1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_linux.inline.hpp"
  36 #include "os_share_linux.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/extendedPC.hpp"
  42 #include "runtime/frame.inline.hpp"
  43 #include "runtime/interfaceSupport.hpp"
  44 #include "runtime/java.hpp"
  45 #include "runtime/javaCalls.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/osThread.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/stubRoutines.hpp"
  50 #include "runtime/thread.inline.hpp"
  51 #include "runtime/timer.hpp"
  52 #include "services/memTracker.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <errno.h>
  62 # include <dlfcn.h>
  63 # include <stdlib.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <pthread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/utsname.h>
  71 # include <sys/socket.h>
  72 # include <sys/wait.h>
  73 # include <pwd.h>
  74 # include <poll.h>
  75 # include <ucontext.h>
  76 # include <fpu_control.h>
  77 
  78 #ifdef AMD64
  79 #define REG_SP REG_RSP
  80 #define REG_PC REG_RIP
  81 #define REG_FP REG_RBP
  82 #define SPELL_REG_SP "rsp"
  83 #define SPELL_REG_FP "rbp"
  84 #else
  85 #define REG_SP REG_UESP
  86 #define REG_PC REG_EIP
  87 #define REG_FP REG_EBP
  88 #define SPELL_REG_SP "esp"
  89 #define SPELL_REG_FP "ebp"
  90 #endif // AMD64
  91 
  92 address os::current_stack_pointer() {
  93 #ifdef SPARC_WORKS
  94   register void *esp;
  95   __asm__("mov %%"SPELL_REG_SP", %0":"=r"(esp));
  96   return (address) ((char*)esp + sizeof(long)*2);
  97 #elif defined(__clang__)
  98   intptr_t* esp;
  99   __asm__ __volatile__ ("mov %%"SPELL_REG_SP", %0":"=r"(esp):);
 100   return (address) esp;
 101 #else
 102   register void *esp __asm__ (SPELL_REG_SP);
 103   return (address) esp;
 104 #endif
 105 }
 106 
 107 char* os::non_memory_address_word() {
 108   // Must never look like an address returned by reserve_memory,
 109   // even in its subfields (as defined by the CPU immediate fields,
 110   // if the CPU splits constants across multiple instructions).
 111 
 112   return (char*) -1;
 113 }
 114 
 115 void os::initialize_thread(Thread* thr) {
 116 // Nothing to do.
 117 }
 118 
 119 address os::Linux::ucontext_get_pc(ucontext_t * uc) {
 120   return (address)uc->uc_mcontext.gregs[REG_PC];
 121 }
 122 
 123 void os::Linux::ucontext_set_pc(ucontext_t * uc, address pc) {
 124   uc->uc_mcontext.gregs[REG_PC] = (intptr_t)pc;
 125 }
 126 
 127 intptr_t* os::Linux::ucontext_get_sp(ucontext_t * uc) {
 128   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 129 }
 130 
 131 intptr_t* os::Linux::ucontext_get_fp(ucontext_t * uc) {
 132   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 133 }
 134 
 135 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 136 // is currently interrupted by SIGPROF.
 137 // os::Solaris::fetch_frame_from_ucontext() tries to skip nested signal
 138 // frames. Currently we don't do that on Linux, so it's the same as
 139 // os::fetch_frame_from_context().
