1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_solaris.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "mutex_solaris.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/atomic.inline.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <setjmp.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <thread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/filio.h>
  71 # include <sys/utsname.h>
  72 # include <sys/systeminfo.h>
  73 # include <sys/socket.h>
  74 # include <sys/trap.h>
  75 # include <sys/lwp.h>
  76 # include <pwd.h>
  77 # include <poll.h>
  78 # include <sys/lwp.h>
  79 # include <procfs.h>     //  see comment in <sys/procfs.h>
  80 
  81 #ifndef AMD64
  82 // QQQ seems useless at this point
  83 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  84 #endif // AMD64
  85 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  86 
  87 
  88 #define MAX_PATH (2 * K)
  89 
  90 // Minimum stack size for the VM.  It's easier to document a constant value
  91 // but it's different for x86 and sparc because the page sizes are different.
  92 #ifdef AMD64
  93 size_t os::Solaris::min_stack_allowed = 224*K;
  94 #define REG_SP REG_RSP
  95 #define REG_PC REG_RIP
  96 #define REG_FP REG_RBP
  97 #else
  98 size_t os::Solaris::min_stack_allowed = 64*K;
  99 #define REG_SP UESP
 100 #define REG_PC EIP
 101 #define REG_FP EBP
 102 // 4900493 counter to prevent runaway LDTR refresh attempt
 103 
 104 static volatile int ldtr_refresh = 0;
 105 // the libthread instruction that faults because of the stale LDTR
 106 
 107 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 108                        };
 109 #endif // AMD64
 110 
 111 char* os::non_memory_address_word() {
 112   // Must never look like an address returned by reserve_memory,
 113   // even in its subfields (as defined by the CPU immediate fields,
 114   // if the CPU splits constants across multiple instructions).
 115   return (char*) -1;
 116 }
 117 
 118 //
 119 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 120 // There are issues with libthread giving out uc_links for different threads
 121 // on the same uc_link chain and bad or circular links.
 122 //
 123 bool os::Solaris::valid_ucontext(Thread* thread, ucontext_t* valid, ucontext_t* suspect) {
 124   if (valid >= suspect ||
 125       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 126       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 127       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 128     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 129     return false;
 130   }
 131 
 132   if (thread->is_Java_thread()) {
 133     if (!valid_stack_address(thread, (address)suspect)) {
 134       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 135       return false;
 136     }
 137     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 138       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 139       return false;
 140     }
 141   }
 142   return true;
 143 }
 144 
 145 // We will only follow one level of uc_link since there are libthread
 146 // issues with ucontext linking and it is better to be safe and just
 147 // let caller retry later.
 148 ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 149   ucontext_t *uc) {
 150 
 151   ucontext_t *retuc = NULL;
 152 
 153   if (uc != NULL) {
 154     if (uc->uc_link == NULL) {
 155       // cannot validate without uc_link so accept current ucontext
 156       retuc = uc;
 157     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 158       // first ucontext is valid so try the next one
 159       uc = uc->uc_link;
 160       if (uc->uc_link == NULL) {
 161         // cannot validate without uc_link so accept current ucontext
 162         retuc = uc;
 163       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 164         // the ucontext one level down is also valid so return it
 165         retuc = uc;
 166       }
 167     }
 168   }
 169   return retuc;
 170 }
 171 
 172 // Assumes ucontext is valid
 173 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(ucontext_t *uc) {
 174   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 175 }
 176 
 177 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
 178   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
 179 }
 180 
 181 // Assumes ucontext is valid
 182 intptr_t* os::Solaris::ucontext_get_sp(ucontext_t *uc) {
 183   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 184 }
 185 
 186 // Assumes ucontext is valid
 187 intptr_t* os::Solaris::ucontext_get_fp(ucontext_t *uc) {
 188   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 189 }
 190 
 191 address os::Solaris::ucontext_get_pc(ucontext_t *uc) {
 192   return (address) uc->uc_mcontext.gregs[REG_PC];
 193 }
 194 
 195 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 196 // is currently interrupted by SIGPROF.
