1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "prims/forte.hpp"
  43 #include "prims/jvmtiExport.hpp"
  44 #include "prims/jvmtiRedefineClassesTrace.hpp"
  45 #include "prims/methodHandles.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.inline.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/vframe.hpp"
  58 #include "runtime/vframeArray.hpp"
  59 #include "trace/tracing.hpp"
  60 #include "utilities/copy.hpp"
  61 #include "utilities/dtrace.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/hashtable.inline.hpp"
  64 #include "utilities/macros.hpp"
  65 #include "utilities/xmlstream.hpp"
  66 #ifdef COMPILER1
  67 #include "c1/c1_Runtime1.hpp"
  68 #endif
  69 
  70 // Shared stub locations
  71 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  72 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  73 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  76 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  77 
  78 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  81 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  82 
  83 #ifdef COMPILER2
  84 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  85 #endif // COMPILER2
  86 
  87 
  88 //----------------------------generate_stubs-----------------------------------
  89 void SharedRuntime::generate_stubs() {
  90   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  91   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  92   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  93   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  94   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  95   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  96 
  97 #if defined(COMPILER2) || INCLUDE_JVMCI
  98   // Vectors are generated only by C2 and JVMCI.
  99   bool support_wide = is_wide_vector(MaxVectorSize);
 100   if (support_wide) {
 101     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 102   }
 103 #endif // COMPILER2 || INCLUDE_JVMCI
 104   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 105   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 106 
 107   generate_deopt_blob();
 108 
 109 #ifdef COMPILER2
 110   generate_uncommon_trap_blob();
 111 #endif // COMPILER2
 112 }
 113 
 114 #include <math.h>
 115 
 116 // Implementation of SharedRuntime
 117 
 118 #ifndef PRODUCT
 119 // For statistics
 120 int SharedRuntime::_ic_miss_ctr = 0;
 121 int SharedRuntime::_wrong_method_ctr = 0;
 122 int SharedRuntime::_resolve_static_ctr = 0;
 123 int SharedRuntime::_resolve_virtual_ctr = 0;
 124 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 125 int SharedRuntime::_implicit_null_throws = 0;
 126 int SharedRuntime::_implicit_div0_throws = 0;
 127 int SharedRuntime::_throw_null_ctr = 0;
 128 
 129 int SharedRuntime::_nof_normal_calls = 0;
 130 int SharedRuntime::_nof_optimized_calls = 0;
 131 int SharedRuntime::_nof_inlined_calls = 0;
 132 int SharedRuntime::_nof_megamorphic_calls = 0;
 133 int SharedRuntime::_nof_static_calls = 0;
 134 int SharedRuntime::_nof_inlined_static_calls = 0;
 135 int SharedRuntime::_nof_interface_calls = 0;
 136 int SharedRuntime::_nof_optimized_interface_calls = 0;
 137 int SharedRuntime::_nof_inlined_interface_calls = 0;
 138 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 139 int SharedRuntime::_nof_removable_exceptions = 0;
 140 
 141 int SharedRuntime::_new_instance_ctr=0;
 142 int SharedRuntime::_new_array_ctr=0;
 143 int SharedRuntime::_multi1_ctr=0;
 144 int SharedRuntime::_multi2_ctr=0;
 145 int SharedRuntime::_multi3_ctr=0;
 146 int SharedRuntime::_multi4_ctr=0;
 147 int SharedRuntime::_multi5_ctr=0;
 148 int SharedRuntime::_mon_enter_stub_ctr=0;
 149 int SharedRuntime::_mon_exit_stub_ctr=0;
 150 int SharedRuntime::_mon_enter_ctr=0;
 151 int SharedRuntime::_mon_exit_ctr=0;
 152 int SharedRuntime::_partial_subtype_ctr=0;
 153 int SharedRuntime::_jbyte_array_copy_ctr=0;
 154 int SharedRuntime::_jshort_array_copy_ctr=0;
 155 int SharedRuntime::_jint_array_copy_ctr=0;
 156 int SharedRuntime::_jlong_array_copy_ctr=0;
 157 int SharedRuntime::_oop_array_copy_ctr=0;
 158 int SharedRuntime::_checkcast_array_copy_ctr=0;
 159 int SharedRuntime::_unsafe_array_copy_ctr=0;
 160 int SharedRuntime::_generic_array_copy_ctr=0;
 161 int SharedRuntime::_slow_array_copy_ctr=0;
 162 int SharedRuntime::_find_handler_ctr=0;
 163 int SharedRuntime::_rethrow_ctr=0;
 164 
 165 int     SharedRuntime::_ICmiss_index                    = 0;
 166 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 167 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 168 
 169 
 170 void SharedRuntime::trace_ic_miss(address at) {
 171   for (int i = 0; i < _ICmiss_index; i++) {
 172     if (_ICmiss_at[i] == at) {
 173       _ICmiss_count[i]++;
 174       return;
 175     }
 176   }
 177   int index = _ICmiss_index++;
 178   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 179   _ICmiss_at[index] = at;
 180   _ICmiss_count[index] = 1;
 181 }
 182 
 183 void SharedRuntime::print_ic_miss_histogram() {
 184   if (ICMissHistogram) {
 185     tty->print_cr("IC Miss Histogram:");
 186     int tot_misses = 0;
 187     for (int i = 0; i < _ICmiss_index; i++) {
 188       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 189       tot_misses += _ICmiss_count[i];
 190     }
 191     tty->print_cr("Total IC misses: %7d", tot_misses);
 192   }
 193 }
 194 #endif // PRODUCT
 195 
 196 #if INCLUDE_ALL_GCS
 197 
 198 // G1 write-barrier pre: executed before a pointer store.
 199 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 200   if (orig == NULL) {
 201     assert(false, "should be optimized out");
 202     return;
 203   }
 204   assert(orig->is_oop(true /* ignore mark word */), "Error");
 205   // store the original value that was in the field reference
 206   thread->satb_mark_queue().enqueue(orig);
 207 JRT_END
 208 
 209 // G1 write-barrier post: executed after a pointer store.
 210 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 211   thread->dirty_card_queue().enqueue(card_addr);
 212 JRT_END
 213 
 214 #endif // INCLUDE_ALL_GCS
 215 
 216 
 217 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 218   return x * y;
 219 JRT_END
 220 
 221 
 222 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 223   if (x == min_jlong && y == CONST64(-1)) {
 224     return x;
 225   } else {
 226     return x / y;
 227   }
 228 JRT_END
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 232   if (x == min_jlong && y == CONST64(-1)) {
 233     return 0;
 234   } else {
 235     return x % y;
 236   }
 237 JRT_END
 238 
 239 
 240 const juint  float_sign_mask  = 0x7FFFFFFF;
 241 const juint  float_infinity   = 0x7F800000;
 242 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 243 const julong double_infinity  = CONST64(0x7FF0000000000000);
 244 
 245 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 246 #ifdef _WIN64
 247   // 64-bit Windows on amd64 returns the wrong values for
 248   // infinity operands.
 249   union { jfloat f; juint i; } xbits, ybits;
 250   xbits.f = x;
 251   ybits.f = y;
 252   // x Mod Infinity == x unless x is infinity
 253   if (((xbits.i & float_sign_mask) != float_infinity) &&
 254        ((ybits.i & float_sign_mask) == float_infinity) ) {
 255     return x;
 256   }
 257 #endif
 258   return ((jfloat)fmod((double)x,(double)y));
 259 JRT_END
 260 
 261 
 262 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 263 #ifdef _WIN64
 264   union { jdouble d; julong l; } xbits, ybits;
 265   xbits.d = x;
 266   ybits.d = y;
 267   // x Mod Infinity == x unless x is infinity
 268   if (((xbits.l & double_sign_mask) != double_infinity) &&
 269        ((ybits.l & double_sign_mask) == double_infinity) ) {
 270     return x;
 271   }
 272 #endif
 273   return ((jdouble)fmod((double)x,(double)y));
 274 JRT_END
 275 
 276 #ifdef __SOFTFP__
 277 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 278   return x + y;
 279 JRT_END
 280 
 281 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 282   return x - y;
 283 JRT_END
 284 
 285 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 286   return x * y;
 287 JRT_END
 288 
 289 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 290   return x / y;
 291 JRT_END
 292 
 293 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 294   return x + y;
 295 JRT_END
 296 
 297 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 298   return x - y;
 299 JRT_END
 300 
 301 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 302   return x * y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 306   return x / y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 310   return (jfloat)x;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 314   return (jdouble)x;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 318   return (jdouble)x;
 319 JRT_END
 320 
 321 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 322   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 323 JRT_END
 324 
 325 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 326   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 327 JRT_END
 328 
 329 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 330   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 334   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 335 JRT_END
 336 
 337 // Functions to return the opposite of the aeabi functions for nan.
 338 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 339   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 340 JRT_END
 341 
 342 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 343   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 344 JRT_END
 345 
 346 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 347   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 348 JRT_END
 349 
 350 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 351   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 355   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 359   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 363   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 367   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 // Intrinsics make gcc generate code for these.
 371 float  SharedRuntime::fneg(float f)   {
 372   return -f;
 373 }
 374 
 375 double SharedRuntime::dneg(double f)  {
 376   return -f;
 377 }
 378 
 379 #endif // __SOFTFP__
 380 
 381 #if defined(__SOFTFP__) || defined(E500V2)
 382 // Intrinsics make gcc generate code for these.
 383 double SharedRuntime::dabs(double f)  {
 384   return (f <= (double)0.0) ? (double)0.0 - f : f;
 385 }
 386 
 387 #endif
 388 
 389 #if defined(__SOFTFP__) || defined(PPC32)
 390 double SharedRuntime::dsqrt(double f) {
 391   return sqrt(f);
 392 }
 393 #endif
 394 
 395 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 396   if (g_isnan(x))
 397     return 0;
 398   if (x >= (jfloat) max_jint)
 399     return max_jint;
 400   if (x <= (jfloat) min_jint)
 401     return min_jint;
 402   return (jint) x;
 403 JRT_END
 404 
 405 
 406 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 407   if (g_isnan(x))
 408     return 0;
 409   if (x >= (jfloat) max_jlong)
 410     return max_jlong;
 411   if (x <= (jfloat) min_jlong)
 412     return min_jlong;
 413   return (jlong) x;
 414 JRT_END
 415 
 416 
 417 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 418   if (g_isnan(x))
 419     return 0;
 420   if (x >= (jdouble) max_jint)
 421     return max_jint;
 422   if (x <= (jdouble) min_jint)
 423     return min_jint;
 424   return (jint) x;
 425 JRT_END
 426 
 427 
 428 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 429   if (g_isnan(x))
 430     return 0;
 431   if (x >= (jdouble) max_jlong)
 432     return max_jlong;
 433   if (x <= (jdouble) min_jlong)
 434     return min_jlong;
 435   return (jlong) x;
 436 JRT_END
 437 
 438 
 439 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 440   return (jfloat)x;
 441 JRT_END
 442 
 443 
 444 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 445   return (jfloat)x;
 446 JRT_END
 447 
 448 
 449 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 450   return (jdouble)x;
 451 JRT_END
 452 
 453 // Exception handling across interpreter/compiler boundaries
 454 //
 455 // exception_handler_for_return_address(...) returns the continuation address.
 456 // The continuation address is the entry point of the exception handler of the
 457 // previous frame depending on the return address.
 458 
 459 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 460   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 461   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 462 
 463   // Reset method handle flag.