 140 ExtendedPC os::Linux::fetch_frame_from_ucontext(Thread* thread,
 141   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 142 
 143   assert(thread != NULL, "just checking");
 144   assert(ret_sp != NULL, "just checking");
 145   assert(ret_fp != NULL, "just checking");
 146 
 147   return os::fetch_frame_from_context(uc, ret_sp, ret_fp);
 148 }
 149 
 150 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 151                     intptr_t** ret_sp, intptr_t** ret_fp) {
 152 
 153   ExtendedPC  epc;
 154   ucontext_t* uc = (ucontext_t*)ucVoid;
 155 
 156   if (uc != NULL) {
 157     epc = ExtendedPC(os::Linux::ucontext_get_pc(uc));
 158     if (ret_sp) *ret_sp = os::Linux::ucontext_get_sp(uc);
 159     if (ret_fp) *ret_fp = os::Linux::ucontext_get_fp(uc);
 160   } else {
 161     // construct empty ExtendedPC for return value checking
 162     epc = ExtendedPC(NULL);
 163     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 164     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 165   }
 166 
 167   return epc;
 168 }
 169 
 170 frame os::fetch_frame_from_context(void* ucVoid) {
 171   intptr_t* sp;
 172   intptr_t* fp;
 173   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 174   return frame(sp, fp, epc.pc());
 175 }
 176 
 177 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 178   intptr_t* sp;
 179   intptr_t* fp;
 180   ExtendedPC epc = os::Linux::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 181   return frame(sp, fp, epc.pc());
 182 }
 183 
 184 bool os::Linux::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 185   address pc = (address) os::Linux::ucontext_get_pc(uc);
 186   if (Interpreter::contains(pc)) {
 187     // interpreter performs stack banging after the fixed frame header has
 188     // been generated while the compilers perform it before. To maintain
 189     // semantic consistency between interpreted and compiled frames, the
 190     // method returns the Java sender of the current frame.
 191     *fr = os::fetch_frame_from_ucontext(thread, uc);
 192     assert(fr->safe_for_sender(thread), "Safety check");
 193     if (!fr->is_first_java_frame()) {
 194       *fr = fr->java_sender();
 195     }
 196   } else {
 197     // more complex code with compiled code
 198     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 199     CodeBlob* cb = CodeCache::find_blob(pc);
 200     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 201       // Not sure where the pc points to, fallback to default 
 202       // stack overflow handling
 203       return false;
 204     } else {
 205       // in compiled code, the stack banging is performed just after the return pc
 206       // has been pushed on the stack
 207       intptr_t* fp = os::Linux::ucontext_get_fp(uc);
 208       intptr_t* sp = os::Linux::ucontext_get_sp(uc);
 209       *fr = frame(sp + 1, fp, (address)*sp);
 210       if (!fr->is_java_frame()) {
 211         assert(fr->safe_for_sender(thread), "Safety check");
 212         assert(!fr->is_first_frame(), "Safety check");
 213         *fr = fr->java_sender();
 214       }
 215     }
 216   }
 217   assert(fr->is_java_frame(), "Safety check");
 218   return true;
 219 }
 220 
 221 // By default, gcc always save frame pointer (%ebp/%rbp) on stack. It may get
 222 // turned off by -fomit-frame-pointer,
 223 frame os::get_sender_for_C_frame(frame* fr) {
 224   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 225 }
 226 
 227 intptr_t* _get_previous_fp() {
 228 #ifdef SPARC_WORKS
 229   register intptr_t **ebp;
 230   __asm__("mov %%"SPELL_REG_FP", %0":"=r"(ebp));
 231 #elif defined(__clang__)
 232   intptr_t **ebp;
 233   __asm__ __volatile__ ("mov %%"SPELL_REG_FP", %0":"=r"(ebp):);
 234 #else
 235   register intptr_t **ebp __asm__ (SPELL_REG_FP);
 236 #endif
 237   return (intptr_t*) *ebp;   // we want what it points to.
 238 }
 239 
 240 
 241 frame os::current_frame() {
 242   intptr_t* fp = _get_previous_fp();
 243   frame myframe((intptr_t*)os::current_stack_pointer(),
 244                 (intptr_t*)fp,
 245                 CAST_FROM_FN_PTR(address, os::current_frame));
 246   if (os::is_first_C_frame(&myframe)) {
 247     // stack is not walkable
 248     return frame();
 249   } else {
 250     return os::get_sender_for_C_frame(&myframe);
 251   }
 252 }
 253 
 254 // Utility functions
 255 
 256 // From IA32 System Programming Guide
 257 enum {
 258   trap_page_fault = 0xE
 259 };
 260 
 261 extern "C" JNIEXPORT int
 262 JVM_handle_linux_signal(int sig,
 263                         siginfo_t* info,
 264                         void* ucVoid,
 265                         int abort_if_unrecognized) {
 266   ucontext_t* uc = (ucontext_t*) ucVoid;
 267 
 268   Thread* t = ThreadLocalStorage::get_thread_slow();
 269 
 270   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 271   // (no destructors can be run)
 272   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 273 
 274   SignalHandlerMark shm(t);
 275 
 276   // Note: it's not uncommon that JNI code uses signal/sigset to install
 277   // then restore certain signal handler (e.g. to temporarily block SIGPIPE,
 278   // or have a SIGILL handler when detecting CPU type). When that happens,
 279   // JVM_handle_linux_signal() might be invoked with junk info/ucVoid. To
 280   // avoid unnecessary crash when libjsig is not preloaded, try handle signals
 281   // that do not require siginfo/ucontext first.
