1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 #ifdef _DEBUG
  78 #include <crtdbg.h>
  79 #endif
  80 
  81 
  82 #include <windows.h>
  83 #include <sys/types.h>
  84 #include <sys/stat.h>
  85 #include <sys/timeb.h>
  86 #include <objidl.h>
  87 #include <shlobj.h>
  88 
  89 #include <malloc.h>
  90 #include <signal.h>
  91 #include <direct.h>
  92 #include <errno.h>
  93 #include <fcntl.h>
  94 #include <io.h>
  95 #include <process.h>              // For _beginthreadex(), _endthreadex()
  96 #include <imagehlp.h>             // For os::dll_address_to_function_name
  97 // for enumerating dll libraries
  98 #include <vdmdbg.h>
  99 
 100 // for timer info max values which include all bits
 101 #define ALL_64_BITS CONST64(-1)
 102 
 103 // For DLL loading/load error detection
 104 // Values of PE COFF
 105 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 106 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 107 
 108 static HANDLE main_process;
 109 static HANDLE main_thread;
 110 static int    main_thread_id;
 111 
 112 static FILETIME process_creation_time;
 113 static FILETIME process_exit_time;
 114 static FILETIME process_user_time;
 115 static FILETIME process_kernel_time;
 116 
 117 #ifdef _M_IA64
 118   #define __CPU__ ia64
 119 #else
 120   #ifdef _M_AMD64
 121     #define __CPU__ amd64
 122   #else
 123     #define __CPU__ i486
 124   #endif
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     break;
 139   case DLL_PROCESS_DETACH:
 140     if (ForceTimeHighResolution) {
 141       timeEndPeriod(1L);
 142     }
 143     break;
 144   default:
 145     break;
 146   }
 147   return true;
 148 }
 149 
 150 static inline double fileTimeAsDouble(FILETIME* time) {
 151   const double high  = (double) ((unsigned int) ~0);
 152   const double split = 10000000.0;
 153   double result = (time->dwLowDateTime / split) +
 154                    time->dwHighDateTime * (high/split);
 155   return result;
 156 }
 157 
 158 // Implementation of os
 159 
 160 bool os::unsetenv(const char* name) {
 161   assert(name != NULL, "Null pointer");
 162   return (SetEnvironmentVariable(name, NULL) == TRUE);
 163 }
 164 
 165 // No setuid programs under Windows.
 166 bool os::have_special_privileges() {
 167   return false;
 168 }
 169 
 170 
 171 // This method is  a periodic task to check for misbehaving JNI applications
 172 // under CheckJNI, we can add any periodic checks here.
 173 // For Windows at the moment does nothing
 174 void os::run_periodic_checks() {
 175   return;
 176 }
 177 
 178 // previous UnhandledExceptionFilter, if there is one
 179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 180 
 181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 182 
 183 void os::init_system_properties_values() {
 184   // sysclasspath, java_home, dll_dir
 185   {
 186     char *home_path;
 187     char *dll_path;
 188     char *pslash;
 189     char *bin = "\\bin";
 190     char home_dir[MAX_PATH + 1];
 191     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 192 
 193     if (alt_home_dir != NULL)  {
 194       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 195       home_dir[MAX_PATH] = '\0';
 196     } else {
 197       os::jvm_path(home_dir, sizeof(home_dir));
 198       // Found the full path to jvm.dll.
 199       // Now cut the path to <java_home>/jre if we can.
 200       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 201       pslash = strrchr(home_dir, '\\');
 202       if (pslash != NULL) {
 203         *pslash = '\0';                   // get rid of \{client|server}
 204         pslash = strrchr(home_dir, '\\');
 205         if (pslash != NULL) {
 206           *pslash = '\0';                 // get rid of \bin
 207         }
 208       }
 209     }
 210 
 211     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 212     if (home_path == NULL) {
 213       return;
 214     }
 215     strcpy(home_path, home_dir);
 216     Arguments::set_java_home(home_path);
 217     FREE_C_HEAP_ARRAY(char, home_path);
 218 
 219     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 220                                 mtInternal);
 221     if (dll_path == NULL) {
 222       return;
 223     }
 224     strcpy(dll_path, home_dir);
 225     strcat(dll_path, bin);
 226     Arguments::set_dll_dir(dll_path);
 227     FREE_C_HEAP_ARRAY(char, dll_path);
 228 
 229     if (!set_boot_path('\\', ';')) {
 230       return;
 231     }
 232   }
 233 
 234 // library_path
 235 #define EXT_DIR "\\lib\\ext"
 236 #define BIN_DIR "\\bin"
 237 #define PACKAGE_DIR "\\Sun\\Java"
 238   {
 239     // Win32 library search order (See the documentation for LoadLibrary):
 240     //
 241     // 1. The directory from which application is loaded.
 242     // 2. The system wide Java Extensions directory (Java only)
 243     // 3. System directory (GetSystemDirectory)
 244     // 4. Windows directory (GetWindowsDirectory)
 245     // 5. The PATH environment variable
 246     // 6. The current directory
 247 
 248     char *library_path;
 249     char tmp[MAX_PATH];
 250     char *path_str = ::getenv("PATH");
 251 
 252     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 253                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 254 
 255     library_path[0] = '\0';
 256 
 257     GetModuleFileName(NULL, tmp, sizeof(tmp));
 258     *(strrchr(tmp, '\\')) = '\0';
 259     strcat(library_path, tmp);
 260 
 261     GetWindowsDirectory(tmp, sizeof(tmp));
 262     strcat(library_path, ";");
 263     strcat(library_path, tmp);
 264     strcat(library_path, PACKAGE_DIR BIN_DIR);
 265 
 266     GetSystemDirectory(tmp, sizeof(tmp));
 267     strcat(library_path, ";");
 268     strcat(library_path, tmp);
 269 
 270     GetWindowsDirectory(tmp, sizeof(tmp));
 271     strcat(library_path, ";");
 272     strcat(library_path, tmp);
 273 
 274     if (path_str) {
 275       strcat(library_path, ";");
 276       strcat(library_path, path_str);
 277     }
 278 
 279     strcat(library_path, ";.");
 280 
 281     Arguments::set_library_path(library_path);
 282     FREE_C_HEAP_ARRAY(char, library_path);
 283   }
 284 
 285   // Default extensions directory
 286   {
 287     char path[MAX_PATH];
 288     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 289     GetWindowsDirectory(path, MAX_PATH);
 290     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 291             path, PACKAGE_DIR, EXT_DIR);
 292     Arguments::set_ext_dirs(buf);
 293   }
 294   #undef EXT_DIR
 295   #undef BIN_DIR
 296   #undef PACKAGE_DIR
 297 
 298 #ifndef _WIN64
 299   // set our UnhandledExceptionFilter and save any previous one
 300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 301 #endif
 302 
 303   // Done
 304   return;
 305 }
 306 
 307 void os::breakpoint() {
 308   DebugBreak();
 309 }
 310 
 311 // Invoked from the BREAKPOINT Macro
 312 extern "C" void breakpoint() {
 313   os::breakpoint();
 314 }
 315 
 316 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 317 // So far, this method is only used by Native Memory Tracking, which is
 318 // only supported on Windows XP or later.
 319 //
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 322   for (int index = captured; index < frames; index ++) {
 323     stack[index] = NULL;
 324   }
 325   return captured;
 326 }
 327 
 328 
 329 // os::current_stack_base()
 330 //
 331 //   Returns the base of the stack, which is the stack's
 332 //   starting address.  This function must be called
 333 //   while running on the stack of the thread being queried.
 334 
 335 address os::current_stack_base() {
 336   MEMORY_BASIC_INFORMATION minfo;
 337   address stack_bottom;
 338   size_t stack_size;
 339 
 340   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 341   stack_bottom =  (address)minfo.AllocationBase;
 342   stack_size = minfo.RegionSize;
 343 
 344   // Add up the sizes of all the regions with the same
 345   // AllocationBase.
 346   while (1) {
 347     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 348     if (stack_bottom == (address)minfo.AllocationBase) {
 349       stack_size += minfo.RegionSize;
 350     } else {
 351       break;
 352     }
 353   }
 354 
 355 #ifdef _M_IA64
 356   // IA64 has memory and register stacks
 357   //
 358   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 359   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 360   // growing downwards, 2MB summed up)
 361   //
 362   // ...
 363   // ------- top of stack (high address) -----
 364   // |
 365   // |      1MB
 366   // |      Backing Store (Register Stack)
 367   // |
 368   // |         / \
 369   // |          |
 370   // |          |
 371   // |          |
 372   // ------------------------ stack base -----
 373   // |      1MB
 374   // |      Memory Stack
 375   // |
 376   // |          |
 377   // |          |
 378   // |          |
 379   // |         \ /
 380   // |
 381   // ----- bottom of stack (low address) -----
 382   // ...
 383 
 384   stack_size = stack_size / 2;
 385 #endif
 386   return stack_bottom + stack_size;
 387 }
 388 
 389 size_t os::current_stack_size() {
 390   size_t sz;
 391   MEMORY_BASIC_INFORMATION minfo;
 392   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 393   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 394   return sz;
 395 }
 396 
 397 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 398   const struct tm* time_struct_ptr = localtime(clock);
 399   if (time_struct_ptr != NULL) {
 400     *res = *time_struct_ptr;
 401     return res;
 402   }
 403   return NULL;
 404 }
 405 
 406 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 407 
 408 // Thread start routine for all newly created threads
 409 static unsigned __stdcall thread_native_entry(Thread* thread) {
 410   // Try to randomize the cache line index of hot stack frames.
 411   // This helps when threads of the same stack traces evict each other's
 412   // cache lines. The threads can be either from the same JVM instance, or
 413   // from different JVM instances. The benefit is especially true for
 414   // processors with hyperthreading technology.
 415   static int counter = 0;
 416   int pid = os::current_process_id();
 417   _alloca(((pid ^ counter++) & 7) * 128);
 418 
 419   thread->initialize_thread_current();
 420 
 421   OSThread* osthr = thread->osthread();
 422   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 423 
 424   if (UseNUMA) {
 425     int lgrp_id = os::numa_get_group_id();
 426     if (lgrp_id != -1) {
 427       thread->set_lgrp_id(lgrp_id);
 428     }
 429   }
 430 
 431   // Diagnostic code to investigate JDK-6573254
 432   int res = 30115;  // non-java thread
 433   if (thread->is_Java_thread()) {
 434     res = 20115;    // java thread
 435   }
 436 
 437   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 438 
 439   // Install a win32 structured exception handler around every thread created
 440   // by VM, so VM can generate error dump when an exception occurred in non-
 441   // Java thread (e.g. VM thread).
 442   __try {
 443     thread->run();
 444   } __except(topLevelExceptionFilter(
 445                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 446     // Nothing to do.
 447   }
 448 
 449   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 450 
 451   // One less thread is executing
 452   // When the VMThread gets here, the main thread may have already exited
 453   // which frees the CodeHeap containing the Atomic::add code
 454   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 455     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 456   }
 457 
 458   // If a thread has not deleted itself ("delete this") as part of its
 459   // termination sequence, we have to ensure thread-local-storage is
 460   // cleared before we actually terminate. No threads should ever be
 461   // deleted asynchronously with respect to their termination.
 462   if (Thread::current_or_null_safe() != NULL) {
 463     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 464     thread->clear_thread_current();
 465   }
 466 
 467   // Thread must not return from exit_process_or_thread(), but if it does,
 468   // let it proceed to exit normally
 469   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 470 }
 471 
 472 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 473                                   int thread_id) {
 474   // Allocate the OSThread object
 475   OSThread* osthread = new OSThread(NULL, NULL);
 476   if (osthread == NULL) return NULL;
 477 
 478   // Initialize support for Java interrupts
 479   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 480   if (interrupt_event == NULL) {
 481     delete osthread;
 482     return NULL;
 483   }
 484   osthread->set_interrupt_event(interrupt_event);
 485 
 486   // Store info on the Win32 thread into the OSThread
 487   osthread->set_thread_handle(thread_handle);
 488   osthread->set_thread_id(thread_id);
 489 
 490   if (UseNUMA) {
 491     int lgrp_id = os::numa_get_group_id();
 492     if (lgrp_id != -1) {
 493       thread->set_lgrp_id(lgrp_id);
 494     }
 495   }
 496 
 497   // Initial thread state is INITIALIZED, not SUSPENDED
 498   osthread->set_state(INITIALIZED);
 499 
 500   return osthread;
 501 }
 502 
 503 
 504 bool os::create_attached_thread(JavaThread* thread) {
 505 #ifdef ASSERT
 506   thread->verify_not_published();
 507 #endif
 508   HANDLE thread_h;
 509   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 510                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 511     fatal("DuplicateHandle failed\n");
 512   }
 513   OSThread* osthread = create_os_thread(thread, thread_h,
 514                                         (int)current_thread_id());
 515   if (osthread == NULL) {
 516     return false;
 517   }
 518 
 519   // Initial thread state is RUNNABLE
 520   osthread->set_state(RUNNABLE);
 521 
 522   thread->set_osthread(osthread);
 523 
 524   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 525     os::current_thread_id());
 526 
 527   return true;
 528 }
 529 
 530 bool os::create_main_thread(JavaThread* thread) {
 531 #ifdef ASSERT
 532   thread->verify_not_published();
 533 #endif
 534   if (_starting_thread == NULL) {
 535     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 536     if (_starting_thread == NULL) {
 537       return false;
 538     }
 539   }
 540 
 541   // The primordial thread is runnable from the start)
 542   _starting_thread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(_starting_thread);
 545   return true;
 546 }
 547 
 548 // Helper function to trace _beginthreadex attributes,
 549 //  similar to os::Posix::describe_pthread_attr()
 550 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 551                                                size_t stacksize, unsigned initflag) {
 552   stringStream ss(buf, buflen);
 553   if (stacksize == 0) {
 554     ss.print("stacksize: default, ");
 555   } else {
 556     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 557   }
 558   ss.print("flags: ");
 559   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 560   #define ALL(X) \
 561     X(CREATE_SUSPENDED) \
 562     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 563   ALL(PRINT_FLAG)
 564   #undef ALL
 565   #undef PRINT_FLAG
 566   return buf;
 567 }
 568 
 569 // Allocate and initialize a new OSThread
 570 bool os::create_thread(Thread* thread, ThreadType thr_type,
 571                        size_t stack_size) {
 572   unsigned thread_id;
 573 
 574   // Allocate the OSThread object
 575   OSThread* osthread = new OSThread(NULL, NULL);
 576   if (osthread == NULL) {
 577     return false;
 578   }
 579 
 580   // Initialize support for Java interrupts
 581   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 582   if (interrupt_event == NULL) {
 583     delete osthread;
 584     return NULL;
 585   }
 586   osthread->set_interrupt_event(interrupt_event);
 587   osthread->set_interrupted(false);
 588 
 589   thread->set_osthread(osthread);
 590 
 591   if (stack_size == 0) {
 592     switch (thr_type) {
 593     case os::java_thread:
 594       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 595       if (JavaThread::stack_size_at_create() > 0) {
 596         stack_size = JavaThread::stack_size_at_create();
 597       }
 598       break;
 599     case os::compiler_thread:
 600       if (CompilerThreadStackSize > 0) {
 601         stack_size = (size_t)(CompilerThreadStackSize * K);
 602         break;
 603       } // else fall through:
 604         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 605     case os::vm_thread:
 606     case os::pgc_thread:
 607     case os::cgc_thread:
 608     case os::watcher_thread:
 609       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 610       break;
 611     }
 612   }
 613 
 614   // Create the Win32 thread
 615   //
 616   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 617   // does not specify stack size. Instead, it specifies the size of
 618   // initially committed space. The stack size is determined by
 619   // PE header in the executable. If the committed "stack_size" is larger
 620   // than default value in the PE header, the stack is rounded up to the
 621   // nearest multiple of 1MB. For example if the launcher has default
 622   // stack size of 320k, specifying any size less than 320k does not
 623   // affect the actual stack size at all, it only affects the initial
 624   // commitment. On the other hand, specifying 'stack_size' larger than
 625   // default value may cause significant increase in memory usage, because
 626   // not only the stack space will be rounded up to MB, but also the
 627   // entire space is committed upfront.
 628   //
 629   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 630   // for CreateThread() that can treat 'stack_size' as stack size. However we
 631   // are not supposed to call CreateThread() directly according to MSDN
 632   // document because JVM uses C runtime library. The good news is that the
 633   // flag appears to work with _beginthredex() as well.
 634 
 635   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 636   HANDLE thread_handle =
 637     (HANDLE)_beginthreadex(NULL,
 638                            (unsigned)stack_size,
 639                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 640                            thread,
 641                            initflag,
 642                            &thread_id);
 643 
 644   char buf[64];
 645   if (thread_handle != NULL) {
 646     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 647       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 648   } else {
 649     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 650       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 651   }
 652 
 653   if (thread_handle == NULL) {
 654     // Need to clean up stuff we've allocated so far
 655     CloseHandle(osthread->interrupt_event());
 656     thread->set_osthread(NULL);
 657     delete osthread;
 658     return NULL;
 659   }
 660 
 661   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 662 
 663   // Store info on the Win32 thread into the OSThread
 664   osthread->set_thread_handle(thread_handle);
 665   osthread->set_thread_id(thread_id);
 666 
 667   // Initial thread state is INITIALIZED, not SUSPENDED
 668   osthread->set_state(INITIALIZED);
 669 
 670   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 671   return true;
 672 }
 673 
 674 
 675 // Free Win32 resources related to the OSThread
 676 void os::free_thread(OSThread* osthread) {
 677   assert(osthread != NULL, "osthread not set");
 678 
 679   // We are told to free resources of the argument thread,
 680   // but we can only really operate on the current thread.
 681   assert(Thread::current()->osthread() == osthread,
 682          "os::free_thread but not current thread");
 683 
 684   CloseHandle(osthread->thread_handle());
 685   CloseHandle(osthread->interrupt_event());
 686   delete osthread;
 687 }
 688 
 689 static jlong first_filetime;
 690 static jlong initial_performance_count;
 691 static jlong performance_frequency;
 692 
 693 
 694 jlong as_long(LARGE_INTEGER x) {
 695   jlong result = 0; // initialization to avoid warning
 696   set_high(&result, x.HighPart);
 697   set_low(&result, x.LowPart);
 698   return result;
 699 }
 700 
 701 
 702 jlong os::elapsed_counter() {
 703   LARGE_INTEGER count;
 704   QueryPerformanceCounter(&count);
 705   return as_long(count) - initial_performance_count;
 706 }
 707 
 708 
 709 jlong os::elapsed_frequency() {
 710   return performance_frequency;
 711 }
 712 
 713 
 714 julong os::available_memory() {
 715   return win32::available_memory();
 716 }
 717 
 718 julong os::win32::available_memory() {
 719   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 720   // value if total memory is larger than 4GB
 721   MEMORYSTATUSEX ms;
 722   ms.dwLength = sizeof(ms);
 723   GlobalMemoryStatusEx(&ms);
 724 
 725   return (julong)ms.ullAvailPhys;
 726 }
 727 
 728 julong os::physical_memory() {
 729   return win32::physical_memory();
 730 }
 731 
 732 bool os::has_allocatable_memory_limit(julong* limit) {
 733   MEMORYSTATUSEX ms;
 734   ms.dwLength = sizeof(ms);
 735   GlobalMemoryStatusEx(&ms);
 736 #ifdef _LP64
 737   *limit = (julong)ms.ullAvailVirtual;
 738   return true;
 739 #else
 740   // Limit to 1400m because of the 2gb address space wall
 741   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 742   return true;
 743 #endif
 744 }
 745 
 746 int os::active_processor_count() {
 747   DWORD_PTR lpProcessAffinityMask = 0;
 748   DWORD_PTR lpSystemAffinityMask = 0;
 749   int proc_count = processor_count();
 750   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 751       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 752     // Nof active processors is number of bits in process affinity mask
 753     int bitcount = 0;
 754     while (lpProcessAffinityMask != 0) {
 755       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 756       bitcount++;
 757     }
 758     return bitcount;
 759   } else {
 760     return proc_count;
 761   }
 762 }
 763 
 764 void os::set_native_thread_name(const char *name) {
 765 
 766   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 767   //
 768   // Note that unfortunately this only works if the process
 769   // is already attached to a debugger; debugger must observe
 770   // the exception below to show the correct name.
 771 
 772   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 773   struct {
 774     DWORD dwType;     // must be 0x1000
 775     LPCSTR szName;    // pointer to name (in user addr space)
 776     DWORD dwThreadID; // thread ID (-1=caller thread)
 777     DWORD dwFlags;    // reserved for future use, must be zero
 778   } info;
 779 
 780   info.dwType = 0x1000;
 781   info.szName = name;
 782   info.dwThreadID = -1;
 783   info.dwFlags = 0;
 784 
 785   __try {
 786     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 787   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 788 }
 789 
 790 bool os::distribute_processes(uint length, uint* distribution) {
 791   // Not yet implemented.
