1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 #ifdef _DEBUG
  78 #include <crtdbg.h>
  79 #endif
  80 
  81 
  82 #include <windows.h>
  83 #include <sys/types.h>
  84 #include <sys/stat.h>
  85 #include <sys/timeb.h>
  86 #include <objidl.h>
  87 #include <shlobj.h>
  88 
  89 #include <malloc.h>
  90 #include <signal.h>
  91 #include <direct.h>
  92 #include <errno.h>
  93 #include <fcntl.h>
  94 #include <io.h>
  95 #include <process.h>              // For _beginthreadex(), _endthreadex()
  96 #include <imagehlp.h>             // For os::dll_address_to_function_name
  97 // for enumerating dll libraries
  98 #include <vdmdbg.h>
  99 
 100 // for timer info max values which include all bits
 101 #define ALL_64_BITS CONST64(-1)
 102 
 103 // For DLL loading/load error detection
 104 // Values of PE COFF
 105 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 106 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 107 
 108 static HANDLE main_process;
 109 static HANDLE main_thread;
 110 static int    main_thread_id;
 111 
 112 static FILETIME process_creation_time;
 113 static FILETIME process_exit_time;
 114 static FILETIME process_user_time;
 115 static FILETIME process_kernel_time;
 116 
 117 #ifdef _M_IA64
 118   #define __CPU__ ia64
 119 #else
 120   #ifdef _M_AMD64
 121     #define __CPU__ amd64
 122   #else
 123     #define __CPU__ i486
 124   #endif
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     break;
 139   case DLL_PROCESS_DETACH:
 140     if (ForceTimeHighResolution) {
 141       timeEndPeriod(1L);
 142     }
 143     break;
 144   default:
 145     break;
 146   }
 147   return true;
 148 }
 149 
 150 static inline double fileTimeAsDouble(FILETIME* time) {
 151   const double high  = (double) ((unsigned int) ~0);
 152   const double split = 10000000.0;
 153   double result = (time->dwLowDateTime / split) +
 154                    time->dwHighDateTime * (high/split);
 155   return result;
 156 }
 157 
 158 // Implementation of os
 159 
 160 bool os::unsetenv(const char* name) {
 161   assert(name != NULL, "Null pointer");
 162   return (SetEnvironmentVariable(name, NULL) == TRUE);
 163 }
 164 
 165 // No setuid programs under Windows.
 166 bool os::have_special_privileges() {
 167   return false;
 168 }
 169 
 170 
 171 // This method is  a periodic task to check for misbehaving JNI applications
 172 // under CheckJNI, we can add any periodic checks here.
 173 // For Windows at the moment does nothing
 174 void os::run_periodic_checks() {
 175   return;
 176 }
 177 
 178 // previous UnhandledExceptionFilter, if there is one
 179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 180 
 181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 182 
 183 void os::init_system_properties_values() {
 184   // sysclasspath, java_home, dll_dir
 185   {
 186     char *home_path;
 187     char *dll_path;
 188     char *pslash;
 189     char *bin = "\\bin";
 190     char home_dir[MAX_PATH + 1];
 191     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 192 
 193     if (alt_home_dir != NULL)  {
 194       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 195       home_dir[MAX_PATH] = '\0';
 196     } else {
 197       os::jvm_path(home_dir, sizeof(home_dir));
 198       // Found the full path to jvm.dll.
 199       // Now cut the path to <java_home>/jre if we can.
 200       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 201       pslash = strrchr(home_dir, '\\');
 202       if (pslash != NULL) {
 203         *pslash = '\0';                   // get rid of \{client|server}
 204         pslash = strrchr(home_dir, '\\');
 205         if (pslash != NULL) {
 206           *pslash = '\0';                 // get rid of \bin
 207         }
 208       }
 209     }
 210 
 211     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 212     if (home_path == NULL) {
 213       return;
 214     }
 215     strcpy(home_path, home_dir);
 216     Arguments::set_java_home(home_path);
 217     FREE_C_HEAP_ARRAY(char, home_path);
 218 
 219     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 220                                 mtInternal);
 221     if (dll_path == NULL) {
 222       return;
 223     }
 224     strcpy(dll_path, home_dir);
 225     strcat(dll_path, bin);
 226     Arguments::set_dll_dir(dll_path);
 227     FREE_C_HEAP_ARRAY(char, dll_path);
 228 
 229     if (!set_boot_path('\\', ';')) {
 230       return;
 231     }
 232   }
 233 
 234 // library_path
 235 #define EXT_DIR "\\lib\\ext"
 236 #define BIN_DIR "\\bin"
 237 #define PACKAGE_DIR "\\Sun\\Java"
 238   {
 239     // Win32 library search order (See the documentation for LoadLibrary):
 240     //
 241     // 1. The directory from which application is loaded.