 282 
 283   if (sig == SIGPIPE || sig == SIGXFSZ) {
 284     // allow chained handler to go first
 285     if (os::Linux::chained_handler(sig, info, ucVoid)) {
 286       return true;
 287     } else {
 288       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 289         char buf[64];
 290         warning("Ignoring %s - see bugs 4229104 or 646499219",
 291                 os::exception_name(sig, buf, sizeof(buf)));
 292       }
 293       return true;
 294     }
 295   }
 296 
 297   JavaThread* thread = NULL;
 298   VMThread* vmthread = NULL;
 299   if (os::Linux::signal_handlers_are_installed) {
 300     if (t != NULL ){
 301       if(t->is_Java_thread()) {
 302         thread = (JavaThread*)t;
 303       }
 304       else if(t->is_VM_thread()){
 305         vmthread = (VMThread *)t;
 306       }
 307     }
 308   }
 309 /*
 310   NOTE: does not seem to work on linux.
 311   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 312     // can't decode this kind of signal
 313     info = NULL;
 314   } else {
 315     assert(sig == info->si_signo, "bad siginfo");
 316   }
 317 */
 318   // decide if this trap can be handled by a stub
 319   address stub = NULL;
 320 
 321   address pc          = NULL;
 322 
 323   //%note os_trap_1
 324   if (info != NULL && uc != NULL && thread != NULL) {
 325     pc = (address) os::Linux::ucontext_get_pc(uc);
 326 
 327     if (StubRoutines::is_safefetch_fault(pc)) {
 328       os::Linux::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 329       return 1;
 330     }
 331 
 332 #ifndef AMD64
 333     // Halt if SI_KERNEL before more crashes get misdiagnosed as Java bugs
 334     // This can happen in any running code (currently more frequently in
 335     // interpreter code but has been seen in compiled code)
 336     if (sig == SIGSEGV && info->si_addr == 0 && info->si_code == SI_KERNEL) {
 337       fatal("An irrecoverable SI_KERNEL SIGSEGV has occurred due "
 338             "to unstable signal handling in this distribution.");
 339     }
 340 #endif // AMD64
 341 
 342     // Handle ALL stack overflow variations here
 343     if (sig == SIGSEGV) {
 344       address addr = (address) info->si_addr;
 345 
 346       // check if fault address is within thread stack
 347       if (addr < thread->stack_base() &&
 348           addr >= thread->stack_base() - thread->stack_size()) {
 349         // stack overflow
 350         if (thread->in_stack_yellow_zone(addr)) {
 351           if (thread->thread_state() == _thread_in_Java) {
 352             if (thread->in_stack_reserved_zone(addr)) {
 353               frame fr;
 354               if (os::Linux::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 355                 assert(fr.is_java_frame(), "Must be a Java frame");
 356                 frame activation = 
 357                   SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 358                 if (activation.sp() != NULL) {
 359                   thread->disable_stack_reserved_zone();
 360                   if (activation.is_interpreted_frame()) {
 361                     thread->set_reserved_stack_activation(
 362                       activation.fp() + frame::interpreter_frame_initial_sp_offset);
 363                   } else {
 364                     thread->set_reserved_stack_activation(activation.unextended_sp());
 365                   }
 366                   return 1;
 367                 }
 368               }
 369             }
 370             // Throw a stack overflow exception.  Guard pages will be reenabled
 371             // while unwinding the stack.
 372             thread->disable_stack_yellow_zone();
 373             stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 374           } else {
 375             // Thread was in the vm or native code.  Return and try to finish.
