression methodTypeMakeApply = make.Apply(List.<JCExpression>nil(), methodTypeMake, rtClassList);
2540         methodTypeMakeApply.type = syms.methodTypeType;
2541       
2542         MethodSymbol findSym = new MethodSymbol(PUBLIC,
2543             names.fromString((isStatic)?"findStatic":"bind"), // "findStatic"/"bind" should be interned
2544             new MethodType(METHOD,
2545                 List.of((isStatic)?syms.classType:syms.objectType, syms.stringType, syms.methodTypeType),
2546                 syms.methodHandleType,
2547                 List.<Type>nil(),
2548                 syms.methodClass),
2549             syms.methodHandlesLookupType.tsym);
2550         
2551         JCExpression findStatic = make.Select(
2552             lookupApply,
2553             findSym);
2554         
2555         JCExpression receiver;
2556         if (isStatic) {
2557             JCFieldAccess thisClass = make.Select(make.Ident(currentClass), names._class);
2558             thisClass.sym = new VarSymbol(STATIC | PUBLIC | FINAL,
2559                 names._class,
2560                 new ClassType(Type.noType, List.<Type>nil(), syms.classType.tsym),
2561                 currentClass);
2562             thisClass.type = thisClass.sym.type;
2563             receiver = thisClass;
2564         } else {
2565             Symbol thissym = rs.resolveSelf(lookup.pos(), attrEnv, currentClass, names._this);
2566             JCIdent thisIdent = make.Ident(thissym);
2567             thisIdent.type = thissym.type;
2568             receiver = thisIdent;
2569         }
2570         
2571         JCLiteral nameLit = make.Literal(TypeTags.CLASS, lambdaName.toString());
2572         nameLit.type = syms.stringType;
2573         
2574         JCExpression init = make.Apply(List.<JCExpression>nil(), findStatic, List.of(receiver, nameLit, methodTypeMakeApply));
2575         init.type = syms.methodHandleType;
2576         return init;
2577     }
2578     
2579     public void visitAnnotatedType(JCAnnotatedType tree) {
2580         tree.underlyingType = translate(tree.underlyingType);
2581         result = tree.underlyingType;
2582     }
2583 
2584     public void visitTypeCast(JCTypeCast tree) {
2585         tree.clazz = translate(tree.clazz);
2586         if (tree.type.isPrimitive() != tree.expr.type.isPrimitive())
2587             tree.expr = translate(tree.expr, tree.type);
2588         else
2589             tree.expr = translate(tree.expr);
2590         result = tree;
2591     }
2592 
2593     public void visitNewClass(JCNewClass tree) {
2594         ClassSymbol c = (ClassSymbol)tree.constructor.owner;
2595 
2596         // Box arguments, if necessary
2597         boolean isEnum = (tree.constructor.owner.flags() & ENUM) != 0;
2598         List<Type> argTypes = tree.constructor.type.getParameterTypes();
2599         if (isEnum) argTypes = argTypes.prepend(syms.intType).prepend(syms.stringType);
2600         tree.args = boxArgs(argTypes, tree.args, tree.varargsElement);
2601         tree.varargsElement = null;
2602 
2603         // If created class is local, add free variables after
2604         // explicit constructor arguments.
2605         if ((c.owner.kind & (VAR | MTH)) != 0) {
2606             tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2607         }
2608 
2609         // If an access constructor is used, append null as a last argument.
2610         Symbol constructor = accessConstructor(tree.pos(), tree.constructor);
2611         if (constructor != tree.constructor) {
2612             tree.args = tree.args.append(makeNull());
2613             tree.constructor = constructor;
2614         }
2615 
2616         // If created class has an outer instance, and new is qualified, pass
2617         // qualifier as first argument. If new is not qualified, pass the
2618         // correct outer instance as first argument.
2619         if (c.hasOuterInstance()) {
2620             JCExpression thisArg;
2621             if (tree.encl != null) {
2622                 thisArg = attr.makeNullCheck(translate(tree.encl));
2623                 thisArg.type = tree.encl.type;
2624             } else if ((c.owner.kind & (MTH | VAR)) != 0) {
2625                 // local class
2626                 thisArg = makeThis(tree.pos(), c.type.getEnclosingType().tsym);
2627             } else {
2628                 // nested class
2629                 thisArg = makeOwnerThis(tree.pos(), c, false);
2630             }
2631             tree.args = tree.args.prepend(thisArg);
2632         }
2633         tree.encl = null;
2634 
2635         // If we have an anonymous class, create its flat version, rather
2636         // than the class or interface following new.
2637         if (tree.def != null) {
2638             translate(tree.def);
2639             tree.clazz = access(make_at(tree.clazz.pos()).Ident(tree.def.sym));
2640             tree.def = null;
2641         } else {
2642             tree.clazz = access(c, tree.clazz, enclOp, false);
2643         }
2644         result = tree;
2645     }
2646 
2647     // Simplify conditionals with known constant controlling expressions.
2648     // This allows us to avoid generating supporting declarations for
2649     // the dead code, which will not be eliminated during code generation.
2650     // Note that Flow.isFalse and Flow.isTrue only return true
2651     // for constant expressions in the sense of JLS 15.27, which
2652     // are guaranteed to have no side-effects.  More aggressive
2653     // constant propagation would require that we take care to
2654     // preserve possible side-effects in the condition expression.
2655 
2656     /** Visitor method for conditional expressions.
2657      */
2658     public void visitConditional(JCConditional tree) {
2659         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2660         if (cond.type.isTrue()) {
2661             result = convert(translate(tree.truepart, tree.type), tree.type);
2662         } else if (cond.type.isFalse()) {
2663             result = convert(translate(tree.falsepart, tree.type), tree.type);
2664         } else {
2665             // Condition is not a compile-time constant.
2666             tree.truepart = translate(tree.truepart, tree.type);
2667             tree.falsepart = translate(tree.falsepart, tree.type);
2668             result = tree;
2669         }
2670     }
2671 //where
2672         private JCTree convert(JCTree tree, Type pt) {
2673             if (tree.type == pt) return tree;
2674             JCTree result = make_at(tree.pos()).TypeCast(make.Type(pt), (JCExpression)tree);
2675             result.type = (tree.type.constValue() != null) ? cfolder.coerce(tree.type, pt)
2676                                                            : pt;
2677             return result;
2678         }
2679 
2680     /** Visitor method for if statements.
2681      */
2682     public void visitIf(JCIf tree) {
2683         JCTree cond = tree.cond = translate(tree.cond, syms.booleanType);
2684         if (cond.type.isTrue()) {
2685             result = translate(tree.thenpart);
2686         } else if (cond.type.isFalse()) {
2687             if (tree.elsepart != null) {
2688                 result = translate(tree.elsepart);
2689             } else {
2690                 result = make.Skip();
2691             }
2692         } else {
2693             // Condition is not a compile-time constant.