 197 //
 198 // The difference between this and os::fetch_frame_from_context() is that
 199 // here we try to skip nested signal frames.
 200 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 201   ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 202 
 203   assert(thread != NULL, "just checking");
 204   assert(ret_sp != NULL, "just checking");
 205   assert(ret_fp != NULL, "just checking");
 206 
 207   ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 208   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 209 }
 210 
 211 ExtendedPC os::fetch_frame_from_context(void* ucVoid,
 212                     intptr_t** ret_sp, intptr_t** ret_fp) {
 213 
 214   ExtendedPC  epc;
 215   ucontext_t *uc = (ucontext_t*)ucVoid;
 216 
 217   if (uc != NULL) {
 218     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 219     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 220     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 221   } else {
 222     // construct empty ExtendedPC for return value checking
 223     epc = ExtendedPC(NULL);
 224     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 225     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 226   }
 227 
 228   return epc;
 229 }
 230 
 231 frame os::fetch_frame_from_context(void* ucVoid) {
 232   intptr_t* sp;
 233   intptr_t* fp;
 234   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 235   return frame(sp, fp, epc.pc());
 236 }
 237 
 238 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 239   intptr_t* sp;
 240   intptr_t* fp;
 241   ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 242   return frame(sp, fp, epc.pc());
 243 }
 244 
 245 bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 246  address pc = (address) os::Solaris::ucontext_get_pc(uc);
 247   if (Interpreter::contains(pc)) {
 248     // interpreter performs stack banging after the fixed frame header has
 249     // been generated while the compilers perform it before. To maintain
 250     // semantic consistency between interpreted and compiled frames, the
 251     // method returns the Java sender of the current frame.
 252     *fr = os::fetch_frame_from_ucontext(thread, uc);
 253     assert(fr->safe_for_sender(thread), "Safety check");
 254     if (!fr->is_first_java_frame()) {
 255       *fr = fr->java_sender();
 256     }
 257   } else {
 258     // more complex code with compiled code
 259     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 260     CodeBlob* cb = CodeCache::find_blob(pc);
 261     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 262       // Not sure where the pc points to, fallback to default 
 263       // stack overflow handling
 264       return false;
 265     } else {
 266       // in compiled code, the stack banging is performed just after the return pc
 267       // has been pushed on the stack
 268       intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
 269       intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
 270       *fr = frame(sp + 1, fp, (address)*sp);
 271       if (!fr->is_java_frame()) {
 272         assert(fr->safe_for_sender(thread), "Safety check");
 273          *fr = fr->java_sender();
 274       }
 275     }
 276   }
 277   assert(fr->is_java_frame(), "Safety check");
 278   return true;
 279 }
 280 
 281 frame os::get_sender_for_C_frame(frame* fr) {
 282   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 283 }
 284 
 285 extern "C" intptr_t *_get_current_sp();  // in .il file
 286 
 287 address os::current_stack_pointer() {
 288   return (address)_get_current_sp();
 289 }
 290 
 291 extern "C" intptr_t *_get_current_fp();  // in .il file
 292 
 293 frame os::current_frame() {
 294   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 295   frame myframe((intptr_t*)os::current_stack_pointer(),
 296                 (intptr_t*)fp,
 297                 CAST_FROM_FN_PTR(address, os::current_frame));
 298   if (os::is_first_C_frame(&myframe)) {
 299     // stack is not walkable
 300     frame ret; // This will be a null useless frame
 301     return ret;
 302   } else {
 303     return os::get_sender_for_C_frame(&myframe);
 304   }
 305 }
 306 
 307 #ifndef AMD64
 308 
 309 // Detecting SSE support by OS
 310 // From solaris_i486.s
 311 extern "C" bool sse_check();
 312 extern "C" bool sse_unavailable();
 313 
 314 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 315 static int sse_status = SSE_UNKNOWN;
 316 
 317 
 318 static void  check_for_sse_support() {
 319   if (!VM_Version::supports_sse()) {
 320     sse_status = SSE_NOT_SUPPORTED;