 376             thread->disable_stack_yellow_zone();
 377             return 1;
 378           }
 379         } else if (thread->in_stack_red_zone(addr)) {
 380           // Fatal red zone violation.  Disable the guard pages and fall through
 381           // to handle_unexpected_exception way down below.
 382           thread->disable_stack_red_zone();
 383           tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 384 
 385           // This is a likely cause, but hard to verify. Let's just print
 386           // it as a hint.
 387           tty->print_raw_cr("Please check if any of your loaded .so files has "
 388                             "enabled executable stack (see man page execstack(8))");
 389         } else {
 390           // Accessing stack address below sp may cause SEGV if current
 391           // thread has MAP_GROWSDOWN stack. This should only happen when
 392           // current thread was created by user code with MAP_GROWSDOWN flag
 393           // and then attached to VM. See notes in os_linux.cpp.
 394           if (thread->osthread()->expanding_stack() == 0) {
 395              thread->osthread()->set_expanding_stack();
 396              if (os::Linux::manually_expand_stack(thread, addr)) {
 397                thread->osthread()->clear_expanding_stack();
 398                return 1;
 399              }
 400              thread->osthread()->clear_expanding_stack();
 401           } else {
 402              fatal("recursive segv. expanding stack.");
 403           }
 404         }
 405       }
 406     }
 407 
 408     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 409       // Verify that OS save/restore AVX registers.
 410       stub = VM_Version::cpuinfo_cont_addr();
 411     }
 412 
 413     if (thread->thread_state() == _thread_in_Java) {
 414       // Java thread running in Java code => find exception handler if any
 415       // a fault inside compiled code, the interpreter, or a stub
 416 
 417       if (sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 418         stub = SharedRuntime::get_poll_stub(pc);
 419       } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
 420         // BugId 4454115: A read from a MappedByteBuffer can fault
 421         // here if the underlying file has been truncated.
 422         // Do not crash the VM in such a case.
 423         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 424         nmethod* nm = (cb != NULL && cb->is_nmethod()) ? (nmethod*)cb : NULL;
 425         if (nm != NULL && nm->has_unsafe_access()) {
 426           stub = StubRoutines::handler_for_unsafe_access();
 427         }
 428       }
 429       else
 430 
 431 #ifdef AMD64
 432       if (sig == SIGFPE  &&
 433           (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
 434         stub =
 435           SharedRuntime::
 436           continuation_for_implicit_exception(thread,
 437                                               pc,
 438                                               SharedRuntime::
 439                                               IMPLICIT_DIVIDE_BY_ZERO);
 440 #else
 441       if (sig == SIGFPE /* && info->si_code == FPE_INTDIV */) {
 442         // HACK: si_code does not work on linux 2.2.12-20!!!
 443         int op = pc[0];
 444         if (op == 0xDB) {
 445           // FIST
 446           // TODO: The encoding of D2I in i486.ad can cause an exception
 447           // prior to the fist instruction if there was an invalid operation
 448           // pending. We want to dismiss that exception. From the win_32
 449           // side it also seems that if it really was the fist causing
 450           // the exception that we do the d2i by hand with different
 451           // rounding. Seems kind of weird.
 452           // NOTE: that we take the exception at the NEXT floating point instruction.
 453           assert(pc[0] == 0xDB, "not a FIST opcode");
 454           assert(pc[1] == 0x14, "not a FIST opcode");
 455           assert(pc[2] == 0x24, "not a FIST opcode");
 456           return true;
 457         } else if (op == 0xF7) {
 458           // IDIV
 459           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 460         } else {
 461           // TODO: handle more cases if we are using other x86 instructions
 462           //   that can generate SIGFPE signal on linux.
 463           tty->print_cr("unknown opcode 0x%X with SIGFPE.", op);
 464           fatal("please update this code.");
 465         }
 466 #endif // AMD64
 467       } else if (sig == SIGSEGV &&
 468                !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 469           // Determination of interpreter/vtable stub/compiled code null exception
 470           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 471       }
 472     } else if (thread->thread_state() == _thread_in_vm &&
 473                sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
 474                thread->doing_unsafe_access()) {
 475         stub = StubRoutines::handler_for_unsafe_access();
 476     }
 477 
 478     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 479     // and the heap gets shrunk before the field access.