 792   return false;
 793 }
 794 
 795 bool os::bind_to_processor(uint processor_id) {
 796   // Not yet implemented.
 797   return false;
 798 }
 799 
 800 void os::win32::initialize_performance_counter() {
 801   LARGE_INTEGER count;
 802   QueryPerformanceFrequency(&count);
 803   performance_frequency = as_long(count);
 804   QueryPerformanceCounter(&count);
 805   initial_performance_count = as_long(count);
 806 }
 807 
 808 
 809 double os::elapsedTime() {
 810   return (double) elapsed_counter() / (double) elapsed_frequency();
 811 }
 812 
 813 
 814 // Windows format:
 815 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 816 // Java format:
 817 //   Java standards require the number of milliseconds since 1/1/1970
 818 
 819 // Constant offset - calculated using offset()
 820 static jlong  _offset   = 116444736000000000;
 821 // Fake time counter for reproducible results when debugging
 822 static jlong  fake_time = 0;
 823 
 824 #ifdef ASSERT
 825 // Just to be safe, recalculate the offset in debug mode
 826 static jlong _calculated_offset = 0;
 827 static int   _has_calculated_offset = 0;
 828 
 829 jlong offset() {
 830   if (_has_calculated_offset) return _calculated_offset;
 831   SYSTEMTIME java_origin;
 832   java_origin.wYear          = 1970;
 833   java_origin.wMonth         = 1;
 834   java_origin.wDayOfWeek     = 0; // ignored
 835   java_origin.wDay           = 1;
 836   java_origin.wHour          = 0;
 837   java_origin.wMinute        = 0;
 838   java_origin.wSecond        = 0;
 839   java_origin.wMilliseconds  = 0;
 840   FILETIME jot;
 841   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 842     fatal("Error = %d\nWindows error", GetLastError());
 843   }
 844   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 845   _has_calculated_offset = 1;
 846   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 847   return _calculated_offset;
 848 }
 849 #else
 850 jlong offset() {
 851   return _offset;
 852 }
 853 #endif
 854 
 855 jlong windows_to_java_time(FILETIME wt) {
 856   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 857   return (a - offset()) / 10000;
 858 }
 859 
 860 // Returns time ticks in (10th of micro seconds)
 861 jlong windows_to_time_ticks(FILETIME wt) {
 862   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 863   return (a - offset());
 864 }
 865 
 866 FILETIME java_to_windows_time(jlong l) {
 867   jlong a = (l * 10000) + offset();
 868   FILETIME result;
 869   result.dwHighDateTime = high(a);
 870   result.dwLowDateTime  = low(a);
 871   return result;
 872 }
 873 
 874 bool os::supports_vtime() { return true; }
 875 bool os::enable_vtime() { return false; }
 876 bool os::vtime_enabled() { return false; }
 877 
 878 double os::elapsedVTime() {
 879   FILETIME created;
 880   FILETIME exited;
 881   FILETIME kernel;
 882   FILETIME user;
 883   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 884     // the resolution of windows_to_java_time() should be sufficient (ms)
 885     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 886   } else {
 887     return elapsedTime();
 888   }
 889 }
 890 
 891 jlong os::javaTimeMillis() {
 892   if (UseFakeTimers) {
 893     return fake_time++;
 894   } else {
 895     FILETIME wt;
 896     GetSystemTimeAsFileTime(&wt);
 897     return windows_to_java_time(wt);
 898   }
 899 }
 900 
 901 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 902   FILETIME wt;
 903   GetSystemTimeAsFileTime(&wt);
 904   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 905   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 906   seconds = secs;
 907   nanos = jlong(ticks - (secs*10000000)) * 100;
 908 }
 909 
 910 jlong os::javaTimeNanos() {
 911     LARGE_INTEGER current_count;
 912     QueryPerformanceCounter(&current_count);
 913     double current = as_long(current_count);
 914     double freq = performance_frequency;
 915     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 916     return time;
 917 }
 918 
 919 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 920   jlong freq = performance_frequency;
 921   if (freq < NANOSECS_PER_SEC) {
 922     // the performance counter is 64 bits and we will
 923     // be multiplying it -- so no wrap in 64 bits
 924     info_ptr->max_value = ALL_64_BITS;
 925   } else if (freq > NANOSECS_PER_SEC) {
 926     // use the max value the counter can reach to
 927     // determine the max value which could be returned
 928     julong max_counter = (julong)ALL_64_BITS;
 929     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 930   } else {
 931     // the performance counter is 64 bits and we will
 932     // be using it directly -- so no wrap in 64 bits
 933     info_ptr->max_value = ALL_64_BITS;
 934   }
 935 
 936   // using a counter, so no skipping
 937   info_ptr->may_skip_backward = false;
 938   info_ptr->may_skip_forward = false;
 939 
 940   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 941 }
 942 
 943 char* os::local_time_string(char *buf, size_t buflen) {
 944   SYSTEMTIME st;
 945   GetLocalTime(&st);
 946   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 947                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 948   return buf;
 949 }
 950 
 951 bool os::getTimesSecs(double* process_real_time,
 952                       double* process_user_time,
 953                       double* process_system_time) {
 954   HANDLE h_process = GetCurrentProcess();
 955   FILETIME create_time, exit_time, kernel_time, user_time;
 956   BOOL result = GetProcessTimes(h_process,
 957                                 &create_time,
 958                                 &exit_time,
 959                                 &kernel_time,
 960                                 &user_time);
 961   if (result != 0) {
 962     FILETIME wt;
 963     GetSystemTimeAsFileTime(&wt);
 964     jlong rtc_millis = windows_to_java_time(wt);
 965     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 966     *process_user_time =
 967       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 968     *process_system_time =
 969       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 970     return true;
 971   } else {
 972     return false;
 973   }
 974 }
 975 
 976 void os::shutdown() {
 977   // allow PerfMemory to attempt cleanup of any persistent resources
 978   perfMemory_exit();
 979 
 980   // flush buffered output, finish log files
 981   ostream_abort();
 982 
 983   // Check for abort hook
 984   abort_hook_t abort_hook = Arguments::abort_hook();
 985   if (abort_hook != NULL) {
 986     abort_hook();
 987   }
 988 }
 989 
 990 
 991 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 992                                          PMINIDUMP_EXCEPTION_INFORMATION,
 993                                          PMINIDUMP_USER_STREAM_INFORMATION,
 994                                          PMINIDUMP_CALLBACK_INFORMATION);
 995 
 996 static HANDLE dumpFile = NULL;
 997 
 998 // Check if dump file can be created.
 999 void os::check_dump_limit(char* buffer, size_t buffsz) {
1000   bool status = true;
1001   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1002     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1003     status = false;
1004   }
1005 
1006 #ifndef ASSERT
1007   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1008     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1009     status = false;
1010   }
1011 #endif
1012 
1013   if (status) {
1014     const char* cwd = get_current_directory(NULL, 0);
1015     int pid = current_process_id();
1016     if (cwd != NULL) {
1017       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1018     } else {
1019       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1020     }
1021 
1022     if (dumpFile == NULL &&
1023        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1024                  == INVALID_HANDLE_VALUE) {
1025       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1026       status = false;
1027     }
1028   }
1029   VMError::record_coredump_status(buffer, status);
1030 }
1031 
1032 void os::abort(bool dump_core, void* siginfo, const void* context) {
1033   HINSTANCE dbghelp;
1034   EXCEPTION_POINTERS ep;
1035   MINIDUMP_EXCEPTION_INFORMATION mei;
1036   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1037 
1038   HANDLE hProcess = GetCurrentProcess();
1039   DWORD processId = GetCurrentProcessId();
1040   MINIDUMP_TYPE dumpType;
1041 
1042   shutdown();
1043   if (!dump_core || dumpFile == NULL) {
1044     if (dumpFile != NULL) {
1045       CloseHandle(dumpFile);
1046     }
1047     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1048   }
1049 
1050   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1051 
1052   if (dbghelp == NULL) {
1053     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1054     CloseHandle(dumpFile);
1055     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1056   }
1057 
1058   _MiniDumpWriteDump =
1059       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1060                                     PMINIDUMP_EXCEPTION_INFORMATION,
1061                                     PMINIDUMP_USER_STREAM_INFORMATION,
1062                                     PMINIDUMP_CALLBACK_INFORMATION),
1063                                     GetProcAddress(dbghelp,
1064                                     "MiniDumpWriteDump"));
1065 
1066   if (_MiniDumpWriteDump == NULL) {
1067     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1068     CloseHandle(dumpFile);
1069     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1070   }
1071 
1072   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1073     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1074 
1075   if (siginfo != NULL && context != NULL) {
1076     ep.ContextRecord = (PCONTEXT) context;
1077     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1078 
1079     mei.ThreadId = GetCurrentThreadId();
1080     mei.ExceptionPointers = &ep;
1081     pmei = &mei;
1082   } else {
1083     pmei = NULL;
1084   }
1085 
1086   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1087   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1088   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1089       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1090     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1091   }
1092   CloseHandle(dumpFile);
1093   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1094 }
1095 
1096 // Die immediately, no exit hook, no abort hook, no cleanup.
1097 void os::die() {
1098   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1099 }
1100 
1101 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1102 //  * dirent_md.c       1.15 00/02/02
1103 //
1104 // The declarations for DIR and struct dirent are in jvm_win32.h.
1105 
1106 // Caller must have already run dirname through JVM_NativePath, which removes
1107 // duplicate slashes and converts all instances of '/' into '\\'.
1108 
1109 DIR * os::opendir(const char *dirname) {
1110   assert(dirname != NULL, "just checking");   // hotspot change
1111   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1112   DWORD fattr;                                // hotspot change
1113   char alt_dirname[4] = { 0, 0, 0, 0 };
1114 
1115   if (dirp == 0) {
1116     errno = ENOMEM;
1117     return 0;
1118   }
1119 
1120   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1121   // as a directory in FindFirstFile().  We detect this case here and
1122   // prepend the current drive name.
1123   //
1124   if (dirname[1] == '\0' && dirname[0] == '\\') {
1125     alt_dirname[0] = _getdrive() + 'A' - 1;
1126     alt_dirname[1] = ':';
1127     alt_dirname[2] = '\\';
1128     alt_dirname[3] = '\0';
1129     dirname = alt_dirname;
1130   }
1131 
1132   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1133   if (dirp->path == 0) {
1134     free(dirp);
1135     errno = ENOMEM;
1136     return 0;
1137   }
1138   strcpy(dirp->path, dirname);
1139 
1140   fattr = GetFileAttributes(dirp->path);
1141   if (fattr == 0xffffffff) {
1142     free(dirp->path);
1143     free(dirp);
1144     errno = ENOENT;
1145     return 0;
1146   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOTDIR;
1150     return 0;
1151   }
1152 
1153   // Append "*.*", or possibly "\\*.*", to path
1154   if (dirp->path[1] == ':' &&
1155       (dirp->path[2] == '\0' ||
1156       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1157     // No '\\' needed for cases like "Z:" or "Z:\"
1158     strcat(dirp->path, "*.*");
1159   } else {
1160     strcat(dirp->path, "\\*.*");
1161   }
1162 
1163   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1164   if (dirp->handle == INVALID_HANDLE_VALUE) {
1165     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1166       free(dirp->path);
1167       free(dirp);
1168       errno = EACCES;
1169       return 0;
1170     }
1171   }
1172   return dirp;
1173 }
1174 
1175 // parameter dbuf unused on Windows
1176 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1177   assert(dirp != NULL, "just checking");      // hotspot change
1178   if (dirp->handle == INVALID_HANDLE_VALUE) {
1179     return 0;
1180   }
1181 
1182   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1183 
1184   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1185     if (GetLastError() == ERROR_INVALID_HANDLE) {
1186       errno = EBADF;
1187       return 0;
1188     }
1189     FindClose(dirp->handle);
1190     dirp->handle = INVALID_HANDLE_VALUE;
1191   }
1192 
1193   return &dirp->dirent;
1194 }
1195 
1196 int os::closedir(DIR *dirp) {
1197   assert(dirp != NULL, "just checking");      // hotspot change
1198   if (dirp->handle != INVALID_HANDLE_VALUE) {
1199     if (!FindClose(dirp->handle)) {
1200       errno = EBADF;
1201       return -1;
1202     }
1203     dirp->handle = INVALID_HANDLE_VALUE;
1204   }
1205   free(dirp->path);
1206   free(dirp);
1207   return 0;
1208 }
1209 
1210 // This must be hard coded because it's the system's temporary
1211 // directory not the java application's temp directory, ala java.io.tmpdir.
1212 const char* os::get_temp_directory() {
1213   static char path_buf[MAX_PATH];
1214   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1215     return path_buf;
1216   } else {
1217     path_buf[0] = '\0';
1218     return path_buf;
1219   }
1220 }
1221 
1222 static bool file_exists(const char* filename) {
1223   if (filename == NULL || strlen(filename) == 0) {
1224     return false;
1225   }
1226   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1227 }
1228 
1229 bool os::dll_build_name(char *buffer, size_t buflen,
1230                         const char* pname, const char* fname) {
1231   bool retval = false;
1232   const size_t pnamelen = pname ? strlen(pname) : 0;
1233   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1234 
1235   // Return error on buffer overflow.
1236   if (pnamelen + strlen(fname) + 10 > buflen) {
1237     return retval;
1238   }
1239 
1240   if (pnamelen == 0) {
1241     jio_snprintf(buffer, buflen, "%s.dll", fname);
1242     retval = true;
1243   } else if (c == ':' || c == '\\') {
1244     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1245     retval = true;
1246   } else if (strchr(pname, *os::path_separator()) != NULL) {
1247     int n;
1248     char** pelements = split_path(pname, &n);
1249     if (pelements == NULL) {
1250       return false;
1251     }
1252     for (int i = 0; i < n; i++) {
1253       char* path = pelements[i];
1254       // Really shouldn't be NULL, but check can't hurt
1255       size_t plen = (path == NULL) ? 0 : strlen(path);
1256       if (plen == 0) {
1257         continue; // skip the empty path values
1258       }
1259       const char lastchar = path[plen - 1];
1260       if (lastchar == ':' || lastchar == '\\') {
1261         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1262       } else {
1263         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1264       }
1265       if (file_exists(buffer)) {
1266         retval = true;
1267         break;
1268       }
1269     }
1270     // release the storage
1271     for (int i = 0; i < n; i++) {
1272       if (pelements[i] != NULL) {
1273         FREE_C_HEAP_ARRAY(char, pelements[i]);
1274       }
1275     }
1276     if (pelements != NULL) {
1277       FREE_C_HEAP_ARRAY(char*, pelements);
1278     }
1279   } else {
1280     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1281     retval = true;
1282   }
1283   return retval;
1284 }
1285 
1286 // Needs to be in os specific directory because windows requires another
1287 // header file <direct.h>
1288 const char* os::get_current_directory(char *buf, size_t buflen) {
1289   int n = static_cast<int>(buflen);
1290   if (buflen > INT_MAX)  n = INT_MAX;
1291   return _getcwd(buf, n);
1292 }
1293 
1294 //-----------------------------------------------------------
1295 // Helper functions for fatal error handler
1296 #ifdef _WIN64
1297 // Helper routine which returns true if address in
1298 // within the NTDLL address space.
1299 //
1300 static bool _addr_in_ntdll(address addr) {
1301   HMODULE hmod;
1302   MODULEINFO minfo;
1303 
1304   hmod = GetModuleHandle("NTDLL.DLL");
1305   if (hmod == NULL) return false;
1306   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1307                                           &minfo, sizeof(MODULEINFO))) {
1308     return false;
1309   }
1310 
1311   if ((addr >= minfo.lpBaseOfDll) &&
1312       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1313     return true;
1314   } else {
1315     return false;
1316   }
1317 }
1318 #endif
1319 
1320 struct _modinfo {
1321   address addr;
1322   char*   full_path;   // point to a char buffer
1323   int     buflen;      // size of the buffer
1324   address base_addr;
1325 };
1326 
1327 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1328                                   address top_address, void * param) {
1329   struct _modinfo *pmod = (struct _modinfo *)param;
1330   if (!pmod) return -1;
1331 
1332   if (base_addr   <= pmod->addr &&
1333       top_address > pmod->addr) {
1334     // if a buffer is provided, copy path name to the buffer
1335     if (pmod->full_path) {
1336       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1337     }
1338     pmod->base_addr = base_addr;
1339     return 1;
1340   }
1341   return 0;
1342 }
1343 
1344 bool os::dll_address_to_library_name(address addr, char* buf,
1345                                      int buflen, int* offset) {
1346   // buf is not optional, but offset is optional
1347   assert(buf != NULL, "sanity check");
1348 
1349 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1350 //       return the full path to the DLL file, sometimes it returns path
1351 //       to the corresponding PDB file (debug info); sometimes it only
1352 //       returns partial path, which makes life painful.