 321     return;
 322   }
 323   // looking for _sse_hw in libc.so, if it does not exist or
 324   // the value (int) is 0, OS has no support for SSE
 325   int *sse_hwp;
 326   void *h;
 327 
 328   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 329     //open failed, presume no support for SSE
 330     sse_status = SSE_NOT_SUPPORTED;
 331     return;
 332   }
 333   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 334     sse_status = SSE_NOT_SUPPORTED;
 335   } else if (*sse_hwp == 0) {
 336     sse_status = SSE_NOT_SUPPORTED;
 337   }
 338   dlclose(h);
 339 
 340   if (sse_status == SSE_UNKNOWN) {
 341     bool (*try_sse)() = (bool (*)())sse_check;
 342     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 343   }
 344 
 345 }
 346 
 347 #endif // AMD64
 348 
 349 bool os::supports_sse() {
 350 #ifdef AMD64
 351   return true;
 352 #else
 353   if (sse_status == SSE_UNKNOWN)
 354     check_for_sse_support();
 355   return sse_status == SSE_SUPPORTED;
 356 #endif // AMD64
 357 }
 358 
 359 bool os::is_allocatable(size_t bytes) {
 360 #ifdef AMD64
 361   return true;
 362 #else
 363 
 364   if (bytes < 2 * G) {
 365     return true;
 366   }
 367 
 368   char* addr = reserve_memory(bytes, NULL);
 369 
 370   if (addr != NULL) {
 371     release_memory(addr, bytes);
 372   }
 373 
 374   return addr != NULL;
 375 #endif // AMD64
 376 
 377 }
 378 
 379 extern "C" JNIEXPORT int
 380 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 381                           int abort_if_unrecognized) {
 382   ucontext_t* uc = (ucontext_t*) ucVoid;
 383 
 384 #ifndef AMD64
 385   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 386     // the SSE instruction faulted. supports_sse() need return false.
 387     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 388     return true;
 389   }
 390 #endif // !AMD64
 391 
 392   Thread* t = ThreadLocalStorage::get_thread_slow();  // slow & steady
 393 
 394   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 395   // (no destructors can be run)
 396   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 397 
 398   SignalHandlerMark shm(t);
 399 
 400   if(sig == SIGPIPE || sig == SIGXFSZ) {
 401     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 402       return true;
 403     } else {
 404       if (PrintMiscellaneous && (WizardMode || Verbose)) {
 405         char buf[64];
 406         warning("Ignoring %s - see 4229104 or 6499219",
 407                 os::exception_name(sig, buf, sizeof(buf)));
 408 
 409       }
 410       return true;
 411     }
 412   }
 413 
 414   JavaThread* thread = NULL;
 415   VMThread* vmthread = NULL;
 416 
 417   if (os::Solaris::signal_handlers_are_installed) {
 418     if (t != NULL ){
 419       if(t->is_Java_thread()) {
 420         thread = (JavaThread*)t;
 421       }
 422       else if(t->is_VM_thread()){
 423         vmthread = (VMThread *)t;
 424       }
 425     }
 426   }
 427 
 428   guarantee(sig != os::Solaris::SIGinterrupt(), "Can not chain VM interrupt signal, try -XX:+UseAltSigs");
 429 
 430   if (sig == os::Solaris::SIGasync()) {
 431     if(thread || vmthread){
 432       OSThread::SR_handler(t, uc);
 433       return true;
 434     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 435       return true;
 436     } else {
 437       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 438       // non-java thread
 439       return true;
 440     }
 441   }
 442 
 443   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 444     // can't decode this kind of signal
 445     info = NULL;
 446   } else {
 447     assert(sig == info->si_signo, "bad siginfo");
 448   }
 449 
 450   // decide if this trap can be handled by a stub
 451   address stub = NULL;
 452 
 453   address pc          = NULL;
 454 
 455   //%note os_trap_1
 456   if (info != NULL && uc != NULL && thread != NULL) {
 457     // factor me: getPCfromContext
 458     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 459 
 460     if (StubRoutines::is_safefetch_fault(pc)) {
 461       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 462       return true;
 463     }
 464 
 465     // Handle ALL stack overflow variations here
 466     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 467       address addr = (address) info->si_addr;
 468       if (thread->in_stack_yellow_zone(addr)) {
 469         if (thread->thread_state() == _thread_in_Java) {
 470           if (thread->in_stack_reserved_zone(addr)) { 
 471             frame fr;