 480     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 481       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 482       if (addr != (address)-1) {
 483         stub = addr;
 484       }
 485     }
 486 
 487     // Check to see if we caught the safepoint code in the
 488     // process of write protecting the memory serialization page.
 489     // It write enables the page immediately after protecting it
 490     // so we can just return to retry the write.
 491     if ((sig == SIGSEGV) &&
 492         os::is_memory_serialize_page(thread, (address) info->si_addr)) {
 493       // Block current thread until the memory serialize page permission restored.
 494       os::block_on_serialize_page_trap();
 495       return true;
 496     }
 497   }
 498 
 499 #ifndef AMD64
 500   // Execution protection violation
 501   //
 502   // This should be kept as the last step in the triage.  We don't
 503   // have a dedicated trap number for a no-execute fault, so be
 504   // conservative and allow other handlers the first shot.
 505   //
 506   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 507   // this si_code is so generic that it is almost meaningless; and
 508   // the si_code for this condition may change in the future.
 509   // Furthermore, a false-positive should be harmless.
 510   if (UnguardOnExecutionViolation > 0 &&
 511       (sig == SIGSEGV || sig == SIGBUS) &&
 512       uc->uc_mcontext.gregs[REG_TRAPNO] == trap_page_fault) {
 513     int page_size = os::vm_page_size();
 514     address addr = (address) info->si_addr;
 515     address pc = os::Linux::ucontext_get_pc(uc);
 516     // Make sure the pc and the faulting address are sane.
 517     //
 518     // If an instruction spans a page boundary, and the page containing
 519     // the beginning of the instruction is executable but the following
 520     // page is not, the pc and the faulting address might be slightly
 521     // different - we still want to unguard the 2nd page in this case.
 522     //
 523     // 15 bytes seems to be a (very) safe value for max instruction size.
 524     bool pc_is_near_addr =
 525       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 526     bool instr_spans_page_boundary =
 527       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 528                        (intptr_t) page_size) > 0);
 529 
 530     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 531       static volatile address last_addr =
 532         (address) os::non_memory_address_word();
 533 
 534       // In conservative mode, don't unguard unless the address is in the VM
 535       if (addr != last_addr &&
 536           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 537 
 538         // Set memory to RWX and retry
 539         address page_start =
 540           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 541         bool res = os::protect_memory((char*) page_start, page_size,
 542                                       os::MEM_PROT_RWX);
 543 
 544         if (PrintMiscellaneous && Verbose) {
 545           char buf[256];
 546           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 547                        "at " INTPTR_FORMAT
 548                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 549                        page_start, (res ? "success" : "failed"), errno);
 550           tty->print_raw_cr(buf);
 551         }
 552         stub = pc;
 553 
 554         // Set last_addr so if we fault again at the same address, we don't end
 555         // up in an endless loop.
 556         //
 557         // There are two potential complications here.  Two threads trapping at
 558         // the same address at the same time could cause one of the threads to
 559         // think it already unguarded, and abort the VM.  Likely very rare.
 560         //
 561         // The other race involves two threads alternately trapping at
 562         // different addresses and failing to unguard the page, resulting in
 563         // an endless loop.  This condition is probably even more unlikely than
 564         // the first.
 565         //
 566         // Although both cases could be avoided by using locks or thread local
 567         // last_addr, these solutions are unnecessary complication: this
 568         // handler is a best-effort safety net, not a complete solution.  It is
 569         // disabled by default and should only be used as a workaround in case
 570         // we missed any no-execute-unsafe VM code.