 464   thread->set_is_method_handle_return(false);
 465 
 466 #if INCLUDE_JVMCI
 467   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 468   // and other exception handler continuations do not read it
 469   thread->set_exception_pc(NULL);
 470 #endif
 471 
 472   // The fastest case first
 473   CodeBlob* blob = CodeCache::find_blob(return_address);
 474   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 475   if (nm != NULL) {
 476     // Set flag if return address is a method handle call site.
 477     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 478     // native nmethods don't have exception handlers
 479     assert(!nm->is_native_method(), "no exception handler");
 480     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 481     if (nm->is_deopt_pc(return_address)) {
 482       // If we come here because of a stack overflow, the stack may be
 483       // unguarded. Reguard the stack otherwise if we return to the
 484       // deopt blob and the stack bang causes a stack overflow we
 485       // crash.
 486       bool guard_pages_enabled = thread->stack_guards_enabled();
 487       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 488       if (thread->reserved_stack_activation() != (intptr_t*) thread->stack_base()) {
 489         thread->set_reserved_stack_activation((intptr_t*) thread->stack_base());
 490       }
 491       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 492       return SharedRuntime::deopt_blob()->unpack_with_exception();
 493     } else {
 494       return nm->exception_begin();
 495     }
 496   }
 497 
 498   // Entry code
 499   if (StubRoutines::returns_to_call_stub(return_address)) {
 500     return StubRoutines::catch_exception_entry();
 501   }
 502   // Interpreted code
 503   if (Interpreter::contains(return_address)) {
 504     return Interpreter::rethrow_exception_entry();
 505   }
 506 
 507   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 508   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 509 
 510 #ifndef PRODUCT
 511   { ResourceMark rm;
 512     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 513     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 514     tty->print_cr("b) other problem");
 515   }
 516 #endif // PRODUCT
 517 
 518   ShouldNotReachHere();
 519   return NULL;
 520 }
 521 
 522 
 523 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 524   return raw_exception_handler_for_return_address(thread, return_address);
 525 JRT_END
 526 
 527 
 528 address SharedRuntime::get_poll_stub(address pc) {
 529   address stub;
 530   // Look up the code blob
 531   CodeBlob *cb = CodeCache::find_blob(pc);
 532 
 533   // Should be an nmethod
 534   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 535 
 536   // Look up the relocation information
 537   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 538     "safepoint polling: type must be poll");
 539 
 540 #ifdef ASSERT
 541   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 542     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 543     Disassembler::decode(cb);
 544     fatal("Only polling locations are used for safepoint");
 545   }
 546 #endif
 547 
 548   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 549   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 550   if (at_poll_return) {
 551     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 552            "polling page return stub not created yet");
 553     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 554   } else if (has_wide_vectors) {
 555     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 556            "polling page vectors safepoint stub not created yet");
 557     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 558   } else {
 559     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 560            "polling page safepoint stub not created yet");
 561     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 562   }
 563 #ifndef PRODUCT
 564   if (TraceSafepoint) {
 565     char buf[256];
 566     jio_snprintf(buf, sizeof(buf),
 567                  "... found polling page %s exception at pc = "
 568                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 569                  at_poll_return ? "return" : "loop",
 570                  (intptr_t)pc, (intptr_t)stub);
 571     tty->print_raw_cr(buf);
 572   }
 573 #endif // PRODUCT
 574   return stub;
 575 }
 576 
 577 
 578 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 579   assert(caller.is_interpreted_frame(), "");
 580   int args_size = ArgumentSizeComputer(sig).size() + 1;
 581   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 582   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 583   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 584   return result;
 585 }
 586 
 587 
 588 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 589   if (JvmtiExport::can_post_on_exceptions()) {
 590     vframeStream vfst(thread, true);
 591     methodHandle method = methodHandle(thread, vfst.method());
 592     address bcp = method()->bcp_from(vfst.bci());
 593     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 594   }
 595   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 596 }
 597 
 598 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 599   Handle h_exception = Exceptions::new_exception(thread, name, message);
 600   throw_and_post_jvmti_exception(thread, h_exception);
 601 }
 602 
 603 // The interpreter code to call this tracing function is only
 604 // called/generated when TraceRedefineClasses has the right bits
 605 // set. Since obsolete methods are never compiled, we don't have
 606 // to modify the compilers to generate calls to this function.
 607 //
 608 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 609     JavaThread* thread, Method* method))
 610   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 611 
 612   if (method->is_obsolete()) {
 613     // We are calling an obsolete method, but this is not necessarily
 614     // an error. Our method could have been redefined just after we
 615     // fetched the Method* from the constant pool.
 616 
 617     // RC_TRACE macro has an embedded ResourceMark
 618     RC_TRACE_WITH_THREAD(0x00001000, thread,
 619                          ("calling obsolete method '%s'",
 620                           method->name_and_sig_as_C_string()));
 621     if (RC_TRACE_ENABLED(0x00002000)) {
 622       // this option is provided to debug calls to obsolete methods
 623       guarantee(false, "faulting at call to an obsolete method.");
 624     }
 625   }
 626   return 0;
 627 JRT_END
 628 
 629 // ret_pc points into caller; we are returning caller's exception handler
 630 // for given exception
 631 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 632                                                     bool force_unwind, bool top_frame_only) {
 633   assert(nm != NULL, "must exist");
 634   ResourceMark rm;
 635 
 636 #if INCLUDE_JVMCI
 637   if (nm->is_compiled_by_jvmci()) {
 638     // lookup exception handler for this pc
 639     int catch_pco = ret_pc - nm->code_begin();
 640     ExceptionHandlerTable table(nm);
 641     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 642     if (t != NULL) {
 643       return nm->code_begin() + t->pco();
 644     } else {
 645       // there is no exception handler for this pc => deoptimize
 646       nm->make_not_entrant();
 647 
 648       // Use Deoptimization::deoptimize for all of its side-effects:
 649       // revoking biases of monitors, gathering traps statistics, logging...
 650       // it also patches the return pc but we do not care about that
 651       // since we return a continuation to the deopt_blob below.
 652       JavaThread* thread = JavaThread::current();
 653       RegisterMap reg_map(thread, UseBiasedLocking);
 654       frame runtime_frame = thread->last_frame();
 655       frame caller_frame = runtime_frame.sender(&reg_map);
 656       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 657 
 658       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 659     }
 660   }
 661 #endif // INCLUDE_JVMCI
 662 
 663   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 664   // determine handler bci, if any
 665   EXCEPTION_MARK;
 666 
 667   int handler_bci = -1;
 668   int scope_depth = 0;
 669   if (!force_unwind) {
 670     int bci = sd->bci();
 671     bool recursive_exception = false;
 672     do {
 673       bool skip_scope_increment = false;
 674       // exception handler lookup
 675       KlassHandle ek (THREAD, exception->klass());
 676       methodHandle mh(THREAD, sd->method());
 677       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 678       if (HAS_PENDING_EXCEPTION) {
 679         recursive_exception = true;
 680         // We threw an exception while trying to find the exception handler.
 681         // Transfer the new exception to the exception handle which will
 682         // be set into thread local storage, and do another lookup for an
 683         // exception handler for this exception, this time starting at the
 684         // BCI of the exception handler which caused the exception to be
 685         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 686         // argument to ensure that the correct exception is thrown (4870175).
 687         exception = Handle(THREAD, PENDING_EXCEPTION);
 688         CLEAR_PENDING_EXCEPTION;
 689         if (handler_bci >= 0) {
 690           bci = handler_bci;
 691           handler_bci = -1;
 692           skip_scope_increment = true;
 693         }
 694       }
 695       else {
 696         recursive_exception = false;
 697       }
 698       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 699         sd = sd->sender();
 700         if (sd != NULL) {
 701           bci = sd->bci();
 702         }
 703         ++scope_depth;
 704       }
 705     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 706   }
 707 
 708   // found handling method => lookup exception handler
 709   int catch_pco = ret_pc - nm->code_begin();
 710 
 711   ExceptionHandlerTable table(nm);
 712   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 713   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 714     // Allow abbreviated catch tables.  The idea is to allow a method
 715     // to materialize its exceptions without committing to the exact
 716     // routing of exceptions.  In particular this is needed for adding
 717     // a synthetic handler to unlock monitors when inlining
 718     // synchronized methods since the unlock path isn't represented in
 719     // the bytecodes.
 720     t = table.entry_for(catch_pco, -1, 0);
 721   }
 722 
 723 #ifdef COMPILER1
 724   if (t == NULL && nm->is_compiled_by_c1()) {
 725     assert(nm->unwind_handler_begin() != NULL, "");
 726     return nm->unwind_handler_begin();
 727   }
 728 #endif
 729 
 730   if (t == NULL) {
 731     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 732     tty->print_cr("   Exception:");
 733     exception->print();
 734     tty->cr();
 735     tty->print_cr(" Compiled exception table :");
 736     table.print();
 737     nm->print_code();
 738     guarantee(false, "missing exception handler");
 739     return NULL;
 740   }
 741 
 742   return nm->code_begin() + t->pco();
 743 }
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 746   // These errors occur only at call sites
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 751   // These errors occur only at call sites
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 764   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 765   // cache sites (when the callee activation is not yet set up) so we are at a call site
 766   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 767 JRT_END
 768 
 769 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 770   throw_StackOverflowError_common(thread, false);
 771 JRT_END      
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 774   throw_StackOverflowError_common(thread, true);
 775 JRT_END
 776 
 777 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 778   // We avoid using the normal exception construction in this case because
 779   // it performs an upcall to Java, and we're already out of stack space.
 780   Thread* THREAD = thread;
 781   Klass* k = SystemDictionary::StackOverflowError_klass();
 782   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 783   if (delayed) {
 784     java_lang_Throwable::set_message(exception_oop,
 785             Universe::delayed_stack_overflow_error_message());
 786   }
 787   Handle exception (thread, exception_oop);
 788   if (StackTraceInThrowable) {
 789     java_lang_Throwable::fill_in_stack_trace(exception);
 790   }
 791   // Increment counter for hs_err file reporting
 792   Atomic::inc(&Exceptions::_stack_overflow_errors);
 793   throw_and_post_jvmti_exception(thread, exception);
 794 }
 795 
 796 #if INCLUDE_JVMCI
 797 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 798   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 799   thread->set_jvmci_implicit_exception_pc(pc);
 800   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 801   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 802 }
 803 #endif // INCLUDE_JVMCI
 804 
 805 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 806                                                            address pc,
 807                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 808 {
 809   address target_pc = NULL;
 810 
 811   if (Interpreter::contains(pc)) {
 812 #ifdef CC_INTERP
 813     // C++ interpreter doesn't throw implicit exceptions
 814     ShouldNotReachHere();
 815 #else
 816     switch (exception_kind) {
 817       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 818       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 819       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 820       default:                      ShouldNotReachHere();
 821     }
 822 #endif // !CC_INTERP
 823   } else {
 824     switch (exception_kind) {
 825       case STACK_OVERFLOW: {
 826         // Stack overflow only occurs upon frame setup; the callee is
 827         // going to be unwound. Dispatch to a shared runtime stub
 828         // which will cause the StackOverflowError to be fabricated
 829         // and processed.
 830         // Stack overflow should never occur during deoptimization:
 831         // the compiled method bangs the stack by as much as the
 832         // interpreter would need in case of a deoptimization. The
 833         // deoptimization blob and uncommon trap blob bang the stack
 834         // in a debug VM to verify the correctness of the compiled
 835         // method stack banging.