 472             if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 473               assert(fr.is_java_frame(), "Must be Java frame");
 474               frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 475               if (activation.sp() != NULL) {
 476                 thread->disable_stack_reserved_zone();
 477                 if (activation.is_interpreted_frame()) {
 478                   thread->set_reserved_stack_activation(
 479                     activation.fp() + frame::interpreter_frame_initial_sp_offset);
 480                 } else {
 481                   thread->set_reserved_stack_activation(activation.unextended_sp());
 482                 }
 483                 return true;
 484               }
 485             }
 486           }
 487           // Throw a stack overflow exception.  Guard pages will be reenabled
 488           // while unwinding the stack.
 489           thread->disable_stack_yellow_zone();
 490           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 491         } else {
 492           // Thread was in the vm or native code.  Return and try to finish.
 493           thread->disable_stack_yellow_zone();
 494           return true;
 495         }
 496       } else if (thread->in_stack_red_zone(addr)) {
 497         // Fatal red zone violation.  Disable the guard pages and fall through
 498         // to handle_unexpected_exception way down below.
 499         thread->disable_stack_red_zone();
 500         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 501       }
 502     }
 503 
 504     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 505       // Verify that OS save/restore AVX registers.
 506       stub = VM_Version::cpuinfo_cont_addr();
 507     }
 508 
 509     if (thread->thread_state() == _thread_in_vm) {
 510       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 511         stub = StubRoutines::handler_for_unsafe_access();
 512       }
 513     }
 514 
 515     if (thread->thread_state() == _thread_in_Java) {
 516       // Support Safepoint Polling
 517       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 518         stub = SharedRuntime::get_poll_stub(pc);
 519       }
 520       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 521         // BugId 4454115: A read from a MappedByteBuffer can fault
 522         // here if the underlying file has been truncated.
 523         // Do not crash the VM in such a case.
 524         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 525         if (cb != NULL) {
 526           nmethod* nm = cb->is_nmethod() ? (nmethod*)cb : NULL;
 527           if (nm != NULL && nm->has_unsafe_access()) {
 528             stub = StubRoutines::handler_for_unsafe_access();
 529           }
 530         }
 531       }
 532       else
 533       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 534         // integer divide by zero
 535         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 536       }
 537 #ifndef AMD64
 538       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 539         // floating-point divide by zero
 540         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 541       }
 542       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 543         // The encoding of D2I in i486.ad can cause an exception prior
 544         // to the fist instruction if there was an invalid operation
 545         // pending. We want to dismiss that exception. From the win_32
 546         // side it also seems that if it really was the fist causing
 547         // the exception that we do the d2i by hand with different
 548         // rounding. Seems kind of weird. QQQ TODO
 549         // Note that we take the exception at the NEXT floating point instruction.
 550         if (pc[0] == 0xDB) {
 551             assert(pc[0] == 0xDB, "not a FIST opcode");
 552             assert(pc[1] == 0x14, "not a FIST opcode");
 553             assert(pc[2] == 0x24, "not a FIST opcode");
 554             return true;
 555         } else {
 556             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 557             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 558             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 559         }
 560       }
 561       else if (sig == SIGFPE ) {
 562         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 563       }
 564 #endif // !AMD64
 565 
 566         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 567         // to return properly from the handler without this extra stuff on the back side.