1353 
1354   struct _modinfo mi;
1355   mi.addr      = addr;
1356   mi.full_path = buf;
1357   mi.buflen    = buflen;
1358   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1359     // buf already contains path name
1360     if (offset) *offset = addr - mi.base_addr;
1361     return true;
1362   }
1363 
1364   buf[0] = '\0';
1365   if (offset) *offset = -1;
1366   return false;
1367 }
1368 
1369 bool os::dll_address_to_function_name(address addr, char *buf,
1370                                       int buflen, int *offset,
1371                                       bool demangle) {
1372   // buf is not optional, but offset is optional
1373   assert(buf != NULL, "sanity check");
1374 
1375   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1376     return true;
1377   }
1378   if (offset != NULL)  *offset  = -1;
1379   buf[0] = '\0';
1380   return false;
1381 }
1382 
1383 // save the start and end address of jvm.dll into param[0] and param[1]
1384 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1385                            address top_address, void * param) {
1386   if (!param) return -1;
1387 
1388   if (base_addr   <= (address)_locate_jvm_dll &&
1389       top_address > (address)_locate_jvm_dll) {
1390     ((address*)param)[0] = base_addr;
1391     ((address*)param)[1] = top_address;
1392     return 1;
1393   }
1394   return 0;
1395 }
1396 
1397 address vm_lib_location[2];    // start and end address of jvm.dll
1398 
1399 // check if addr is inside jvm.dll
1400 bool os::address_is_in_vm(address addr) {
1401   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1402     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1403       assert(false, "Can't find jvm module.");
1404       return false;
1405     }
1406   }
1407 
1408   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1409 }
1410 
1411 // print module info; param is outputStream*
1412 static int _print_module(const char* fname, address base_address,
1413                          address top_address, void* param) {
1414   if (!param) return -1;
1415 
1416   outputStream* st = (outputStream*)param;
1417 
1418   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1419   return 0;
1420 }
1421 
1422 // Loads .dll/.so and
1423 // in case of error it checks if .dll/.so was built for the
1424 // same architecture as Hotspot is running on
1425 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1426   void * result = LoadLibrary(name);
1427   if (result != NULL) {
1428     return result;
1429   }
1430 
1431   DWORD errcode = GetLastError();
1432   if (errcode == ERROR_MOD_NOT_FOUND) {
1433     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1434     ebuf[ebuflen - 1] = '\0';
1435     return NULL;
1436   }
1437 
1438   // Parsing dll below
1439   // If we can read dll-info and find that dll was built
1440   // for an architecture other than Hotspot is running in
1441   // - then print to buffer "DLL was built for a different architecture"
1442   // else call os::lasterror to obtain system error message
1443 
1444   // Read system error message into ebuf
1445   // It may or may not be overwritten below (in the for loop and just above)
1446   lasterror(ebuf, (size_t) ebuflen);
1447   ebuf[ebuflen - 1] = '\0';
1448   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1449   if (fd < 0) {
1450     return NULL;
1451   }
1452 
1453   uint32_t signature_offset;
1454   uint16_t lib_arch = 0;
1455   bool failed_to_get_lib_arch =
1456     ( // Go to position 3c in the dll
1457      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1458      ||
1459      // Read location of signature
1460      (sizeof(signature_offset) !=
1461      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1462      ||
1463      // Go to COFF File Header in dll
1464      // that is located after "signature" (4 bytes long)
1465      (os::seek_to_file_offset(fd,
1466      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1467      ||
1468      // Read field that contains code of architecture
1469      // that dll was built for
1470      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1471     );
1472 
1473   ::close(fd);
1474   if (failed_to_get_lib_arch) {
1475     // file i/o error - report os::lasterror(...) msg
1476     return NULL;
1477   }
1478 
1479   typedef struct {
1480     uint16_t arch_code;
1481     char* arch_name;
1482   } arch_t;
1483 
1484   static const arch_t arch_array[] = {
1485     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1486     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1487     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1488   };
1489 #if   (defined _M_IA64)
1490   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1491 #elif (defined _M_AMD64)
1492   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1493 #elif (defined _M_IX86)
1494   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1495 #else
1496   #error Method os::dll_load requires that one of following \
1497          is defined :_M_IA64,_M_AMD64 or _M_IX86
1498 #endif
1499 
1500 
1501   // Obtain a string for printf operation
1502   // lib_arch_str shall contain string what platform this .dll was built for
1503   // running_arch_str shall string contain what platform Hotspot was built for
1504   char *running_arch_str = NULL, *lib_arch_str = NULL;
1505   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1506     if (lib_arch == arch_array[i].arch_code) {
1507       lib_arch_str = arch_array[i].arch_name;
1508     }
1509     if (running_arch == arch_array[i].arch_code) {
1510       running_arch_str = arch_array[i].arch_name;
1511     }
1512   }
1513 
1514   assert(running_arch_str,
1515          "Didn't find running architecture code in arch_array");
1516 
1517   // If the architecture is right
1518   // but some other error took place - report os::lasterror(...) msg
1519   if (lib_arch == running_arch) {
1520     return NULL;
1521   }
1522 
1523   if (lib_arch_str != NULL) {
1524     ::_snprintf(ebuf, ebuflen - 1,
1525                 "Can't load %s-bit .dll on a %s-bit platform",
1526                 lib_arch_str, running_arch_str);
1527   } else {
1528     // don't know what architecture this dll was build for
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1531                 lib_arch, running_arch_str);
1532   }
1533 
1534   return NULL;
1535 }
1536 
1537 void os::print_dll_info(outputStream *st) {
1538   st->print_cr("Dynamic libraries:");
1539   get_loaded_modules_info(_print_module, (void *)st);
1540 }
1541 
1542 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1543   HANDLE   hProcess;
1544 
1545 # define MAX_NUM_MODULES 128
1546   HMODULE     modules[MAX_NUM_MODULES];
1547   static char filename[MAX_PATH];
1548   int         result = 0;
1549 
1550   int pid = os::current_process_id();
1551   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1552                          FALSE, pid);
1553   if (hProcess == NULL) return 0;
1554 
1555   DWORD size_needed;
1556   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1557     CloseHandle(hProcess);
1558     return 0;
1559   }
1560 
1561   // number of modules that are currently loaded
1562   int num_modules = size_needed / sizeof(HMODULE);
1563 
1564   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1565     // Get Full pathname:
1566     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1567       filename[0] = '\0';
1568     }
1569 
1570     MODULEINFO modinfo;
1571     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1572       modinfo.lpBaseOfDll = NULL;
1573       modinfo.SizeOfImage = 0;
1574     }
1575 
1576     // Invoke callback function
1577     result = callback(filename, (address)modinfo.lpBaseOfDll,
1578                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1579     if (result) break;
1580   }
1581 
1582   CloseHandle(hProcess);
1583   return result;
1584 }
1585 
1586 bool os::get_host_name(char* buf, size_t buflen) {
1587   DWORD size = (DWORD)buflen;
1588   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1589 }
1590 
1591 void os::get_summary_os_info(char* buf, size_t buflen) {
1592   stringStream sst(buf, buflen);
1593   os::win32::print_windows_version(&sst);
1594   // chop off newline character
1595   char* nl = strchr(buf, '\n');
1596   if (nl != NULL) *nl = '\0';
1597 }
1598 
1599 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1600   int ret = vsnprintf(buf, len, fmt, args);
1601   // Get the correct buffer size if buf is too small
1602   if (ret < 0) {
1603     return _vscprintf(fmt, args);
1604   }
1605   return ret;
1606 }
1607 
1608 static inline time_t get_mtime(const char* filename) {
1609   struct stat st;
1610   int ret = os::stat(filename, &st);
1611   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1612   return st.st_mtime;
1613 }
1614 
1615 int os::compare_file_modified_times(const char* file1, const char* file2) {
1616   time_t t1 = get_mtime(file1);
1617   time_t t2 = get_mtime(file2);
1618   return t1 - t2;
1619 }
1620 
1621 void os::print_os_info_brief(outputStream* st) {
1622   os::print_os_info(st);
1623 }
1624 
1625 void os::print_os_info(outputStream* st) {
1626 #ifdef ASSERT
1627   char buffer[1024];
1628   st->print("HostName: ");
1629   if (get_host_name(buffer, sizeof(buffer))) {
1630     st->print("%s ", buffer);
1631   } else {
1632     st->print("N/A ");
1633   }
1634 #endif
1635   st->print("OS:");
1636   os::win32::print_windows_version(st);
1637 }
1638 
1639 void os::win32::print_windows_version(outputStream* st) {
1640   OSVERSIONINFOEX osvi;
1641   VS_FIXEDFILEINFO *file_info;
1642   TCHAR kernel32_path[MAX_PATH];
1643   UINT len, ret;
1644 
1645   // Use the GetVersionEx information to see if we're on a server or
1646   // workstation edition of Windows. Starting with Windows 8.1 we can't
1647   // trust the OS version information returned by this API.
1648   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1649   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1650   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1651     st->print_cr("Call to GetVersionEx failed");
1652     return;
1653   }
1654   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1655 
1656   // Get the full path to \Windows\System32\kernel32.dll and use that for
1657   // determining what version of Windows we're running on.
1658   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1659   ret = GetSystemDirectory(kernel32_path, len);
1660   if (ret == 0 || ret > len) {
1661     st->print_cr("Call to GetSystemDirectory failed");
1662     return;
1663   }
1664   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1665 
1666   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1667   if (version_size == 0) {
1668     st->print_cr("Call to GetFileVersionInfoSize failed");
1669     return;
1670   }
1671 
1672   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1673   if (version_info == NULL) {
1674     st->print_cr("Failed to allocate version_info");
1675     return;
1676   }
1677 
1678   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1679     os::free(version_info);
1680     st->print_cr("Call to GetFileVersionInfo failed");
1681     return;
1682   }
1683 
1684   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1685     os::free(version_info);
1686     st->print_cr("Call to VerQueryValue failed");
1687     return;
1688   }
1689 
1690   int major_version = HIWORD(file_info->dwProductVersionMS);
1691   int minor_version = LOWORD(file_info->dwProductVersionMS);
1692   int build_number = HIWORD(file_info->dwProductVersionLS);
1693   int build_minor = LOWORD(file_info->dwProductVersionLS);
1694   int os_vers = major_version * 1000 + minor_version;
1695   os::free(version_info);
1696 
1697   st->print(" Windows ");
1698   switch (os_vers) {
1699 
1700   case 6000:
1701     if (is_workstation) {
1702       st->print("Vista");
1703     } else {
1704       st->print("Server 2008");
1705     }
1706     break;
1707 
1708   case 6001:
1709     if (is_workstation) {
1710       st->print("7");
1711     } else {
1712       st->print("Server 2008 R2");
1713     }
1714     break;
1715 
1716   case 6002:
1717     if (is_workstation) {
1718       st->print("8");
1719     } else {
1720       st->print("Server 2012");
1721     }
1722     break;
1723 
1724   case 6003:
1725     if (is_workstation) {
1726       st->print("8.1");
1727     } else {
1728       st->print("Server 2012 R2");
1729     }
1730     break;
1731 
1732   case 10000:
1733     if (is_workstation) {
1734       st->print("10");
1735     } else {
1736       st->print("Server 2016");
1737     }
1738     break;
1739 
1740   default:
1741     // Unrecognized windows, print out its major and minor versions
1742     st->print("%d.%d", major_version, minor_version);
1743     break;
1744   }
1745 
1746   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1747   // find out whether we are running on 64 bit processor or not
1748   SYSTEM_INFO si;
1749   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1750   GetNativeSystemInfo(&si);
1751   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1752     st->print(" , 64 bit");
1753   }
1754 
1755   st->print(" Build %d", build_number);
1756   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1757   st->cr();
1758 }
1759 
1760 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1761   // Nothing to do for now.
1762 }
1763 
1764 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1765   HKEY key;
1766   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1767                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1768   if (status == ERROR_SUCCESS) {
1769     DWORD size = (DWORD)buflen;
1770     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1771     if (status != ERROR_SUCCESS) {
1772         strncpy(buf, "## __CPU__", buflen);
1773     }
1774     RegCloseKey(key);
1775   } else {
1776     // Put generic cpu info to return
1777     strncpy(buf, "## __CPU__", buflen);
1778   }
1779 }
1780 
1781 void os::print_memory_info(outputStream* st) {
1782   st->print("Memory:");
1783   st->print(" %dk page", os::vm_page_size()>>10);
1784 
1785   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1786   // value if total memory is larger than 4GB
1787   MEMORYSTATUSEX ms;
1788   ms.dwLength = sizeof(ms);
1789   GlobalMemoryStatusEx(&ms);
1790 
1791   st->print(", physical %uk", os::physical_memory() >> 10);
1792   st->print("(%uk free)", os::available_memory() >> 10);
1793 
1794   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1795   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1796   st->cr();
1797 }
1798 
1799 void os::print_siginfo(outputStream *st, const void* siginfo) {
1800   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1801   st->print("siginfo:");
1802 
1803   char tmp[64];
1804   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1805     strcpy(tmp, "EXCEPTION_??");
1806   }
1807   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1808 
1809   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1810        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1811        er->NumberParameters >= 2) {
1812     switch (er->ExceptionInformation[0]) {
1813     case 0: st->print(", reading address"); break;
1814     case 1: st->print(", writing address"); break;
1815     case 8: st->print(", data execution prevention violation at address"); break;
1816     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1817                        er->ExceptionInformation[0]);
1818     }
1819     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1820   } else {
1821     int num = er->NumberParameters;
1822     if (num > 0) {
1823       st->print(", ExceptionInformation=");
1824       for (int i = 0; i < num; i++) {
1825         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1826       }
1827     }
1828   }
1829   st->cr();
1830 }
1831 
1832 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1833   // do nothing
1834 }
1835 
1836 static char saved_jvm_path[MAX_PATH] = {0};
1837 
1838 // Find the full path to the current module, jvm.dll
1839 void os::jvm_path(char *buf, jint buflen) {
1840   // Error checking.
1841   if (buflen < MAX_PATH) {
1842     assert(false, "must use a large-enough buffer");
1843     buf[0] = '\0';
1844     return;
1845   }
1846   // Lazy resolve the path to current module.
1847   if (saved_jvm_path[0] != 0) {
1848     strcpy(buf, saved_jvm_path);
1849     return;
1850   }
1851 
1852   buf[0] = '\0';
1853   if (Arguments::sun_java_launcher_is_altjvm()) {
1854     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1855     // for a JAVA_HOME environment variable and fix up the path so it
1856     // looks like jvm.dll is installed there (append a fake suffix
1857     // hotspot/jvm.dll).
1858     char* java_home_var = ::getenv("JAVA_HOME");
1859     if (java_home_var != NULL && java_home_var[0] != 0 &&
1860         strlen(java_home_var) < (size_t)buflen) {
1861       strncpy(buf, java_home_var, buflen);
1862 
1863       // determine if this is a legacy image or modules image
1864       // modules image doesn't have "jre" subdirectory
1865       size_t len = strlen(buf);
1866       char* jrebin_p = buf + len;
1867       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1868       if (0 != _access(buf, 0)) {
1869         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1870       }
1871       len = strlen(buf);
1872       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1873     }
1874   }
1875 
1876   if (buf[0] == '\0') {
1877     GetModuleFileName(vm_lib_handle, buf, buflen);
1878   }
1879   strncpy(saved_jvm_path, buf, MAX_PATH);
1880   saved_jvm_path[MAX_PATH - 1] = '\0';
1881 }
1882 
1883 
1884 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1885 #ifndef _WIN64
1886   st->print("_");
1887 #endif
1888 }
1889 
1890 
1891 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1892 #ifndef _WIN64
1893   st->print("@%d", args_size  * sizeof(int));
1894 #endif
1895 }
1896 
1897 // This method is a copy of JDK's sysGetLastErrorString
1898 // from src/windows/hpi/src/system_md.c
1899 
1900 size_t os::lasterror(char* buf, size_t len) {
1901   DWORD errval;
1902 
1903   if ((errval = GetLastError()) != 0) {
1904     // DOS error
1905     size_t n = (size_t)FormatMessage(
1906                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1907                                      NULL,
1908                                      errval,
1909                                      0,
1910                                      buf,
1911                                      (DWORD)len,
1912                                      NULL);
1913     if (n > 3) {
1914       // Drop final '.', CR, LF
1915       if (buf[n - 1] == '\n') n--;
1916       if (buf[n - 1] == '\r') n--;
1917       if (buf[n - 1] == '.') n--;
1918       buf[n] = '\0';
1919     }
1920     return n;
1921   }
1922 
1923   if (errno != 0) {
1924     // C runtime error that has no corresponding DOS error code
1925     const char* s = os::strerror(errno);
1926     size_t n = strlen(s);
1927     if (n >= len) n = len - 1;
1928     strncpy(buf, s, n);
1929     buf[n] = '\0';
1930     return n;
1931   }
1932 
1933   return 0;
1934 }
1935 
1936 int os::get_last_error() {
1937   DWORD error = GetLastError();
1938   if (error == 0) {
1939     error = errno;
1940   }
1941   return (int)error;
1942 }
1943 
1944 WindowsSemaphore::WindowsSemaphore(uint value) {
1945   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1946 
1947   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1948 }
1949 
1950 WindowsSemaphore::~WindowsSemaphore() {
1951   ::CloseHandle(_semaphore);
1952 }
1953 
1954 void WindowsSemaphore::signal(uint count) {
1955   if (count > 0) {
1956     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1957 
1958     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1959   }
1960 }
1961 
1962 void WindowsSemaphore::wait() {
1963   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1964   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1965   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1966 }
1967 
1968 // sun.misc.Signal
1969 // NOTE that this is a workaround for an apparent kernel bug where if
1970 // a signal handler for SIGBREAK is installed then that signal handler
1971 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1972 // See bug 4416763.
1973 static void (*sigbreakHandler)(int) = NULL;
1974 
1975 static void UserHandler(int sig, void *siginfo, void *context) {
1976   os::signal_notify(sig);
1977   // We need to reinstate the signal handler each time...
1978   os::signal(sig, (void*)UserHandler);
1979 }
1980 
1981 void* os::user_handler() {
1982   return (void*) UserHandler;
1983 }
1984 
1985 void* os::signal(int signal_number, void* handler) {
1986   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1987     void (*oldHandler)(int) = sigbreakHandler;
1988     sigbreakHandler = (void (*)(int)) handler;
1989     return (void*) oldHandler;
1990   } else {
1991     return (void*)::signal(signal_number, (void (*)(int))handler);
1992   }
1993 }
1994 
1995 void os::signal_raise(int signal_number) {
1996   raise(signal_number);
1997 }
1998 
1999 // The Win32 C runtime library maps all console control events other than ^C
2000 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2001 // logoff, and shutdown events.  We therefore install our own console handler
2002 // that raises SIGTERM for the latter cases.
2003 //
2004 static BOOL WINAPI consoleHandler(DWORD event) {
2005   switch (event) {
2006   case CTRL_C_EVENT:
2007     if (is_error_reported()) {
2008       // Ctrl-C is pressed during error reporting, likely because the error
2009       // handler fails to abort. Let VM die immediately.
2010       os::die();
2011     }
2012 
2013     os::signal_raise(SIGINT);
2014     return TRUE;
2015     break;
2016   case CTRL_BREAK_EVENT:
2017     if (sigbreakHandler != NULL) {
2018       (*sigbreakHandler)(SIGBREAK);
2019     }
2020     return TRUE;
2021     break;
2022   case CTRL_LOGOFF_EVENT: {
2023     // Don't terminate JVM if it is running in a non-interactive session,
2024     // such as a service process.
2025     USEROBJECTFLAGS flags;
2026     HANDLE handle = GetProcessWindowStation();
2027     if (handle != NULL &&
2028         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2029         sizeof(USEROBJECTFLAGS), NULL)) {
2030       // If it is a non-interactive session, let next handler to deal
2031       // with it.
2032       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2033         return FALSE;
2034       }
2035     }
2036   }
2037   case CTRL_CLOSE_EVENT:
2038   case CTRL_SHUTDOWN_EVENT:
2039     os::signal_raise(SIGTERM);
2040     return TRUE;
2041     break;
2042   default:
2043     break;
2044   }
2045   return FALSE;
2046 }
2047 
2048 // The following code is moved from os.cpp for making this
2049 // code platform specific, which it is by its very nature.
2050 
2051 // Return maximum OS signal used + 1 for internal use only
2052 // Used as exit signal for signal_thread
2053 int os::sigexitnum_pd() {
2054   return NSIG;
2055 }
2056 
2057 // a counter for each possible signal value, including signal_thread exit signal
2058 static volatile jint pending_signals[NSIG+1] = { 0 };
2059 static HANDLE sig_sem = NULL;
2060 
2061 void os::signal_init_pd() {
2062   // Initialize signal structures
2063   memset((void*)pending_signals, 0, sizeof(pending_signals));
2064 
2065   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2066 
2067   // Programs embedding the VM do not want it to attempt to receive
2068   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2069   // shutdown hooks mechanism introduced in 1.3.  For example, when
2070   // the VM is run as part of a Windows NT service (i.e., a servlet
2071   // engine in a web server), the correct behavior is for any console
2072   // control handler to return FALSE, not TRUE, because the OS's
2073   // "final" handler for such events allows the process to continue if
2074   // it is a service (while terminating it if it is not a service).
2075   // To make this behavior uniform and the mechanism simpler, we
2076   // completely disable the VM's usage of these console events if -Xrs
2077   // (=ReduceSignalUsage) is specified.  This means, for example, that
2078   // the CTRL-BREAK thread dump mechanism is also disabled in this
2079   // case.  See bugs 4323062, 4345157, and related bugs.
2080 
2081   if (!ReduceSignalUsage) {
2082     // Add a CTRL-C handler
2083     SetConsoleCtrlHandler(consoleHandler, TRUE);
2084   }
2085 }
2086 
2087 void os::signal_notify(int signal_number) {
2088   BOOL ret;
2089   if (sig_sem != NULL) {
2090     Atomic::inc(&pending_signals[signal_number]);
2091     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2092     assert(ret != 0, "ReleaseSemaphore() failed");
2093   }
2094 }
2095 
2096 static int check_pending_signals(bool wait_for_signal) {
2097   DWORD ret;
2098   while (true) {
2099     for (int i = 0; i < NSIG + 1; i++) {
2100       jint n = pending_signals[i];
2101       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2102         return i;
2103       }
2104     }
2105     if (!wait_for_signal) {
2106       return -1;
2107     }
2108 
2109     JavaThread *thread = JavaThread::current();
2110 
2111     ThreadBlockInVM tbivm(thread);
2112 
2113     bool threadIsSuspended;
2114     do {
2115       thread->set_suspend_equivalent();
2116       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2117       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2118       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2119 
2120       // were we externally suspended while we were waiting?
2121       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2122       if (threadIsSuspended) {
2123         // The semaphore has been incremented, but while we were waiting
2124         // another thread suspended us. We don't want to continue running
2125         // while suspended because that would surprise the thread that
2126         // suspended us.
2127         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2128         assert(ret != 0, "ReleaseSemaphore() failed");
2129 
2130         thread->java_suspend_self();
2131       }
2132     } while (threadIsSuspended);
2133   }
2134 }
2135 
2136 int os::signal_lookup() {
2137   return check_pending_signals(false);
2138 }
2139 
2140 int os::signal_wait() {
2141   return check_pending_signals(true);
2142 }
2143 
2144 // Implicit OS exception handling
2145 
2146 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2147                       address handler) {
2148     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2149   // Save pc in thread
2150 #ifdef _M_IA64
2151   // Do not blow up if no thread info available.
2152   if (thread) {
2153     // Saving PRECISE pc (with slot information) in thread.
2154     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2155     // Convert precise PC into "Unix" format
2156     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2157     thread->set_saved_exception_pc((address)precise_pc);
2158   }
2159   // Set pc to handler
2160   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2161   // Clear out psr.ri (= Restart Instruction) in order to continue
2162   // at the beginning of the target bundle.
2163   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2164   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2165 #else
2166   #ifdef _M_AMD64
2167   // Do not blow up if no thread info available.
2168   if (thread) {
2169     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2170   }
2171   // Set pc to handler
2172   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2173   #else
2174   // Do not blow up if no thread info available.
2175   if (thread) {
2176     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2177   }
2178   // Set pc to handler
2179   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2180   #endif
2181 #endif
2182 
2183   // Continue the execution
2184   return EXCEPTION_CONTINUE_EXECUTION;
2185 }
2186 
2187 
2188 // Used for PostMortemDump
2189 extern "C" void safepoints();
2190 extern "C" void find(int x);
2191 extern "C" void events();
2192 
2193 // According to Windows API documentation, an illegal instruction sequence should generate
2194 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2195 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2196 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2197 
2198 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2199 
2200 // From "Execution Protection in the Windows Operating System" draft 0.35
2201 // Once a system header becomes available, the "real" define should be
2202 // included or copied here.