2694             tree.thenpart = translate(tree.thenpart);
2695             tree.elsepart = translate(tree.elsepart);
2696             result = tree;
2697         }
2698     }
2699 
2700     /** Visitor method for assert statements. Translate them away.
2701      */
2702     public void visitAssert(JCAssert tree) {
2703         DiagnosticPosition detailPos = (tree.detail == null) ? tree.pos() : tree.detail.pos();
2704         tree.cond = translate(tree.cond, syms.booleanType);
2705         if (!tree.cond.type.isTrue()) {
2706             JCExpression cond = assertFlagTest(tree.pos());
2707             List<JCExpression> exnArgs = (tree.detail == null) ?
2708                 List.<JCExpression>nil() : List.of(translate(tree.detail));
2709             if (!tree.cond.type.isFalse()) {
2710                 cond = makeBinary
2711                     (JCTree.AND,
2712                      cond,
2713                      makeUnary(JCTree.NOT, tree.cond));
2714             }
2715             result =
2716                 make.If(cond,
2717                         make_at(detailPos).
2718                            Throw(makeNewClass(syms.assertionErrorType, exnArgs)),
2719                         null);
2720         } else {
2721             result = make.Skip();
2722         }
2723     }
2724 
2725     public void visitApply(JCMethodInvocation tree) {
2726         Symbol meth = TreeInfo.symbol(tree.meth);
2727         List<Type> argtypes = meth.type.getParameterTypes();
2728         if (allowEnums &&
2729             meth.name==names.init &&
2730             meth.owner == syms.enumSym)
2731             argtypes = argtypes.tail.tail;
2732         tree.args = boxArgs(argtypes, tree.args, tree.varargsElement);
2733         tree.varargsElement = null;
2734         Name methName = TreeInfo.name(tree.meth);
2735         if (meth.name==names.init) {
2736             // We are seeing a this(...) or super(...) constructor call.
2737             // If an access constructor is used, append null as a last argument.
2738             Symbol constructor = accessConstructor(tree.pos(), meth);
2739             if (constructor != meth) {
2740                 tree.args = tree.args.append(makeNull());
2741                 TreeInfo.setSymbol(tree.meth, constructor);
2742             }
2743 
2744             // If we are calling a constructor of a local class, add
2745             // free variables after explicit constructor arguments.
2746             ClassSymbol c = (ClassSymbol)constructor.owner;
2747             if ((c.owner.kind & (VAR | MTH)) != 0) {
2748                 tree.args = tree.args.appendList(loadFreevars(tree.pos(), freevars(c)));
2749             }
2750 
2751             // If we are calling a constructor of an enum class, pass
2752             // along the name and ordinal arguments
2753             if ((c.flags_field&ENUM) != 0 || c.getQualifiedName() == names.java_lang_Enum) {
2754                 List<JCVariableDecl> params = currentMethodDef.params;
2755                 if (currentMethodSym.owner.hasOuterInstance())
2756                     params = params.tail; // drop this$n
2757                 tree.args = tree.args
2758                     .prepend(make_at(tree.pos()).Ident(params.tail.head.sym)) // ordinal
2759                     .prepend(make.Ident(params.head.sym)); // name
2760             }
2761 
2762             // If we are calling a constructor of a class with an outer
2763             // instance, and the call
2764             // is qualified, pass qualifier as first argument in front of
2765             // the explicit constructor arguments. If the call
2766             // is not qualified, pass the correct outer instance as
2767             // first argument.
2768             if (c.hasOuterInstance()) {
2769                 JCExpression thisArg;
2770                 if (tree.meth.getTag() == JCTree.SELECT) {
2771                     thisArg = attr.
2772                         makeNullCheck(translate(((JCFieldAccess) tree.meth).selected));
2773                     tree.meth = make.Ident(constructor);
2774                     ((JCIdent) tree.meth).name = methName;
2775                 } else if ((c.owner.kind & (MTH | VAR)) != 0 || methName == names._this){
2776                     // local class or this() call
2777                     thisArg = makeThis(tree.meth.pos(), c.type.getEnclosingType().tsym);
2778                 } else {
2779                     // super() call of nested class
2780                     thisArg = makeOwnerThis(tree.meth.pos(), c, false);
2781                 }
2782                 tree.args = tree.args.prepend(thisArg);
2783             }
2784         } else {
2785             // We are seeing a normal method invocation; translate this as usual.
2786             tree.meth = translate(tree.meth);
2787 
2788             // If the translated method itself is an Apply tree, we are
2789             // seeing an access method invocation. In this case, append
2790             // the method arguments to the arguments of the access method.
2791             if (tree.meth.getTag() == JCTree.APPLY) {
2792                 JCMethodInvocation app = (JCMethodInvocation)tree.meth;
2793                 app.args = tree.args.prependList(app.args);
2794                 result = app;
2795                 return;
2796             }
2797         }
2798         result = tree;
2799     }
2800 
2801     List<JCExpression> boxArgs(List<Type> parameters, List<JCExpression> _args, Type varargsElement) {
2802         List<JCExpression> args = _args;
2803         if (parameters.isEmpty()) return args;
2804         boolean anyChanges = false;
2805         ListBuffer<JCExpression> result = new ListBuffer<JCExpression>();
2806         while (parameters.tail.nonEmpty()) {
2807             JCExpression arg = translate(args.head, parameters.head);
2808             anyChanges |= (arg != args.head);
2809             result.append(arg);
2810             args = args.tail;
2811             parameters = parameters.tail;
2812         }
2813         Type parameter = parameters.head;
2814         if (varargsElement != null) {
2815             anyChanges = true;
2816             ListBuffer<JCExpression> elems = new ListBuffer<JCExpression>();
2817             while (args.nonEmpty()) {
2818                 JCExpression arg = translate(args.head, varargsElement);
2819                 elems.append(arg);
2820                 args = args.tail;
2821             }
2822             JCNewArray boxedArgs = make.NewArray(make.Type(varargsElement),
2823                                                List.<JCExpression>nil(),
2824                                                elems.toList());
2825             boxedArgs.type = new ArrayType(varargsElement, syms.arrayClass);
2826             result.append(boxedArgs);
2827         } else {
2828             if (args.length() != 1) throw new AssertionError(args);
2829             JCExpression arg = translate(args.head, parameter);
2830             anyChanges |= (arg != args.head);
2831             result.append(arg);
2832             if (!anyChanges) return _args;
2833         }
2834         return result.toList();
2835     }
2836 
2837     /** Expand a boxing or unboxing conversion if needed. */
2838     @SuppressWarnings("unchecked") // XXX unchecked
2839     <T extends JCTree> T boxIfNeeded(T tree, Type type) {
2840         boolean havePrimitive = tree.type.isPrimitive();
2841         if (havePrimitive == type.isPrimitive())
2842             return tree;
2843         if (havePrimitive) {
2844             Type unboxedTarget = types.unboxedType(type);
2845             if (unboxedTarget.tag != NONE) {
2846                 if (!types.isSubtype(tree.type, unboxedTarget)) //e.g. Character c = 89;
2847                     tree.type = unboxedTarget.constType(tree.type.constValue());
2848                 return (T)boxPrimitive((JCExpression)tree, type);
2849             } else {
2850                 tree = (T)boxPrimitive((JCExpression)tree);
2851             }
2852         } else {
2853             tree = (T)unbox((JCExpression)tree, type);
2854         }
2855         return tree;
2856     }
2857 
2858     /** Box up a single primitive expression. */
2859     JCExpression boxPrimitive(JCExpression tree) {
2860         return boxPrimitive(tree, types.boxedClass(tree.type).type);
2861     }
2862 
2863     /** Box up a single primitive expression. */
2864     JCExpression boxPrimitive(JCExpression tree, Type box) {
2865         make_at(tree.pos());
2866         if (target.boxWithConstructors()) {
2867             Symbol ctor = lookupConstructor(tree.pos(),
2868                                             box,
2869                                             List.<Type>nil()
2870                                             .prepend(tree.type));
2871             return make.Create(ctor, List.of(tree));
2872         } else {
2873             Symbol valueOfSym = lookupMethod(tree.pos(),
2874                                              names.valueOf,
2875                                              box,
2876                                              List.<Type>nil()
2877                                              .prepend(tree.type));
2878             return make.App(make.QualIdent(valueOfSym), List.of(tree));
2879         }
2880     }
2881 
2882     /** Unbox an object to a primitive value. */
2883     JCExpression unbox(JCExpression tree, Type primitive) {
2884         Type unboxedType = types.unboxedType(tree.type);
2885         // note: the "primitive" parameter is not used.  There muse be
2886         // a conversion from unboxedType to primitive.