 571 
 572         last_addr = addr;
 573       }
 574     }
 575   }
 576 #endif // !AMD64
 577 
 578   if (stub != NULL) {
 579     // save all thread context in case we need to restore it
 580     if (thread != NULL) thread->set_saved_exception_pc(pc);
 581 
 582     os::Linux::ucontext_set_pc(uc, stub);
 583     return true;
 584   }
 585 
 586   // signal-chaining
 587   if (os::Linux::chained_handler(sig, info, ucVoid)) {
 588      return true;
 589   }
 590 
 591   if (!abort_if_unrecognized) {
 592     // caller wants another chance, so give it to him
 593     return false;
 594   }
 595 
 596   if (pc == NULL && uc != NULL) {
 597     pc = os::Linux::ucontext_get_pc(uc);
 598   }
 599 
 600   // unmask current signal
 601   sigset_t newset;
 602   sigemptyset(&newset);
 603   sigaddset(&newset, sig);
 604   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 605 
 606   VMError::report_and_die(t, sig, pc, info, ucVoid);
 607 
 608   ShouldNotReachHere();
 609   return true; // Mute compiler
 610 }
 611 
 612 void os::Linux::init_thread_fpu_state(void) {
 613 #ifndef AMD64
 614   // set fpu to 53 bit precision
 615   set_fpu_control_word(0x27f);
 616 #endif // !AMD64
 617 }
 618 
 619 int os::Linux::get_fpu_control_word(void) {
 620 #ifdef AMD64
 621   return 0;
 622 #else
 623   int fpu_control;
 624   _FPU_GETCW(fpu_control);
 625   return fpu_control & 0xffff;
 626 #endif // AMD64
 627 }
 628 
 629 void os::Linux::set_fpu_control_word(int fpu_control) {
 630 #ifndef AMD64
 631   _FPU_SETCW(fpu_control);
 632 #endif // !AMD64
 633 }
 634 
 635 // Check that the linux kernel version is 2.4 or higher since earlier
 636 // versions do not support SSE without patches.
 637 bool os::supports_sse() {
 638 #ifdef AMD64
 639   return true;
 640 #else
 641   struct utsname uts;
 642   if( uname(&uts) != 0 ) return false; // uname fails?
 643   char *minor_string;
 644   int major = strtol(uts.release,&minor_string,10);
 645   int minor = strtol(minor_string+1,NULL,10);
 646   bool result = (major > 2 || (major==2 && minor >= 4));
 647 #ifndef PRODUCT
 648   if (PrintMiscellaneous && Verbose) {
 649     tty->print("OS version is %d.%d, which %s support SSE/SSE2\n",
 650                major,minor, result ? "DOES" : "does NOT");
 651   }
 652 #endif
 653   return result;
 654 #endif // AMD64
 655 }
 656 
 657 bool os::is_allocatable(size_t bytes) {
 658 #ifdef AMD64
 659   // unused on amd64?
 660   return true;
 661 #else
 662 
 663   if (bytes < 2 * G) {
 664     return true;
 665   }
 666 
 667   char* addr = reserve_memory(bytes, NULL);
 668 
 669   if (addr != NULL) {
 670     release_memory(addr, bytes);
 671   }
 672 
 673   return addr != NULL;
 674 #endif // AMD64
 675 }
 676 
 677 ////////////////////////////////////////////////////////////////////////////////
 678 // thread stack
 679 
 680 #ifdef AMD64
 681 size_t os::Linux::min_stack_allowed  = 64 * K;
 682 #else
 683 size_t os::Linux::min_stack_allowed  =  (48 DEBUG_ONLY(+4))*K;
 684 #endif // AMD64
 685 
 686 // return default stack size for thr_type
 687 size_t os::Linux::default_stack_size(os::ThreadType thr_type) {
 688   // default stack size (compiler thread needs larger stack)
 689 #ifdef AMD64
 690   size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
 691 #else
 692   size_t s = (thr_type == os::compiler_thread ? 2 * M : 512 * K);
 693 #endif // AMD64
 694   return s;
 695 }
 696 
 697 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
 698   // Creating guard page is very expensive. Java thread has HotSpot
 699   // guard page, only enable glibc guard page for non-Java threads.
 700   return (thr_type == java_thread ? 0 : page_size());
 701 }
 702 
 703 // Java thread:
 704 //
 705 //   Low memory addresses
 706 //    +------------------------+
 707 //    |                        |\  JavaThread created by VM does not have glibc
 708 //    |    glibc guard page    | - guard, attached Java thread usually has
 709 //    |                        |/  1 page glibc guard.