2203 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2204 
2205 // Handle NAT Bit consumption on IA64.
2206 #ifdef _M_IA64
2207   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2208 #endif
2209 
2210 // Windows Vista/2008 heap corruption check
2211 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2212 
2213 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2214 // C++ compiler contain this error code. Because this is a compiler-generated
2215 // error, the code is not listed in the Win32 API header files.
2216 // The code is actually a cryptic mnemonic device, with the initial "E"
2217 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2218 // ASCII values of "msc".
2219 
2220 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2221 
2222 #define def_excpt(val) { #val, (val) }
2223 
2224 static const struct { char* name; uint number; } exceptlabels[] = {
2225     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2226     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2227     def_excpt(EXCEPTION_BREAKPOINT),
2228     def_excpt(EXCEPTION_SINGLE_STEP),
2229     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2230     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2231     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2232     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2233     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2234     def_excpt(EXCEPTION_FLT_OVERFLOW),
2235     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2236     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2237     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2238     def_excpt(EXCEPTION_INT_OVERFLOW),
2239     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2240     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2241     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2242     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2243     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2244     def_excpt(EXCEPTION_STACK_OVERFLOW),
2245     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2246     def_excpt(EXCEPTION_GUARD_PAGE),
2247     def_excpt(EXCEPTION_INVALID_HANDLE),
2248     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2249     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2250 #ifdef _M_IA64
2251     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2252 #endif
2253 };
2254 
2255 #undef def_excpt
2256 
2257 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2258   uint code = static_cast<uint>(exception_code);
2259   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2260     if (exceptlabels[i].number == code) {
2261       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2262       return buf;
2263     }
2264   }
2265 
2266   return NULL;
2267 }
2268 
2269 //-----------------------------------------------------------------------------
2270 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2271   // handle exception caused by idiv; should only happen for -MinInt/-1
2272   // (division by zero is handled explicitly)
2273 #ifdef _M_IA64
2274   assert(0, "Fix Handle_IDiv_Exception");
2275 #else
2276   #ifdef  _M_AMD64
2277   PCONTEXT ctx = exceptionInfo->ContextRecord;
2278   address pc = (address)ctx->Rip;
2279   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2280   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2281   if (pc[0] == 0xF7) {
2282     // set correct result values and continue after idiv instruction
2283     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2284   } else {
2285     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2286   }
2287   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2288   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2289   // idiv opcode (0xF7).
2290   ctx->Rdx = (DWORD)0;             // remainder
2291   // Continue the execution
2292   #else
2293   PCONTEXT ctx = exceptionInfo->ContextRecord;
2294   address pc = (address)ctx->Eip;
2295   assert(pc[0] == 0xF7, "not an idiv opcode");
2296   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2297   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2298   // set correct result values and continue after idiv instruction
2299   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2300   ctx->Eax = (DWORD)min_jint;      // result
2301   ctx->Edx = (DWORD)0;             // remainder
2302   // Continue the execution
2303   #endif
2304 #endif
2305   return EXCEPTION_CONTINUE_EXECUTION;
2306 }
2307 
2308 //-----------------------------------------------------------------------------
2309 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2310   PCONTEXT ctx = exceptionInfo->ContextRecord;
2311 #ifndef  _WIN64
2312   // handle exception caused by native method modifying control word
2313   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2314 
2315   switch (exception_code) {
2316   case EXCEPTION_FLT_DENORMAL_OPERAND:
2317   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2318   case EXCEPTION_FLT_INEXACT_RESULT:
2319   case EXCEPTION_FLT_INVALID_OPERATION:
2320   case EXCEPTION_FLT_OVERFLOW:
2321   case EXCEPTION_FLT_STACK_CHECK:
2322   case EXCEPTION_FLT_UNDERFLOW:
2323     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2324     if (fp_control_word != ctx->FloatSave.ControlWord) {
2325       // Restore FPCW and mask out FLT exceptions
2326       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2327       // Mask out pending FLT exceptions
2328       ctx->FloatSave.StatusWord &=  0xffffff00;
2329       return EXCEPTION_CONTINUE_EXECUTION;
2330     }
2331   }
2332 
2333   if (prev_uef_handler != NULL) {
2334     // We didn't handle this exception so pass it to the previous
2335     // UnhandledExceptionFilter.
2336     return (prev_uef_handler)(exceptionInfo);
2337   }
2338 #else // !_WIN64
2339   // On Windows, the mxcsr control bits are non-volatile across calls
2340   // See also CR 6192333
2341   //
2342   jint MxCsr = INITIAL_MXCSR;
2343   // we can't use StubRoutines::addr_mxcsr_std()
2344   // because in Win64 mxcsr is not saved there
2345   if (MxCsr != ctx->MxCsr) {
2346     ctx->MxCsr = MxCsr;
2347     return EXCEPTION_CONTINUE_EXECUTION;
2348   }
2349 #endif // !_WIN64
2350 
2351   return EXCEPTION_CONTINUE_SEARCH;
2352 }
2353 
2354 static inline void report_error(Thread* t, DWORD exception_code,
2355                                 address addr, void* siginfo, void* context) {
2356   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2357 
2358   // If UseOsErrorReporting, this will return here and save the error file
2359   // somewhere where we can find it in the minidump.
2360 }
2361 
2362 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2363         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2364   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2365   address addr = (address) exceptionRecord->ExceptionInformation[1];
2366   if (Interpreter::contains(pc)) {
2367     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2368     if (!fr->is_first_java_frame()) {
2369       assert(fr->safe_for_sender(thread), "Safety check");
2370       *fr = fr->java_sender();
2371     }
2372   } else {
2373     // more complex code with compiled code
2374     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2375     CodeBlob* cb = CodeCache::find_blob(pc);
2376     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2377       // Not sure where the pc points to, fallback to default
2378       // stack overflow handling
2379       return false;
2380     } else {
2381       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2382       // in compiled code, the stack banging is performed just after the return pc
2383       // has been pushed on the stack
2384       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2385       if (!fr->is_java_frame()) {
2386         assert(fr->safe_for_sender(thread), "Safety check");
2387         *fr = fr->java_sender();
2388       }
2389     }
2390   }
2391   assert(fr->is_java_frame(), "Safety check");
2392   return true;
2393 }
2394 
2395 //-----------------------------------------------------------------------------
2396 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2397   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2398   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2399 #ifdef _M_IA64
2400   // On Itanium, we need the "precise pc", which has the slot number coded
2401   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2402   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2403   // Convert the pc to "Unix format", which has the slot number coded
2404   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2405   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2406   // information is saved in the Unix format.
2407   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2408 #else
2409   #ifdef _M_AMD64
2410   address pc = (address) exceptionInfo->ContextRecord->Rip;
2411   #else
2412   address pc = (address) exceptionInfo->ContextRecord->Eip;
2413   #endif
2414 #endif
2415   Thread* t = Thread::current_or_null_safe();
2416 
2417   // Handle SafeFetch32 and SafeFetchN exceptions.
2418   if (StubRoutines::is_safefetch_fault(pc)) {
2419     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2420   }
2421 
2422 #ifndef _WIN64
2423   // Execution protection violation - win32 running on AMD64 only
2424   // Handled first to avoid misdiagnosis as a "normal" access violation;
2425   // This is safe to do because we have a new/unique ExceptionInformation
2426   // code for this condition.
2427   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2428     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2429     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2430     address addr = (address) exceptionRecord->ExceptionInformation[1];
2431 
2432     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2433       int page_size = os::vm_page_size();
2434 
2435       // Make sure the pc and the faulting address are sane.
2436       //
2437       // If an instruction spans a page boundary, and the page containing
2438       // the beginning of the instruction is executable but the following
2439       // page is not, the pc and the faulting address might be slightly
2440       // different - we still want to unguard the 2nd page in this case.
2441       //
2442       // 15 bytes seems to be a (very) safe value for max instruction size.
2443       bool pc_is_near_addr =
2444         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2445       bool instr_spans_page_boundary =
2446         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2447                          (intptr_t) page_size) > 0);
2448 
2449       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2450         static volatile address last_addr =
2451           (address) os::non_memory_address_word();
2452 
2453         // In conservative mode, don't unguard unless the address is in the VM
2454         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2455             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2456 
2457           // Set memory to RWX and retry
2458           address page_start =
2459             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2460           bool res = os::protect_memory((char*) page_start, page_size,
2461                                         os::MEM_PROT_RWX);
2462 
2463           log_debug(os)("Execution protection violation "
2464                         "at " INTPTR_FORMAT
2465                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2466                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2467 
2468           // Set last_addr so if we fault again at the same address, we don't
2469           // end up in an endless loop.
2470           //
2471           // There are two potential complications here.  Two threads trapping
2472           // at the same address at the same time could cause one of the
2473           // threads to think it already unguarded, and abort the VM.  Likely
2474           // very rare.
2475           //
2476           // The other race involves two threads alternately trapping at
2477           // different addresses and failing to unguard the page, resulting in
2478           // an endless loop.  This condition is probably even more unlikely
2479           // than the first.
2480           //
2481           // Although both cases could be avoided by using locks or thread
2482           // local last_addr, these solutions are unnecessary complication:
2483           // this handler is a best-effort safety net, not a complete solution.
2484           // It is disabled by default and should only be used as a workaround
2485           // in case we missed any no-execute-unsafe VM code.
2486 
2487           last_addr = addr;
2488 
2489           return EXCEPTION_CONTINUE_EXECUTION;
2490         }
2491       }
2492 
2493       // Last unguard failed or not unguarding
2494       tty->print_raw_cr("Execution protection violation");
2495       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2496                    exceptionInfo->ContextRecord);
2497       return EXCEPTION_CONTINUE_SEARCH;
2498     }
2499   }
2500 #endif // _WIN64
2501 
2502   // Check to see if we caught the safepoint code in the
2503   // process of write protecting the memory serialization page.
2504   // It write enables the page immediately after protecting it
2505   // so just return.
2506   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2507     if (t != NULL && t->is_Java_thread()) {
2508       JavaThread* thread = (JavaThread*) t;
2509       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2510       address addr = (address) exceptionRecord->ExceptionInformation[1];
2511       if (os::is_memory_serialize_page(thread, addr)) {
2512         // Block current thread until the memory serialize page permission restored.
2513         os::block_on_serialize_page_trap();
2514         return EXCEPTION_CONTINUE_EXECUTION;
2515       }
2516     }
2517   }
2518 
2519   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2520       VM_Version::is_cpuinfo_segv_addr(pc)) {
2521     // Verify that OS save/restore AVX registers.
2522     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2523   }
2524 
2525   if (t != NULL && t->is_Java_thread()) {
2526     JavaThread* thread = (JavaThread*) t;
2527     bool in_java = thread->thread_state() == _thread_in_Java;
2528 
2529     // Handle potential stack overflows up front.
2530     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2531 #ifdef _M_IA64
2532       // Use guard page for register stack.
2533       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2534       address addr = (address) exceptionRecord->ExceptionInformation[1];
2535       // Check for a register stack overflow on Itanium
2536       if (thread->addr_inside_register_stack_red_zone(addr)) {
2537         // Fatal red zone violation happens if the Java program
2538         // catches a StackOverflow error and does so much processing
2539         // that it runs beyond the unprotected yellow guard zone. As
2540         // a result, we are out of here.
2541         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2542       } else if(thread->addr_inside_register_stack(addr)) {
2543         // Disable the yellow zone which sets the state that
2544         // we've got a stack overflow problem.
2545         if (thread->stack_yellow_reserved_zone_enabled()) {
2546           thread->disable_stack_yellow_reserved_zone();
2547         }
2548         // Give us some room to process the exception.
2549         thread->disable_register_stack_guard();
2550         // Tracing with +Verbose.
2551         if (Verbose) {
2552           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2553           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2554           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2555           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2556                         thread->register_stack_base(),
2557                         thread->register_stack_base() + thread->stack_size());
2558         }
2559 
2560         // Reguard the permanent register stack red zone just to be sure.
2561         // We saw Windows silently disabling this without telling us.
2562         thread->enable_register_stack_red_zone();
2563 
2564         return Handle_Exception(exceptionInfo,
2565                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2566       }
2567 #endif
2568       if (thread->stack_guards_enabled()) {
2569         if (in_java) {
2570           frame fr;
2571           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2572           address addr = (address) exceptionRecord->ExceptionInformation[1];
2573           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2574             assert(fr.is_java_frame(), "Must be a Java frame");
2575             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2576           }
2577         }
2578         // Yellow zone violation.  The o/s has unprotected the first yellow
2579         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2580         // update the enabled status, even if the zone contains only one page.
2581         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2582         thread->disable_stack_yellow_reserved_zone();
2583         // If not in java code, return and hope for the best.
2584         return in_java
2585             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2586             :  EXCEPTION_CONTINUE_EXECUTION;
2587       } else {
2588         // Fatal red zone violation.
2589         thread->disable_stack_red_zone();
2590         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2591         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2592                       exceptionInfo->ContextRecord);
2593         return EXCEPTION_CONTINUE_SEARCH;
2594       }
2595     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2596       // Either stack overflow or null pointer exception.
2597       if (in_java) {
2598         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2599         address addr = (address) exceptionRecord->ExceptionInformation[1];
2600         address stack_end = thread->stack_end();
2601         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2602           // Stack overflow.
2603           assert(!os::uses_stack_guard_pages(),
2604                  "should be caught by red zone code above.");
2605           return Handle_Exception(exceptionInfo,
2606                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2607         }
2608         // Check for safepoint polling and implicit null
2609         // We only expect null pointers in the stubs (vtable)
2610         // the rest are checked explicitly now.
2611         CodeBlob* cb = CodeCache::find_blob(pc);
2612         if (cb != NULL) {
2613           if (os::is_poll_address(addr)) {
2614             address stub = SharedRuntime::get_poll_stub(pc);
2615             return Handle_Exception(exceptionInfo, stub);
2616           }
2617         }
2618         {
2619 #ifdef _WIN64
2620           // If it's a legal stack address map the entire region in
2621           //
2622           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2623           address addr = (address) exceptionRecord->ExceptionInformation[1];
2624           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2625             addr = (address)((uintptr_t)addr &
2626                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2627             os::commit_memory((char *)addr, thread->stack_base() - addr,
2628                               !ExecMem);
2629             return EXCEPTION_CONTINUE_EXECUTION;
2630           } else
2631 #endif
2632           {
2633             // Null pointer exception.
2634 #ifdef _M_IA64
2635             // Process implicit null checks in compiled code. Note: Implicit null checks
2636             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2637             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2638               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2639               // Handle implicit null check in UEP method entry
2640               if (cb && (cb->is_frame_complete_at(pc) ||
2641                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2642                 if (Verbose) {
2643                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2644                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2645                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2646                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2647                                 *(bundle_start + 1), *bundle_start);
2648                 }
2649                 return Handle_Exception(exceptionInfo,
2650                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2651               }
2652             }
2653 
2654             // Implicit null checks were processed above.  Hence, we should not reach
2655             // here in the usual case => die!
2656             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2657             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2658                          exceptionInfo->ContextRecord);
2659             return EXCEPTION_CONTINUE_SEARCH;
2660 
2661 #else // !IA64
2662 
2663             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2664               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2665               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2666             }
2667             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2668                          exceptionInfo->ContextRecord);
2669             return EXCEPTION_CONTINUE_SEARCH;
2670 #endif
2671           }
2672         }
2673       }
2674 
2675 #ifdef _WIN64
2676       // Special care for fast JNI field accessors.
2677       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2678       // in and the heap gets shrunk before the field access.
2679       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2680         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2681         if (addr != (address)-1) {
2682           return Handle_Exception(exceptionInfo, addr);
2683         }
2684       }
2685 #endif
2686 
2687       // Stack overflow or null pointer exception in native code.
2688       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2689                    exceptionInfo->ContextRecord);
2690       return EXCEPTION_CONTINUE_SEARCH;
2691     } // /EXCEPTION_ACCESS_VIOLATION
2692     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2693 #if defined _M_IA64
2694     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2695               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2696       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2697 
2698       // Compiled method patched to be non entrant? Following conditions must apply:
2699       // 1. must be first instruction in bundle
2700       // 2. must be a break instruction with appropriate code
2701       if ((((uint64_t) pc & 0x0F) == 0) &&
2702           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2703         return Handle_Exception(exceptionInfo,
2704                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2705       }
2706     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2707 #endif
2708 
2709 
2710     if (in_java) {
2711       switch (exception_code) {
2712       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2713         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2714 
2715       case EXCEPTION_INT_OVERFLOW:
2716         return Handle_IDiv_Exception(exceptionInfo);
2717 
2718       } // switch
2719     }
2720     if (((thread->thread_state() == _thread_in_Java) ||
2721          (thread->thread_state() == _thread_in_native)) &&
2722          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2723       LONG result=Handle_FLT_Exception(exceptionInfo);
2724       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2725     }
2726   }
2727 
2728   if (exception_code != EXCEPTION_BREAKPOINT) {
2729     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2730                  exceptionInfo->ContextRecord);
2731   }
2732   return EXCEPTION_CONTINUE_SEARCH;
2733 }
2734 
2735 #ifndef _WIN64
2736 // Special care for fast JNI accessors.
2737 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2738 // the heap gets shrunk before the field access.
2739 // Need to install our own structured exception handler since native code may
2740 // install its own.
2741 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2742   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2743   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2744     address pc = (address) exceptionInfo->ContextRecord->Eip;
2745     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2746     if (addr != (address)-1) {
2747       return Handle_Exception(exceptionInfo, addr);
2748     }
2749   }
2750   return EXCEPTION_CONTINUE_SEARCH;
2751 }
2752 
2753 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2754   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2755                                                      jobject obj,           \
2756                                                      jfieldID fieldID) {    \
2757     __try {                                                                 \
2758       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2759                                                                  obj,       \
2760                                                                  fieldID);  \
2761     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2762                                               _exception_info())) {         \
2763     }                                                                       \
2764     return 0;                                                               \
2765   }
2766 
2767 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2768 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2769 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2770 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2771 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2772 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2773 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2774 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2775 
2776 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2777   switch (type) {
2778   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2779   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2780   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2781   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2782   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2783   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2784   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2785   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2786   default:        ShouldNotReachHere();
2787   }
2788   return (address)-1;
2789 }
2790 #endif
2791 
2792 // Virtual Memory
2793 
2794 int os::vm_page_size() { return os::win32::vm_page_size(); }
2795 int os::vm_allocation_granularity() {
2796   return os::win32::vm_allocation_granularity();
2797 }
2798 
2799 // Windows large page support is available on Windows 2003. In order to use
2800 // large page memory, the administrator must first assign additional privilege
2801 // to the user:
2802 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2803 //   + select Local Policies -> User Rights Assignment
2804 //   + double click "Lock pages in memory", add users and/or groups
2805 //   + reboot
2806 // Note the above steps are needed for administrator as well, as administrators
2807 // by default do not have the privilege to lock pages in memory.
2808 //
2809 // Note about Windows 2003: although the API supports committing large page
2810 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2811 // scenario, I found through experiment it only uses large page if the entire
2812 // memory region is reserved and committed in a single VirtualAlloc() call.
2813 // This makes Windows large page support more or less like Solaris ISM, in
2814 // that the entire heap must be committed upfront. This probably will change
2815 // in the future, if so the code below needs to be revisited.
2816 
2817 #ifndef MEM_LARGE_PAGES
2818   #define MEM_LARGE_PAGES 0x20000000
2819 #endif
2820 
2821 static HANDLE    _hProcess;
2822 static HANDLE    _hToken;
2823 
2824 // Container for NUMA node list info
2825 class NUMANodeListHolder {
2826  private:
2827   int *_numa_used_node_list;  // allocated below
2828   int _numa_used_node_count;
2829 
2830   void free_node_list() {
2831     if (_numa_used_node_list != NULL) {
2832       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2833     }
2834   }
2835 
2836  public:
2837   NUMANodeListHolder() {
2838     _numa_used_node_count = 0;
2839     _numa_used_node_list = NULL;
2840     // do rest of initialization in build routine (after function pointers are set up)
2841   }
2842 
2843   ~NUMANodeListHolder() {
2844     free_node_list();
2845   }
2846 
2847   bool build() {
2848     DWORD_PTR proc_aff_mask;
2849     DWORD_PTR sys_aff_mask;
2850     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2851     ULONG highest_node_number;
2852     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2853     free_node_list();
2854     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2855     for (unsigned int i = 0; i <= highest_node_number; i++) {
2856       ULONGLONG proc_mask_numa_node;
2857       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2858       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2859         _numa_used_node_list[_numa_used_node_count++] = i;
2860       }
2861     }
2862     return (_numa_used_node_count > 1);
2863   }
2864 
2865   int get_count() { return _numa_used_node_count; }
2866   int get_node_list_entry(int n) {
2867     // for indexes out of range, returns -1
2868     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2869   }
2870 
2871 } numa_node_list_holder;
2872 
2873 
2874 
2875 static size_t _large_page_size = 0;
2876 
2877 static bool request_lock_memory_privilege() {
2878   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2879                           os::current_process_id());
2880 
2881   LUID luid;
2882   if (_hProcess != NULL &&
2883       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2884       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2885 
2886     TOKEN_PRIVILEGES tp;
2887     tp.PrivilegeCount = 1;
2888     tp.Privileges[0].Luid = luid;
2889     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2890 
2891     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2892     // privilege. Check GetLastError() too. See MSDN document.