 836         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 837         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 838         return StubRoutines::throw_StackOverflowError_entry();
 839       }
 840 
 841       case IMPLICIT_NULL: {
 842         if (VtableStubs::contains(pc)) {
 843           // We haven't yet entered the callee frame. Fabricate an
 844           // exception and begin dispatching it in the caller. Since
 845           // the caller was at a call site, it's safe to destroy all
 846           // caller-saved registers, as these entry points do.
 847           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 848 
 849           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 850           if (vt_stub == NULL) return NULL;
 851 
 852           if (vt_stub->is_abstract_method_error(pc)) {
 853             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 854             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 855             return StubRoutines::throw_AbstractMethodError_entry();
 856           } else {
 857             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860         } else {
 861           CodeBlob* cb = CodeCache::find_blob(pc);
 862 
 863           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 864           if (cb == NULL) return NULL;
 865 
 866           // Exception happened in CodeCache. Must be either:
 867           // 1. Inline-cache check in C2I handler blob,
 868           // 2. Inline-cache check in nmethod, or
 869           // 3. Implicit null exception in nmethod
 870 
 871           if (!cb->is_nmethod()) {
 872             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 873             if (!is_in_blob) {
 874               // Allow normal crash reporting to handle this
 875               return NULL;
 876             }
 877             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 878             // There is no handler here, so we will simply unwind.
 879             return StubRoutines::throw_NullPointerException_at_call_entry();
 880           }
 881 
 882           // Otherwise, it's an nmethod.  Consult its exception handlers.
 883           nmethod* nm = (nmethod*)cb;
 884           if (nm->inlinecache_check_contains(pc)) {
 885             // exception happened inside inline-cache check code
 886             // => the nmethod is not yet active (i.e., the frame
 887             // is not set up yet) => use return address pushed by
 888             // caller => don't push another return address
 889             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 890             return StubRoutines::throw_NullPointerException_at_call_entry();
 891           }
 892 
 893           if (nm->method()->is_method_handle_intrinsic()) {
 894             // exception happened inside MH dispatch code, similar to a vtable stub
 895             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899 #ifndef PRODUCT
 900           _implicit_null_throws++;
 901 #endif
 902 #if INCLUDE_JVMCI
 903           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 904             // If there's no PcDesc then we'll die way down inside of
 905             // deopt instead of just getting normal error reporting,
 906             // so only go there if it will succeed.
 907             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 908           } else {
 909 #endif // INCLUDE_JVMCI
 910           assert (nm->is_nmethod(), "Expect nmethod");
 911           target_pc = nm->continuation_for_implicit_exception(pc);
 912 #if INCLUDE_JVMCI
 913           }
 914 #endif // INCLUDE_JVMCI
 915           // If there's an unexpected fault, target_pc might be NULL,
 916           // in which case we want to fall through into the normal
 917           // error handling code.
 918         }
 919 
 920         break; // fall through
 921       }
 922 
 923 
 924       case IMPLICIT_DIVIDE_BY_ZERO: {
 925         nmethod* nm = CodeCache::find_nmethod(pc);
 926         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 927 #ifndef PRODUCT
 928         _implicit_div0_throws++;
 929 #endif
 930 #if INCLUDE_JVMCI
 931         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 932           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 933         } else {
 934 #endif // INCLUDE_JVMCI
 935         target_pc = nm->continuation_for_implicit_exception(pc);
 936 #if INCLUDE_JVMCI
 937         }
 938 #endif // INCLUDE_JVMCI
 939         // If there's an unexpected fault, target_pc might be NULL,
 940         // in which case we want to fall through into the normal
 941         // error handling code.
 942         break; // fall through
 943       }
 944 
 945       default: ShouldNotReachHere();
 946     }
 947 
 948     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 949 
 950     if (exception_kind == IMPLICIT_NULL) {
 951 #ifndef PRODUCT
 952       // for AbortVMOnException flag
 953       Exceptions::debug_check_abort("java.lang.NullPointerException");
 954 #endif //PRODUCT
 955       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 956     } else {
 957 #ifndef PRODUCT
 958       // for AbortVMOnException flag
 959       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 960 #endif //PRODUCT
 961       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 962     }
 963     return target_pc;
 964   }
 965 
 966   ShouldNotReachHere();
 967   return NULL;
 968 }
 969 
 970 
 971 /**
 972  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 973  * installed in the native function entry of all native Java methods before
 974  * they get linked to their actual native methods.
 975  *
 976  * \note
 977  * This method actually never gets called!  The reason is because
 978  * the interpreter's native entries call NativeLookup::lookup() which
 979  * throws the exception when the lookup fails.  The exception is then
 980  * caught and forwarded on the return from NativeLookup::lookup() call
 981  * before the call to the native function.  This might change in the future.
 982  */
 983 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 984 {
 985   // We return a bad value here to make sure that the exception is
 986   // forwarded before we look at the return value.
 987   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 988 }
 989 JNI_END
 990 
 991 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 992   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 993 }
 994 
 995 
 996 #ifndef PRODUCT
 997 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 998   const frame f = thread->last_frame();
 999   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1000 #ifndef PRODUCT
1001   methodHandle mh(THREAD, f.interpreter_frame_method());
1002   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1003 #endif // !PRODUCT
1004   return preserve_this_value;
1005 JRT_END
1006 #endif // !PRODUCT
1007 
1008 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1009   assert(obj->is_oop(), "must be a valid oop");
1010 #if INCLUDE_JVMCI
1011   // This removes the requirement for JVMCI compilers to emit code
1012   // performing a dynamic check that obj has a finalizer before
1013   // calling this routine. There should be no performance impact
1014   // for C1 since it emits a dynamic check. C2 and the interpreter
1015   // uses other runtime routines for registering finalizers.
1016   if (!obj->klass()->has_finalizer()) {
1017     return;
1018   }
1019 #endif // INCLUDE_JVMCI
1020   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1021   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1022 JRT_END
1023 
1024 
1025 jlong SharedRuntime::get_java_tid(Thread* thread) {
1026   if (thread != NULL) {
1027     if (thread->is_Java_thread()) {
1028       oop obj = ((JavaThread*)thread)->threadObj();
1029       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1030     }
1031   }
1032   return 0;
1033 }
1034 
1035 /**
1036  * This function ought to be a void function, but cannot be because
1037  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1038  * 6254741.  Once that is fixed we can remove the dummy return value.
1039  */
1040 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1041   return dtrace_object_alloc_base(Thread::current(), o, size);
1042 }
1043 
1044 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1045   assert(DTraceAllocProbes, "wrong call");
1046   Klass* klass = o->klass();
1047   Symbol* name = klass->name();
1048   HOTSPOT_OBJECT_ALLOC(
1049                    get_java_tid(thread),
1050                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1051   return 0;
1052 }
1053 
1054 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1055     JavaThread* thread, Method* method))
1056   assert(DTraceMethodProbes, "wrong call");
1057   Symbol* kname = method->klass_name();
1058   Symbol* name = method->name();
1059   Symbol* sig = method->signature();
1060   HOTSPOT_METHOD_ENTRY(
1061       get_java_tid(thread),
1062       (char *) kname->bytes(), kname->utf8_length(),
1063       (char *) name->bytes(), name->utf8_length(),
1064       (char *) sig->bytes(), sig->utf8_length());
1065   return 0;
1066 JRT_END
1067 
1068 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1069     JavaThread* thread, Method* method))
1070   assert(DTraceMethodProbes, "wrong call");
1071   Symbol* kname = method->klass_name();
1072   Symbol* name = method->name();
1073   Symbol* sig = method->signature();
1074   HOTSPOT_METHOD_RETURN(
1075       get_java_tid(thread),
1076       (char *) kname->bytes(), kname->utf8_length(),
1077       (char *) name->bytes(), name->utf8_length(),
1078       (char *) sig->bytes(), sig->utf8_length());
1079   return 0;
1080 JRT_END
1081 
1082 
1083 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1084 // for a call current in progress, i.e., arguments has been pushed on stack
1085 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1086 // vtable updates, etc.  Caller frame must be compiled.
1087 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1088   ResourceMark rm(THREAD);
1089 
1090   // last java frame on stack (which includes native call frames)
1091   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1092 
1093   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1094 }
1095 
1096 
1097 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1098 // for a call current in progress, i.e., arguments has been pushed on stack
1099 // but callee has not been invoked yet.  Caller frame must be compiled.
1100 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1101                                               vframeStream& vfst,
1102                                               Bytecodes::Code& bc,
1103                                               CallInfo& callinfo, TRAPS) {
1104   Handle receiver;
1105   Handle nullHandle;  //create a handy null handle for exception returns
1106 
1107   assert(!vfst.at_end(), "Java frame must exist");
1108 
1109   // Find caller and bci from vframe
1110   methodHandle caller(THREAD, vfst.method());
1111   int          bci   = vfst.bci();
1112 
1113   // Find bytecode
1114   Bytecode_invoke bytecode(caller, bci);
1115   bc = bytecode.invoke_code();
1116   int bytecode_index = bytecode.index();
1117 
1118   // Find receiver for non-static call
1119   if (bc != Bytecodes::_invokestatic &&
1120       bc != Bytecodes::_invokedynamic &&
1121       bc != Bytecodes::_invokehandle) {
1122     // This register map must be update since we need to find the receiver for
1123     // compiled frames. The receiver might be in a register.
1124     RegisterMap reg_map2(thread);
1125     frame stubFrame   = thread->last_frame();
1126     // Caller-frame is a compiled frame
1127     frame callerFrame = stubFrame.sender(&reg_map2);
1128 
1129     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1130     if (callee.is_null()) {
1131       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1132     }
1133     // Retrieve from a compiled argument list
1134     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1135 
1136     if (receiver.is_null()) {
1137       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1138     }
1139   }
1140 
1141   // Resolve method. This is parameterized by bytecode.
1142   constantPoolHandle constants(THREAD, caller->constants());
1143   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1144   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1145 
1146 #ifdef ASSERT
1147   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1148   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1149     assert(receiver.not_null(), "should have thrown exception");
1150     KlassHandle receiver_klass(THREAD, receiver->klass());
1151     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1152                             // klass is already loaded
1153     KlassHandle static_receiver_klass(THREAD, rk);
1154     // Method handle invokes might have been optimized to a direct call
1155     // so don't check for the receiver class.
1156     // FIXME this weakens the assert too much
1157     methodHandle callee = callinfo.selected_method();
1158     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1159            callee->is_method_handle_intrinsic() ||
1160            callee->is_compiled_lambda_form(),
1161            "actual receiver must be subclass of static receiver klass");
1162     if (receiver_klass->oop_is_instance()) {
1163       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1164         tty->print_cr("ERROR: Klass not yet initialized!!");
1165         receiver_klass()->print();
1166       }
1167       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1168     }
1169   }
1170 #endif
1171 
1172   return receiver;
1173 }
1174 
1175 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1176   ResourceMark rm(THREAD);
1177   // We need first to check if any Java activations (compiled, interpreted)
1178   // exist on the stack since last JavaCall.  If not, we need
1179   // to get the target method from the JavaCall wrapper.
1180   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1181   methodHandle callee_method;
1182   if (vfst.at_end()) {
1183     // No Java frames were found on stack since we did the JavaCall.
1184     // Hence the stack can only contain an entry_frame.  We need to
1185     // find the target method from the stub frame.
1186     RegisterMap reg_map(thread, false);
1187     frame fr = thread->last_frame();
1188     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1189     fr = fr.sender(&reg_map);
1190     assert(fr.is_entry_frame(), "must be");
1191     // fr is now pointing to the entry frame.