 242     // 2. The system wide Java Extensions directory (Java only)
 243     // 3. System directory (GetSystemDirectory)
 244     // 4. Windows directory (GetWindowsDirectory)
 245     // 5. The PATH environment variable
 246     // 6. The current directory
 247 
 248     char *library_path;
 249     char tmp[MAX_PATH];
 250     char *path_str = ::getenv("PATH");
 251 
 252     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 253                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 254 
 255     library_path[0] = '\0';
 256 
 257     GetModuleFileName(NULL, tmp, sizeof(tmp));
 258     *(strrchr(tmp, '\\')) = '\0';
 259     strcat(library_path, tmp);
 260 
 261     GetWindowsDirectory(tmp, sizeof(tmp));
 262     strcat(library_path, ";");
 263     strcat(library_path, tmp);
 264     strcat(library_path, PACKAGE_DIR BIN_DIR);
 265 
 266     GetSystemDirectory(tmp, sizeof(tmp));
 267     strcat(library_path, ";");
 268     strcat(library_path, tmp);
 269 
 270     GetWindowsDirectory(tmp, sizeof(tmp));
 271     strcat(library_path, ";");
 272     strcat(library_path, tmp);
 273 
 274     if (path_str) {
 275       strcat(library_path, ";");
 276       strcat(library_path, path_str);
 277     }
 278 
 279     strcat(library_path, ";.");
 280 
 281     Arguments::set_library_path(library_path);
 282     FREE_C_HEAP_ARRAY(char, library_path);
 283   }
 284 
 285   // Default extensions directory
 286   {
 287     char path[MAX_PATH];
 288     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 289     GetWindowsDirectory(path, MAX_PATH);
 290     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 291             path, PACKAGE_DIR, EXT_DIR);
 292     Arguments::set_ext_dirs(buf);
 293   }
 294   #undef EXT_DIR
 295   #undef BIN_DIR
 296   #undef PACKAGE_DIR
 297 
 298 #ifndef _WIN64
 299   // set our UnhandledExceptionFilter and save any previous one
 300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 301 #endif
 302 
 303   // Done
 304   return;
 305 }
 306 
 307 void os::breakpoint() {
 308   DebugBreak();
 309 }
 310 
 311 // Invoked from the BREAKPOINT Macro
 312 extern "C" void breakpoint() {
 313   os::breakpoint();
 314 }
 315 
 316 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 317 // So far, this method is only used by Native Memory Tracking, which is
 318 // only supported on Windows XP or later.
 319 //
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 322   for (int index = captured; index < frames; index ++) {
 323     stack[index] = NULL;
 324   }
 325   return captured;
 326 }
 327 
 328 
 329 // os::current_stack_base()
 330 //
 331 //   Returns the base of the stack, which is the stack's
 332 //   starting address.  This function must be called
 333 //   while running on the stack of the thread being queried.
 334 
 335 address os::current_stack_base() {
 336   MEMORY_BASIC_INFORMATION minfo;
 337   address stack_bottom;
 338   size_t stack_size;
 339 
 340   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 341   stack_bottom =  (address)minfo.AllocationBase;
 342   stack_size = minfo.RegionSize;
 343 
 344   // Add up the sizes of all the regions with the same
 345   // AllocationBase.
 346   while (1) {
 347     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 348     if (stack_bottom == (address)minfo.AllocationBase) {
 349       stack_size += minfo.RegionSize;
 350     } else {
 351       break;
 352     }
 353   }
 354 
 355 #ifdef _M_IA64
 356   // IA64 has memory and register stacks
 357   //
 358   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 359   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 360   // growing downwards, 2MB summed up)
 361   //
 362   // ...
 363   // ------- top of stack (high address) -----
 364   // |
 365   // |      1MB
 366   // |      Backing Store (Register Stack)
 367   // |
 368   // |         / \
 369   // |          |
 370   // |          |
 371   // |          |
 372   // ------------------------ stack base -----
 373   // |      1MB
 374   // |      Memory Stack
 375   // |
 376   // |          |
 377   // |          |
 378   // |          |
 379   // |         \ /
 380   // |
 381   // ----- bottom of stack (low address) -----
 382   // ...