2893     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2894         (GetLastError() == ERROR_SUCCESS)) {
2895       return true;
2896     }
2897   }
2898 
2899   return false;
2900 }
2901 
2902 static void cleanup_after_large_page_init() {
2903   if (_hProcess) CloseHandle(_hProcess);
2904   _hProcess = NULL;
2905   if (_hToken) CloseHandle(_hToken);
2906   _hToken = NULL;
2907 }
2908 
2909 static bool numa_interleaving_init() {
2910   bool success = false;
2911   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2912 
2913   // print a warning if UseNUMAInterleaving flag is specified on command line
2914   bool warn_on_failure = use_numa_interleaving_specified;
2915 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2916 
2917   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2918   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2919   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2920 
2921   if (numa_node_list_holder.build()) {
2922     if (log_is_enabled(Debug, os, cpu)) {
2923       Log(os, cpu) log;
2924       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2925       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2926         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2927       }
2928     }
2929     success = true;
2930   } else {
2931     WARN("Process does not cover multiple NUMA nodes.");
2932   }
2933   if (!success) {
2934     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2935   }
2936   return success;
2937 #undef WARN
2938 }
2939 
2940 // this routine is used whenever we need to reserve a contiguous VA range
2941 // but we need to make separate VirtualAlloc calls for each piece of the range
2942 // Reasons for doing this:
2943 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2944 //  * UseNUMAInterleaving requires a separate node for each piece
2945 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2946                                          DWORD prot,
2947                                          bool should_inject_error = false) {
2948   char * p_buf;
2949   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2950   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2951   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2952 
2953   // first reserve enough address space in advance since we want to be
2954   // able to break a single contiguous virtual address range into multiple
2955   // large page commits but WS2003 does not allow reserving large page space
2956   // so we just use 4K pages for reserve, this gives us a legal contiguous
2957   // address space. then we will deallocate that reservation, and re alloc
2958   // using large pages
2959   const size_t size_of_reserve = bytes + chunk_size;
2960   if (bytes > size_of_reserve) {
2961     // Overflowed.
2962     return NULL;
2963   }
2964   p_buf = (char *) VirtualAlloc(addr,
2965                                 size_of_reserve,  // size of Reserve
2966                                 MEM_RESERVE,
2967                                 PAGE_READWRITE);
2968   // If reservation failed, return NULL
2969   if (p_buf == NULL) return NULL;
2970   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2971   os::release_memory(p_buf, bytes + chunk_size);
2972 
2973   // we still need to round up to a page boundary (in case we are using large pages)
2974   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2975   // instead we handle this in the bytes_to_rq computation below
2976   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2977 
2978   // now go through and allocate one chunk at a time until all bytes are
2979   // allocated
2980   size_t  bytes_remaining = bytes;
2981   // An overflow of align_size_up() would have been caught above
2982   // in the calculation of size_of_reserve.
2983   char * next_alloc_addr = p_buf;
2984   HANDLE hProc = GetCurrentProcess();
2985 
2986 #ifdef ASSERT
2987   // Variable for the failure injection
2988   long ran_num = os::random();
2989   size_t fail_after = ran_num % bytes;
2990 #endif
2991 
2992   int count=0;
2993   while (bytes_remaining) {
2994     // select bytes_to_rq to get to the next chunk_size boundary
2995 
2996     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2997     // Note allocate and commit
2998     char * p_new;
2999 
3000 #ifdef ASSERT
3001     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3002 #else
3003     const bool inject_error_now = false;
3004 #endif
3005 
3006     if (inject_error_now) {
3007       p_new = NULL;
3008     } else {
3009       if (!UseNUMAInterleaving) {
3010         p_new = (char *) VirtualAlloc(next_alloc_addr,
3011                                       bytes_to_rq,
3012                                       flags,
3013                                       prot);
3014       } else {
3015         // get the next node to use from the used_node_list
3016         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3017         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3018         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
3019       }
3020     }
3021 
3022     if (p_new == NULL) {
3023       // Free any allocated pages
3024       if (next_alloc_addr > p_buf) {
3025         // Some memory was committed so release it.
3026         size_t bytes_to_release = bytes - bytes_remaining;
3027         // NMT has yet to record any individual blocks, so it
3028         // need to create a dummy 'reserve' record to match
3029         // the release.
3030         MemTracker::record_virtual_memory_reserve((address)p_buf,
3031                                                   bytes_to_release, CALLER_PC);
3032         os::release_memory(p_buf, bytes_to_release);
3033       }
3034 #ifdef ASSERT
3035       if (should_inject_error) {
3036         log_develop_debug(pagesize)("Reserving pages individually failed.");
3037       }
3038 #endif
3039       return NULL;
3040     }
3041 
3042     bytes_remaining -= bytes_to_rq;
3043     next_alloc_addr += bytes_to_rq;
3044     count++;
3045   }
3046   // Although the memory is allocated individually, it is returned as one.
3047   // NMT records it as one block.
3048   if ((flags & MEM_COMMIT) != 0) {
3049     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3050   } else {
3051     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3052   }
3053 
3054   // made it this far, success
3055   return p_buf;
3056 }
3057 
3058 
3059 
3060 void os::large_page_init() {
3061   if (!UseLargePages) return;
3062 
3063   // print a warning if any large page related flag is specified on command line
3064   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3065                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3066   bool success = false;
3067 
3068 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3069   if (request_lock_memory_privilege()) {
3070     size_t s = GetLargePageMinimum();
3071     if (s) {
3072 #if defined(IA32) || defined(AMD64)
3073       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3074         WARN("JVM cannot use large pages bigger than 4mb.");
3075       } else {
3076 #endif
3077         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3078           _large_page_size = LargePageSizeInBytes;
3079         } else {
3080           _large_page_size = s;
3081         }
3082         success = true;
3083 #if defined(IA32) || defined(AMD64)
3084       }
3085 #endif
3086     } else {
3087       WARN("Large page is not supported by the processor.");
3088     }
3089   } else {
3090     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3091   }
3092 #undef WARN
3093 
3094   const size_t default_page_size = (size_t) vm_page_size();
3095   if (success && _large_page_size > default_page_size) {
3096     _page_sizes[0] = _large_page_size;
3097     _page_sizes[1] = default_page_size;
3098     _page_sizes[2] = 0;
3099   }
3100 
3101   cleanup_after_large_page_init();
3102   UseLargePages = success;
3103 }
3104 
3105 // On win32, one cannot release just a part of reserved memory, it's an
3106 // all or nothing deal.  When we split a reservation, we must break the
3107 // reservation into two reservations.
3108 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3109                                   bool realloc) {
3110   if (size > 0) {
3111     release_memory(base, size);
3112     if (realloc) {
3113       reserve_memory(split, base);
3114     }
3115     if (size != split) {
3116       reserve_memory(size - split, base + split);
3117     }
3118   }
3119 }
3120 
3121 // Multiple threads can race in this code but it's not possible to unmap small sections of
3122 // virtual space to get requested alignment, like posix-like os's.
3123 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3124 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3125   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3126          "Alignment must be a multiple of allocation granularity (page size)");
3127   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3128 
3129   size_t extra_size = size + alignment;
3130   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3131 
3132   char* aligned_base = NULL;
3133 
3134   do {
3135     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3136     if (extra_base == NULL) {
3137       return NULL;
3138     }
3139     // Do manual alignment
3140     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3141 
3142     os::release_memory(extra_base, extra_size);
3143 
3144     aligned_base = os::reserve_memory(size, aligned_base);
3145 
3146   } while (aligned_base == NULL);
3147 
3148   return aligned_base;
3149 }
3150 
3151 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3152   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3153          "reserve alignment");
3154   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3155   char* res;
3156   // note that if UseLargePages is on, all the areas that require interleaving
3157   // will go thru reserve_memory_special rather than thru here.
3158   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3159   if (!use_individual) {
3160     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3161   } else {
3162     elapsedTimer reserveTimer;
3163     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3164     // in numa interleaving, we have to allocate pages individually
3165     // (well really chunks of NUMAInterleaveGranularity size)
3166     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3167     if (res == NULL) {
3168       warning("NUMA page allocation failed");
3169     }
3170     if (Verbose && PrintMiscellaneous) {
3171       reserveTimer.stop();
3172       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3173                     reserveTimer.milliseconds(), reserveTimer.ticks());
3174     }
3175   }
3176   assert(res == NULL || addr == NULL || addr == res,
3177          "Unexpected address from reserve.");
3178 
3179   return res;
3180 }
3181 
3182 // Reserve memory at an arbitrary address, only if that area is
3183 // available (and not reserved for something else).
3184 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3185   // Windows os::reserve_memory() fails of the requested address range is
3186   // not avilable.
3187   return reserve_memory(bytes, requested_addr);
3188 }
3189 
3190 size_t os::large_page_size() {
3191   return _large_page_size;
3192 }
3193 
3194 bool os::can_commit_large_page_memory() {
3195   // Windows only uses large page memory when the entire region is reserved
3196   // and committed in a single VirtualAlloc() call. This may change in the
3197   // future, but with Windows 2003 it's not possible to commit on demand.
3198   return false;
3199 }
3200 
3201 bool os::can_execute_large_page_memory() {
3202   return true;
3203 }
3204 
3205 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3206                                  bool exec) {
3207   assert(UseLargePages, "only for large pages");
3208 
3209   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3210     return NULL; // Fallback to small pages.
3211   }
3212 
3213   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3214   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3215 
3216   // with large pages, there are two cases where we need to use Individual Allocation
3217   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3218   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3219   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3220     log_debug(pagesize)("Reserving large pages individually.");
3221 
3222     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3223     if (p_buf == NULL) {
3224       // give an appropriate warning message
3225       if (UseNUMAInterleaving) {
3226         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3227       }
3228       if (UseLargePagesIndividualAllocation) {
3229         warning("Individually allocated large pages failed, "
3230                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3231       }
3232       return NULL;
3233     }
3234 
3235     return p_buf;
3236 
3237   } else {
3238     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3239 
3240     // normal policy just allocate it all at once
3241     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3242     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3243     if (res != NULL) {
3244       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3245     }
3246 
3247     return res;
3248   }
3249 }
3250 
3251 bool os::release_memory_special(char* base, size_t bytes) {
3252   assert(base != NULL, "Sanity check");
3253   return release_memory(base, bytes);
3254 }
3255 
3256 void os::print_statistics() {
3257 }
3258 
3259 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3260   int err = os::get_last_error();
3261   char buf[256];
3262   size_t buf_len = os::lasterror(buf, sizeof(buf));
3263   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3264           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3265           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3266 }
3267 
3268 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3269   if (bytes == 0) {
3270     // Don't bother the OS with noops.
3271     return true;
3272   }
3273   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3274   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3275   // Don't attempt to print anything if the OS call fails. We're
3276   // probably low on resources, so the print itself may cause crashes.
3277 
3278   // unless we have NUMAInterleaving enabled, the range of a commit
3279   // is always within a reserve covered by a single VirtualAlloc
3280   // in that case we can just do a single commit for the requested size
3281   if (!UseNUMAInterleaving) {
3282     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3283       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3284       return false;
3285     }
3286     if (exec) {
3287       DWORD oldprot;
3288       // Windows doc says to use VirtualProtect to get execute permissions
3289       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3290         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3291         return false;
3292       }
3293     }
3294     return true;
3295   } else {
3296 
3297     // when NUMAInterleaving is enabled, the commit might cover a range that
3298     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3299     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3300     // returns represents the number of bytes that can be committed in one step.
3301     size_t bytes_remaining = bytes;
3302     char * next_alloc_addr = addr;
3303     while (bytes_remaining > 0) {
3304       MEMORY_BASIC_INFORMATION alloc_info;
3305       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3306       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3307       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3308                        PAGE_READWRITE) == NULL) {
3309         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3310                                             exec);)
3311         return false;
3312       }
3313       if (exec) {
3314         DWORD oldprot;
3315         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3316                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3317           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3318                                               exec);)
3319           return false;
3320         }
3321       }
3322       bytes_remaining -= bytes_to_rq;
3323       next_alloc_addr += bytes_to_rq;
3324     }
3325   }
3326   // if we made it this far, return true
3327   return true;
3328 }
3329 
3330 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3331                           bool exec) {
3332   // alignment_hint is ignored on this OS
3333   return pd_commit_memory(addr, size, exec);
3334 }
3335 
3336 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3337                                   const char* mesg) {
3338   assert(mesg != NULL, "mesg must be specified");
3339   if (!pd_commit_memory(addr, size, exec)) {
3340     warn_fail_commit_memory(addr, size, exec);
3341     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3342   }
3343 }
3344 
3345 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3346                                   size_t alignment_hint, bool exec,
3347                                   const char* mesg) {
3348   // alignment_hint is ignored on this OS
3349   pd_commit_memory_or_exit(addr, size, exec, mesg);
3350 }
3351 
3352 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3353   if (bytes == 0) {
3354     // Don't bother the OS with noops.
3355     return true;
3356   }
3357   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3358   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3359   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3360 }
3361 
3362 bool os::pd_release_memory(char* addr, size_t bytes) {
3363   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3364 }
3365 
3366 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3367   return os::commit_memory(addr, size, !ExecMem);
3368 }
3369 
3370 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3371   return os::uncommit_memory(addr, size);
3372 }
3373 
3374 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3375   uint count = 0;
3376   bool ret = false;
3377   size_t bytes_remaining = bytes;
3378   char * next_protect_addr = addr;
3379 
3380   // Use VirtualQuery() to get the chunk size.
3381   while (bytes_remaining) {
3382     MEMORY_BASIC_INFORMATION alloc_info;
3383     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3384       return false;
3385     }
3386 
3387     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3388     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3389     // but we don't distinguish here as both cases are protected by same API.
3390     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3391     warning("Failed protecting pages individually for chunk #%u", count);
3392     if (!ret) {
3393       return false;
3394     }
3395 
3396     bytes_remaining -= bytes_to_protect;
3397     next_protect_addr += bytes_to_protect;
3398     count++;
3399   }
3400   return ret;
3401 }
3402 
3403 // Set protections specified
3404 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3405                         bool is_committed) {
3406   unsigned int p = 0;
3407   switch (prot) {
3408   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3409   case MEM_PROT_READ: p = PAGE_READONLY; break;
3410   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3411   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3412   default:
3413     ShouldNotReachHere();
3414   }
3415 
3416   DWORD old_status;
3417 
3418   // Strange enough, but on Win32 one can change protection only for committed
3419   // memory, not a big deal anyway, as bytes less or equal than 64K
3420   if (!is_committed) {
3421     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3422                           "cannot commit protection page");
3423   }
3424   // One cannot use os::guard_memory() here, as on Win32 guard page
3425   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3426   //
3427   // Pages in the region become guard pages. Any attempt to access a guard page
3428   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3429   // the guard page status. Guard pages thus act as a one-time access alarm.
3430   bool ret;
3431   if (UseNUMAInterleaving) {
3432     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3433     // so we must protect the chunks individually.
3434     ret = protect_pages_individually(addr, bytes, p, &old_status);
3435   } else {
3436     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3437   }
3438 #ifdef ASSERT
3439   if (!ret) {
3440     int err = os::get_last_error();
3441     char buf[256];
3442     size_t buf_len = os::lasterror(buf, sizeof(buf));
3443     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3444           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3445           buf_len != 0 ? buf : "<no_error_string>", err);
3446   }
3447 #endif
3448   return ret;
3449 }
3450 
3451 bool os::guard_memory(char* addr, size_t bytes) {
3452   DWORD old_status;
3453   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3454 }
3455 
3456 bool os::unguard_memory(char* addr, size_t bytes) {
3457   DWORD old_status;
3458   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3459 }
3460 
3461 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3462 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3463 void os::numa_make_global(char *addr, size_t bytes)    { }
3464 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3465 bool os::numa_topology_changed()                       { return false; }
3466 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3467 int os::numa_get_group_id()                            { return 0; }
3468 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3469   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3470     // Provide an answer for UMA systems
3471     ids[0] = 0;
3472     return 1;
3473   } else {
3474     // check for size bigger than actual groups_num
3475     size = MIN2(size, numa_get_groups_num());
3476     for (int i = 0; i < (int)size; i++) {
3477       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3478     }
3479     return size;
3480   }
3481 }
3482 
3483 bool os::get_page_info(char *start, page_info* info) {
3484   return false;
3485 }
3486 
3487 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3488                      page_info* page_found) {
3489   return end;
3490 }
3491 
3492 char* os::non_memory_address_word() {
3493   // Must never look like an address returned by reserve_memory,
3494   // even in its subfields (as defined by the CPU immediate fields,
3495   // if the CPU splits constants across multiple instructions).
3496   return (char*)-1;
3497 }
3498 
3499 #define MAX_ERROR_COUNT 100
3500 #define SYS_THREAD_ERROR 0xffffffffUL
3501 
3502 void os::pd_start_thread(Thread* thread) {
3503   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3504   // Returns previous suspend state:
3505   // 0:  Thread was not suspended
3506   // 1:  Thread is running now
3507   // >1: Thread is still suspended.
3508   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3509 }
3510 
3511 class HighResolutionInterval : public CHeapObj<mtThread> {
3512   // The default timer resolution seems to be 10 milliseconds.
3513   // (Where is this written down?)
3514   // If someone wants to sleep for only a fraction of the default,
3515   // then we set the timer resolution down to 1 millisecond for
3516   // the duration of their interval.
3517   // We carefully set the resolution back, since otherwise we
3518   // seem to incur an overhead (3%?) that we don't need.
3519   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3520   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3521   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3522   // timeBeginPeriod() if the relative error exceeded some threshold.
3523   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3524   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3525   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3526   // resolution timers running.
3527  private:
3528   jlong resolution;
3529  public:
3530   HighResolutionInterval(jlong ms) {
3531     resolution = ms % 10L;
3532     if (resolution != 0) {
3533       MMRESULT result = timeBeginPeriod(1L);
3534     }
3535   }
3536   ~HighResolutionInterval() {
3537     if (resolution != 0) {
3538       MMRESULT result = timeEndPeriod(1L);
3539     }
3540     resolution = 0L;
3541   }
3542 };
3543 
3544 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3545   jlong limit = (jlong) MAXDWORD;
3546 
3547   while (ms > limit) {
3548     int res;
3549     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3550       return res;
3551     }
3552     ms -= limit;
3553   }
3554 
3555   assert(thread == Thread::current(), "thread consistency check");
3556   OSThread* osthread = thread->osthread();
3557   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3558   int result;
3559   if (interruptable) {
3560     assert(thread->is_Java_thread(), "must be java thread");
3561     JavaThread *jt = (JavaThread *) thread;
3562     ThreadBlockInVM tbivm(jt);
3563 
3564     jt->set_suspend_equivalent();
3565     // cleared by handle_special_suspend_equivalent_condition() or
3566     // java_suspend_self() via check_and_wait_while_suspended()
3567 
3568     HANDLE events[1];
3569     events[0] = osthread->interrupt_event();
3570     HighResolutionInterval *phri=NULL;
3571     if (!ForceTimeHighResolution) {
3572       phri = new HighResolutionInterval(ms);
3573     }
3574     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3575       result = OS_TIMEOUT;
3576     } else {
3577       ResetEvent(osthread->interrupt_event());
3578       osthread->set_interrupted(false);
3579       result = OS_INTRPT;
3580     }
3581     delete phri; //if it is NULL, harmless
3582 
3583     // were we externally suspended while we were waiting?
3584     jt->check_and_wait_while_suspended();
3585   } else {
3586     assert(!thread->is_Java_thread(), "must not be java thread");
3587     Sleep((long) ms);
3588     result = OS_TIMEOUT;
3589   }
3590   return result;
3591 }
3592 
3593 // Short sleep, direct OS call.
3594 //
3595 // ms = 0, means allow others (if any) to run.
3596 //
3597 void os::naked_short_sleep(jlong ms) {
3598   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3599   Sleep(ms);
3600 }
3601 
3602 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3603 void os::infinite_sleep() {
3604   while (true) {    // sleep forever ...