2887         make_at(tree.pos());
2888         Symbol valueSym = lookupMethod(tree.pos(),
2889                                        unboxedType.tsym.name.append(names.Value), // x.intValue()
2890                                        tree.type,
2891                                        List.<Type>nil());
2892         return make.App(make.Select(tree, valueSym));
2893     }
2894 
2895     /** Visitor method for parenthesized expressions.
2896      *  If the subexpression has changed, omit the parens.
2897      */
2898     public void visitParens(JCParens tree) {
2899         JCTree expr = translate(tree.expr);
2900         result = ((expr == tree.expr) ? tree : expr);
2901     }
2902 
2903     public void visitIndexed(JCArrayAccess tree) {
2904         tree.indexed = translate(tree.indexed);
2905         tree.index = translate(tree.index, syms.intType);
2906         result = tree;
2907     }
2908 
2909     public void visitAssign(JCAssign tree) {
2910         tree.lhs = translate(tree.lhs, tree);
2911         tree.rhs = translate(tree.rhs, tree.lhs.type);
2912 
2913         // If translated left hand side is an Apply, we are
2914         // seeing an access method invocation. In this case, append
2915         // right hand side as last argument of the access method.
2916         if (tree.lhs.getTag() == JCTree.APPLY) {
2917             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2918             app.args = List.of(tree.rhs).prependList(app.args);
2919             result = app;
2920         } else {
2921             result = tree;
2922         }
2923     }
2924 
2925     public void visitAssignop(final JCAssignOp tree) {
2926         if (!tree.lhs.type.isPrimitive() &&
2927             tree.operator.type.getReturnType().isPrimitive()) {
2928             // boxing required; need to rewrite as x = (unbox typeof x)(x op y);
2929             // or if x == (typeof x)z then z = (unbox typeof x)((typeof x)z op y)
2930             // (but without recomputing x)
2931             JCTree newTree = abstractLval(tree.lhs, new TreeBuilder() {
2932                     public JCTree build(final JCTree lhs) {
2933                         int newTag = tree.getTag() - JCTree.ASGOffset;
2934                         // Erasure (TransTypes) can change the type of
2935                         // tree.lhs.  However, we can still get the
2936                         // unerased type of tree.lhs as it is stored
2937                         // in tree.type in Attr.
2938                         Symbol newOperator = rs.resolveBinaryOperator(tree.pos(),
2939                                                                       newTag,
2940                                                                       attrEnv,
2941                                                                       tree.type,
2942                                                                       tree.rhs.type);
2943                         JCExpression expr = (JCExpression)lhs;
2944                         if (expr.type != tree.type)
2945                             expr = make.TypeCast(tree.type, expr);
2946                         JCBinary opResult = make.Binary(newTag, expr, tree.rhs);
2947                         opResult.operator = newOperator;
2948                         opResult.type = newOperator.type.getReturnType();
2949                         JCTypeCast newRhs = make.TypeCast(types.unboxedType(tree.type),
2950                                                           opResult);
2951                         return make.Assign((JCExpression)lhs, newRhs).setType(tree.type);
2952                     }
2953                 });
2954             result = translate(newTree);
2955             return;
2956         }
2957         tree.lhs = translate(tree.lhs, tree);
2958         tree.rhs = translate(tree.rhs, tree.operator.type.getParameterTypes().tail.head);
2959 
2960         // If translated left hand side is an Apply, we are
2961         // seeing an access method invocation. In this case, append
2962         // right hand side as last argument of the access method.