 383 
 384   stack_size = stack_size / 2;
 385 #endif
 386   return stack_bottom + stack_size;
 387 }
 388 
 389 size_t os::current_stack_size() {
 390   size_t sz;
 391   MEMORY_BASIC_INFORMATION minfo;
 392   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 393   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 394   return sz;
 395 }
 396 
 397 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 398   const struct tm* time_struct_ptr = localtime(clock);
 399   if (time_struct_ptr != NULL) {
 400     *res = *time_struct_ptr;
 401     return res;
 402   }
 403   return NULL;
 404 }
 405 
 406 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 407 
 408 // Thread start routine for all newly created threads
 409 static unsigned __stdcall thread_native_entry(Thread* thread) {
 410   // Try to randomize the cache line index of hot stack frames.
 411   // This helps when threads of the same stack traces evict each other's
 412   // cache lines. The threads can be either from the same JVM instance, or
 413   // from different JVM instances. The benefit is especially true for
 414   // processors with hyperthreading technology.
 415   static int counter = 0;
 416   int pid = os::current_process_id();
 417   _alloca(((pid ^ counter++) & 7) * 128);
 418 
 419   thread->initialize_thread_current();
 420 
 421   OSThread* osthr = thread->osthread();
 422   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 423 
 424   if (UseNUMA) {
 425     int lgrp_id = os::numa_get_group_id();
 426     if (lgrp_id != -1) {
 427       thread->set_lgrp_id(lgrp_id);
 428     }
 429   }
 430 
 431   // Diagnostic code to investigate JDK-6573254
 432   int res = 30115;  // non-java thread
 433   if (thread->is_Java_thread()) {
 434     res = 20115;    // java thread
 435   }
 436 
 437   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 438 
 439   // Install a win32 structured exception handler around every thread created
 440   // by VM, so VM can generate error dump when an exception occurred in non-
 441   // Java thread (e.g. VM thread).
 442   __try {
 443     thread->run();
 444   } __except(topLevelExceptionFilter(
 445                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 446     // Nothing to do.
 447   }
 448 
 449   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 450 
 451   // One less thread is executing
 452   // When the VMThread gets here, the main thread may have already exited
 453   // which frees the CodeHeap containing the Atomic::add code
 454   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 455     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 456   }
 457 
 458   // If a thread has not deleted itself ("delete this") as part of its
 459   // termination sequence, we have to ensure thread-local-storage is
 460   // cleared before we actually terminate. No threads should ever be
 461   // deleted asynchronously with respect to their termination.
 462   if (Thread::current_or_null_safe() != NULL) {
 463     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 464     thread->clear_thread_current();
 465   }
 466 
 467   // Thread must not return from exit_process_or_thread(), but if it does,
 468   // let it proceed to exit normally
 469   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 470 }
 471 
 472 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 473                                   int thread_id) {
 474   // Allocate the OSThread object
 475   OSThread* osthread = new OSThread(NULL, NULL);
 476   if (osthread == NULL) return NULL;
 477 
 478   // Initialize support for Java interrupts
 479   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 480   if (interrupt_event == NULL) {
 481     delete osthread;
 482     return NULL;
 483   }
 484   osthread->set_interrupt_event(interrupt_event);
 485 
 486   // Store info on the Win32 thread into the OSThread
 487   osthread->set_thread_handle(thread_handle);
 488   osthread->set_thread_id(thread_id);
 489 
 490   if (UseNUMA) {
 491     int lgrp_id = os::numa_get_group_id();
 492     if (lgrp_id != -1) {
 493       thread->set_lgrp_id(lgrp_id);
 494     }
 495   }
 496 
 497   // Initial thread state is INITIALIZED, not SUSPENDED
 498   osthread->set_state(INITIALIZED);
 499 
 500   return osthread;
 501 }
 502 
 503 
 504 bool os::create_attached_thread(JavaThread* thread) {
 505 #ifdef ASSERT
 506   thread->verify_not_published();
 507 #endif
 508   HANDLE thread_h;
 509   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 510                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 511     fatal("DuplicateHandle failed\n");