1192     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1193     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1194   } else {
1195     Bytecodes::Code bc;
1196     CallInfo callinfo;
1197     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1198     callee_method = callinfo.selected_method();
1199   }
1200   assert(callee_method()->is_method(), "must be");
1201   return callee_method;
1202 }
1203 
1204 // Resolves a call.
1205 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1206                                            bool is_virtual,
1207                                            bool is_optimized, TRAPS) {
1208   methodHandle callee_method;
1209   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1210   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1211     int retry_count = 0;
1212     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1213            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1214       // If has a pending exception then there is no need to re-try to
1215       // resolve this method.
1216       // If the method has been redefined, we need to try again.
1217       // Hack: we have no way to update the vtables of arrays, so don't
1218       // require that java.lang.Object has been updated.
1219 
1220       // It is very unlikely that method is redefined more than 100 times
1221       // in the middle of resolve. If it is looping here more than 100 times
1222       // means then there could be a bug here.
1223       guarantee((retry_count++ < 100),
1224                 "Could not resolve to latest version of redefined method");
1225       // method is redefined in the middle of resolve so re-try.
1226       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1227     }
1228   }
1229   return callee_method;
1230 }
1231 
1232 // Resolves a call.  The compilers generate code for calls that go here
1233 // and are patched with the real destination of the call.
1234 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1235                                            bool is_virtual,
1236                                            bool is_optimized, TRAPS) {
1237 
1238   ResourceMark rm(thread);
1239   RegisterMap cbl_map(thread, false);
1240   frame caller_frame = thread->last_frame().sender(&cbl_map);
1241 
1242   CodeBlob* caller_cb = caller_frame.cb();
1243   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1244   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1245 
1246   // make sure caller is not getting deoptimized
1247   // and removed before we are done with it.
1248   // CLEANUP - with lazy deopt shouldn't need this lock
1249   nmethodLocker caller_lock(caller_nm);
1250 
1251   // determine call info & receiver
1252   // note: a) receiver is NULL for static calls
1253   //       b) an exception is thrown if receiver is NULL for non-static calls
1254   CallInfo call_info;
1255   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1256   Handle receiver = find_callee_info(thread, invoke_code,
1257                                      call_info, CHECK_(methodHandle()));
1258   methodHandle callee_method = call_info.selected_method();
1259 
1260   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1261          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1262          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1263          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1264          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1265 
1266   assert(caller_nm->is_alive(), "It should be alive");
1267 
1268 #ifndef PRODUCT
1269   // tracing/debugging/statistics
1270   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1271                 (is_virtual) ? (&_resolve_virtual_ctr) :
1272                                (&_resolve_static_ctr);
1273   Atomic::inc(addr);
1274 
1275   if (TraceCallFixup) {
1276     ResourceMark rm(thread);
1277     tty->print("resolving %s%s (%s) call to",
1278       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1279       Bytecodes::name(invoke_code));
1280     callee_method->print_short_name(tty);
1281     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1282                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1283   }
1284 #endif
1285 
1286   // JSR 292 key invariant:
1287   // If the resolved method is a MethodHandle invoke target, the call
1288   // site must be a MethodHandle call site, because the lambda form might tail-call
1289   // leaving the stack in a state unknown to either caller or callee
1290   // TODO detune for now but we might need it again
1291 //  assert(!callee_method->is_compiled_lambda_form() ||
1292 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1293 
1294   // Compute entry points. This might require generation of C2I converter
1295   // frames, so we cannot be holding any locks here. Furthermore, the
1296   // computation of the entry points is independent of patching the call.  We
1297   // always return the entry-point, but we only patch the stub if the call has
1298   // not been deoptimized.  Return values: For a virtual call this is an
1299   // (cached_oop, destination address) pair. For a static call/optimized
1300   // virtual this is just a destination address.
1301 
1302   StaticCallInfo static_call_info;
1303   CompiledICInfo virtual_call_info;
1304 
1305   // Make sure the callee nmethod does not get deoptimized and removed before
1306   // we are done patching the code.
1307   nmethod* callee_nm = callee_method->code();
1308   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1309     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1310     callee_nm = NULL;
1311   }
1312   nmethodLocker nl_callee(callee_nm);
1313 #ifdef ASSERT
1314   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1315 #endif
1316 
1317   if (is_virtual) {
1318     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1319     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1320     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1321     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1322                      is_optimized, static_bound, virtual_call_info,
1323                      CHECK_(methodHandle()));
1324   } else {
1325     // static call
1326     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1327   }
1328 
1329   // grab lock, check for deoptimization and potentially patch caller
1330   {
1331     MutexLocker ml_patch(CompiledIC_lock);
1332 
1333     // Lock blocks for safepoint during which both nmethods can change state.
1334 
1335     // Now that we are ready to patch if the Method* was redefined then
1336     // don't update call site and let the caller retry.
1337     // Don't update call site if callee nmethod was unloaded or deoptimized.
1338     // Don't update call site if callee nmethod was replaced by an other nmethod
1339     // which may happen when multiply alive nmethod (tiered compilation)
1340     // will be supported.
1341     if (!callee_method->is_old() &&
1342         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1343 #ifdef ASSERT
1344       // We must not try to patch to jump to an already unloaded method.
1345       if (dest_entry_point != 0) {
1346         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1347         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1348                "should not call unloaded nmethod");
1349       }
1350 #endif
1351       if (is_virtual) {
1352         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1353         if (inline_cache->is_clean()) {
1354           inline_cache->set_to_monomorphic(virtual_call_info);
1355         }
1356       } else {
1357         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1358         if (ssc->is_clean()) ssc->set(static_call_info);
1359       }
1360     }
1361 
1362   } // unlock CompiledIC_lock
1363 
1364   return callee_method;
1365 }
1366 
1367 
1368 // Inline caches exist only in compiled code
1369 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1370 #ifdef ASSERT
1371   RegisterMap reg_map(thread, false);
1372   frame stub_frame = thread->last_frame();
1373   assert(stub_frame.is_runtime_frame(), "sanity check");
1374   frame caller_frame = stub_frame.sender(&reg_map);
1375   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1376 #endif /* ASSERT */
1377 
1378   methodHandle callee_method;
1379   JRT_BLOCK
1380     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1381     // Return Method* through TLS
1382     thread->set_vm_result_2(callee_method());
1383   JRT_BLOCK_END
1384   // return compiled code entry point after potential safepoints
1385   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1386   return callee_method->verified_code_entry();
1387 JRT_END
1388 
1389 
1390 // Handle call site that has been made non-entrant
1391 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1392   // 6243940 We might end up in here if the callee is deoptimized
1393   // as we race to call it.  We don't want to take a safepoint if
1394   // the caller was interpreted because the caller frame will look
1395   // interpreted to the stack walkers and arguments are now
1396   // "compiled" so it is much better to make this transition
1397   // invisible to the stack walking code. The i2c path will
1398   // place the callee method in the callee_target. It is stashed
1399   // there because if we try and find the callee by normal means a
1400   // safepoint is possible and have trouble gc'ing the compiled args.
1401   RegisterMap reg_map(thread, false);
1402   frame stub_frame = thread->last_frame();
1403   assert(stub_frame.is_runtime_frame(), "sanity check");
1404   frame caller_frame = stub_frame.sender(&reg_map);
1405 
1406   if (caller_frame.is_interpreted_frame() ||
1407       caller_frame.is_entry_frame()) {
1408     Method* callee = thread->callee_target();
1409     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1410     thread->set_vm_result_2(callee);
1411     thread->set_callee_target(NULL);
1412     return callee->get_c2i_entry();
1413   }
1414 
1415   // Must be compiled to compiled path which is safe to stackwalk
1416   methodHandle callee_method;
1417   JRT_BLOCK
1418     // Force resolving of caller (if we called from compiled frame)
1419     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1420     thread->set_vm_result_2(callee_method());
1421   JRT_BLOCK_END
1422   // return compiled code entry point after potential safepoints
1423   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1424   return callee_method->verified_code_entry();
1425 JRT_END
1426 
1427 // Handle abstract method call
1428 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1429   return StubRoutines::throw_AbstractMethodError_entry();
1430 JRT_END
1431 
1432 
1433 // resolve a static call and patch code
1434 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1435   methodHandle callee_method;
1436   JRT_BLOCK
1437     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1438     thread->set_vm_result_2(callee_method());
1439   JRT_BLOCK_END
1440   // return compiled code entry point after potential safepoints
1441   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1442   return callee_method->verified_code_entry();
1443 JRT_END
1444 
1445 
1446 // resolve virtual call and update inline cache to monomorphic
1447 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1448   methodHandle callee_method;
1449   JRT_BLOCK
1450     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1451     thread->set_vm_result_2(callee_method());
1452   JRT_BLOCK_END
1453   // return compiled code entry point after potential safepoints
1454   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1455   return callee_method->verified_code_entry();
1456 JRT_END
1457 
1458 
1459 // Resolve a virtual call that can be statically bound (e.g., always
1460 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1461 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1462   methodHandle callee_method;
1463   JRT_BLOCK
1464     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1465     thread->set_vm_result_2(callee_method());
1466   JRT_BLOCK_END
1467   // return compiled code entry point after potential safepoints
1468   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1469   return callee_method->verified_code_entry();
1470 JRT_END
1471 
1472 
1473 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1474   ResourceMark rm(thread);
1475   CallInfo call_info;
1476   Bytecodes::Code bc;
1477 
1478   // receiver is NULL for static calls. An exception is thrown for NULL
1479   // receivers for non-static calls
1480   Handle receiver = find_callee_info(thread, bc, call_info,
1481                                      CHECK_(methodHandle()));
1482   // Compiler1 can produce virtual call sites that can actually be statically bound
1483   // If we fell thru to below we would think that the site was going megamorphic
1484   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1485   // we'd try and do a vtable dispatch however methods that can be statically bound
1486   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1487   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1488   // plain ic_miss) and the site will be converted to an optimized virtual call site
1489   // never to miss again. I don't believe C2 will produce code like this but if it
1490   // did this would still be the correct thing to do for it too, hence no ifdef.
1491   //
1492   if (call_info.resolved_method()->can_be_statically_bound()) {
1493     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1494     if (TraceCallFixup) {
1495       RegisterMap reg_map(thread, false);
1496       frame caller_frame = thread->last_frame().sender(&reg_map);
1497       ResourceMark rm(thread);
1498       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1499       callee_method->print_short_name(tty);
1500       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1501       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1502     }
1503     return callee_method;
1504   }
1505 
1506   methodHandle callee_method = call_info.selected_method();
1507 
1508   bool should_be_mono = false;
1509 
1510 #ifndef PRODUCT
1511   Atomic::inc(&_ic_miss_ctr);
1512 
1513   // Statistics & Tracing
1514   if (TraceCallFixup) {
1515     ResourceMark rm(thread);
1516     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1517     callee_method->print_short_name(tty);
1518     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1519   }
1520 
1521   if (ICMissHistogram) {
1522     MutexLocker m(VMStatistic_lock);
1523     RegisterMap reg_map(thread, false);
1524     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1525     // produce statistics under the lock
1526     trace_ic_miss(f.pc());
1527   }
1528 #endif
1529 
1530   // install an event collector so that when a vtable stub is created the
1531   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1532   // event can't be posted when the stub is created as locks are held
1533   // - instead the event will be deferred until the event collector goes
1534   // out of scope.