2963         if (tree.lhs.getTag() == JCTree.APPLY) {
2964             JCMethodInvocation app = (JCMethodInvocation)tree.lhs;
2965             // if operation is a += on strings,
2966             // make sure to convert argument to string
2967             JCExpression rhs = (((OperatorSymbol)tree.operator).opcode == string_add)
2968               ? makeString(tree.rhs)
2969               : tree.rhs;
2970             app.args = List.of(rhs).prependList(app.args);
2971             result = app;
2972         } else {
2973             result = tree;
2974         }
2975     }
2976 
2977     /** Lower a tree of the form e++ or e-- where e is an object type */
2978     JCTree lowerBoxedPostop(final JCUnary tree) {
2979         // translate to tmp1=lval(e); tmp2=tmp1; tmp1 OP 1; tmp2
2980         // or
2981         // translate to tmp1=lval(e); tmp2=tmp1; (typeof tree)tmp1 OP 1; tmp2
2982         // where OP is += or -=
2983         final boolean cast = TreeInfo.skipParens(tree.arg).getTag() == JCTree.TYPECAST;
2984         return abstractLval(tree.arg, new TreeBuilder() {
2985                 public JCTree build(final JCTree tmp1) {
2986                     return abstractRval(tmp1, tree.arg.type, new TreeBuilder() {
2987                             public JCTree build(final JCTree tmp2) {
2988                                 int opcode = (tree.getTag() == JCTree.POSTINC)
2989                                     ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
2990                                 JCTree lhs = cast
2991                                     ? make.TypeCast(tree.arg.type, (JCExpression)tmp1)
2992                                     : tmp1;
2993                                 JCTree update = makeAssignop(opcode,
2994                                                              lhs,
2995                                                              make.Literal(1));
2996                                 return makeComma(update, tmp2);
2997                             }
2998                         });
2999                 }
3000             });
3001     }
3002 
3003     public void visitUnary(JCUnary tree) {
3004         boolean isUpdateOperator =
3005             JCTree.PREINC <= tree.getTag() && tree.getTag() <= JCTree.POSTDEC;
3006         if (isUpdateOperator && !tree.arg.type.isPrimitive()) {
3007             switch(tree.getTag()) {
3008             case JCTree.PREINC:            // ++ e
3009                     // translate to e += 1
3010             case JCTree.PREDEC:            // -- e
3011                     // translate to e -= 1
3012                 {
3013                     int opcode = (tree.getTag() == JCTree.PREINC)
3014                         ? JCTree.PLUS_ASG : JCTree.MINUS_ASG;
3015                     JCAssignOp newTree = makeAssignop(opcode,
3016                                                     tree.arg,
3017                                                     make.Literal(1));
3018                     result = translate(newTree, tree.type);
3019                     return;
3020                 }
3021             case JCTree.POSTINC:           // e ++
3022             case JCTree.POSTDEC:           // e --
3023                 {
3024                     result = translate(lowerBoxedPostop(tree), tree.type);
3025                     return;
3026                 }
3027             }
3028             throw new AssertionError(tree);
3029         }
3030 
3031         tree.arg = boxIfNeeded(translate(tree.arg, tree), tree.type);
3032 
3033         if (tree.getTag() == JCTree.NOT && tree.arg.type.constValue() != null) {
3034             tree.type = cfolder.fold1(bool_not, tree.arg.type);
3035         }
3036 
3037         // If translated left hand side is an Apply, we are
3038         // seeing an access method invocation. In this case, return
3039         // that access method invocation as result.
3040         if (isUpdateOperator && tree.arg.getTag() == JCTree.APPLY) {
3041             result = tree.arg;
3042         } else {
3043             result = tree;
3044         }
3045     }
3046 
3047     public void visitBinary(JCBinary tree) {
3048         List<Type> formals = tree.operator.type.getParameterTypes();
3049         JCTree lhs = tree.lhs = translate(tree.lhs, formals.head);
3050         switch (tree.getTag()) {
3051         case JCTree.OR:
3052             if (lhs.type.isTrue()) {
3053                 result = lhs;
3054                 return;
3055             }
3056             if (lhs.type.isFalse()) {
3057                 result = translate(tree.rhs, formals.tail.head);
3058                 return;
3059             }
3060             break;
3061         case JCTree.AND:
3062             if (lhs.type.isFalse()) {
3063                 result = lhs;
3064                 return;
3065             }
3066             if (lhs.type.isTrue()) {
3067                 result = translate(tree.rhs, formals.tail.head);
3068                 return;
3069             }
3070             break;
3071         }
3072         tree.rhs = translate(tree.rhs, formals.tail.head);
3073         result = tree;
3074     }
3075 
3076     public void visitIdent(JCIdent tree) {
3077         result = access(tree.sym, tree, enclOp, false);
3078     }
3079 
3080     /** Translate away the foreach loop.  */
3081     public void visitForeachLoop(JCEnhancedForLoop tree) {
3082         if (types.elemtype(tree.expr.type) == null)
3083             visitIterableForeachLoop(tree);
3084         else
3085             visitArrayForeachLoop(tree);
3086     }
3087         // where
3088         /**
3089          * A statement of the form
3090          *
3091          * <pre>
3092          *     for ( T v : arrayexpr ) stmt;
3093          * </pre>
3094          *
3095          * (where arrayexpr is of an array type) gets translated to
3096          *
3097          * <pre>
3098          *     for ( { arraytype #arr = arrayexpr;
3099          *             int #len = array.length;
3100          *             int #i = 0; };
3101          *           #i < #len; i$++ ) {
3102          *         T v = arr$[#i];
3103          *         stmt;
3104          *     }
3105          * </pre>
3106          *
3107          * where #arr, #len, and #i are freshly named synthetic local variables.
3108          */
3109         private void visitArrayForeachLoop(JCEnhancedForLoop tree) {
3110             make_at(tree.expr.pos());
3111             VarSymbol arraycache = new VarSymbol(0,
3112                                                  names.fromString("arr" + target.syntheticNameChar()),
3113                                                  tree.expr.type,
3114                                                  currentMethodSym);
3115             JCStatement arraycachedef = make.VarDef(arraycache, tree.expr);
3116             VarSymbol lencache = new VarSymbol(0,
3117                                                names.fromString("len" + target.syntheticNameChar()),
3118                                                syms.intType,
3119                                                currentMethodSym);
3120             JCStatement lencachedef = make.
3121                 VarDef(lencache, make.Select(make.Ident(arraycache), syms.lengthVar));
3122             VarSymbol index = new VarSymbol(0,
3123                                             names.fromString("i" + target.syntheticNameChar()),
3124                                             syms.intType,
3125                                             currentMethodSym);
3126 
3127             JCVariableDecl indexdef = make.VarDef(index, make.Literal(INT, 0));
3128             indexdef.init.type = indexdef.type = syms.intType.constType(0);
3129 
3130             List<JCStatement> loopinit = List.of(arraycachedef, lencachedef, indexdef);
3131             JCBinary cond = makeBinary(JCTree.LT, make.Ident(index), make.Ident(lencache));
3132 
3133             JCExpressionStatement step = make.Exec(makeUnary(JCTree.PREINC, make.Ident(index)));
3134 
3135             Type elemtype = types.elemtype(tree.expr.type);
3136             JCExpression loopvarinit = make.Indexed(make.Ident(arraycache),
3137                                                     make.Ident(index)).setType(elemtype);
3138             JCVariableDecl loopvardef = (JCVariableDecl)make.VarDef(tree.var.mods,
3139                                                   tree.var.name,
3140                                                   tree.var.vartype,
3141                                                   loopvarinit).setType(tree.var.type);
3142             loopvardef.sym = tree.var.sym;
3143             JCBlock body = make.
3144                 Block(0, List.of(loopvardef, tree.body));
3145 
3146             result = translate(make.