 568 
 569       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 570         // Determination of interpreter/vtable stub/compiled code null exception
 571         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 572       }
 573     }
 574 
 575     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 576     // and the heap gets shrunk before the field access.
 577     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 578       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 579       if (addr != (address)-1) {
 580         stub = addr;
 581       }
 582     }
 583 
 584     // Check to see if we caught the safepoint code in the
 585     // process of write protecting the memory serialization page.
 586     // It write enables the page immediately after protecting it
 587     // so we can just return to retry the write.
 588     if ((sig == SIGSEGV) &&
 589         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 590       // Block current thread until the memory serialize page permission restored.
 591       os::block_on_serialize_page_trap();
 592       return true;
 593     }
 594   }
 595 
 596   // Execution protection violation
 597   //
 598   // Preventative code for future versions of Solaris which may
 599   // enable execution protection when running the 32-bit VM on AMD64.
 600   //
 601   // This should be kept as the last step in the triage.  We don't
 602   // have a dedicated trap number for a no-execute fault, so be
 603   // conservative and allow other handlers the first shot.
 604   //
 605   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 606   // this si_code is so generic that it is almost meaningless; and
 607   // the si_code for this condition may change in the future.
 608   // Furthermore, a false-positive should be harmless.
 609   if (UnguardOnExecutionViolation > 0 &&
 610       (sig == SIGSEGV || sig == SIGBUS) &&
 611       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 612     int page_size = os::vm_page_size();
 613     address addr = (address) info->si_addr;
 614     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 615     // Make sure the pc and the faulting address are sane.
 616     //
 617     // If an instruction spans a page boundary, and the page containing
 618     // the beginning of the instruction is executable but the following
 619     // page is not, the pc and the faulting address might be slightly
 620     // different - we still want to unguard the 2nd page in this case.
 621     //
 622     // 15 bytes seems to be a (very) safe value for max instruction size.
 623     bool pc_is_near_addr =
 624       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 625     bool instr_spans_page_boundary =
 626       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 627                        (intptr_t) page_size) > 0);
 628 
 629     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 630       static volatile address last_addr =
 631         (address) os::non_memory_address_word();
 632 
 633       // In conservative mode, don't unguard unless the address is in the VM
 634       if (addr != last_addr &&
 635           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 636 
 637         // Make memory rwx and retry
 638         address page_start =
 639           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 640         bool res = os::protect_memory((char*) page_start, page_size,
 641                                       os::MEM_PROT_RWX);
 642 
 643         if (PrintMiscellaneous && Verbose) {
 644           char buf[256];
 645           jio_snprintf(buf, sizeof(buf), "Execution protection violation "
 646                        "at " INTPTR_FORMAT
 647                        ", unguarding " INTPTR_FORMAT ": %s, errno=%d", addr,
 648                        page_start, (res ? "success" : "failed"), errno);
 649           tty->print_raw_cr(buf);
 650         }
 651         stub = pc;
 652 
 653         // Set last_addr so if we fault again at the same address, we don't end
 654         // up in an endless loop.
 655         //
 656         // There are two potential complications here.  Two threads trapping at
 657         // the same address at the same time could cause one of the threads to
 658         // think it already unguarded, and abort the VM.  Likely very rare.
 659         //
 660         // The other race involves two threads alternately trapping at
 661         // different addresses and failing to unguard the page, resulting in
 662         // an endless loop.  This condition is probably even more unlikely than
 663         // the first.
 664         //
 665         // Although both cases could be avoided by using locks or thread local
 666         // last_addr, these solutions are unnecessary complication: this
 667         // handler is a best-effort safety net, not a complete solution.  It is
 668         // disabled by default and should only be used as a workaround in case
 669         // we missed any no-execute-unsafe VM code.