1535   JvmtiDynamicCodeEventCollector event_collector;
1536 
1537   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1538   { MutexLocker ml_patch (CompiledIC_lock);
1539     RegisterMap reg_map(thread, false);
1540     frame caller_frame = thread->last_frame().sender(&reg_map);
1541     CodeBlob* cb = caller_frame.cb();
1542     if (cb->is_nmethod()) {
1543       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1544       bool should_be_mono = false;
1545       if (inline_cache->is_optimized()) {
1546         if (TraceCallFixup) {
1547           ResourceMark rm(thread);
1548           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1549           callee_method->print_short_name(tty);
1550           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1551         }
1552         should_be_mono = true;
1553       } else if (inline_cache->is_icholder_call()) {
1554         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1555         if (ic_oop != NULL) {
1556 
1557           if (receiver()->klass() == ic_oop->holder_klass()) {
1558             // This isn't a real miss. We must have seen that compiled code
1559             // is now available and we want the call site converted to a
1560             // monomorphic compiled call site.
1561             // We can't assert for callee_method->code() != NULL because it
1562             // could have been deoptimized in the meantime
1563             if (TraceCallFixup) {
1564               ResourceMark rm(thread);
1565               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1566               callee_method->print_short_name(tty);
1567               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1568             }
1569             should_be_mono = true;
1570           }
1571         }
1572       }
1573 
1574       if (should_be_mono) {
1575 
1576         // We have a path that was monomorphic but was going interpreted
1577         // and now we have (or had) a compiled entry. We correct the IC
1578         // by using a new icBuffer.
1579         CompiledICInfo info;
1580         KlassHandle receiver_klass(THREAD, receiver()->klass());
1581         inline_cache->compute_monomorphic_entry(callee_method,
1582                                                 receiver_klass,
1583                                                 inline_cache->is_optimized(),
1584                                                 false,
1585                                                 info, CHECK_(methodHandle()));
1586         inline_cache->set_to_monomorphic(info);
1587       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1588         // Potential change to megamorphic
1589         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1590         if (!successful) {
1591           inline_cache->set_to_clean();
1592         }
1593       } else {
1594         // Either clean or megamorphic
1595       }
1596     } else {
1597       fatal("Unimplemented");
1598     }
1599   } // Release CompiledIC_lock
1600 
1601   return callee_method;
1602 }
1603 
1604 //
1605 // Resets a call-site in compiled code so it will get resolved again.
1606 // This routines handles both virtual call sites, optimized virtual call
1607 // sites, and static call sites. Typically used to change a call sites
1608 // destination from compiled to interpreted.
1609 //
1610 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1611   ResourceMark rm(thread);
1612   RegisterMap reg_map(thread, false);
1613   frame stub_frame = thread->last_frame();
1614   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1615   frame caller = stub_frame.sender(&reg_map);
1616 
1617   // Do nothing if the frame isn't a live compiled frame.
1618   // nmethod could be deoptimized by the time we get here
1619   // so no update to the caller is needed.
1620 
1621   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1622 
1623     address pc = caller.pc();
1624 
1625     // Check for static or virtual call
1626     bool is_static_call = false;
1627     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1628 
1629     // Default call_addr is the location of the "basic" call.
1630     // Determine the address of the call we a reresolving. With
1631     // Inline Caches we will always find a recognizable call.
1632     // With Inline Caches disabled we may or may not find a
1633     // recognizable call. We will always find a call for static
1634     // calls and for optimized virtual calls. For vanilla virtual
1635     // calls it depends on the state of the UseInlineCaches switch.
1636     //
1637     // With Inline Caches disabled we can get here for a virtual call
1638     // for two reasons:
1639     //   1 - calling an abstract method. The vtable for abstract methods
1640     //       will run us thru handle_wrong_method and we will eventually
1641     //       end up in the interpreter to throw the ame.
1642     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1643     //       call and between the time we fetch the entry address and
1644     //       we jump to it the target gets deoptimized. Similar to 1
1645     //       we will wind up in the interprter (thru a c2i with c2).
1646     //
1647     address call_addr = NULL;
1648     {
1649       // Get call instruction under lock because another thread may be
1650       // busy patching it.
1651       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1652       // Location of call instruction
1653       if (NativeCall::is_call_before(pc)) {
1654         NativeCall *ncall = nativeCall_before(pc);
1655         call_addr = ncall->instruction_address();
1656       }
1657     }
1658     // Make sure nmethod doesn't get deoptimized and removed until
1659     // this is done with it.
1660     // CLEANUP - with lazy deopt shouldn't need this lock
1661     nmethodLocker nmlock(caller_nm);
1662 
1663     if (call_addr != NULL) {
1664       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1665       int ret = iter.next(); // Get item
1666       if (ret) {
1667         assert(iter.addr() == call_addr, "must find call");
1668         if (iter.type() == relocInfo::static_call_type) {
1669           is_static_call = true;
1670         } else {
1671           assert(iter.type() == relocInfo::virtual_call_type ||
1672                  iter.type() == relocInfo::opt_virtual_call_type
1673                 , "unexpected relocInfo. type");
1674         }
1675       } else {
1676         assert(!UseInlineCaches, "relocation info. must exist for this address");
1677       }
1678 
1679       // Cleaning the inline cache will force a new resolve. This is more robust
1680       // than directly setting it to the new destination, since resolving of calls
1681       // is always done through the same code path. (experience shows that it
1682       // leads to very hard to track down bugs, if an inline cache gets updated
1683       // to a wrong method). It should not be performance critical, since the
1684       // resolve is only done once.
1685 
1686       MutexLocker ml(CompiledIC_lock);
1687       if (is_static_call) {
1688         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1689         ssc->set_to_clean();
1690       } else {
1691         // compiled, dispatched call (which used to call an interpreted method)
1692         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1693         inline_cache->set_to_clean();
1694       }
1695     }
1696 
1697   }
1698 
1699   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1700 
1701 
1702 #ifndef PRODUCT
1703   Atomic::inc(&_wrong_method_ctr);
1704 
1705   if (TraceCallFixup) {
1706     ResourceMark rm(thread);
1707     tty->print("handle_wrong_method reresolving call to");
1708     callee_method->print_short_name(tty);
1709     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1710   }
1711 #endif
1712 
1713   return callee_method;
1714 }
1715 
1716 #ifdef ASSERT
1717 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1718                                                                 const BasicType* sig_bt,
1719                                                                 const VMRegPair* regs) {
1720   ResourceMark rm;
1721   const int total_args_passed = method->size_of_parameters();
1722   const VMRegPair*    regs_with_member_name = regs;
1723         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1724 
1725   const int member_arg_pos = total_args_passed - 1;
1726   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1727   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1728 
1729   const bool is_outgoing = method->is_method_handle_intrinsic();
1730   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1731 
1732   for (int i = 0; i < member_arg_pos; i++) {
1733     VMReg a =    regs_with_member_name[i].first();
1734     VMReg b = regs_without_member_name[i].first();
1735     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1736   }
1737   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1738 }
1739 #endif
1740 
1741 // ---------------------------------------------------------------------------
1742 // We are calling the interpreter via a c2i. Normally this would mean that
1743 // we were called by a compiled method. However we could have lost a race
1744 // where we went int -> i2c -> c2i and so the caller could in fact be
1745 // interpreted. If the caller is compiled we attempt to patch the caller
1746 // so he no longer calls into the interpreter.
1747 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1748   Method* moop(method);
1749 
1750   address entry_point = moop->from_compiled_entry();
1751 
1752   // It's possible that deoptimization can occur at a call site which hasn't
1753   // been resolved yet, in which case this function will be called from
1754   // an nmethod that has been patched for deopt and we can ignore the
1755   // request for a fixup.
1756   // Also it is possible that we lost a race in that from_compiled_entry
1757   // is now back to the i2c in that case we don't need to patch and if
1758   // we did we'd leap into space because the callsite needs to use
1759   // "to interpreter" stub in order to load up the Method*. Don't
1760   // ask me how I know this...
1761 
1762   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1763   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1764     return;
1765   }
1766 
1767   // The check above makes sure this is a nmethod.
1768   nmethod* nm = cb->as_nmethod_or_null();
1769   assert(nm, "must be");
1770 
1771   // Get the return PC for the passed caller PC.
1772   address return_pc = caller_pc + frame::pc_return_offset;
1773 
1774   // There is a benign race here. We could be attempting to patch to a compiled
1775   // entry point at the same time the callee is being deoptimized. If that is
1776   // the case then entry_point may in fact point to a c2i and we'd patch the
1777   // call site with the same old data. clear_code will set code() to NULL
1778   // at the end of it. If we happen to see that NULL then we can skip trying
1779   // to patch. If we hit the window where the callee has a c2i in the
1780   // from_compiled_entry and the NULL isn't present yet then we lose the race
1781   // and patch the code with the same old data. Asi es la vida.
1782 
1783   if (moop->code() == NULL) return;
1784 
1785   if (nm->is_in_use()) {
1786 
1787     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1788     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1789     if (NativeCall::is_call_before(return_pc)) {
1790       NativeCall *call = nativeCall_before(return_pc);
1791       //
1792       // bug 6281185. We might get here after resolving a call site to a vanilla
1793       // virtual call. Because the resolvee uses the verified entry it may then
1794       // see compiled code and attempt to patch the site by calling us. This would
1795       // then incorrectly convert the call site to optimized and its downhill from
1796       // there. If you're lucky you'll get the assert in the bugid, if not you've
1797       // just made a call site that could be megamorphic into a monomorphic site
1798       // for the rest of its life! Just another racing bug in the life of
1799       // fixup_callers_callsite ...
1800       //
1801       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1802       iter.next();
1803       assert(iter.has_current(), "must have a reloc at java call site");
1804       relocInfo::relocType typ = iter.reloc()->type();
1805       if (typ != relocInfo::static_call_type &&
1806            typ != relocInfo::opt_virtual_call_type &&
1807            typ != relocInfo::static_stub_type) {
1808         return;
1809       }
1810       address destination = call->destination();
1811       if (destination != entry_point) {
1812         CodeBlob* callee = CodeCache::find_blob(destination);
1813         // callee == cb seems weird. It means calling interpreter thru stub.
1814         if (callee == cb || callee->is_adapter_blob()) {
1815           // static call or optimized virtual
1816           if (TraceCallFixup) {
1817             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1818             moop->print_short_name(tty);
1819             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1820           }
1821           call->set_destination_mt_safe(entry_point);
1822         } else {
1823           if (TraceCallFixup) {
1824             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1825             moop->print_short_name(tty);
1826             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1827           }
1828           // assert is too strong could also be resolve destinations.
1829           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1830         }
1831       } else {
1832           if (TraceCallFixup) {
1833             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1834             moop->print_short_name(tty);
1835             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1836           }
1837       }
1838     }
1839   }
1840 IRT_END
1841 
1842 
1843 // same as JVM_Arraycopy, but called directly from compiled code
1844 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1845                                                 oopDesc* dest, jint dest_pos,
1846                                                 jint length,
1847                                                 JavaThread* thread)) {
1848 #ifndef PRODUCT
1849   _slow_array_copy_ctr++;
1850 #endif
1851   // Check if we have null pointers
1852   if (src == NULL || dest == NULL) {
1853     THROW(vmSymbols::java_lang_NullPointerException());
1854   }
1855   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1856   // even though the copy_array API also performs dynamic checks to ensure
1857   // that src and dest are truly arrays (and are conformable).
1858   // The copy_array mechanism is awkward and could be removed, but
1859   // the compilers don't call this function except as a last resort,
1860   // so it probably doesn't matter.