3147                                ForLoop(loopinit,
3148                                        cond,
3149                                        List.of(step),
3150                                        body));
3151             patchTargets(body, tree, result);
3152         }
3153         /** Patch up break and continue targets. */
3154         private void patchTargets(JCTree body, final JCTree src, final JCTree dest) {
3155             class Patcher extends TreeScanner {
3156                 public void visitBreak(JCBreak tree) {
3157                     if (tree.target == src)
3158                         tree.target = dest;
3159                 }
3160                 public void visitContinue(JCContinue tree) {
3161                     if (tree.target == src)
3162                         tree.target = dest;
3163                 }
3164                 public void visitClassDef(JCClassDecl tree) {}
3165             }
3166             new Patcher().scan(body);
3167         }
3168         /**
3169          * A statement of the form
3170          *
3171          * <pre>
3172          *     for ( T v : coll ) stmt ;
3173          * </pre>
3174          *
3175          * (where coll implements Iterable<? extends T>) gets translated to
3176          *
3177          * <pre>
3178          *     for ( Iterator<? extends T> #i = coll.iterator(); #i.hasNext(); ) {
3179          *         T v = (T) #i.next();
3180          *         stmt;
3181          *     }
3182          * </pre>
3183          *
3184          * where #i is a freshly named synthetic local variable.
3185          */
3186         private void visitIterableForeachLoop(JCEnhancedForLoop tree) {
3187             make_at(tree.expr.pos());
3188             Type iteratorTarget = syms.objectType;
3189             Type iterableType = types.asSuper(types.upperBound(tree.expr.type),
3190                                               syms.iterableType.tsym);
3191             if (iterableType.getTypeArguments().nonEmpty())
3192                 iteratorTarget = types.erasure(iterableType.getTypeArguments().head);
3193             Type eType = tree.expr.type;
3194             tree.expr.type = types.erasure(eType);
3195             if (eType.tag == TYPEVAR && eType.getUpperBound().isCompound())
3196                 tree.expr = make.TypeCast(types.erasure(iterableType), tree.expr);
3197             Symbol iterator = lookupMethod(tree.expr.pos(),
3198                                            names.iterator,
3199                                            types.erasure(syms.iterableType),
3200                                            List.<Type>nil());
3201             VarSymbol itvar = new VarSymbol(0, names.fromString("i" + target.syntheticNameChar()),
3202                                             types.erasure(iterator.type.getReturnType()),
3203                                             currentMethodSym);
3204             JCStatement init = make.
3205                 VarDef(itvar,
3206                        make.App(make.Select(tree.expr, iterator)));
3207             Symbol hasNext = lookupMethod(tree.expr.pos(),
3208                                           names.hasNext,
3209                                           itvar.type,
3210                                           List.<Type>nil());
3211             JCMethodInvocation cond = make.App(make.Select(make.Ident(itvar), hasNext));
3212             Symbol next = lookupMethod(tree.expr.pos(),
3213                                        names.next,
3214                                        itvar.type,
3215                                        List.<Type>nil());
3216             JCExpression vardefinit = make.App(make.Select(make.Ident(itvar), next));
3217             if (tree.var.type.isPrimitive())
3218                 vardefinit = make.TypeCast(types.upperBound(iteratorTarget), vardefinit);
3219             else
3220                 vardefinit = make.TypeCast(tree.var.type, vardefinit);
3221             JCVariableDecl indexDef = (JCVariableDecl)make.VarDef(tree.var.mods,
3222                                                   tree.var.name,
3223                                                   tree.var.vartype,
3224                                                   vardefinit).setType(tree.var.type);
3225             indexDef.sym = tree.var.sym;
3226             JCBlock body = make.Block(0, List.of(indexDef, tree.body));
3227             body.endpos = TreeInfo.endPos(tree.body);
3228             result = translate(make.
3229                 ForLoop(List.of(init),
3230                         cond,
3231                         List.<JCExpressionStatement>nil(),
3232                         body));
3233             patchTargets(body, tree, result);
3234         }
3235 
3236     public void visitVarDef(JCVariableDecl tree) {
3237         MethodSymbol oldMethodSym = currentMethodSym;
3238         tree.mods = translate(tree.mods);
3239         tree.vartype = translate(tree.vartype);
3240         if (currentMethodSym == null) {
3241             // A class or instance field initializer.
3242             currentMethodSym =
3243                 new MethodSymbol((tree.mods.flags&STATIC) | BLOCK,
3244                                  names.empty, null,
3245                                  currentClass);
3246         }
3247         if (tree.init != null) tree.init = translate(tree.init, tree.type);
3248         result = tree;
3249         currentMethodSym = oldMethodSym;
3250     }
3251 
3252     public void visitBlock(JCBlock tree) {
3253         MethodSymbol oldMethodSym = currentMethodSym;
3254         if (currentMethodSym == null) {
3255             // Block is a static or instance initializer.
3256             currentMethodSym =
3257                 new MethodSymbol(tree.flags | BLOCK,
3258                                  names.empty, null,
3259                                  currentClass);
3260         }
3261         super.visitBlock(tree);
3262         currentMethodSym = oldMethodSym;
3263     }
3264 
3265     public void visitDoLoop(JCDoWhileLoop tree) {
3266         tree.body = translate(tree.body);
3267         tree.cond = translate(tree.cond, syms.booleanType);
3268         result = tree;
3269     }
3270 
3271     public void visitWhileLoop(JCWhileLoop tree) {
3272         tree.cond = translate(tree.cond, syms.booleanType);
3273         tree.body = translate(tree.body);
3274         result = tree;
3275     }
3276 
3277     public void visitForLoop(JCForLoop tree) {
3278         tree.init = translate(tree.init);
3279         if (tree.cond != null)
3280             tree.cond = translate(tree.cond, syms.booleanType);
3281         tree.step = translate(tree.step);
3282         tree.body = translate(tree.body);
3283         result = tree;
3284     }
3285 
3286     public void visitReturn(JCReturn tree) {
3287         if (tree.expr != null)
3288             tree.expr = translate(tree.expr,
3289                                   types.erasure(currentMethodDef
3290                                                 .restype.type));
3291         result = tree;
3292     }
3293 
3294     public void visitSwitch(JCSwitch tree) {
3295         Type selsuper = types.supertype(tree.selector.type);
3296         boolean enumSwitch = selsuper != null &&
3297             (tree.selector.type.tsym.flags() & ENUM) != 0;
3298         boolean stringSwitch = selsuper != null &&
3299             types.isSameType(tree.selector.type, syms.stringType);
3300         Type target = enumSwitch ? tree.selector.type :
3301             (stringSwitch? syms.stringType : syms.intType);
3302         tree.selector = translate(tree.selector, target);
3303         tree.cases = translateCases(tree.cases);
3304         if (enumSwitch) {
3305             result = visitEnumSwitch(tree);
3306         } else if (stringSwitch) {
3307             result = visitStringSwitch(tree);
3308         } else {
3309             result = tree;
3310         }
3311     }
3312 
3313     public JCTree visitEnumSwitch(JCSwitch tree) {
3314         TypeSymbol enumSym = tree.selector.type.tsym;
3315         EnumMapping map = mapForEnum(tree.pos(), enumSym);
3316         make_at(tree.pos());
3317         Symbol ordinalMethod = lookupMethod(tree.pos(),
3318                                             names.ordinal,
3319                                             tree.selector.type,
3320                                             List.<Type>nil());
3321         JCArrayAccess selector = make.Indexed(map.mapVar,
3322                                         make.App(make.Select(tree.selector,
3323                                                              ordinalMethod)));
3324         ListBuffer<JCCase> cases = new ListBuffer<JCCase>();
3325         for (JCCase c : tree.cases) {
3326             if (c.pat != null) {
3327                 VarSymbol label = (VarSymbol)TreeInfo.symbol(c.pat);
3328                 JCLiteral pat = map.forConstant(label);
3329                 cases.append(make.Case(pat, c.stats));
3330             } else {
3331                 cases.append(c);
3332             }
3333         }
3334         JCSwitch enumSwitch = make.Switch(selector, cases.toList());
3335         patchTargets(enumSwitch, tree, enumSwitch);
3336         return enumSwitch;
3337     }
3338 
3339     public JCTree visitStringSwitch(JCSwitch tree) {
3340         List<JCCase> caseList = tree.getCases();
3341         int alternatives = caseList.size();
3342 
3343         if (alternatives == 0) { // Strange but legal possibility
3344             return make.at(tree.pos()).Exec(attr.makeNullCheck(tree.getExpression()));
3345         } else {
3346             /*
3347              * The general approach used is to translate a single
3348              * string switch statement into a series of two chained
3349              * switch statements: the first a synthesized statement
3350              * switching on the argument string's hash value and
3351              * computing a string's position in the list of original
3352              * case labels, if any, followed by a second switch on the
3353              * computed integer value.  The second switch has the same
3354              * code structure as the original string switch statement
3355              * except that the string case labels are replaced with
3356              * positional integer constants starting at 0.