3605     Sleep(100000);  // ... 100 seconds at a time
3606   }
3607 }
3608 
3609 typedef BOOL (WINAPI * STTSignature)(void);
3610 
3611 void os::naked_yield() {
3612   // Consider passing back the return value from SwitchToThread().
3613   SwitchToThread();
3614 }
3615 
3616 // Win32 only gives you access to seven real priorities at a time,
3617 // so we compress Java's ten down to seven.  It would be better
3618 // if we dynamically adjusted relative priorities.
3619 
3620 int os::java_to_os_priority[CriticalPriority + 1] = {
3621   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3622   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3623   THREAD_PRIORITY_LOWEST,                       // 2
3624   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3625   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3626   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3627   THREAD_PRIORITY_NORMAL,                       // 6
3628   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3629   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3630   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3631   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3632   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3633 };
3634 
3635 int prio_policy1[CriticalPriority + 1] = {
3636   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3637   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3638   THREAD_PRIORITY_LOWEST,                       // 2
3639   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3640   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3641   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3642   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3643   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3644   THREAD_PRIORITY_HIGHEST,                      // 8
3645   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3646   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3647   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3648 };
3649 
3650 static int prio_init() {
3651   // If ThreadPriorityPolicy is 1, switch tables
3652   if (ThreadPriorityPolicy == 1) {
3653     int i;
3654     for (i = 0; i < CriticalPriority + 1; i++) {
3655       os::java_to_os_priority[i] = prio_policy1[i];
3656     }
3657   }
3658   if (UseCriticalJavaThreadPriority) {
3659     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3660   }
3661   return 0;
3662 }
3663 
3664 OSReturn os::set_native_priority(Thread* thread, int priority) {
3665   if (!UseThreadPriorities) return OS_OK;
3666   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3667   return ret ? OS_OK : OS_ERR;
3668 }
3669 
3670 OSReturn os::get_native_priority(const Thread* const thread,
3671                                  int* priority_ptr) {
3672   if (!UseThreadPriorities) {
3673     *priority_ptr = java_to_os_priority[NormPriority];
3674     return OS_OK;
3675   }
3676   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3677   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3678     assert(false, "GetThreadPriority failed");
3679     return OS_ERR;
3680   }
3681   *priority_ptr = os_prio;
3682   return OS_OK;
3683 }
3684 
3685 
3686 // Hint to the underlying OS that a task switch would not be good.
3687 // Void return because it's a hint and can fail.
3688 void os::hint_no_preempt() {}
3689 
3690 void os::interrupt(Thread* thread) {
3691   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3692          Threads_lock->owned_by_self(),
3693          "possibility of dangling Thread pointer");
3694 
3695   OSThread* osthread = thread->osthread();
3696   osthread->set_interrupted(true);
3697   // More than one thread can get here with the same value of osthread,
3698   // resulting in multiple notifications.  We do, however, want the store
3699   // to interrupted() to be visible to other threads before we post
3700   // the interrupt event.
3701   OrderAccess::release();
3702   SetEvent(osthread->interrupt_event());
3703   // For JSR166:  unpark after setting status
3704   if (thread->is_Java_thread()) {
3705     ((JavaThread*)thread)->parker()->unpark();
3706   }
3707 
3708   ParkEvent * ev = thread->_ParkEvent;
3709   if (ev != NULL) ev->unpark();
3710 }
3711 
3712 
3713 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3714   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3715          "possibility of dangling Thread pointer");
3716 
3717   OSThread* osthread = thread->osthread();
3718   // There is no synchronization between the setting of the interrupt
3719   // and it being cleared here. It is critical - see 6535709 - that
3720   // we only clear the interrupt state, and reset the interrupt event,
3721   // if we are going to report that we were indeed interrupted - else
3722   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3723   // depending on the timing. By checking thread interrupt event to see
3724   // if the thread gets real interrupt thus prevent spurious wakeup.
3725   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3726   if (interrupted && clear_interrupted) {
3727     osthread->set_interrupted(false);
3728     ResetEvent(osthread->interrupt_event());
3729   } // Otherwise leave the interrupted state alone
3730 
3731   return interrupted;
3732 }
3733 
3734 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3735 ExtendedPC os::get_thread_pc(Thread* thread) {
3736   CONTEXT context;
3737   context.ContextFlags = CONTEXT_CONTROL;
3738   HANDLE handle = thread->osthread()->thread_handle();
3739 #ifdef _M_IA64
3740   assert(0, "Fix get_thread_pc");
3741   return ExtendedPC(NULL);
3742 #else
3743   if (GetThreadContext(handle, &context)) {
3744 #ifdef _M_AMD64
3745     return ExtendedPC((address) context.Rip);
3746 #else
3747     return ExtendedPC((address) context.Eip);
3748 #endif
3749   } else {
3750     return ExtendedPC(NULL);
3751   }
3752 #endif
3753 }
3754 
3755 // GetCurrentThreadId() returns DWORD
3756 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3757 
3758 static int _initial_pid = 0;
3759 
3760 int os::current_process_id() {
3761   return (_initial_pid ? _initial_pid : _getpid());
3762 }
3763 
3764 int    os::win32::_vm_page_size              = 0;
3765 int    os::win32::_vm_allocation_granularity = 0;
3766 int    os::win32::_processor_type            = 0;
3767 // Processor level is not available on non-NT systems, use vm_version instead
3768 int    os::win32::_processor_level           = 0;
3769 julong os::win32::_physical_memory           = 0;
3770 size_t os::win32::_default_stack_size        = 0;
3771 
3772 intx          os::win32::_os_thread_limit    = 0;
3773 volatile intx os::win32::_os_thread_count    = 0;
3774 
3775 bool   os::win32::_is_windows_server         = false;
3776 
3777 // 6573254
3778 // Currently, the bug is observed across all the supported Windows releases,
3779 // including the latest one (as of this writing - Windows Server 2012 R2)
3780 bool   os::win32::_has_exit_bug              = true;
3781 
3782 void os::win32::initialize_system_info() {
3783   SYSTEM_INFO si;
3784   GetSystemInfo(&si);
3785   _vm_page_size    = si.dwPageSize;
3786   _vm_allocation_granularity = si.dwAllocationGranularity;
3787   _processor_type  = si.dwProcessorType;
3788   _processor_level = si.wProcessorLevel;
3789   set_processor_count(si.dwNumberOfProcessors);
3790 
3791   MEMORYSTATUSEX ms;
3792   ms.dwLength = sizeof(ms);
3793 
3794   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3795   // dwMemoryLoad (% of memory in use)
3796   GlobalMemoryStatusEx(&ms);
3797   _physical_memory = ms.ullTotalPhys;
3798 
3799   if (FLAG_IS_DEFAULT(MaxRAM)) {
3800     // Adjust MaxRAM according to the maximum virtual address space available.
3801     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3802   }
3803 
3804   OSVERSIONINFOEX oi;
3805   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3806   GetVersionEx((OSVERSIONINFO*)&oi);
3807   switch (oi.dwPlatformId) {
3808   case VER_PLATFORM_WIN32_NT:
3809     {
3810       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3811       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3812           oi.wProductType == VER_NT_SERVER) {
3813         _is_windows_server = true;
3814       }
3815     }
3816     break;
3817   default: fatal("Unknown platform");
3818   }
3819 
3820   _default_stack_size = os::current_stack_size();
3821   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3822   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3823          "stack size not a multiple of page size");
3824 
3825   initialize_performance_counter();
3826 }
3827 
3828 
3829 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3830                                       int ebuflen) {
3831   char path[MAX_PATH];
3832   DWORD size;
3833   DWORD pathLen = (DWORD)sizeof(path);
3834   HINSTANCE result = NULL;
3835 
3836   // only allow library name without path component
3837   assert(strchr(name, '\\') == NULL, "path not allowed");
3838   assert(strchr(name, ':') == NULL, "path not allowed");
3839   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3840     jio_snprintf(ebuf, ebuflen,
3841                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3842     return NULL;
3843   }
3844 
3845   // search system directory
3846   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3847     if (size >= pathLen) {
3848       return NULL; // truncated
3849     }
3850     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3851       return NULL; // truncated
3852     }
3853     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3854       return result;
3855     }
3856   }
3857 
3858   // try Windows directory
3859   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3860     if (size >= pathLen) {
3861       return NULL; // truncated
3862     }
3863     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3864       return NULL; // truncated
3865     }
3866     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3867       return result;
3868     }
3869   }
3870 
3871   jio_snprintf(ebuf, ebuflen,
3872                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3873   return NULL;
3874 }
3875 
3876 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3877 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3878 
3879 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3880   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3881   return TRUE;
3882 }
3883 
3884 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3885   // Basic approach:
3886   //  - Each exiting thread registers its intent to exit and then does so.
3887   //  - A thread trying to terminate the process must wait for all
3888   //    threads currently exiting to complete their exit.
3889 
3890   if (os::win32::has_exit_bug()) {
3891     // The array holds handles of the threads that have started exiting by calling
3892     // _endthreadex().
3893     // Should be large enough to avoid blocking the exiting thread due to lack of
3894     // a free slot.
3895     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3896     static int handle_count = 0;
3897 
3898     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3899     static CRITICAL_SECTION crit_sect;
3900     static volatile jint process_exiting = 0;
3901     int i, j;
3902     DWORD res;
3903     HANDLE hproc, hthr;
3904 
3905     // We only attempt to register threads until a process exiting
3906     // thread manages to set the process_exiting flag. Any threads
3907     // that come through here after the process_exiting flag is set
3908     // are unregistered and will be caught in the SuspendThread()
3909     // infinite loop below.
3910     bool registered = false;
3911 
3912     // The first thread that reached this point, initializes the critical section.
3913     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3914       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3915     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3916       if (what != EPT_THREAD) {
3917         // Atomically set process_exiting before the critical section
3918         // to increase the visibility between racing threads.
3919         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3920       }
3921       EnterCriticalSection(&crit_sect);
3922 
3923       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3924         // Remove from the array those handles of the threads that have completed exiting.
3925         for (i = 0, j = 0; i < handle_count; ++i) {
3926           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3927           if (res == WAIT_TIMEOUT) {
3928             handles[j++] = handles[i];
3929           } else {
3930             if (res == WAIT_FAILED) {
3931               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3932                       GetLastError(), __FILE__, __LINE__);
3933             }
3934             // Don't keep the handle, if we failed waiting for it.
3935             CloseHandle(handles[i]);
3936           }
3937         }
3938 
3939         // If there's no free slot in the array of the kept handles, we'll have to
3940         // wait until at least one thread completes exiting.
3941         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3942           // Raise the priority of the oldest exiting thread to increase its chances
3943           // to complete sooner.
3944           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3945           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3946           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3947             i = (res - WAIT_OBJECT_0);
3948             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3949             for (; i < handle_count; ++i) {
3950               handles[i] = handles[i + 1];
3951             }
3952           } else {
3953             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3954                     (res == WAIT_FAILED ? "failed" : "timed out"),
3955                     GetLastError(), __FILE__, __LINE__);
3956             // Don't keep handles, if we failed waiting for them.
3957             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3958               CloseHandle(handles[i]);
3959             }
3960             handle_count = 0;
3961           }
3962         }
3963 
3964         // Store a duplicate of the current thread handle in the array of handles.
3965         hproc = GetCurrentProcess();
3966         hthr = GetCurrentThread();
3967         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3968                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3969           warning("DuplicateHandle failed (%u) in %s: %d\n",
3970                   GetLastError(), __FILE__, __LINE__);
3971 
3972           // We can't register this thread (no more handles) so this thread
3973           // may be racing with a thread that is calling exit(). If the thread
3974           // that is calling exit() has managed to set the process_exiting
3975           // flag, then this thread will be caught in the SuspendThread()
3976           // infinite loop below which closes that race. A small timing
3977           // window remains before the process_exiting flag is set, but it
3978           // is only exposed when we are out of handles.
3979         } else {
3980           ++handle_count;
3981           registered = true;
3982 
3983           // The current exiting thread has stored its handle in the array, and now
3984           // should leave the critical section before calling _endthreadex().
3985         }
3986 
3987       } else if (what != EPT_THREAD && handle_count > 0) {
3988         jlong start_time, finish_time, timeout_left;
3989         // Before ending the process, make sure all the threads that had called
3990         // _endthreadex() completed.
3991 
3992         // Set the priority level of the current thread to the same value as
3993         // the priority level of exiting threads.
3994         // This is to ensure it will be given a fair chance to execute if
3995         // the timeout expires.
3996         hthr = GetCurrentThread();
3997         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3998         start_time = os::javaTimeNanos();
3999         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
4000         for (i = 0; ; ) {
4001           int portion_count = handle_count - i;
4002           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
4003             portion_count = MAXIMUM_WAIT_OBJECTS;
4004           }
4005           for (j = 0; j < portion_count; ++j) {
4006             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
4007           }
4008           timeout_left = (finish_time - start_time) / 1000000L;
4009           if (timeout_left < 0) {
4010             timeout_left = 0;
4011           }
4012           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
4013           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
4014             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4015                     (res == WAIT_FAILED ? "failed" : "timed out"),
4016                     GetLastError(), __FILE__, __LINE__);
4017             // Reset portion_count so we close the remaining
4018             // handles due to this error.
4019             portion_count = handle_count - i;
4020           }
4021           for (j = 0; j < portion_count; ++j) {
4022             CloseHandle(handles[i + j]);
4023           }
4024           if ((i += portion_count) >= handle_count) {
4025             break;
4026           }
4027           start_time = os::javaTimeNanos();
4028         }
4029         handle_count = 0;
4030       }
4031 
4032       LeaveCriticalSection(&crit_sect);
4033     }
4034 
4035     if (!registered &&
4036         OrderAccess::load_acquire(&process_exiting) != 0 &&
4037         process_exiting != (jint)GetCurrentThreadId()) {
4038       // Some other thread is about to call exit(), so we don't let
4039       // the current unregistered thread proceed to exit() or _endthreadex()
4040       while (true) {
4041         SuspendThread(GetCurrentThread());
4042         // Avoid busy-wait loop, if SuspendThread() failed.
4043         Sleep(EXIT_TIMEOUT);
4044       }
4045     }
4046   }
4047 
4048   // We are here if either
4049   // - there's no 'race at exit' bug on this OS release;
4050   // - initialization of the critical section failed (unlikely);
4051   // - the current thread has registered itself and left the critical section;
4052   // - the process-exiting thread has raised the flag and left the critical section.
4053   if (what == EPT_THREAD) {
4054     _endthreadex((unsigned)exit_code);
4055   } else if (what == EPT_PROCESS) {
4056     ::exit(exit_code);
4057   } else {
4058     _exit(exit_code);
4059   }
4060 
4061   // Should not reach here
4062   return exit_code;
4063 }
4064 
4065 #undef EXIT_TIMEOUT
4066 
4067 void os::win32::setmode_streams() {
4068   _setmode(_fileno(stdin), _O_BINARY);
4069   _setmode(_fileno(stdout), _O_BINARY);
4070   _setmode(_fileno(stderr), _O_BINARY);
4071 }
4072 
4073 
4074 bool os::is_debugger_attached() {
4075   return IsDebuggerPresent() ? true : false;
4076 }
4077 
4078 
4079 void os::wait_for_keypress_at_exit(void) {
4080   if (PauseAtExit) {
4081     fprintf(stderr, "Press any key to continue...\n");
4082     fgetc(stdin);
4083   }
4084 }
4085 
4086 
4087 bool os::message_box(const char* title, const char* message) {
4088   int result = MessageBox(NULL, message, title,
4089                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4090   return result == IDYES;
4091 }
4092 
4093 #ifndef PRODUCT
4094 #ifndef _WIN64
4095 // Helpers to check whether NX protection is enabled
4096 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4097   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4098       pex->ExceptionRecord->NumberParameters > 0 &&
4099       pex->ExceptionRecord->ExceptionInformation[0] ==
4100       EXCEPTION_INFO_EXEC_VIOLATION) {
4101     return EXCEPTION_EXECUTE_HANDLER;
4102   }
4103   return EXCEPTION_CONTINUE_SEARCH;
4104 }
4105 
4106 void nx_check_protection() {
4107   // If NX is enabled we'll get an exception calling into code on the stack
4108   char code[] = { (char)0xC3 }; // ret
4109   void *code_ptr = (void *)code;
4110   __try {
4111     __asm call code_ptr
4112   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4113     tty->print_raw_cr("NX protection detected.");
4114   }
4115 }
4116 #endif // _WIN64
4117 #endif // PRODUCT
4118 
4119 // This is called _before_ the global arguments have been parsed
4120 void os::init(void) {
4121   _initial_pid = _getpid();
4122 
4123   init_random(1234567);
4124 
4125   win32::initialize_system_info();
4126   win32::setmode_streams();
4127   init_page_sizes((size_t) win32::vm_page_size());
4128 
4129   // This may be overridden later when argument processing is done.
4130   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4131 
4132   // Initialize main_process and main_thread
4133   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4134   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4135                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4136     fatal("DuplicateHandle failed\n");
4137   }
4138   main_thread_id = (int) GetCurrentThreadId();
4139 
4140   // initialize fast thread access - only used for 32-bit
4141   win32::initialize_thread_ptr_offset();
4142 }
4143 
4144 // To install functions for atexit processing
4145 extern "C" {
4146   static void perfMemory_exit_helper() {
4147     perfMemory_exit();
4148   }
4149 }
4150 
4151 static jint initSock();
4152 
4153 // this is called _after_ the global arguments have been parsed
4154 jint os::init_2(void) {
4155   // Allocate a single page and mark it as readable for safepoint polling
4156   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4157   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4158 
4159   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4160   guarantee(return_page != NULL, "Commit Failed for polling page");
4161 
4162   os::set_polling_page(polling_page);
4163   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4164 
4165   if (!UseMembar) {
4166     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4167     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4168 
4169     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4170     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4171 
4172     os::set_memory_serialize_page(mem_serialize_page);
4173     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4174   }
4175 
4176   // Setup Windows Exceptions
4177 
4178   // for debugging float code generation bugs
4179   if (ForceFloatExceptions) {
4180 #ifndef  _WIN64
4181     static long fp_control_word = 0;
4182     __asm { fstcw fp_control_word }
4183     // see Intel PPro Manual, Vol. 2, p 7-16
4184     const long precision = 0x20;
4185     const long underflow = 0x10;
4186     const long overflow  = 0x08;
4187     const long zero_div  = 0x04;
4188     const long denorm    = 0x02;
4189     const long invalid   = 0x01;
4190     fp_control_word |= invalid;
4191     __asm { fldcw fp_control_word }
4192 #endif
4193   }
4194 
4195   // If stack_commit_size is 0, windows will reserve the default size,
4196   // but only commit a small portion of it.
4197   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4198   size_t default_reserve_size = os::win32::default_stack_size();
4199   size_t actual_reserve_size = stack_commit_size;
4200   if (stack_commit_size < default_reserve_size) {
4201     // If stack_commit_size == 0, we want this too
4202     actual_reserve_size = default_reserve_size;
4203   }
4204 
4205   // Check minimum allowable stack size for thread creation and to initialize
4206   // the java system classes, including StackOverflowError - depends on page
4207   // size.  Add two 4K pages for compiler2 recursion in main thread.
4208   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4209   // class initialization depending on 32 or 64 bit VM.
4210   size_t min_stack_allowed =
4211             (size_t)(JavaThread::stack_guard_zone_size() +
4212                      JavaThread::stack_shadow_zone_size() +
4213                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4214 
4215   min_stack_allowed = align_size_up(min_stack_allowed, os::vm_page_size());
4216 
4217   if (actual_reserve_size < min_stack_allowed) {
4218     tty->print_cr("\nThe Java thread stack size specified is too small. "
4219                   "Specify at least %dk",
4220                   min_stack_allowed / K);
4221     return JNI_ERR;
4222   }
4223 
4224   JavaThread::set_stack_size_at_create(stack_commit_size);
4225 
4226   // Calculate theoretical max. size of Threads to guard gainst artifical
4227   // out-of-memory situations, where all available address-space has been
4228   // reserved by thread stacks.
4229   assert(actual_reserve_size != 0, "Must have a stack");
4230 
4231   // Calculate the thread limit when we should start doing Virtual Memory
4232   // banging. Currently when the threads will have used all but 200Mb of space.
4233   //
4234   // TODO: consider performing a similar calculation for commit size instead
4235   // as reserve size, since on a 64-bit platform we'll run into that more
4236   // often than running out of virtual memory space.  We can use the
4237   // lower value of the two calculations as the os_thread_limit.
4238   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4239   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4240 
4241   // at exit methods are called in the reverse order of their registration.
4242   // there is no limit to the number of functions registered. atexit does
4243   // not set errno.
4244 
4245   if (PerfAllowAtExitRegistration) {
4246     // only register atexit functions if PerfAllowAtExitRegistration is set.