 512   }
 513   OSThread* osthread = create_os_thread(thread, thread_h,
 514                                         (int)current_thread_id());
 515   if (osthread == NULL) {
 516     return false;
 517   }
 518 
 519   // Initial thread state is RUNNABLE
 520   osthread->set_state(RUNNABLE);
 521 
 522   thread->set_osthread(osthread);
 523 
 524   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 525     os::current_thread_id());
 526 
 527   return true;
 528 }
 529 
 530 bool os::create_main_thread(JavaThread* thread) {
 531 #ifdef ASSERT
 532   thread->verify_not_published();
 533 #endif
 534   if (_starting_thread == NULL) {
 535     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 536     if (_starting_thread == NULL) {
 537       return false;
 538     }
 539   }
 540 
 541   // The primordial thread is runnable from the start)
 542   _starting_thread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(_starting_thread);
 545   return true;
 546 }
 547 
 548 // Helper function to trace _beginthreadex attributes,
 549 //  similar to os::Posix::describe_pthread_attr()
 550 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 551                                                size_t stacksize, unsigned initflag) {
 552   stringStream ss(buf, buflen);
 553   if (stacksize == 0) {
 554     ss.print("stacksize: default, ");
 555   } else {
 556     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 557   }
 558   ss.print("flags: ");
 559   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 560   #define ALL(X) \
 561     X(CREATE_SUSPENDED) \
 562     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 563   ALL(PRINT_FLAG)
 564   #undef ALL
 565   #undef PRINT_FLAG
 566   return buf;
 567 }
 568 
 569 // Allocate and initialize a new OSThread
 570 bool os::create_thread(Thread* thread, ThreadType thr_type,
 571                        size_t stack_size) {
 572   unsigned thread_id;
 573 
 574   // Allocate the OSThread object
 575   OSThread* osthread = new OSThread(NULL, NULL);
 576   if (osthread == NULL) {
 577     return false;
 578   }
 579 
 580   // Initialize support for Java interrupts
 581   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 582   if (interrupt_event == NULL) {
 583     delete osthread;
 584     return NULL;
 585   }
 586   osthread->set_interrupt_event(interrupt_event);
 587   osthread->set_interrupted(false);
 588 
 589   thread->set_osthread(osthread);
 590 
 591   if (stack_size == 0) {
 592     switch (thr_type) {
 593     case os::java_thread:
 594       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 595       if (JavaThread::stack_size_at_create() > 0) {
 596         stack_size = JavaThread::stack_size_at_create();
 597       }
 598       break;
 599     case os::compiler_thread:
 600       if (CompilerThreadStackSize > 0) {
 601         stack_size = (size_t)(CompilerThreadStackSize * K);
 602         break;
 603       } // else fall through:
 604         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 605     case os::vm_thread:
 606     case os::pgc_thread:
 607     case os::cgc_thread:
 608     case os::watcher_thread:
 609       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 610       break;
 611     }
 612   }
 613 
 614   // Create the Win32 thread
 615   //
 616   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 617   // does not specify stack size. Instead, it specifies the size of
 618   // initially committed space. The stack size is determined by
 619   // PE header in the executable. If the committed "stack_size" is larger
 620   // than default value in the PE header, the stack is rounded up to the
 621   // nearest multiple of 1MB. For example if the launcher has default
 622   // stack size of 320k, specifying any size less than 320k does not
 623   // affect the actual stack size at all, it only affects the initial
 624   // commitment. On the other hand, specifying 'stack_size' larger than
 625   // default value may cause significant increase in memory usage, because
 626   // not only the stack space will be rounded up to MB, but also the
 627   // entire space is committed upfront.
 628   //
 629   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 630   // for CreateThread() that can treat 'stack_size' as stack size. However we
 631   // are not supposed to call CreateThread() directly according to MSDN
 632   // document because JVM uses C runtime library. The good news is that the
 633   // flag appears to work with _beginthredex() as well.