3357              *
3358              * The first switch statement can be thought of as an
3359              * inlined map from strings to their position in the case
3360              * label list.  An alternate implementation would use an
3361              * actual Map for this purpose, as done for enum switches.
3362              *
3363              * With some additional effort, it would be possible to
3364              * use a single switch statement on the hash code of the
3365              * argument, but care would need to be taken to preserve
3366              * the proper control flow in the presence of hash
3367              * collisions and other complications, such as
3368              * fallthroughs.  Switch statements with one or two
3369              * alternatives could also be specially translated into
3370              * if-then statements to omit the computation of the hash
3371              * code.
3372              *
3373              * The generated code assumes that the hashing algorithm
3374              * of String is the same in the compilation environment as
3375              * in the environment the code will run in.  The string
3376              * hashing algorithm in the SE JDK has been unchanged
3377              * since at least JDK 1.2.  Since the algorithm has been
3378              * specified since that release as well, it is very
3379              * unlikely to be changed in the future.
3380              *
3381              * Different hashing algorithms, such as the length of the
3382              * strings or a perfect hashing algorithm over the
3383              * particular set of case labels, could potentially be
3384              * used instead of String.hashCode.
3385              */
3386 
3387             ListBuffer<JCStatement> stmtList = new ListBuffer<JCStatement>();
3388 
3389             // Map from String case labels to their original position in
3390             // the list of case labels.
3391             Map<String, Integer> caseLabelToPosition =
3392                 new LinkedHashMap<String, Integer>(alternatives + 1, 1.0f);
3393 
3394             // Map of hash codes to the string case labels having that hashCode.
3395             Map<Integer, Set<String>> hashToString =
3396                 new LinkedHashMap<Integer, Set<String>>(alternatives + 1, 1.0f);
3397 
3398             int casePosition = 0;
3399             for(JCCase oneCase : caseList) {
3400                 JCExpression expression = oneCase.getExpression();
3401 
3402                 if (expression != null) { // expression for a "default" case is null
3403                     String labelExpr = (String) expression.type.constValue();
3404                     Integer mapping = caseLabelToPosition.put(labelExpr, casePosition);
3405                     assert mapping == null;
3406                     int hashCode = labelExpr.hashCode();
3407 
3408                     Set<String> stringSet = hashToString.get(hashCode);
3409                     if (stringSet == null) {
3410                         stringSet = new LinkedHashSet<String>(1, 1.0f);
3411                         stringSet.add(labelExpr);
3412                         hashToString.put(hashCode, stringSet);
3413                     } else {
3414                         boolean added = stringSet.add(labelExpr);
3415                         assert added;
3416                     }
3417                 }
3418                 casePosition++;
3419             }
3420 
3421             // Synthesize a switch statement that has the effect of
3422             // mapping from a string to the integer position of that
3423             // string in the list of case labels.  This is done by
3424             // switching on the hashCode of the string followed by an
3425             // if-then-else chain comparing the input for equality
3426             // with all the case labels having that hash value.
3427 
3428             /*
3429              * s$ = top of stack;
3430              * tmp$ = -1;
3431              * switch($s.hashCode()) {
3432              *     case caseLabel.hashCode:
3433              *         if (s$.equals("caseLabel_1")
3434              *           tmp$ = caseLabelToPosition("caseLabel_1");
3435              *         else if (s$.equals("caseLabel_2"))
3436              *           tmp$ = caseLabelToPosition("caseLabel_2");
3437              *         ...
3438              *         break;
3439              * ...
3440              * }
3441              */
3442 
3443             VarSymbol dollar_s = new VarSymbol(FINAL|SYNTHETIC,
3444                                                names.fromString("s" + tree.pos + target.syntheticNameChar()),
3445                                                syms.stringType,
3446                                                currentMethodSym);
3447             stmtList.append(make.at(tree.pos()).VarDef(dollar_s, tree.getExpression()).setType(dollar_s.type));
3448 
3449             VarSymbol dollar_tmp = new VarSymbol(SYNTHETIC,
3450                                                  names.fromString("tmp" + tree.pos + target.syntheticNameChar()),
3451                                                  syms.intType,
3452                                                  currentMethodSym);
3453             JCVariableDecl dollar_tmp_def =
3454                 (JCVariableDecl)make.VarDef(dollar_tmp, make.Literal(INT, -1)).setType(dollar_tmp.type);
3455             dollar_tmp_def.init.type = dollar_tmp.type = syms.intType;
3456             stmtList.append(dollar_tmp_def);
3457             ListBuffer<JCCase> caseBuffer = ListBuffer.lb();
3458             // hashCode will trigger nullcheck on original switch expression
3459             JCMethodInvocation hashCodeCall = makeCall(make.Ident(dollar_s),
3460                                                        names.hashCode,
3461                                                        List.<JCExpression>nil()).setType(syms.intType);
3462             JCSwitch switch1 = make.Switch(hashCodeCall,
3463                                         caseBuffer.toList());
3464             for(Map.Entry<Integer, Set<String>> entry : hashToString.entrySet()) {
3465                 int hashCode = entry.getKey();
3466                 Set<String> stringsWithHashCode = entry.getValue();
3467                 assert stringsWithHashCode.size() >= 1;
3468 
3469                 JCStatement elsepart = null;
3470                 for(String caseLabel : stringsWithHashCode ) {
3471                     JCMethodInvocation stringEqualsCall = makeCall(make.Ident(dollar_s),
3472                                                                    names.equals,
3473                                                                    List.<JCExpression>of(make.Literal(caseLabel)));
3474                     elsepart = make.If(stringEqualsCall,
3475                                        make.Exec(make.Assign(make.Ident(dollar_tmp),
3476                                                              make.Literal(caseLabelToPosition.get(caseLabel))).