 670 
 671         last_addr = addr;
 672       }
 673     }
 674   }
 675 
 676   if (stub != NULL) {
 677     // save all thread context in case we need to restore it
 678 
 679     if (thread != NULL) thread->set_saved_exception_pc(pc);
 680     // 12/02/99: On Sparc it appears that the full context is also saved
 681     // but as yet, no one looks at or restores that saved context
 682     os::Solaris::ucontext_set_pc(uc, stub);
 683     return true;
 684   }
 685 
 686   // signal-chaining
 687   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 688     return true;
 689   }
 690 
 691 #ifndef AMD64
 692   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 693   // Handle an undefined selector caused by an attempt to assign
 694   // fs in libthread getipriptr(). With the current libthread design every 512
 695   // thread creations the LDT for a private thread data structure is extended
 696   // and thre is a hazard that and another thread attempting a thread creation
 697   // will use a stale LDTR that doesn't reflect the structure's growth,
 698   // causing a GP fault.
 699   // Enforce the probable limit of passes through here to guard against an
 700   // infinite loop if some other move to fs caused the GP fault. Note that
 701   // this loop counter is ultimately a heuristic as it is possible for
 702   // more than one thread to generate this fault at a time in an MP system.
 703   // In the case of the loop count being exceeded or if the poll fails
 704   // just fall through to a fatal error.
 705   // If there is some other source of T_GPFLT traps and the text at EIP is
 706   // unreadable this code will loop infinitely until the stack is exausted.
 707   // The key to diagnosis in this case is to look for the bottom signal handler
 708   // frame.
 709 
 710   if(! IgnoreLibthreadGPFault) {
 711     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 712       const unsigned char *p =
 713                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 714 
 715       // Expected instruction?
 716 
 717       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 718 
 719         Atomic::inc(&ldtr_refresh);
 720 
 721         // Infinite loop?
 722 
 723         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 724 
 725           // No, force scheduling to get a fresh view of the LDTR
 726 
 727           if(poll(NULL, 0, 10) == 0) {
 728 
 729             // Retry the move
 730 
 731             return false;
 732           }
 733         }
 734       }
 735     }
 736   }
 737 #endif // !AMD64
 738 
 739   if (!abort_if_unrecognized) {
 740     // caller wants another chance, so give it to him
 741     return false;
 742   }
 743 
 744   if (!os::Solaris::libjsig_is_loaded) {
 745     struct sigaction oldAct;
 746     sigaction(sig, (struct sigaction *)0, &oldAct);
 747     if (oldAct.sa_sigaction != signalHandler) {
 748       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 749                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 750       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 751     }
 752   }
 753 
 754   if (pc == NULL && uc != NULL) {
 755     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 756   }
 757 
 758   // unmask current signal
 759   sigset_t newset;
 760   sigemptyset(&newset);
 761   sigaddset(&newset, sig);
 762   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 763 
 764   // Determine which sort of error to throw.  Out of swap may signal
 765   // on the thread stack, which could get a mapping error when touched.
 766   address addr = (address) info->si_addr;
 767   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 768     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 769   }
 770 
 771   VMError::report_and_die(t, sig, pc, info, ucVoid);
 772 
 773   ShouldNotReachHere();
 774   return false;
 775 }
 776 
 777 void os::print_context(outputStream *st, void *context) {
 778   if (context == NULL) return;
 779 
 780   ucontext_t *uc = (ucontext_t*)context;
 781   st->print_cr("Registers:");
 782 #ifdef AMD64
 783   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 784   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 785   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 786   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 787   st->cr();
 788   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 789   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 790   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 791   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 792   st->cr();
 793   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 794   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 795   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 796   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 797   st->cr();
 798   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 799   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 800   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 801   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 802   st->cr();
 803   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 804   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 805 #else
 806   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 807   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 808   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 809   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 810   st->cr();
 811   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 812   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 813   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 814   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 815   st->cr();
 816   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 817   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 818 #endif // AMD64
 819   st->cr();
 820   st->cr();
 821 
 822   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 823   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 824   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 825   st->cr();
 826 
 827   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 828   // point to garbage if entry point in an nmethod is corrupted. Leave
 829   // this at the end, and hope for the best.