1861   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1862                                         (arrayOopDesc*)dest, dest_pos,
1863                                         length, thread);
1864 }
1865 JRT_END
1866 
1867 char* SharedRuntime::generate_class_cast_message(
1868     JavaThread* thread, const char* objName) {
1869 
1870   // Get target class name from the checkcast instruction
1871   vframeStream vfst(thread, true);
1872   assert(!vfst.at_end(), "Java frame must exist");
1873   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1874   Klass* targetKlass = vfst.method()->constants()->klass_at(
1875     cc.index(), thread);
1876   return generate_class_cast_message(objName, targetKlass->external_name());
1877 }
1878 
1879 char* SharedRuntime::generate_class_cast_message(
1880     const char* objName, const char* targetKlassName, const char* desc) {
1881   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1882 
1883   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1884   if (NULL == message) {
1885     // Shouldn't happen, but don't cause even more problems if it does
1886     message = const_cast<char*>(objName);
1887   } else {
1888     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1889   }
1890   return message;
1891 }
1892 
1893 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1894   (void) JavaThread::current()->reguard_stack();
1895 JRT_END
1896 
1897 
1898 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1899 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1900   // Disable ObjectSynchronizer::quick_enter() in default config
1901   // until JDK-8077392 is resolved.
1902   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1903     // Only try quick_enter() if we're not trying to reach a safepoint
1904     // so that the calling thread reaches the safepoint more quickly.
1905     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1906   }
1907   // NO_ASYNC required because an async exception on the state transition destructor
1908   // would leave you with the lock held and it would never be released.
1909   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1910   // and the model is that an exception implies the method failed.
1911   JRT_BLOCK_NO_ASYNC
1912   oop obj(_obj);
1913   if (PrintBiasedLockingStatistics) {
1914     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1915   }
1916   Handle h_obj(THREAD, obj);
1917   if (UseBiasedLocking) {
1918     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1919     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1920   } else {
1921     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1922   }
1923   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1924   JRT_BLOCK_END
1925 JRT_END
1926 
1927 // Handles the uncommon cases of monitor unlocking in compiled code
1928 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1929    oop obj(_obj);
1930   assert(JavaThread::current() == THREAD, "invariant");
1931   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1932   // testing was unable to ever fire the assert that guarded it so I have removed it.
1933   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1934 #undef MIGHT_HAVE_PENDING
1935 #ifdef MIGHT_HAVE_PENDING
1936   // Save and restore any pending_exception around the exception mark.
1937   // While the slow_exit must not throw an exception, we could come into
1938   // this routine with one set.
1939   oop pending_excep = NULL;
1940   const char* pending_file;
1941   int pending_line;
1942   if (HAS_PENDING_EXCEPTION) {
1943     pending_excep = PENDING_EXCEPTION;
1944     pending_file  = THREAD->exception_file();
1945     pending_line  = THREAD->exception_line();
1946     CLEAR_PENDING_EXCEPTION;
1947   }
1948 #endif /* MIGHT_HAVE_PENDING */
1949 
1950   {
1951     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1952     EXCEPTION_MARK;
1953     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1954   }
1955 
1956 #ifdef MIGHT_HAVE_PENDING
1957   if (pending_excep != NULL) {
1958     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1959   }
1960 #endif /* MIGHT_HAVE_PENDING */
1961 JRT_END
1962 
1963 #ifndef PRODUCT
1964 
1965 void SharedRuntime::print_statistics() {
1966   ttyLocker ttyl;
1967   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1968 
1969   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1970 
1971   SharedRuntime::print_ic_miss_histogram();
1972 
1973   if (CountRemovableExceptions) {
1974     if (_nof_removable_exceptions > 0) {
1975       Unimplemented(); // this counter is not yet incremented
1976       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1977     }
1978   }
1979 
1980   // Dump the JRT_ENTRY counters
1981   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1982   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1983   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1984   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1985   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1986   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1987   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1988 
1989   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1990   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1991   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1992   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1993   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1994 
1995   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1996   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1997   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1998   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1999   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2000   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2001   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2002   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2003   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2004   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2005   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2006   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2007   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2008   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2009   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2010   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2011 
2012   AdapterHandlerLibrary::print_statistics();
2013 
2014   if (xtty != NULL)  xtty->tail("statistics");
2015 }
2016 
2017 inline double percent(int x, int y) {
2018   return 100.0 * x / MAX2(y, 1);
2019 }
2020 
2021 class MethodArityHistogram {
2022  public:
2023   enum { MAX_ARITY = 256 };
2024  private:
2025   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2026   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2027   static int _max_arity;                      // max. arity seen
2028   static int _max_size;                       // max. arg size seen
2029 
2030   static void add_method_to_histogram(nmethod* nm) {
2031     Method* m = nm->method();
2032     ArgumentCount args(m->signature());
2033     int arity   = args.size() + (m->is_static() ? 0 : 1);
2034     int argsize = m->size_of_parameters();
2035     arity   = MIN2(arity, MAX_ARITY-1);
2036     argsize = MIN2(argsize, MAX_ARITY-1);
2037     int count = nm->method()->compiled_invocation_count();
2038     _arity_histogram[arity]  += count;
2039     _size_histogram[argsize] += count;
2040     _max_arity = MAX2(_max_arity, arity);
2041     _max_size  = MAX2(_max_size, argsize);
2042   }
2043 
2044   void print_histogram_helper(int n, int* histo, const char* name) {
2045     const int N = MIN2(5, n);
2046     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2047     double sum = 0;
2048     double weighted_sum = 0;
2049     int i;
2050     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2051     double rest = sum;
2052     double percent = sum / 100;
2053     for (i = 0; i <= N; i++) {
2054       rest -= histo[i];
2055       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2056     }
2057     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2058     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2059   }
2060 
2061   void print_histogram() {
2062     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2063     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2064     tty->print_cr("\nSame for parameter size (in words):");
2065     print_histogram_helper(_max_size, _size_histogram, "size");
2066     tty->cr();
2067   }
2068 
2069  public:
2070   MethodArityHistogram() {
2071     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2072     _max_arity = _max_size = 0;
2073     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2074     CodeCache::nmethods_do(add_method_to_histogram);
2075     print_histogram();
2076   }
2077 };
2078 
2079 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2080 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2081 int MethodArityHistogram::_max_arity;
2082 int MethodArityHistogram::_max_size;
2083 
2084 void SharedRuntime::print_call_statistics(int comp_total) {
2085   tty->print_cr("Calls from compiled code:");
2086   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2087   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2088   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2089   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2090   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2091   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2092   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2093   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2094   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2095   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2096   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2097   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2098   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2099   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2100   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2101   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2102   tty->cr();
2103   tty->print_cr("Note 1: counter updates are not MT-safe.");
2104   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2105   tty->print_cr("        %% in nested categories are relative to their category");
2106   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2107   tty->cr();
2108 
2109   MethodArityHistogram h;
2110 }
2111 #endif
2112 
2113 
2114 // A simple wrapper class around the calling convention information
2115 // that allows sharing of adapters for the same calling convention.
2116 class AdapterFingerPrint : public CHeapObj<mtCode> {
2117  private:
2118   enum {
2119     _basic_type_bits = 4,
2120     _basic_type_mask = right_n_bits(_basic_type_bits),
2121     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2122     _compact_int_count = 3
2123   };
2124   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2125   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2126 
2127   union {
2128     int  _compact[_compact_int_count];
2129     int* _fingerprint;
2130   } _value;
2131   int _length; // A negative length indicates the fingerprint is in the compact form,
2132                // Otherwise _value._fingerprint is the array.
2133 
2134   // Remap BasicTypes that are handled equivalently by the adapters.
2135   // These are correct for the current system but someday it might be
2136   // necessary to make this mapping platform dependent.
2137   static int adapter_encoding(BasicType in) {
2138     switch (in) {
2139       case T_BOOLEAN:
2140       case T_BYTE:
2141       case T_SHORT:
2142       case T_CHAR:
2143         // There are all promoted to T_INT in the calling convention
2144         return T_INT;
2145 
2146       case T_OBJECT:
2147       case T_ARRAY:
2148         // In other words, we assume that any register good enough for
2149         // an int or long is good enough for a managed pointer.
2150 #ifdef _LP64
2151         return T_LONG;
2152 #else
2153         return T_INT;
2154 #endif
2155 
2156       case T_INT:
2157       case T_LONG:
2158       case T_FLOAT:
2159       case T_DOUBLE:
2160       case T_VOID:
2161         return in;
2162 
2163       default:
2164         ShouldNotReachHere();
2165         return T_CONFLICT;
2166     }
2167   }
2168 
2169  public:
2170   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2171     // The fingerprint is based on the BasicType signature encoded
2172     // into an array of ints with eight entries per int.
2173     int* ptr;
2174     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2175     if (len <= _compact_int_count) {
2176       assert(_compact_int_count == 3, "else change next line");
2177       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2178       // Storing the signature encoded as signed chars hits about 98%
2179       // of the time.