3477                                                  setType(dollar_tmp.type)),
3478                                        elsepart);
3479                 }
3480 
3481                 ListBuffer<JCStatement> lb = ListBuffer.lb();
3482                 JCBreak breakStmt = make.Break(null);
3483                 breakStmt.target = switch1;
3484                 lb.append(elsepart).append(breakStmt);
3485 
3486                 caseBuffer.append(make.Case(make.Literal(hashCode), lb.toList()));
3487             }
3488 
3489             switch1.cases = caseBuffer.toList();
3490             stmtList.append(switch1);
3491 
3492             // Make isomorphic switch tree replacing string labels
3493             // with corresponding integer ones from the label to
3494             // position map.
3495 
3496             ListBuffer<JCCase> lb = ListBuffer.lb();
3497             JCSwitch switch2 = make.Switch(make.Ident(dollar_tmp), lb.toList());
3498             for(JCCase oneCase : caseList ) {
3499                 // Rewire up old unlabeled break statements to the
3500                 // replacement switch being created.
3501                 patchTargets(oneCase, tree, switch2);
3502 
3503                 boolean isDefault = (oneCase.getExpression() == null);
3504                 JCExpression caseExpr;
3505                 if (isDefault)
3506                     caseExpr = null;
3507                 else {
3508                     caseExpr = make.Literal(caseLabelToPosition.get((String)oneCase.
3509                                                                     getExpression().
3510                                                                     type.constValue()));
3511                 }
3512 
3513                 lb.append(make.Case(caseExpr,
3514                                     oneCase.getStatements()));
3515             }
3516 
3517             switch2.cases = lb.toList();
3518             stmtList.append(switch2);
3519 
3520             return make.Block(0L, stmtList.toList());
3521         }
3522     }
3523 
3524     public void visitNewArray(JCNewArray tree) {
3525         tree.elemtype = translate(tree.elemtype);
3526         for (List<JCExpression> t = tree.dims; t.tail != null; t = t.tail)
3527             if (t.head != null) t.head = translate(t.head, syms.intType);
3528         tree.elems = translate(tree.elems, types.elemtype(tree.type));
3529         result = tree;
3530     }
3531 
3532     public void visitSelect(JCFieldAccess tree) {
3533         // need to special case-access of the form C.super.x
3534         // these will always need an access method.
3535         boolean qualifiedSuperAccess =
3536             tree.selected.getTag() == JCTree.SELECT &&
3537             TreeInfo.name(tree.selected) == names._super;
3538         tree.selected = translate(tree.selected);
3539         if (tree.name == names._class)
3540             result = classOf(tree.selected);
3541         else if (tree.name == names._this || tree.name == names._super)
3542             result = makeThis(tree.pos(), tree.selected.type.tsym);
3543         else
3544             result = access(tree.sym, tree, enclOp, qualifiedSuperAccess);
3545     }
3546 
3547     public void visitLetExpr(LetExpr tree) {
3548         tree.defs = translateVarDefs(tree.defs);
3549         tree.expr = translate(tree.expr, tree.type);
3550         result = tree;
3551     }
3552 
3553     // There ought to be nothing to rewrite here;
3554     // we don't generate code.
3555     public void visitAnnotation(JCAnnotation tree) {
3556         result = tree;
3557     }
3558 
3559 /**************************************************************************
3560  * main method
3561  *************************************************************************/
3562 
3563     /** Translate a toplevel class and return a list consisting of
3564      *  the translated class and translated versions of all inner classes.
3565      *  @param env   The attribution environment current at the class definition.
3566      *               We need this for resolving some additional symbols.
3567      *  @param cdef  The tree representing the class definition.
3568      */
3569     public List<JCTree> translateTopLevelClass(Env<AttrContext> env, JCTree cdef, TreeMaker make) {
3570         ListBuffer<JCTree> translated = null;
3571         try {
3572             attrEnv = env;
3573             this.make = make;
3574             endPositions = env.toplevel.endPositions;
3575             currentClass = null;
3576             currentMethodDef = null;
3577             outermostClassDef = (cdef.getTag() == JCTree.CLASSDEF) ? (JCClassDecl)cdef : null;
3578             outermostMemberDef = null;
3579             this.translated = new ListBuffer<JCTree>();
3580             classdefs = new HashMap<ClassSymbol,JCClassDecl>();
3581             actualSymbols = new HashMap<Symbol,Symbol>();
3582             freevarCache = new HashMap<ClassSymbol,List<VarSymbol>>();
3583             proxies = new Scope(syms.noSymbol);
3584             outerThisStack = List.nil();
3585             accessNums = new HashMap<Symbol,Integer>();
3586             accessSyms = new HashMap<Symbol,MethodSymbol[]>();
3587             accessConstrs = new HashMap<Symbol,MethodSymbol>();
3588             accessed = new ListBuffer<Symbol>();
3589             lambdaNum = 0;
3590             translate(cdef, (JCExpression)null);
3591             for (List<Symbol> l = accessed.toList(); l.nonEmpty(); l = l.tail)
3592                 makeAccessible(l.head);
3593             for (EnumMapping map : enumSwitchMap.values())
3594                 map.translate();
3595             checkConflicts(this.translated.toList());
3596             translated = this.translated;
3597         } finally {
3598             // note that recursive invocations of this method fail hard
3599             attrEnv = null;
3600             this.make = null;
3601             endPositions = null;
3602             currentClass = null;
3603             currentMethodDef = null;
3604             outermostClassDef = null;
3605             outermostMemberDef = null;
3606             this.translated = null;
3607             classdefs = null;
3608             actualSymbols = null;
3609             freevarCache = null;
3610             proxies = null;
3611             outerThisStack = null;
3612             accessNums = null;
3613             accessSyms = null;
3614             accessConstrs = null;
3615             accessed = null;
3616             enumSwitchMap.clear();
3617         }
3618         return translated.toList();
3619     }
3620 
3621     //////////////////////////////////////////////////////////////
3622     // The following contributed by Borland for bootstrapping purposes
3623     //////////////////////////////////////////////////////////////
3624     private void addEnumCompatibleMembers(JCClassDecl cdef) {
3625         make_at(null);
3626 
3627         // Add the special enum fields
3628         VarSymbol ordinalFieldSym = addEnumOrdinalField(cdef);
3629         VarSymbol nameFieldSym = addEnumNameField(cdef);
3630 
3631         // Add the accessor methods for name and ordinal
3632         MethodSymbol ordinalMethodSym = addEnumFieldOrdinalMethod(cdef, ordinalFieldSym);