4247     // atexit functions can be delayed until process exit time, which
4248     // can be problematic for embedded VM situations. Embedded VMs should
4249     // call DestroyJavaVM() to assure that VM resources are released.
4250 
4251     // note: perfMemory_exit_helper atexit function may be removed in
4252     // the future if the appropriate cleanup code can be added to the
4253     // VM_Exit VMOperation's doit method.
4254     if (atexit(perfMemory_exit_helper) != 0) {
4255       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4256     }
4257   }
4258 
4259 #ifndef _WIN64
4260   // Print something if NX is enabled (win32 on AMD64)
4261   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4262 #endif
4263 
4264   // initialize thread priority policy
4265   prio_init();
4266 
4267   if (UseNUMA && !ForceNUMA) {
4268     UseNUMA = false; // We don't fully support this yet
4269   }
4270 
4271   if (UseNUMAInterleaving) {
4272     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4273     bool success = numa_interleaving_init();
4274     if (!success) UseNUMAInterleaving = false;
4275   }
4276 
4277   if (initSock() != JNI_OK) {
4278     return JNI_ERR;
4279   }
4280 
4281   return JNI_OK;
4282 }
4283 
4284 // Mark the polling page as unreadable
4285 void os::make_polling_page_unreadable(void) {
4286   DWORD old_status;
4287   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4288                       PAGE_NOACCESS, &old_status)) {
4289     fatal("Could not disable polling page");
4290   }
4291 }
4292 
4293 // Mark the polling page as readable
4294 void os::make_polling_page_readable(void) {
4295   DWORD old_status;
4296   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4297                       PAGE_READONLY, &old_status)) {
4298     fatal("Could not enable polling page");
4299   }
4300 }
4301 
4302 
4303 int os::stat(const char *path, struct stat *sbuf) {
4304   char pathbuf[MAX_PATH];
4305   if (strlen(path) > MAX_PATH - 1) {
4306     errno = ENAMETOOLONG;
4307     return -1;
4308   }
4309   os::native_path(strcpy(pathbuf, path));
4310   int ret = ::stat(pathbuf, sbuf);
4311   if (sbuf != NULL && UseUTCFileTimestamp) {
4312     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4313     // the system timezone and so can return different values for the
4314     // same file if/when daylight savings time changes.  This adjustment
4315     // makes sure the same timestamp is returned regardless of the TZ.
4316     //
4317     // See:
4318     // http://msdn.microsoft.com/library/
4319     //   default.asp?url=/library/en-us/sysinfo/base/
4320     //   time_zone_information_str.asp
4321     // and
4322     // http://msdn.microsoft.com/library/default.asp?url=
4323     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4324     //
4325     // NOTE: there is a insidious bug here:  If the timezone is changed
4326     // after the call to stat() but before 'GetTimeZoneInformation()', then
4327     // the adjustment we do here will be wrong and we'll return the wrong
4328     // value (which will likely end up creating an invalid class data
4329     // archive).  Absent a better API for this, or some time zone locking
4330     // mechanism, we'll have to live with this risk.
4331     TIME_ZONE_INFORMATION tz;
4332     DWORD tzid = GetTimeZoneInformation(&tz);
4333     int daylightBias =
4334       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4335     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4336   }
4337   return ret;
4338 }
4339 
4340 
4341 #define FT2INT64(ft) \
4342   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4343 
4344 
4345 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4346 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4347 // of a thread.
4348 //
4349 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4350 // the fast estimate available on the platform.
4351 
4352 // current_thread_cpu_time() is not optimized for Windows yet
4353 jlong os::current_thread_cpu_time() {
4354   // return user + sys since the cost is the same
4355   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4356 }
4357 
4358 jlong os::thread_cpu_time(Thread* thread) {
4359   // consistent with what current_thread_cpu_time() returns.
4360   return os::thread_cpu_time(thread, true /* user+sys */);
4361 }
4362 
4363 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4364   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4365 }
4366 
4367 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4368   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4369   // If this function changes, os::is_thread_cpu_time_supported() should too
4370   FILETIME CreationTime;
4371   FILETIME ExitTime;
4372   FILETIME KernelTime;
4373   FILETIME UserTime;
4374 
4375   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4376                       &ExitTime, &KernelTime, &UserTime) == 0) {
4377     return -1;
4378   } else if (user_sys_cpu_time) {
4379     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4380   } else {
4381     return FT2INT64(UserTime) * 100;
4382   }
4383 }
4384 
4385 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4386   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4387   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4388   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4389   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4390 }
4391 
4392 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4393   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4394   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4395   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4396   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4397 }
4398 
4399 bool os::is_thread_cpu_time_supported() {
4400   // see os::thread_cpu_time
4401   FILETIME CreationTime;
4402   FILETIME ExitTime;
4403   FILETIME KernelTime;
4404   FILETIME UserTime;
4405 
4406   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4407                       &KernelTime, &UserTime) == 0) {
4408     return false;
4409   } else {
4410     return true;
4411   }
4412 }
4413 
4414 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4415 // It does have primitives (PDH API) to get CPU usage and run queue length.
4416 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4417 // If we wanted to implement loadavg on Windows, we have a few options:
4418 //
4419 // a) Query CPU usage and run queue length and "fake" an answer by
4420 //    returning the CPU usage if it's under 100%, and the run queue
4421 //    length otherwise.  It turns out that querying is pretty slow
4422 //    on Windows, on the order of 200 microseconds on a fast machine.
4423 //    Note that on the Windows the CPU usage value is the % usage
4424 //    since the last time the API was called (and the first call
4425 //    returns 100%), so we'd have to deal with that as well.
4426 //
4427 // b) Sample the "fake" answer using a sampling thread and store
4428 //    the answer in a global variable.  The call to loadavg would
4429 //    just return the value of the global, avoiding the slow query.
4430 //
4431 // c) Sample a better answer using exponential decay to smooth the
4432 //    value.  This is basically the algorithm used by UNIX kernels.
4433 //
4434 // Note that sampling thread starvation could affect both (b) and (c).
4435 int os::loadavg(double loadavg[], int nelem) {
4436   return -1;
4437 }
4438 
4439 
4440 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4441 bool os::dont_yield() {
4442   return DontYieldALot;
4443 }
4444 
4445 // This method is a slightly reworked copy of JDK's sysOpen
4446 // from src/windows/hpi/src/sys_api_md.c
4447 
4448 int os::open(const char *path, int oflag, int mode) {
4449   char pathbuf[MAX_PATH];
4450 
4451   if (strlen(path) > MAX_PATH - 1) {
4452     errno = ENAMETOOLONG;
4453     return -1;
4454   }
4455   os::native_path(strcpy(pathbuf, path));
4456   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4457 }
4458 
4459 FILE* os::open(int fd, const char* mode) {
4460   return ::_fdopen(fd, mode);
4461 }
4462 
4463 // Is a (classpath) directory empty?
4464 bool os::dir_is_empty(const char* path) {
4465   WIN32_FIND_DATA fd;
4466   HANDLE f = FindFirstFile(path, &fd);
4467   if (f == INVALID_HANDLE_VALUE) {
4468     return true;
4469   }
4470   FindClose(f);
4471   return false;
4472 }
4473 
4474 // create binary file, rewriting existing file if required
4475 int os::create_binary_file(const char* path, bool rewrite_existing) {
4476   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4477   if (!rewrite_existing) {
4478     oflags |= _O_EXCL;
4479   }
4480   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4481 }
4482 
4483 // return current position of file pointer
4484 jlong os::current_file_offset(int fd) {
4485   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4486 }
4487 
4488 // move file pointer to the specified offset
4489 jlong os::seek_to_file_offset(int fd, jlong offset) {
4490   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4491 }
4492 
4493 
4494 jlong os::lseek(int fd, jlong offset, int whence) {
4495   return (jlong) ::_lseeki64(fd, offset, whence);
4496 }
4497 
4498 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4499   OVERLAPPED ov;
4500   DWORD nread;
4501   BOOL result;
4502 
4503   ZeroMemory(&ov, sizeof(ov));
4504   ov.Offset = (DWORD)offset;
4505   ov.OffsetHigh = (DWORD)(offset >> 32);
4506 
4507   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4508 
4509   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4510 
4511   return result ? nread : 0;
4512 }
4513 
4514 
4515 // This method is a slightly reworked copy of JDK's sysNativePath
4516 // from src/windows/hpi/src/path_md.c
4517 
4518 // Convert a pathname to native format.  On win32, this involves forcing all
4519 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4520 // sometimes rejects '/') and removing redundant separators.  The input path is
4521 // assumed to have been converted into the character encoding used by the local
4522 // system.  Because this might be a double-byte encoding, care is taken to
4523 // treat double-byte lead characters correctly.
4524 //
4525 // This procedure modifies the given path in place, as the result is never
4526 // longer than the original.  There is no error return; this operation always
4527 // succeeds.
4528 char * os::native_path(char *path) {
4529   char *src = path, *dst = path, *end = path;
4530   char *colon = NULL;  // If a drive specifier is found, this will
4531                        // point to the colon following the drive letter
4532 
4533   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4534   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4535           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4536 
4537   // Check for leading separators
4538 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4539   while (isfilesep(*src)) {
4540     src++;
4541   }
4542 
4543   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4544     // Remove leading separators if followed by drive specifier.  This
4545     // hack is necessary to support file URLs containing drive
4546     // specifiers (e.g., "file://c:/path").  As a side effect,
4547     // "/c:/path" can be used as an alternative to "c:/path".
4548     *dst++ = *src++;
4549     colon = dst;
4550     *dst++ = ':';
4551     src++;
4552   } else {
4553     src = path;
4554     if (isfilesep(src[0]) && isfilesep(src[1])) {
4555       // UNC pathname: Retain first separator; leave src pointed at
4556       // second separator so that further separators will be collapsed
4557       // into the second separator.  The result will be a pathname
4558       // beginning with "\\\\" followed (most likely) by a host name.
4559       src = dst = path + 1;
4560       path[0] = '\\';     // Force first separator to '\\'
4561     }
4562   }
4563 
4564   end = dst;
4565 
4566   // Remove redundant separators from remainder of path, forcing all
4567   // separators to be '\\' rather than '/'. Also, single byte space
4568   // characters are removed from the end of the path because those
4569   // are not legal ending characters on this operating system.
4570   //
4571   while (*src != '\0') {
4572     if (isfilesep(*src)) {
4573       *dst++ = '\\'; src++;
4574       while (isfilesep(*src)) src++;
4575       if (*src == '\0') {
4576         // Check for trailing separator
4577         end = dst;
4578         if (colon == dst - 2) break;  // "z:\\"
4579         if (dst == path + 1) break;   // "\\"
4580         if (dst == path + 2 && isfilesep(path[0])) {
4581           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4582           // beginning of a UNC pathname.  Even though it is not, by
4583           // itself, a valid UNC pathname, we leave it as is in order
4584           // to be consistent with the path canonicalizer as well
4585           // as the win32 APIs, which treat this case as an invalid
4586           // UNC pathname rather than as an alias for the root
4587           // directory of the current drive.
4588           break;
4589         }
4590         end = --dst;  // Path does not denote a root directory, so
4591                       // remove trailing separator
4592         break;
4593       }
4594       end = dst;
4595     } else {
4596       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4597         *dst++ = *src++;
4598         if (*src) *dst++ = *src++;
4599         end = dst;
4600       } else {  // Copy a single-byte character
4601         char c = *src++;
4602         *dst++ = c;
4603         // Space is not a legal ending character
4604         if (c != ' ') end = dst;
4605       }
4606     }
4607   }
4608 
4609   *end = '\0';
4610 
4611   // For "z:", add "." to work around a bug in the C runtime library
4612   if (colon == dst - 1) {
4613     path[2] = '.';
4614     path[3] = '\0';
4615   }
4616 
4617   return path;
4618 }
4619 
4620 // This code is a copy of JDK's sysSetLength
4621 // from src/windows/hpi/src/sys_api_md.c
4622 
4623 int os::ftruncate(int fd, jlong length) {
4624   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4625   long high = (long)(length >> 32);
4626   DWORD ret;
4627 
4628   if (h == (HANDLE)(-1)) {
4629     return -1;
4630   }
4631 
4632   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4633   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4634     return -1;
4635   }
4636 
4637   if (::SetEndOfFile(h) == FALSE) {
4638     return -1;
4639   }
4640 
4641   return 0;
4642 }
4643 
4644 int os::get_fileno(FILE* fp) {
4645   return _fileno(fp);
4646 }
4647 
4648 // This code is a copy of JDK's sysSync
4649 // from src/windows/hpi/src/sys_api_md.c
4650 // except for the legacy workaround for a bug in Win 98
4651 
4652 int os::fsync(int fd) {
4653   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4654 
4655   if ((!::FlushFileBuffers(handle)) &&
4656       (GetLastError() != ERROR_ACCESS_DENIED)) {
4657     // from winerror.h
4658     return -1;
4659   }
4660   return 0;
4661 }
4662 
4663 static int nonSeekAvailable(int, long *);
4664 static int stdinAvailable(int, long *);
4665 
4666 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4667 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4668 
4669 // This code is a copy of JDK's sysAvailable
4670 // from src/windows/hpi/src/sys_api_md.c
4671 
4672 int os::available(int fd, jlong *bytes) {
4673   jlong cur, end;
4674   struct _stati64 stbuf64;
4675 
4676   if (::_fstati64(fd, &stbuf64) >= 0) {
4677     int mode = stbuf64.st_mode;
4678     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4679       int ret;
4680       long lpbytes;
4681       if (fd == 0) {
4682         ret = stdinAvailable(fd, &lpbytes);
4683       } else {
4684         ret = nonSeekAvailable(fd, &lpbytes);
4685       }
4686       (*bytes) = (jlong)(lpbytes);
4687       return ret;
4688     }
4689     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4690       return FALSE;
4691     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4692       return FALSE;
4693     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4694       return FALSE;
4695     }
4696     *bytes = end - cur;
4697     return TRUE;
4698   } else {
4699     return FALSE;
4700   }
4701 }
4702 
4703 void os::flockfile(FILE* fp) {
4704   _lock_file(fp);
4705 }
4706 
4707 void os::funlockfile(FILE* fp) {
4708   _unlock_file(fp);
4709 }
4710 
4711 // This code is a copy of JDK's nonSeekAvailable
4712 // from src/windows/hpi/src/sys_api_md.c
4713 
4714 static int nonSeekAvailable(int fd, long *pbytes) {
4715   // This is used for available on non-seekable devices
4716   // (like both named and anonymous pipes, such as pipes
4717   //  connected to an exec'd process).
4718   // Standard Input is a special case.
4719   HANDLE han;
4720 
4721   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4722     return FALSE;
4723   }
4724 
4725   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4726     // PeekNamedPipe fails when at EOF.  In that case we
4727     // simply make *pbytes = 0 which is consistent with the
4728     // behavior we get on Solaris when an fd is at EOF.
4729     // The only alternative is to raise an Exception,
4730     // which isn't really warranted.
4731     //
4732     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4733       return FALSE;
4734     }
4735     *pbytes = 0;
4736   }
4737   return TRUE;
4738 }
4739 
4740 #define MAX_INPUT_EVENTS 2000
4741 
4742 // This code is a copy of JDK's stdinAvailable
4743 // from src/windows/hpi/src/sys_api_md.c
4744 
4745 static int stdinAvailable(int fd, long *pbytes) {
4746   HANDLE han;
4747   DWORD numEventsRead = 0;  // Number of events read from buffer
4748   DWORD numEvents = 0;      // Number of events in buffer
4749   DWORD i = 0;              // Loop index
4750   DWORD curLength = 0;      // Position marker
4751   DWORD actualLength = 0;   // Number of bytes readable
4752   BOOL error = FALSE;       // Error holder
4753   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4754 
4755   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4756     return FALSE;
4757   }
4758 
4759   // Construct an array of input records in the console buffer
4760   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4761   if (error == 0) {
4762     return nonSeekAvailable(fd, pbytes);
4763   }
4764 
4765   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4766   if (numEvents > MAX_INPUT_EVENTS) {
4767     numEvents = MAX_INPUT_EVENTS;
4768   }
4769 
4770   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4771   if (lpBuffer == NULL) {
4772     return FALSE;
4773   }
4774 
4775   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4776   if (error == 0) {
4777     os::free(lpBuffer);
4778     return FALSE;
4779   }
4780 
4781   // Examine input records for the number of bytes available
4782   for (i=0; i<numEvents; i++) {
4783     if (lpBuffer[i].EventType == KEY_EVENT) {
4784 
4785       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4786                                       &(lpBuffer[i].Event);
4787       if (keyRecord->bKeyDown == TRUE) {
4788         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4789         curLength++;
4790         if (*keyPressed == '\r') {
4791           actualLength = curLength;
4792         }
4793       }
4794     }
4795   }
4796 
4797   if (lpBuffer != NULL) {
4798     os::free(lpBuffer);
4799   }
4800 
4801   *pbytes = (long) actualLength;
4802   return TRUE;
4803 }
4804 
4805 // Map a block of memory.
4806 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4807                         char *addr, size_t bytes, bool read_only,
4808                         bool allow_exec) {
4809   HANDLE hFile;
4810   char* base;
4811 
4812   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4813                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4814   if (hFile == NULL) {
4815     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4816     return NULL;
4817   }
4818 
4819   if (allow_exec) {
4820     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4821     // unless it comes from a PE image (which the shared archive is not.)
4822     // Even VirtualProtect refuses to give execute access to mapped memory
4823     // that was not previously executable.
4824     //
4825     // Instead, stick the executable region in anonymous memory.  Yuck.
4826     // Penalty is that ~4 pages will not be shareable - in the future
4827     // we might consider DLLizing the shared archive with a proper PE
4828     // header so that mapping executable + sharing is possible.
4829 
4830     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4831                                 PAGE_READWRITE);
4832     if (base == NULL) {
4833       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4834       CloseHandle(hFile);
4835       return NULL;
4836     }
4837 
4838     DWORD bytes_read;
4839     OVERLAPPED overlapped;
4840     overlapped.Offset = (DWORD)file_offset;
4841     overlapped.OffsetHigh = 0;
4842     overlapped.hEvent = NULL;
4843     // ReadFile guarantees that if the return value is true, the requested
4844     // number of bytes were read before returning.
4845     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4846     if (!res) {
4847       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4848       release_memory(base, bytes);
4849       CloseHandle(hFile);
4850       return NULL;
4851     }
4852   } else {
4853     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4854                                     NULL /* file_name */);
4855     if (hMap == NULL) {
4856       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4857       CloseHandle(hFile);
4858       return NULL;
4859     }
4860 
4861     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4862     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4863                                   (DWORD)bytes, addr);
4864     if (base == NULL) {
4865       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4866       CloseHandle(hMap);
4867       CloseHandle(hFile);
4868       return NULL;
4869     }
4870 
4871     if (CloseHandle(hMap) == 0) {
4872       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4873       CloseHandle(hFile);
4874       return base;
4875     }
4876   }
4877 
4878   if (allow_exec) {
4879     DWORD old_protect;
4880     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4881     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4882 
4883     if (!res) {
4884       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4885       // Don't consider this a hard error, on IA32 even if the
4886       // VirtualProtect fails, we should still be able to execute
4887       CloseHandle(hFile);
4888       return base;
4889     }
4890   }
4891 
4892   if (CloseHandle(hFile) == 0) {
4893     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4894     return base;
4895   }
4896 
4897   return base;
4898 }
4899 
4900 
4901 // Remap a block of memory.
4902 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4903                           char *addr, size_t bytes, bool read_only,
4904                           bool allow_exec) {
4905   // This OS does not allow existing memory maps to be remapped so we
4906   // have to unmap the memory before we remap it.
4907   if (!os::unmap_memory(addr, bytes)) {
4908     return NULL;
4909   }
4910 
4911   // There is a very small theoretical window between the unmap_memory()
4912   // call above and the map_memory() call below where a thread in native
4913   // code may be able to access an address that is no longer mapped.
4914 
4915   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4916                         read_only, allow_exec);
4917 }
4918 
4919 
4920 // Unmap a block of memory.
4921 // Returns true=success, otherwise false.
4922 
4923 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4924   MEMORY_BASIC_INFORMATION mem_info;
4925   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4926     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4927     return false;
4928   }
4929 
4930   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4931   // Instead, executable region was allocated using VirtualAlloc(). See
4932   // pd_map_memory() above.
4933   //
4934   // The following flags should match the 'exec_access' flages used for
4935   // VirtualProtect() in pd_map_memory().