 830   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 831   address pc = epc.pc();
 832   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 833   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 834 }
 835 
 836 void os::print_register_info(outputStream *st, void *context) {
 837   if (context == NULL) return;
 838 
 839   ucontext_t *uc = (ucontext_t*)context;
 840 
 841   st->print_cr("Register to memory mapping:");
 842   st->cr();
 843 
 844   // this is horrendously verbose but the layout of the registers in the
 845   // context does not match how we defined our abstract Register set, so
 846   // we can't just iterate through the gregs area
 847 
 848   // this is only for the "general purpose" registers
 849 
 850 #ifdef AMD64
 851   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 852   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 853   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 854   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 855   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 856   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 857   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 858   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 859   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 860   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 861   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 862   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 863   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 864   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 865   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 866   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 867 #else
 868   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 869   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 870   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 871   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 872   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 873   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 874   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 875   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 876 #endif
 877 
 878   st->cr();
 879 }
 880 
 881 
 882 #ifdef AMD64
 883 void os::Solaris::init_thread_fpu_state(void) {
 884   // Nothing to do
 885 }
 886 #else
 887 // From solaris_i486.s
 888 extern "C" void fixcw();
 889 
 890 void os::Solaris::init_thread_fpu_state(void) {
 891   // Set fpu to 53 bit precision. This happens too early to use a stub.
 892   fixcw();
 893 }
 894 
 895 // These routines are the initial value of atomic_xchg_entry(),
 896 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 897 // until initialization is complete.
 898 // TODO - replace with .il implementation when compiler supports it.
 899 
 900 typedef jint  xchg_func_t        (jint,  volatile jint*);
 901 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 902 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 903 typedef jint  add_func_t         (jint,  volatile jint*);
 904 
 905 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 906   // try to use the stub:
 907   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 908 
 909   if (func != NULL) {
 910     os::atomic_xchg_func = func;
 911     return (*func)(exchange_value, dest);
 912   }
 913   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 914 
 915   jint old_value = *dest;
 916   *dest = exchange_value;
 917   return old_value;
 918 }
 919 
 920 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 921   // try to use the stub:
 922   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 923 
 924   if (func != NULL) {
 925     os::atomic_cmpxchg_func = func;
 926     return (*func)(exchange_value, dest, compare_value);
 927   }
 928   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 929 
 930   jint old_value = *dest;
 931   if (old_value == compare_value)
 932     *dest = exchange_value;
 933   return old_value;
 934 }
 935 
 936 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 937   // try to use the stub:
 938   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 939 
 940   if (func != NULL) {
 941     os::atomic_cmpxchg_long_func = func;
 942     return (*func)(exchange_value, dest, compare_value);
 943   }
 944   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 945 
 946   jlong old_value = *dest;
 947   if (old_value == compare_value)
 948     *dest = exchange_value;
 949   return old_value;
 950 }
 951 
 952 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 953   // try to use the stub:
 954   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 955 
 956   if (func != NULL) {
 957     os::atomic_add_func = func;
 958     return (*func)(add_value, dest);
 959   }
 960   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 961 
 962   return (*dest) += add_value;
 963 }
 964 
 965 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 966 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 967 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 968 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 969 
 970 extern "C" void _solaris_raw_setup_fpu(address ptr);
 971 void os::setup_fpu() {
 972   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 973   _solaris_raw_setup_fpu(fpu_cntrl);
 974 }
 975 #endif // AMD64
 976 
 977 #ifndef PRODUCT
 978 void os::verify_stack_alignment() {
 979 #ifdef AMD64
 980   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 981 #endif
 982 }
 983 #endif
 984 
 985 int os::extra_bang_size_in_bytes() {
 986   // JDK-8050147 requires the full cache line bang for x86.
 987   return VM_Version::L1_line_size();
 988 }