3633         MethodSymbol nameMethodSym = addEnumFieldNameMethod(cdef, nameFieldSym);
3634 
3635         // Add the toString method
3636         addEnumToString(cdef, nameFieldSym);
3637 
3638         // Add the compareTo method
3639         addEnumCompareTo(cdef, ordinalFieldSym);
3640     }
3641 
3642     private VarSymbol addEnumOrdinalField(JCClassDecl cdef) {
3643         VarSymbol ordinal = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3644                                           names.fromString("$ordinal"),
3645                                           syms.intType,
3646                                           cdef.sym);
3647         cdef.sym.members().enter(ordinal);
3648         cdef.defs = cdef.defs.prepend(make.VarDef(ordinal, null));
3649         return ordinal;
3650     }
3651 
3652     private VarSymbol addEnumNameField(JCClassDecl cdef) {
3653         VarSymbol name = new VarSymbol(PRIVATE|FINAL|SYNTHETIC,
3654                                           names.fromString("$name"),
3655                                           syms.stringType,
3656                                           cdef.sym);
3657         cdef.sym.members().enter(name);
3658         cdef.defs = cdef.defs.prepend(make.VarDef(name, null));
3659         return name;
3660     }
3661 
3662     private MethodSymbol addEnumFieldOrdinalMethod(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3663         // Add the accessor methods for ordinal
3664         Symbol ordinalSym = lookupMethod(cdef.pos(),
3665                                          names.ordinal,
3666                                          cdef.type,
3667                                          List.<Type>nil());
3668 
3669         assert(ordinalSym != null);
3670         assert(ordinalSym instanceof MethodSymbol);
3671 
3672         JCStatement ret = make.Return(make.Ident(ordinalSymbol));
3673         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)ordinalSym,
3674                                                     make.Block(0L, List.of(ret))));
3675 
3676         return (MethodSymbol)ordinalSym;
3677     }
3678 
3679     private MethodSymbol addEnumFieldNameMethod(JCClassDecl cdef, VarSymbol nameSymbol) {
3680         // Add the accessor methods for name
3681         Symbol nameSym = lookupMethod(cdef.pos(),
3682                                    names._name,
3683                                    cdef.type,
3684                                    List.<Type>nil());
3685 
3686         assert(nameSym != null);
3687         assert(nameSym instanceof MethodSymbol);
3688 
3689         JCStatement ret = make.Return(make.Ident(nameSymbol));
3690 
3691         cdef.defs = cdef.defs.append(make.MethodDef((MethodSymbol)nameSym,
3692                                                     make.Block(0L, List.of(ret))));
3693 
3694         return (MethodSymbol)nameSym;
3695     }
3696 
3697     private MethodSymbol addEnumToString(JCClassDecl cdef,
3698                                          VarSymbol nameSymbol) {
3699         Symbol toStringSym = lookupMethod(cdef.pos(),
3700                                           names.toString,
3701                                           cdef.type,
3702                                           List.<Type>nil());
3703 
3704         JCTree toStringDecl = null;
3705         if (toStringSym != null)
3706             toStringDecl = TreeInfo.declarationFor(toStringSym, cdef);
3707 
3708         if (toStringDecl != null)
3709             return (MethodSymbol)toStringSym;
3710 
3711         JCStatement ret = make.Return(make.Ident(nameSymbol));
3712 
3713         JCTree resTypeTree = make.Type(syms.stringType);
3714 
3715         MethodType toStringType = new MethodType(List.<Type>nil(),
3716                                                  syms.stringType,
3717                                                  List.<Type>nil(),
3718                                                  cdef.sym);
3719         toStringSym = new MethodSymbol(PUBLIC,
3720                                        names.toString,
3721                                        toStringType,
3722                                        cdef.type.tsym);
3723         toStringDecl = make.MethodDef((MethodSymbol)toStringSym,
3724                                       make.Block(0L, List.of(ret)));
3725 
3726         cdef.defs = cdef.defs.prepend(toStringDecl);
3727         cdef.sym.members().enter(toStringSym);
3728 
3729         return (MethodSymbol)toStringSym;
3730     }
3731 
3732     private MethodSymbol addEnumCompareTo(JCClassDecl cdef, VarSymbol ordinalSymbol) {
3733         Symbol compareToSym = lookupMethod(cdef.pos(),
3734                                    names.compareTo,
3735                                    cdef.type,
3736                                    List.of(cdef.sym.type));
3737 
3738         assert(compareToSym != null);
3739         assert(compareToSym instanceof MethodSymbol);
3740 
3741         JCMethodDecl compareToDecl = (JCMethodDecl) TreeInfo.declarationFor(compareToSym, cdef);
3742 
3743         ListBuffer<JCStatement> blockStatements = new ListBuffer<JCStatement>();
3744 
3745         JCModifiers mod1 = make.Modifiers(0L);
3746         Name oName = names.fromString("o");
3747         JCVariableDecl par1 = make.Param(oName, cdef.type, compareToSym);
3748 
3749         JCIdent paramId1 = make.Ident(names.java_lang_Object);
3750         paramId1.type = cdef.type;
3751         paramId1.sym = par1.sym;
3752 
3753         ((MethodSymbol)compareToSym).params = List.of(par1.sym);
3754 
3755         JCIdent par1UsageId = make.Ident(par1.sym);
3756         JCIdent castTargetIdent = make.Ident(cdef.sym);
3757         JCTypeCast cast = make.TypeCast(castTargetIdent, par1UsageId);
3758         cast.setType(castTargetIdent.type);
3759 
3760         Name otherName = names.fromString("other");
3761 
3762         VarSymbol otherVarSym = new VarSymbol(mod1.flags,
3763                                               otherName,
3764                                               cdef.type,
3765                                               compareToSym);
3766         JCVariableDecl otherVar = make.VarDef(otherVarSym, cast);
3767         blockStatements.append(otherVar);
3768 
3769         JCIdent id1 = make.Ident(ordinalSymbol);
3770 
3771         JCIdent fLocUsageId = make.Ident(otherVarSym);
3772         JCExpression sel = make.Select(fLocUsageId, ordinalSymbol);
3773         JCBinary bin = makeBinary(JCTree.MINUS, id1, sel);
3774         JCReturn ret = make.Return(bin);
3775         blockStatements.append(ret);
3776         JCMethodDecl compareToMethod = make.MethodDef((MethodSymbol)compareToSym,
3777                                                    make.Block(0L,
3778                                                               blockStatements.toList()));
3779         compareToMethod.params = List.of(par1);
3780         cdef.defs = cdef.defs.append(compareToMethod);
3781 
3782         return (MethodSymbol)compareToSym;
3783     }
3784     //////////////////////////////////////////////////////////////
3785     // The above contributed by Borland for bootstrapping purposes
3786     //////////////////////////////////////////////////////////////
3787 }