 710 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 711 //    |                        |\
 712 //    |  HotSpot Guard Pages   | - red and yellow pages
 713 //    |                        |/
 714 //    +------------------------+ JavaThread::stack_yellow_zone_base()
 715 //    |                        |\
 716 //    |      Normal Stack      | -
 717 //    |                        |/
 718 // P2 +------------------------+ Thread::stack_base()
 719 //
 720 // Non-Java thread:
 721 //
 722 //   Low memory addresses
 723 //    +------------------------+
 724 //    |                        |\
 725 //    |  glibc guard page      | - usually 1 page
 726 //    |                        |/
 727 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
 728 //    |                        |\
 729 //    |      Normal Stack      | -
 730 //    |                        |/
 731 // P2 +------------------------+ Thread::stack_base()
 732 //
 733 // ** P1 (aka bottom) and size ( P2 = P1 - size) are the address and stack size returned from
 734 //    pthread_attr_getstack()
 735 
 736 static void current_stack_region(address * bottom, size_t * size) {
 737   if (os::Linux::is_initial_thread()) {
 738      // initial thread needs special handling because pthread_getattr_np()
 739      // may return bogus value.
 740      *bottom = os::Linux::initial_thread_stack_bottom();
 741      *size   = os::Linux::initial_thread_stack_size();
 742   } else {
 743      pthread_attr_t attr;
 744 
 745      int rslt = pthread_getattr_np(pthread_self(), &attr);
 746 
 747      // JVM needs to know exact stack location, abort if it fails
 748      if (rslt != 0) {
 749        if (rslt == ENOMEM) {
 750          vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
 751        } else {
 752          fatal("pthread_getattr_np failed with errno = %d", rslt);
 753        }
 754      }
 755 
 756      if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
 757          fatal("Can not locate current stack attributes!");
 758      }
 759 
 760      pthread_attr_destroy(&attr);
 761 
 762   }
 763   assert(os::current_stack_pointer() >= *bottom &&
 764          os::current_stack_pointer() < *bottom + *size, "just checking");
 765 }
 766 
 767 address os::current_stack_base() {
 768   address bottom;
 769   size_t size;
 770   current_stack_region(&bottom, &size);
 771   return (bottom + size);
 772 }
 773 
 774 size_t os::current_stack_size() {
 775   // stack size includes normal stack and HotSpot guard pages
 776   address bottom;
 777   size_t size;
 778   current_stack_region(&bottom, &size);
 779   return size;
 780 }
 781 
 782 /////////////////////////////////////////////////////////////////////////////
 783 // helper functions for fatal error handler
 784 
 785 void os::print_context(outputStream *st, void *context) {
 786   if (context == NULL) return;
 787 
 788   ucontext_t *uc = (ucontext_t*)context;
 789   st->print_cr("Registers:");
 790 #ifdef AMD64
 791   st->print(  "RAX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RAX]);
 792   st->print(", RBX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBX]);
 793   st->print(", RCX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RCX]);
 794   st->print(", RDX=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDX]);
 795   st->cr();
 796   st->print(  "RSP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSP]);
 797   st->print(", RBP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RBP]);
 798   st->print(", RSI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RSI]);
 799   st->print(", RDI=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RDI]);
 800   st->cr();
 801   st->print(  "R8 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R8]);
 802   st->print(", R9 =" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R9]);
 803   st->print(", R10=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R10]);
 804   st->print(", R11=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R11]);
 805   st->cr();
 806   st->print(  "R12=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R12]);
 807   st->print(", R13=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R13]);
 808   st->print(", R14=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R14]);
 809   st->print(", R15=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_R15]);
 810   st->cr();
 811   st->print(  "RIP=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_RIP]);
 812   st->print(", EFLAGS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_EFL]);
 813   st->print(", CSGSFS=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_CSGSFS]);
 814   st->print(", ERR=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_ERR]);
 815   st->cr();
 816   st->print("  TRAPNO=" INTPTR_FORMAT, (intptr_t)uc->uc_mcontext.gregs[REG_TRAPNO]);
 817 #else
 818   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EAX]);
 819   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBX]);
 820   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ECX]);
 821   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDX]);
 822   st->cr();
 823   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_UESP]);
 824   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EBP]);
 825   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_ESI]);
 826   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EDI]);
 827   st->cr();
 828   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EIP]);
 829   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_EFL]);
 830   st->print(", CR2=" PTR64_FORMAT, (uint64_t)uc->uc_mcontext.cr2);
 831 #endif // AMD64
 832   st->cr();
 833   st->cr();
 834 
 835   intptr_t *sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
 836   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(sp));
 837   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 838   st->cr();
 839 
 840   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 841   // point to garbage if entry point in an nmethod is corrupted. Leave
 842   // this at the end, and hope for the best.