4936   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4937       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4938     return pd_release_memory(addr, bytes);
4939   }
4940 
4941   BOOL result = UnmapViewOfFile(addr);
4942   if (result == 0) {
4943     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4944     return false;
4945   }
4946   return true;
4947 }
4948 
4949 void os::pause() {
4950   char filename[MAX_PATH];
4951   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4952     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4953   } else {
4954     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4955   }
4956 
4957   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4958   if (fd != -1) {
4959     struct stat buf;
4960     ::close(fd);
4961     while (::stat(filename, &buf) == 0) {
4962       Sleep(100);
4963     }
4964   } else {
4965     jio_fprintf(stderr,
4966                 "Could not open pause file '%s', continuing immediately.\n", filename);
4967   }
4968 }
4969 
4970 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4971   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4972 }
4973 
4974 // See the caveats for this class in os_windows.hpp
4975 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4976 // into this method and returns false. If no OS EXCEPTION was raised, returns
4977 // true.
4978 // The callback is supposed to provide the method that should be protected.
4979 //
4980 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4981   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4982   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4983          "crash_protection already set?");
4984 
4985   bool success = true;
4986   __try {
4987     WatcherThread::watcher_thread()->set_crash_protection(this);
4988     cb.call();
4989   } __except(EXCEPTION_EXECUTE_HANDLER) {
4990     // only for protection, nothing to do
4991     success = false;
4992   }
4993   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4994   return success;
4995 }
4996 
4997 // An Event wraps a win32 "CreateEvent" kernel handle.
4998 //
4999 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5000 //
5001 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5002 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5003 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5004 //     In addition, an unpark() operation might fetch the handle field, but the
5005 //     event could recycle between the fetch and the SetEvent() operation.
5006 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5007 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5008 //     on an stale but recycled handle would be harmless, but in practice this might
5009 //     confuse other non-Sun code, so it's not a viable approach.
5010 //
5011 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5012 //     with the Event.  The event handle is never closed.  This could be construed
5013 //     as handle leakage, but only up to the maximum # of threads that have been extant
5014 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5015 //     permit a process to have hundreds of thousands of open handles.
5016 //
5017 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5018 //     and release unused handles.
5019 //
5020 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5021 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5022 //
5023 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5024 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5025 //
5026 // We use (2).
5027 //
5028 // TODO-FIXME:
5029 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5030 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5031 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5032 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5033 //     into a single win32 CreateEvent() handle.
5034 //
5035 // Assumption:
5036 //    Only one parker can exist on an event, which is why we allocate
5037 //    them per-thread. Multiple unparkers can coexist.
5038 //
5039 // _Event transitions in park()
5040 //   -1 => -1 : illegal
5041 //    1 =>  0 : pass - return immediately
5042 //    0 => -1 : block; then set _Event to 0 before returning
5043 //
5044 // _Event transitions in unpark()
5045 //    0 => 1 : just return
5046 //    1 => 1 : just return
5047 //   -1 => either 0 or 1; must signal target thread
5048 //         That is, we can safely transition _Event from -1 to either
5049 //         0 or 1.
5050 //
5051 // _Event serves as a restricted-range semaphore.
5052 //   -1 : thread is blocked, i.e. there is a waiter
5053 //    0 : neutral: thread is running or ready,
5054 //        could have been signaled after a wait started
5055 //    1 : signaled - thread is running or ready
5056 //
5057 // Another possible encoding of _Event would be with
5058 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5059 //
5060 
5061 int os::PlatformEvent::park(jlong Millis) {
5062   // Transitions for _Event:
5063   //   -1 => -1 : illegal
5064   //    1 =>  0 : pass - return immediately
5065   //    0 => -1 : block; then set _Event to 0 before returning
5066 
5067   guarantee(_ParkHandle != NULL , "Invariant");
5068   guarantee(Millis > 0          , "Invariant");
5069 
5070   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5071   // the initial park() operation.
5072   // Consider: use atomic decrement instead of CAS-loop
5073 
5074   int v;
5075   for (;;) {
5076     v = _Event;
5077     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5078   }
5079   guarantee((v == 0) || (v == 1), "invariant");
5080   if (v != 0) return OS_OK;
5081 
5082   // Do this the hard way by blocking ...
5083   // TODO: consider a brief spin here, gated on the success of recent
5084   // spin attempts by this thread.
5085   //
5086   // We decompose long timeouts into series of shorter timed waits.
5087   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5088   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5089   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5090   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5091   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5092   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5093   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5094   // for the already waited time.  This policy does not admit any new outcomes.
5095   // In the future, however, we might want to track the accumulated wait time and
5096   // adjust Millis accordingly if we encounter a spurious wakeup.
5097 
5098   const int MAXTIMEOUT = 0x10000000;
5099   DWORD rv = WAIT_TIMEOUT;
5100   while (_Event < 0 && Millis > 0) {
5101     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5102     if (Millis > MAXTIMEOUT) {
5103       prd = MAXTIMEOUT;
5104     }
5105     rv = ::WaitForSingleObject(_ParkHandle, prd);
5106     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5107     if (rv == WAIT_TIMEOUT) {
5108       Millis -= prd;
5109     }
5110   }
5111   v = _Event;
5112   _Event = 0;
5113   // see comment at end of os::PlatformEvent::park() below:
5114   OrderAccess::fence();
5115   // If we encounter a nearly simultanous timeout expiry and unpark()
5116   // we return OS_OK indicating we awoke via unpark().
5117   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5118   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5119 }
5120 
5121 void os::PlatformEvent::park() {
5122   // Transitions for _Event:
5123   //   -1 => -1 : illegal
5124   //    1 =>  0 : pass - return immediately
5125   //    0 => -1 : block; then set _Event to 0 before returning
5126 
5127   guarantee(_ParkHandle != NULL, "Invariant");
5128   // Invariant: Only the thread associated with the Event/PlatformEvent
5129   // may call park().
5130   // Consider: use atomic decrement instead of CAS-loop
5131   int v;
5132   for (;;) {
5133     v = _Event;
5134     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5135   }
5136   guarantee((v == 0) || (v == 1), "invariant");
5137   if (v != 0) return;
5138 
5139   // Do this the hard way by blocking ...
5140   // TODO: consider a brief spin here, gated on the success of recent
5141   // spin attempts by this thread.
5142   while (_Event < 0) {
5143     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5144     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5145   }
5146 
5147   // Usually we'll find _Event == 0 at this point, but as
5148   // an optional optimization we clear it, just in case can
5149   // multiple unpark() operations drove _Event up to 1.
5150   _Event = 0;
5151   OrderAccess::fence();
5152   guarantee(_Event >= 0, "invariant");
5153 }
5154 
5155 void os::PlatformEvent::unpark() {
5156   guarantee(_ParkHandle != NULL, "Invariant");
5157 
5158   // Transitions for _Event:
5159   //    0 => 1 : just return
5160   //    1 => 1 : just return
5161   //   -1 => either 0 or 1; must signal target thread
5162   //         That is, we can safely transition _Event from -1 to either
5163   //         0 or 1.
5164   // See also: "Semaphores in Plan 9" by Mullender & Cox
5165   //
5166   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5167   // that it will take two back-to-back park() calls for the owning
5168   // thread to block. This has the benefit of forcing a spurious return
5169   // from the first park() call after an unpark() call which will help
5170   // shake out uses of park() and unpark() without condition variables.
5171 
5172   if (Atomic::xchg(1, &_Event) >= 0) return;
5173 
5174   ::SetEvent(_ParkHandle);
5175 }
5176 
5177 
5178 // JSR166
5179 // -------------------------------------------------------
5180 
5181 // The Windows implementation of Park is very straightforward: Basic
5182 // operations on Win32 Events turn out to have the right semantics to
5183 // use them directly. We opportunistically resuse the event inherited
5184 // from Monitor.
5185 
5186 void Parker::park(bool isAbsolute, jlong time) {
5187   guarantee(_ParkEvent != NULL, "invariant");
5188   // First, demultiplex/decode time arguments
5189   if (time < 0) { // don't wait
5190     return;
5191   } else if (time == 0 && !isAbsolute) {
5192     time = INFINITE;
5193   } else if (isAbsolute) {
5194     time -= os::javaTimeMillis(); // convert to relative time
5195     if (time <= 0) {  // already elapsed
5196       return;
5197     }
5198   } else { // relative
5199     time /= 1000000;  // Must coarsen from nanos to millis
5200     if (time == 0) {  // Wait for the minimal time unit if zero
5201       time = 1;
5202     }
5203   }
5204 
5205   JavaThread* thread = JavaThread::current();
5206 
5207   // Don't wait if interrupted or already triggered
5208   if (Thread::is_interrupted(thread, false) ||
5209       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5210     ResetEvent(_ParkEvent);
5211     return;
5212   } else {
5213     ThreadBlockInVM tbivm(thread);
5214     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5215     thread->set_suspend_equivalent();
5216 
5217     WaitForSingleObject(_ParkEvent, time);
5218     ResetEvent(_ParkEvent);
5219 
5220     // If externally suspended while waiting, re-suspend
5221     if (thread->handle_special_suspend_equivalent_condition()) {
5222       thread->java_suspend_self();
5223     }
5224   }
5225 }
5226 
5227 void Parker::unpark() {
5228   guarantee(_ParkEvent != NULL, "invariant");
5229   SetEvent(_ParkEvent);
5230 }
5231 
5232 // Run the specified command in a separate process. Return its exit value,
5233 // or -1 on failure (e.g. can't create a new process).
5234 int os::fork_and_exec(char* cmd) {
5235   STARTUPINFO si;
5236   PROCESS_INFORMATION pi;
5237 
5238   memset(&si, 0, sizeof(si));
5239   si.cb = sizeof(si);
5240   memset(&pi, 0, sizeof(pi));
5241   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5242                             cmd,    // command line
5243                             NULL,   // process security attribute
5244                             NULL,   // thread security attribute
5245                             TRUE,   // inherits system handles
5246                             0,      // no creation flags
5247                             NULL,   // use parent's environment block
5248                             NULL,   // use parent's starting directory
5249                             &si,    // (in) startup information
5250                             &pi);   // (out) process information
5251 
5252   if (rslt) {
5253     // Wait until child process exits.
5254     WaitForSingleObject(pi.hProcess, INFINITE);
5255 
5256     DWORD exit_code;
5257     GetExitCodeProcess(pi.hProcess, &exit_code);
5258 
5259     // Close process and thread handles.
5260     CloseHandle(pi.hProcess);
5261     CloseHandle(pi.hThread);
5262 
5263     return (int)exit_code;
5264   } else {
5265     return -1;
5266   }
5267 }
5268 
5269 bool os::find(address addr, outputStream* st) {
5270   int offset = -1;
5271   bool result = false;
5272   char buf[256];
5273   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5274     st->print(PTR_FORMAT " ", addr);
5275     if (strlen(buf) < sizeof(buf) - 1) {
5276       char* p = strrchr(buf, '\\');
5277       if (p) {
5278         st->print("%s", p + 1);
5279       } else {
5280         st->print("%s", buf);
5281       }
5282     } else {
5283         // The library name is probably truncated. Let's omit the library name.
5284         // See also JDK-8147512.
5285     }
5286     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5287       st->print("::%s + 0x%x", buf, offset);
5288     }
5289     st->cr();
5290     result = true;
5291   }
5292   return result;
5293 }
5294 
5295 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5296   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5297 
5298   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5299     JavaThread* thread = JavaThread::current();
5300     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5301     address addr = (address) exceptionRecord->ExceptionInformation[1];
5302 
5303     if (os::is_memory_serialize_page(thread, addr)) {
5304       return EXCEPTION_CONTINUE_EXECUTION;
5305     }
5306   }
5307 
5308   return EXCEPTION_CONTINUE_SEARCH;
5309 }
5310 
5311 // We don't build a headless jre for Windows
5312 bool os::is_headless_jre() { return false; }
5313 
5314 static jint initSock() {
5315   WSADATA wsadata;
5316 
5317   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5318     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5319                 ::GetLastError());
5320     return JNI_ERR;
5321   }
5322   return JNI_OK;
5323 }
5324 
5325 struct hostent* os::get_host_by_name(char* name) {
5326   return (struct hostent*)gethostbyname(name);
5327 }
5328 
5329 int os::socket_close(int fd) {
5330   return ::closesocket(fd);
5331 }
5332 
5333 int os::socket(int domain, int type, int protocol) {
5334   return ::socket(domain, type, protocol);
5335 }
5336 
5337 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5338   return ::connect(fd, him, len);
5339 }
5340 
5341 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5342   return ::recv(fd, buf, (int)nBytes, flags);
5343 }
5344 
5345 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5346   return ::send(fd, buf, (int)nBytes, flags);
5347 }
5348 
5349 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5350   return ::send(fd, buf, (int)nBytes, flags);
5351 }
5352 
5353 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5354 #if defined(IA32)
5355   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5356 #elif defined (AMD64)
5357   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5358 #endif
5359 
5360 // returns true if thread could be suspended,
5361 // false otherwise
5362 static bool do_suspend(HANDLE* h) {
5363   if (h != NULL) {
5364     if (SuspendThread(*h) != ~0) {
5365       return true;
5366     }
5367   }
5368   return false;
5369 }
5370 
5371 // resume the thread
5372 // calling resume on an active thread is a no-op
5373 static void do_resume(HANDLE* h) {
5374   if (h != NULL) {
5375     ResumeThread(*h);
5376   }
5377 }
5378 
5379 // retrieve a suspend/resume context capable handle
5380 // from the tid. Caller validates handle return value.
5381 void get_thread_handle_for_extended_context(HANDLE* h,
5382                                             OSThread::thread_id_t tid) {
5383   if (h != NULL) {
5384     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5385   }
5386 }
5387 
5388 // Thread sampling implementation
5389 //
5390 void os::SuspendedThreadTask::internal_do_task() {
5391   CONTEXT    ctxt;
5392   HANDLE     h = NULL;
5393 
5394   // get context capable handle for thread
5395   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5396 
5397   // sanity
5398   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5399     return;
5400   }
5401 
5402   // suspend the thread
5403   if (do_suspend(&h)) {
5404     ctxt.ContextFlags = sampling_context_flags;
5405     // get thread context
5406     GetThreadContext(h, &ctxt);
5407     SuspendedThreadTaskContext context(_thread, &ctxt);
5408     // pass context to Thread Sampling impl
5409     do_task(context);
5410     // resume thread
5411     do_resume(&h);
5412   }
5413 
5414   // close handle
5415   CloseHandle(h);
5416 }
5417 
5418 bool os::start_debugging(char *buf, int buflen) {
5419   int len = (int)strlen(buf);
5420   char *p = &buf[len];
5421 
5422   jio_snprintf(p, buflen-len,
5423              "\n\n"
5424              "Do you want to debug the problem?\n\n"
5425              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5426              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5427              "Otherwise, select 'No' to abort...",
5428              os::current_process_id(), os::current_thread_id());
5429 
5430   bool yes = os::message_box("Unexpected Error", buf);
5431 
5432   if (yes) {
5433     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5434     // exception. If VM is running inside a debugger, the debugger will
5435     // catch the exception. Otherwise, the breakpoint exception will reach
5436     // the default windows exception handler, which can spawn a debugger and
5437     // automatically attach to the dying VM.
5438     os::breakpoint();
5439     yes = false;
5440   }
5441   return yes;
5442 }
5443 
5444 void* os::get_default_process_handle() {
5445   return (void*)GetModuleHandle(NULL);
5446 }
5447 
5448 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5449 // which is used to find statically linked in agents.
5450 // Additionally for windows, takes into account __stdcall names.
5451 // Parameters:
5452 //            sym_name: Symbol in library we are looking for
5453 //            lib_name: Name of library to look in, NULL for shared libs.
5454 //            is_absolute_path == true if lib_name is absolute path to agent
5455 //                                     such as "C:/a/b/L.dll"
5456 //            == false if only the base name of the library is passed in
5457 //               such as "L"
5458 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5459                                     bool is_absolute_path) {
5460   char *agent_entry_name;
5461   size_t len;
5462   size_t name_len;
5463   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5464   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5465   const char *start;
5466 
5467   if (lib_name != NULL) {
5468     len = name_len = strlen(lib_name);
5469     if (is_absolute_path) {
5470       // Need to strip path, prefix and suffix
5471       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5472         lib_name = ++start;
5473       } else {
5474         // Need to check for drive prefix
5475         if ((start = strchr(lib_name, ':')) != NULL) {
5476           lib_name = ++start;
5477         }
5478       }
5479       if (len <= (prefix_len + suffix_len)) {
5480         return NULL;
5481       }
5482       lib_name += prefix_len;
5483       name_len = strlen(lib_name) - suffix_len;
5484     }
5485   }
5486   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5487   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5488   if (agent_entry_name == NULL) {
5489     return NULL;
5490   }
5491   if (lib_name != NULL) {
5492     const char *p = strrchr(sym_name, '@');
5493     if (p != NULL && p != sym_name) {
5494       // sym_name == _Agent_OnLoad@XX
5495       strncpy(agent_entry_name, sym_name, (p - sym_name));
5496       agent_entry_name[(p-sym_name)] = '\0';
5497       // agent_entry_name == _Agent_OnLoad
5498       strcat(agent_entry_name, "_");
5499       strncat(agent_entry_name, lib_name, name_len);
5500       strcat(agent_entry_name, p);
5501       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5502     } else {
5503       strcpy(agent_entry_name, sym_name);
5504       strcat(agent_entry_name, "_");
5505       strncat(agent_entry_name, lib_name, name_len);
5506     }
5507   } else {
5508     strcpy(agent_entry_name, sym_name);
5509   }
5510   return agent_entry_name;
5511 }
5512 
5513 #ifndef PRODUCT
5514 
5515 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5516 // contiguous memory block at a particular address.
5517 // The test first tries to find a good approximate address to allocate at by using the same
5518 // method to allocate some memory at any address. The test then tries to allocate memory in
5519 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5520 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5521 // the previously allocated memory is available for allocation. The only actual failure
5522 // that is reported is when the test tries to allocate at a particular location but gets a
5523 // different valid one. A NULL return value at this point is not considered an error but may
5524 // be legitimate.
5525 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5526 void TestReserveMemorySpecial_test() {
5527   if (!UseLargePages) {
5528     if (VerboseInternalVMTests) {
5529       tty->print("Skipping test because large pages are disabled");
5530     }
5531     return;
5532   }
5533   // save current value of globals
5534   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5535   bool old_use_numa_interleaving = UseNUMAInterleaving;
5536 
5537   // set globals to make sure we hit the correct code path
5538   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5539 
5540   // do an allocation at an address selected by the OS to get a good one.
5541   const size_t large_allocation_size = os::large_page_size() * 4;
5542   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5543   if (result == NULL) {
5544     if (VerboseInternalVMTests) {
5545       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5546                           large_allocation_size);
5547     }
5548   } else {
5549     os::release_memory_special(result, large_allocation_size);
5550 
5551     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5552     // we managed to get it once.
5553     const size_t expected_allocation_size = os::large_page_size();
5554     char* expected_location = result + os::large_page_size();
5555     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5556     if (actual_location == NULL) {
5557       if (VerboseInternalVMTests) {
5558         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5559                             expected_location, large_allocation_size);
5560       }
5561     } else {
5562       // release memory
5563       os::release_memory_special(actual_location, expected_allocation_size);
5564       // only now check, after releasing any memory to avoid any leaks.
5565       assert(actual_location == expected_location,
5566              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5567              expected_location, expected_allocation_size, actual_location);
5568     }
5569   }
5570 
5571   // restore globals
5572   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5573   UseNUMAInterleaving = old_use_numa_interleaving;
5574 }
5575 #endif // PRODUCT
5576 
5577 /*
5578   All the defined signal names for Windows.
5579 
5580   NOTE that not all of these names are accepted by FindSignal!
5581 
5582   For various reasons some of these may be rejected at runtime.
5583 
5584   Here are the names currently accepted by a user of sun.misc.Signal with
5585   1.4.1 (ignoring potential interaction with use of chaining, etc):
5586 
5587      (LIST TBD)
5588 
5589 */
5590 int os::get_signal_number(const char* name) {
5591   static const struct {
5592     char* name;
5593     int   number;
5594   } siglabels [] =
5595     // derived from version 6.0 VC98/include/signal.h
5596   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5597   "FPE",        SIGFPE,         // floating point exception
5598   "SEGV",       SIGSEGV,        // segment violation
5599   "INT",        SIGINT,         // interrupt
5600   "TERM",       SIGTERM,        // software term signal from kill
5601   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5602   "ILL",        SIGILL};        // illegal instruction
5603   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5604     if (strcmp(name, siglabels[i].name) == 0) {
5605       return siglabels[i].number;
5606     }
5607   }
5608   return -1;
5609 }
5610 
5611 // Fast current thread access
5612 
5613 int os::win32::_thread_ptr_offset = 0;
5614 
5615 static void call_wrapper_dummy() {}
5616 
5617 // We need to call the os_exception_wrapper once so that it sets
5618 // up the offset from FS of the thread pointer.
5619 void os::win32::initialize_thread_ptr_offset() {
5620   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5621                            NULL, NULL, NULL, NULL);
5622 }