2180       _length = -len;
2181       ptr = _value._compact;
2182     } else {
2183       _length = len;
2184       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2185       ptr = _value._fingerprint;
2186     }
2187 
2188     // Now pack the BasicTypes with 8 per int
2189     int sig_index = 0;
2190     for (int index = 0; index < len; index++) {
2191       int value = 0;
2192       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2193         int bt = ((sig_index < total_args_passed)
2194                   ? adapter_encoding(sig_bt[sig_index++])
2195                   : 0);
2196         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2197         value = (value << _basic_type_bits) | bt;
2198       }
2199       ptr[index] = value;
2200     }
2201   }
2202 
2203   ~AdapterFingerPrint() {
2204     if (_length > 0) {
2205       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2206     }
2207   }
2208 
2209   int value(int index) {
2210     if (_length < 0) {
2211       return _value._compact[index];
2212     }
2213     return _value._fingerprint[index];
2214   }
2215   int length() {
2216     if (_length < 0) return -_length;
2217     return _length;
2218   }
2219 
2220   bool is_compact() {
2221     return _length <= 0;
2222   }
2223 
2224   unsigned int compute_hash() {
2225     int hash = 0;
2226     for (int i = 0; i < length(); i++) {
2227       int v = value(i);
2228       hash = (hash << 8) ^ v ^ (hash >> 5);
2229     }
2230     return (unsigned int)hash;
2231   }
2232 
2233   const char* as_string() {
2234     stringStream st;
2235     st.print("0x");
2236     for (int i = 0; i < length(); i++) {
2237       st.print("%08x", value(i));
2238     }
2239     return st.as_string();
2240   }
2241 
2242   bool equals(AdapterFingerPrint* other) {
2243     if (other->_length != _length) {
2244       return false;
2245     }
2246     if (_length < 0) {
2247       assert(_compact_int_count == 3, "else change next line");
2248       return _value._compact[0] == other->_value._compact[0] &&
2249              _value._compact[1] == other->_value._compact[1] &&
2250              _value._compact[2] == other->_value._compact[2];
2251     } else {
2252       for (int i = 0; i < _length; i++) {
2253         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2254           return false;
2255         }
2256       }
2257     }
2258     return true;
2259   }
2260 };
2261 
2262 
2263 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2264 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2265   friend class AdapterHandlerTableIterator;
2266 
2267  private:
2268 
2269 #ifndef PRODUCT
2270   static int _lookups; // number of calls to lookup
2271   static int _buckets; // number of buckets checked
2272   static int _equals;  // number of buckets checked with matching hash
2273   static int _hits;    // number of successful lookups
2274   static int _compact; // number of equals calls with compact signature
2275 #endif
2276 
2277   AdapterHandlerEntry* bucket(int i) {
2278     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2279   }
2280 
2281  public:
2282   AdapterHandlerTable()
2283     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2284 
2285   // Create a new entry suitable for insertion in the table
2286   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2287     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2288     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2289     return entry;
2290   }
2291 
2292   // Insert an entry into the table
2293   void add(AdapterHandlerEntry* entry) {
2294     int index = hash_to_index(entry->hash());
2295     add_entry(index, entry);
2296   }
2297 
2298   void free_entry(AdapterHandlerEntry* entry) {
2299     entry->deallocate();
2300     BasicHashtable<mtCode>::free_entry(entry);
2301   }
2302 
2303   // Find a entry with the same fingerprint if it exists
2304   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2305     NOT_PRODUCT(_lookups++);
2306     AdapterFingerPrint fp(total_args_passed, sig_bt);
2307     unsigned int hash = fp.compute_hash();
2308     int index = hash_to_index(hash);
2309     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2310       NOT_PRODUCT(_buckets++);
2311       if (e->hash() == hash) {
2312         NOT_PRODUCT(_equals++);
2313         if (fp.equals(e->fingerprint())) {
2314 #ifndef PRODUCT
2315           if (fp.is_compact()) _compact++;
2316           _hits++;
2317 #endif
2318           return e;
2319         }
2320       }
2321     }
2322     return NULL;
2323   }
2324 
2325 #ifndef PRODUCT
2326   void print_statistics() {
2327     ResourceMark rm;
2328     int longest = 0;
2329     int empty = 0;
2330     int total = 0;
2331     int nonempty = 0;
2332     for (int index = 0; index < table_size(); index++) {
2333       int count = 0;
2334       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2335         count++;
2336       }
2337       if (count != 0) nonempty++;
2338       if (count == 0) empty++;
2339       if (count > longest) longest = count;
2340       total += count;
2341     }
2342     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2343                   empty, longest, total, total / (double)nonempty);
2344     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2345                   _lookups, _buckets, _equals, _hits, _compact);
2346   }
2347 #endif
2348 };
2349 
2350 
2351 #ifndef PRODUCT
2352 
2353 int AdapterHandlerTable::_lookups;
2354 int AdapterHandlerTable::_buckets;
2355 int AdapterHandlerTable::_equals;
2356 int AdapterHandlerTable::_hits;
2357 int AdapterHandlerTable::_compact;
2358 
2359 #endif
2360 
2361 class AdapterHandlerTableIterator : public StackObj {
2362  private:
2363   AdapterHandlerTable* _table;
2364   int _index;
2365   AdapterHandlerEntry* _current;
2366 
2367   void scan() {
2368     while (_index < _table->table_size()) {
2369       AdapterHandlerEntry* a = _table->bucket(_index);
2370       _index++;
2371       if (a != NULL) {
2372         _current = a;
2373         return;
2374       }
2375     }
2376   }
2377 
2378  public:
2379   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2380     scan();
2381   }
2382   bool has_next() {
2383     return _current != NULL;
2384   }
2385   AdapterHandlerEntry* next() {
2386     if (_current != NULL) {
2387       AdapterHandlerEntry* result = _current;
2388       _current = _current->next();
2389       if (_current == NULL) scan();
2390       return result;
2391     } else {
2392       return NULL;
2393     }
2394   }
2395 };
2396 
2397 
2398 // ---------------------------------------------------------------------------
2399 // Implementation of AdapterHandlerLibrary
2400 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2401 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2402 const int AdapterHandlerLibrary_size = 16*K;
2403 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2404 
2405 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2406   // Should be called only when AdapterHandlerLibrary_lock is active.
2407   if (_buffer == NULL) // Initialize lazily
2408       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2409   return _buffer;
2410 }
2411 
2412 extern "C" void unexpected_adapter_call() {
2413   ShouldNotCallThis();
2414 }
2415 
2416 void AdapterHandlerLibrary::initialize() {
2417   if (_adapters != NULL) return;
2418   _adapters = new AdapterHandlerTable();
2419 
2420   if (!CodeCacheExtensions::skip_compiler_support()) {
2421     // Create a special handler for abstract methods.  Abstract methods
2422     // are never compiled so an i2c entry is somewhat meaningless, but
2423     // throw AbstractMethodError just in case.
2424     // Pass wrong_method_abstract for the c2i transitions to return
2425     // AbstractMethodError for invalid invocations.
2426     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2427     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2428                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2429                                                                 wrong_method_abstract, wrong_method_abstract);
2430   } else {
2431     // Adapters are not supposed to be used.
2432     // Generate a special one to cause an error if used (and store this
2433     // singleton in place of the useless _abstract_method_error adapter).
2434     address entry = (address) &unexpected_adapter_call;
2435     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2436                                                                 entry,
2437                                                                 entry,
2438                                                                 entry);
2439 
2440   }
2441 }
2442 
2443 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2444                                                       address i2c_entry,
2445                                                       address c2i_entry,
2446                                                       address c2i_unverified_entry) {
2447   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2448 }
2449 
2450 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2451   // Use customized signature handler.  Need to lock around updates to
2452   // the AdapterHandlerTable (it is not safe for concurrent readers
2453   // and a single writer: this could be fixed if it becomes a
2454   // problem).
2455 
2456   ResourceMark rm;
2457 
2458   NOT_PRODUCT(int insts_size);
2459   AdapterBlob* new_adapter = NULL;
2460   AdapterHandlerEntry* entry = NULL;
2461   AdapterFingerPrint* fingerprint = NULL;
2462   {
2463     MutexLocker mu(AdapterHandlerLibrary_lock);
2464     // make sure data structure is initialized
2465     initialize();
2466 
2467     if (CodeCacheExtensions::skip_compiler_support()) {
2468       // adapters are useless and should not be used, including the
2469       // abstract_method_handler. However, some callers check that
2470       // an adapter was installed.
2471       // Return the singleton adapter, stored into _abstract_method_handler
2472       // and modified to cause an error if we ever call it.
2473       return _abstract_method_handler;
2474     }
2475 
2476     if (method->is_abstract()) {
2477       return _abstract_method_handler;
2478     }
2479 
2480     // Fill in the signature array, for the calling-convention call.
2481     int total_args_passed = method->size_of_parameters(); // All args on stack
2482 
2483     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2484     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2485     int i = 0;
2486     if (!method->is_static())  // Pass in receiver first
2487       sig_bt[i++] = T_OBJECT;
2488     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2489       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2490       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2491         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2492     }
2493     assert(i == total_args_passed, "");
2494 
2495     // Lookup method signature's fingerprint
2496     entry = _adapters->lookup(total_args_passed, sig_bt);
2497 
2498 #ifdef ASSERT
2499     AdapterHandlerEntry* shared_entry = NULL;
2500     // Start adapter sharing verification only after the VM is booted.
2501     if (VerifyAdapterSharing && (entry != NULL)) {
2502       shared_entry = entry;
2503       entry = NULL;
2504     }
2505 #endif
2506 
2507     if (entry != NULL) {
2508       return entry;
2509     }
2510 
2511     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2512     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2513 
2514     // Make a C heap allocated version of the fingerprint to store in the adapter
2515     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2516 
2517     // StubRoutines::code2() is initialized after this function can be called. As a result,
2518     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2519     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2520     // stub that ensure that an I2C stub is called from an interpreter frame.
2521     bool contains_all_checks = StubRoutines::code2() != NULL;
2522 
2523     // Create I2C & C2I handlers
2524     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2525     if (buf != NULL) {
2526       CodeBuffer buffer(buf);
2527       short buffer_locs[20];
2528       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2529                                              sizeof(buffer_locs)/sizeof(relocInfo));
2530 
2531       MacroAssembler _masm(&buffer);
2532       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2533                                                      total_args_passed,
2534                                                      comp_args_on_stack,
2535                                                      sig_bt,
2536                                                      regs,
2537                                                      fingerprint);
2538 #ifdef ASSERT
2539       if (VerifyAdapterSharing) {
2540         if (shared_entry != NULL) {
2541           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2542           // Release the one just created and return the original
2543           _adapters->free_entry(entry);
2544           return shared_entry;
2545         } else  {
2546           entry->save_code(buf->code_begin(), buffer.insts_size());
2547         }
2548       }
2549 #endif
2550 
2551       new_adapter = AdapterBlob::create(&buffer);
2552       NOT_PRODUCT(insts_size = buffer.insts_size());
2553     }
2554     if (new_adapter == NULL) {
2555       // CodeCache is full, disable compilation
2556       // Ought to log this but compile log is only per compile thread
2557       // and we're some non descript Java thread.
2558       return NULL; // Out of CodeCache space
2559     }
2560     entry->relocate(new_adapter->content_begin());
2561 #ifndef PRODUCT
2562     // debugging suppport
2563     if (PrintAdapterHandlers || PrintStubCode) {
2564       ttyLocker ttyl;
2565       entry->print_adapter_on(tty);
2566       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2567                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2568                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2569       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2570       if (Verbose || PrintStubCode) {
2571         address first_pc = entry->base_address();
2572         if (first_pc != NULL) {
2573           Disassembler::decode(first_pc, first_pc + insts_size);
2574           tty->cr();
2575         }
2576       }
2577     }
2578 #endif
2579     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2580     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2581     if (contains_all_checks || !VerifyAdapterCalls) {
2582       _adapters->add(entry);
2583     }
2584   }
2585   // Outside of the lock
2586   if (new_adapter != NULL) {
2587     char blob_id[256];
2588     jio_snprintf(blob_id,
2589                  sizeof(blob_id),
2590                  "%s(%s)@" PTR_FORMAT,
2591                  new_adapter->name(),
2592                  fingerprint->as_string(),
2593                  new_adapter->content_begin());
2594     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2595 
2596     if (JvmtiExport::should_post_dynamic_code_generated()) {
2597       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2598     }
2599   }
2600   return entry;
2601 }
2602 
2603 address AdapterHandlerEntry::base_address() {
2604   address base = _i2c_entry;
2605   if (base == NULL)  base = _c2i_entry;
2606   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2607   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2608   return base;
2609 }
2610 
2611 void AdapterHandlerEntry::relocate(address new_base) {
2612   address old_base = base_address();
2613   assert(old_base != NULL, "");
2614   ptrdiff_t delta = new_base - old_base;
2615   if (_i2c_entry != NULL)
2616     _i2c_entry += delta;
2617   if (_c2i_entry != NULL)
2618     _c2i_entry += delta;
2619   if (_c2i_unverified_entry != NULL)
2620     _c2i_unverified_entry += delta;
2621   assert(base_address() == new_base, "");
2622 }
2623 
2624 
2625 void AdapterHandlerEntry::deallocate() {
2626   delete _fingerprint;
2627 #ifdef ASSERT
2628   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2629 #endif
2630 }
2631 
2632 
2633 #ifdef ASSERT
2634 // Capture the code before relocation so that it can be compared
2635 // against other versions.  If the code is captured after relocation
2636 // then relative instructions won't be equivalent.
2637 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2638   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2639   _saved_code_length = length;
2640   memcpy(_saved_code, buffer, length);
2641 }
2642 
2643 
2644 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2645   if (length != _saved_code_length) {
2646     return false;
2647   }
2648 
2649   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2650 }
2651 #endif
2652 
2653 
2654 /**
2655  * Create a native wrapper for this native method.  The wrapper converts the
2656  * Java-compiled calling convention to the native convention, handles
2657  * arguments, and transitions to native.  On return from the native we transition
2658  * back to java blocking if a safepoint is in progress.