 843   address pc = os::Linux::ucontext_get_pc(uc);
 844   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", p2i(pc));
 845   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 846 }
 847 
 848 void os::print_register_info(outputStream *st, void *context) {
 849   if (context == NULL) return;
 850 
 851   ucontext_t *uc = (ucontext_t*)context;
 852 
 853   st->print_cr("Register to memory mapping:");
 854   st->cr();
 855 
 856   // this is horrendously verbose but the layout of the registers in the
 857   // context does not match how we defined our abstract Register set, so
 858   // we can't just iterate through the gregs area
 859 
 860   // this is only for the "general purpose" registers
 861 
 862 #ifdef AMD64
 863   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 864   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 865   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 866   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 867   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 868   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 869   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 870   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 871   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 872   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 873   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 874   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 875   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 876   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 877   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 878   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 879 #else
 880   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[REG_EAX]);
 881   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[REG_EBX]);
 882   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[REG_ECX]);
 883   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[REG_EDX]);
 884   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[REG_ESP]);
 885   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[REG_EBP]);
 886   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[REG_ESI]);
 887   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[REG_EDI]);
 888 #endif // AMD64
 889 
 890   st->cr();
 891 }
 892 
 893 void os::setup_fpu() {
 894 #ifndef AMD64
 895   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 896   __asm__ volatile (  "fldcw (%0)" :
 897                       : "r" (fpu_cntrl) : "memory");
 898 #endif // !AMD64
 899 }
 900 
 901 #ifndef PRODUCT
 902 void os::verify_stack_alignment() {
 903 #ifdef AMD64
 904   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 905 #endif
 906 }
 907 #endif
 908 
 909 
 910 /*
 911  * IA32 only: execute code at a high address in case buggy NX emulation is present. I.e. avoid CS limit
 912  * updates (JDK-8023956).
 913  */
 914 void os::workaround_expand_exec_shield_cs_limit() {
 915 #if defined(IA32)
 916   size_t page_size = os::vm_page_size();
 917   /*
 918    * Take the highest VA the OS will give us and exec
 919    *
 920    * Although using -(pagesz) as mmap hint works on newer kernel as you would
 921    * think, older variants affected by this work-around don't (search forward only).
 922    *
 923    * On the affected distributions, we understand the memory layout to be:
 924    *
 925    *   TASK_LIMIT= 3G, main stack base close to TASK_LIMT.
 926    *
 927    * A few pages south main stack will do it.
 928    *
 929    * If we are embedded in an app other than launcher (initial != main stack),
 930    * we don't have much control or understanding of the address space, just let it slide.
 931    */
 932   char* hint = (char*) (Linux::initial_thread_stack_bottom() -
 933                         ((StackReservedPages + StackYellowPages + StackRedPages + 1) * page_size));
 934   char* codebuf = os::attempt_reserve_memory_at(page_size, hint);
 935   if ( (codebuf == NULL) || (!os::commit_memory(codebuf, page_size, true)) ) {
 936     return; // No matter, we tried, best effort.
 937   }
 938 
 939   MemTracker::record_virtual_memory_type((address)codebuf, mtInternal);
 940 
 941   if (PrintMiscellaneous && (Verbose || WizardMode)) {
 942      tty->print_cr("[CS limit NX emulation work-around, exec code at: %p]", codebuf);
 943   }
 944 
 945   // Some code to exec: the 'ret' instruction
 946   codebuf[0] = 0xC3;
 947 
 948   // Call the code in the codebuf
 949   __asm__ volatile("call *%0" : : "r"(codebuf));
 950 
 951   // keep the page mapped so CS limit isn't reduced.
 952 #endif
 953 }
 954 
 955 int os::extra_bang_size_in_bytes() {
 956   // JDK-8050147 requires the full cache line bang for x86.
 957   return VM_Version::L1_line_size();
 958 }