2659  */
2660 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2661   ResourceMark rm;
2662   nmethod* nm = NULL;
2663 
2664   assert(method->is_native(), "must be native");
2665   assert(method->is_method_handle_intrinsic() ||
2666          method->has_native_function(), "must have something valid to call!");
2667 
2668   {
2669     // Perform the work while holding the lock, but perform any printing outside the lock
2670     MutexLocker mu(AdapterHandlerLibrary_lock);
2671     // See if somebody beat us to it
2672     if (method->code() != NULL) {
2673       return;
2674     }
2675 
2676     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2677     assert(compile_id > 0, "Must generate native wrapper");
2678 
2679 
2680     ResourceMark rm;
2681     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2682     if (buf != NULL) {
2683       CodeBuffer buffer(buf);
2684       double locs_buf[20];
2685       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2686       MacroAssembler _masm(&buffer);
2687 
2688       // Fill in the signature array, for the calling-convention call.
2689       const int total_args_passed = method->size_of_parameters();
2690 
2691       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2692       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2693       int i=0;
2694       if (!method->is_static())  // Pass in receiver first
2695         sig_bt[i++] = T_OBJECT;
2696       SignatureStream ss(method->signature());
2697       for (; !ss.at_return_type(); ss.next()) {
2698         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2699         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2700           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2701       }
2702       assert(i == total_args_passed, "");
2703       BasicType ret_type = ss.type();
2704 
2705       // Now get the compiled-Java layout as input (or output) arguments.
2706       // NOTE: Stubs for compiled entry points of method handle intrinsics
2707       // are just trampolines so the argument registers must be outgoing ones.
2708       const bool is_outgoing = method->is_method_handle_intrinsic();
2709       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2710 
2711       // Generate the compiled-to-native wrapper code
2712       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2713 
2714       if (nm != NULL) {
2715         method->set_code(method, nm);
2716       }
2717     }
2718   } // Unlock AdapterHandlerLibrary_lock
2719 
2720 
2721   // Install the generated code.
2722   if (nm != NULL) {
2723     if (PrintCompilation) {
2724       ttyLocker ttyl;
2725       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2726     }
2727     nm->post_compiled_method_load_event();
2728   }
2729 }
2730 
2731 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2732   assert(thread == JavaThread::current(), "must be");
2733   // The code is about to enter a JNI lazy critical native method and
2734   // _needs_gc is true, so if this thread is already in a critical
2735   // section then just return, otherwise this thread should block
2736   // until needs_gc has been cleared.
2737   if (thread->in_critical()) {
2738     return;
2739   }
2740   // Lock and unlock a critical section to give the system a chance to block
2741   GC_locker::lock_critical(thread);
2742   GC_locker::unlock_critical(thread);
2743 JRT_END
2744 
2745 // -------------------------------------------------------------------------
2746 // Java-Java calling convention
2747 // (what you use when Java calls Java)
2748 
2749 //------------------------------name_for_receiver----------------------------------
2750 // For a given signature, return the VMReg for parameter 0.
2751 VMReg SharedRuntime::name_for_receiver() {
2752   VMRegPair regs;
2753   BasicType sig_bt = T_OBJECT;
2754   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2755   // Return argument 0 register.  In the LP64 build pointers
2756   // take 2 registers, but the VM wants only the 'main' name.
2757   return regs.first();
2758 }
2759 
2760 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2761   // This method is returning a data structure allocating as a
2762   // ResourceObject, so do not put any ResourceMarks in here.
2763   char *s = sig->as_C_string();
2764   int len = (int)strlen(s);
2765   s++; len--;                   // Skip opening paren
2766   char *t = s+len;
2767   while (*(--t) != ')');      // Find close paren
2768 
2769   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2770   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2771   int cnt = 0;
2772   if (has_receiver) {
2773     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2774   }
2775 
2776   while (s < t) {
2777     switch (*s++) {            // Switch on signature character
2778     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2779     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2780     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2781     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2782     case 'I': sig_bt[cnt++] = T_INT;     break;
2783     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2784     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2785     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2786     case 'V': sig_bt[cnt++] = T_VOID;    break;
2787     case 'L':                   // Oop
2788       while (*s++ != ';');   // Skip signature
2789       sig_bt[cnt++] = T_OBJECT;
2790       break;
2791     case '[': {                 // Array
2792       do {                      // Skip optional size
2793         while (*s >= '0' && *s <= '9') s++;
2794       } while (*s++ == '[');   // Nested arrays?
2795       // Skip element type
2796       if (s[-1] == 'L')
2797         while (*s++ != ';'); // Skip signature
2798       sig_bt[cnt++] = T_ARRAY;
2799       break;
2800     }
2801     default : ShouldNotReachHere();
2802     }
2803   }
2804 
2805   if (has_appendix) {
2806     sig_bt[cnt++] = T_OBJECT;
2807   }
2808 
2809   assert(cnt < 256, "grow table size");
2810 
2811   int comp_args_on_stack;
2812   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2813 
2814   // the calling convention doesn't count out_preserve_stack_slots so
2815   // we must add that in to get "true" stack offsets.
2816 
2817   if (comp_args_on_stack) {
2818     for (int i = 0; i < cnt; i++) {
2819       VMReg reg1 = regs[i].first();
2820       if (reg1->is_stack()) {
2821         // Yuck
2822         reg1 = reg1->bias(out_preserve_stack_slots());
2823       }
2824       VMReg reg2 = regs[i].second();
2825       if (reg2->is_stack()) {
2826         // Yuck
2827         reg2 = reg2->bias(out_preserve_stack_slots());
2828       }
2829       regs[i].set_pair(reg2, reg1);
2830     }
2831   }
2832 
2833   // results
2834   *arg_size = cnt;
2835   return regs;
2836 }
2837 
2838 // OSR Migration Code
2839 //
2840 // This code is used convert interpreter frames into compiled frames.  It is
2841 // called from very start of a compiled OSR nmethod.  A temp array is
2842 // allocated to hold the interesting bits of the interpreter frame.  All
2843 // active locks are inflated to allow them to move.  The displaced headers and
2844 // active interpreter locals are copied into the temp buffer.  Then we return
2845 // back to the compiled code.  The compiled code then pops the current
2846 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2847 // copies the interpreter locals and displaced headers where it wants.
2848 // Finally it calls back to free the temp buffer.
2849 //
2850 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2851 
2852 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2853 
2854   //
2855   // This code is dependent on the memory layout of the interpreter local
2856   // array and the monitors. On all of our platforms the layout is identical
2857   // so this code is shared. If some platform lays the their arrays out
2858   // differently then this code could move to platform specific code or
2859   // the code here could be modified to copy items one at a time using
2860   // frame accessor methods and be platform independent.
2861 
2862   frame fr = thread->last_frame();
2863   assert(fr.is_interpreted_frame(), "");
2864   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2865 
2866   // Figure out how many monitors are active.
2867   int active_monitor_count = 0;
2868   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2869        kptr < fr.interpreter_frame_monitor_begin();
2870        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2871     if (kptr->obj() != NULL) active_monitor_count++;
2872   }
2873 
2874   // QQQ we could place number of active monitors in the array so that compiled code
2875   // could double check it.
2876 
2877   Method* moop = fr.interpreter_frame_method();
2878   int max_locals = moop->max_locals();
2879   // Allocate temp buffer, 1 word per local & 2 per active monitor
2880   int buf_size_words = max_locals + active_monitor_count*2;
2881   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2882 
2883   // Copy the locals.  Order is preserved so that loading of longs works.
2884   // Since there's no GC I can copy the oops blindly.
2885   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2886   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2887                        (HeapWord*)&buf[0],
2888                        max_locals);
2889 
2890   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2891   int i = max_locals;
2892   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2893        kptr2 < fr.interpreter_frame_monitor_begin();
2894        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2895     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2896       BasicLock *lock = kptr2->lock();
2897       // Inflate so the displaced header becomes position-independent
2898       if (lock->displaced_header()->is_unlocked())
2899         ObjectSynchronizer::inflate_helper(kptr2->obj());
2900       // Now the displaced header is free to move
2901       buf[i++] = (intptr_t)lock->displaced_header();
2902       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2903     }
2904   }
2905   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2906 
2907   return buf;
2908 JRT_END
2909 
2910 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2911   FREE_C_HEAP_ARRAY(intptr_t, buf);
2912 JRT_END
2913 
2914 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
2915   AdapterHandlerTableIterator iter(_adapters);
2916   while (iter.has_next()) {
2917     AdapterHandlerEntry* a = iter.next();
2918     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2919   }
2920   return false;
2921 }
2922 
2923 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
2924   AdapterHandlerTableIterator iter(_adapters);
2925   while (iter.has_next()) {
2926     AdapterHandlerEntry* a = iter.next();
2927     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2928       st->print("Adapter for signature: ");
2929       a->print_adapter_on(tty);
2930       return;
2931     }
2932   }
2933   assert(false, "Should have found handler");
2934 }
2935 
2936 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2937   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2938                p2i(this), fingerprint()->as_string(),
2939                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
2940 
2941 }
2942 
2943 #ifndef PRODUCT
2944 
2945 void AdapterHandlerLibrary::print_statistics() {
2946   _adapters->print_statistics();
2947 }
2948 
2949 #endif /* PRODUCT */
2950 
2951 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
2952   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
2953   thread->enable_stack_reserved_zone();
2954   thread->set_reserved_stack_activation((intptr_t*)thread->stack_base());
2955 JRT_END
2956   
2957 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
2958   frame activation;
2959   int decode_offset = 0;
2960   nmethod* nm = NULL;
2961   frame prv_fr = fr;
2962   int count = 1;
2963 
2964   assert(fr.is_java_frame(), "Must start on Java frame");
2965 
2966   while (!fr.is_first_frame()) {
2967     Method* method = NULL;
2968     // Compiled java method case.
2969     if (decode_offset != 0) {
2970       DebugInfoReadStream stream(nm, decode_offset);
2971       decode_offset = stream.read_int();
2972       method = (Method*)nm->metadata_at(stream.read_int());
2973     } else {
2974       if (fr.is_first_java_frame()) break;
2975       address pc = fr.pc();
2976       if (fr.is_interpreted_frame()) {
2977         method = fr.interpreter_frame_method();
2978         prv_fr = fr;
2979         fr = fr.java_sender();
2980       } else {
2981         CodeBlob* cb = fr.cb();
2982         prv_fr = fr;
2983         fr = fr.java_sender();
2984         if (cb == NULL || !cb->is_nmethod()) {
2985           continue;
2986         }
2987         nm = (nmethod*)cb;
2988         if (nm->method()->is_native()) {
2989           method = nm->method();
2990         } else {
2991           PcDesc* pd = nm->pc_desc_at(pc);
2992           assert(pd != NULL, "PcDesc must not be NULL");
2993           decode_offset = pd->scope_decode_offset();
2994           // if decode_offset is not equal to 0, it will execute the
2995           // "compiled java method case" at the beginning of the loop.
2996          continue;
2997         }
2998       }
2999     }
3000     if (method->has_reserved_stack_access()) {
3001       ResourceMark rm(thread);
3002       activation = prv_fr;
3003       warning("Potentially dangerous stack overflow in "
3004               "ReservedStackAccess annotated method %s [%d]",
3005               method->name_and_sig_as_C_string(), count++);
3006       EventReservedStackActivation event;
3007       if (event.should_commit()) {
3008         event.set_method(method);
3009         event.commit();
3010       }
3011     }
3012   }
3013   return activation;
3014 }
3015