 634 
 635   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 636   HANDLE thread_handle =
 637     (HANDLE)_beginthreadex(NULL,
 638                            (unsigned)stack_size,
 639                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 640                            thread,
 641                            initflag,
 642                            &thread_id);
 643 
 644   char buf[64];
 645   if (thread_handle != NULL) {
 646     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 647       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 648   } else {
 649     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 650       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 651   }
 652 
 653   if (thread_handle == NULL) {
 654     // Need to clean up stuff we've allocated so far
 655     CloseHandle(osthread->interrupt_event());
 656     thread->set_osthread(NULL);
 657     delete osthread;
 658     return NULL;
 659   }
 660 
 661   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 662 
 663   // Store info on the Win32 thread into the OSThread
 664   osthread->set_thread_handle(thread_handle);
 665   osthread->set_thread_id(thread_id);
 666 
 667   // Initial thread state is INITIALIZED, not SUSPENDED
 668   osthread->set_state(INITIALIZED);
 669 
 670   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 671   return true;
 672 }
 673 
 674 
 675 // Free Win32 resources related to the OSThread
 676 void os::free_thread(OSThread* osthread) {
 677   assert(osthread != NULL, "osthread not set");
 678 
 679   // We are told to free resources of the argument thread,
 680   // but we can only really operate on the current thread.
 681   assert(Thread::current()->osthread() == osthread,
 682          "os::free_thread but not current thread");
 683 
 684   CloseHandle(osthread->thread_handle());
 685   CloseHandle(osthread->interrupt_event());
 686   delete osthread;
 687 }
 688 
 689 static jlong first_filetime;
 690 static jlong initial_performance_count;
 691 static jlong performance_frequency;
 692 
 693 
 694 jlong as_long(LARGE_INTEGER x) {
 695   jlong result = 0; // initialization to avoid warning
 696   set_high(&result, x.HighPart);
 697   set_low(&result, x.LowPart);
 698   return result;
 699 }
 700 
 701 
 702 jlong os::elapsed_counter() {
 703   LARGE_INTEGER count;
 704   QueryPerformanceCounter(&count);
 705   return as_long(count) - initial_performance_count;
 706 }
 707 
 708 
 709 jlong os::elapsed_frequency() {
 710   return performance_frequency;
 711 }
 712 
 713 
 714 julong os::available_memory() {
 715   return win32::available_memory();
 716 }
 717 
 718 julong os::win32::available_memory() {
 719   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 720   // value if total memory is larger than 4GB
 721   MEMORYSTATUSEX ms;
 722   ms.dwLength = sizeof(ms);
 723   GlobalMemoryStatusEx(&ms);
 724 
 725   return (julong)ms.ullAvailPhys;
 726 }
 727 
 728 julong os::physical_memory() {
 729   return win32::physical_memory();
 730 }
 731 
 732 bool os::has_allocatable_memory_limit(julong* limit) {
 733   MEMORYSTATUSEX ms;
 734   ms.dwLength = sizeof(ms);
 735   GlobalMemoryStatusEx(&ms);
 736 #ifdef _LP64
 737   *limit = (julong)ms.ullAvailVirtual;
 738   return true;
 739 #else
 740   // Limit to 1400m because of the 2gb address space wall
 741   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 742   return true;
 743 #endif
 744 }
 745 
 746 int os::active_processor_count() {
 747   DWORD_PTR lpProcessAffinityMask = 0;
 748   DWORD_PTR lpSystemAffinityMask = 0;
 749   int proc_count = processor_count();
 750   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 751       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 752     // Nof active processors is number of bits in process affinity mask
 753     int bitcount = 0;
 754     while (lpProcessAffinityMask != 0) {
 755       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 756       bitcount++;
 757     }
 758     return bitcount;
 759   } else {
 760     return proc_count;
 761   }
 762 }
 763 
 764 void os::set_native_thread_name(const char *name) {
 765 
 766   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 767   //
 768   // Note that unfortunately this only works if the process
 769   // is already attached to a debugger; debugger must observe
 770   // the exception below to show the correct name.
 771 
 772   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 773   struct {
 774     DWORD dwType;     // must be 0x1000
 775     LPCSTR szName;    // pointer to name (in user addr space)
 776     DWORD dwThreadID; // thread ID (-1=caller thread)
 777     DWORD dwFlags;    // reserved for future use, must be zero
 778   } info;
 779 
 780   info.dwType = 0x1000;
 781   info.szName = name;
 782   info.dwThreadID = -1;
 783   info.dwFlags = 0;
 784 
 785   __try {
 786     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 787   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 788 }
 789 
 790 bool os::distribute_processes(uint length, uint* distribution) {
 791   // Not yet implemented.
 792   return false;
 793 }
 794 
 795 bool os::bind_to_processor(uint processor_id) {
 796   // Not yet implemented.
 797   return false;
 798 }
 799 
 800 void os::win32::initialize_performance_counter() {
 801   LARGE_INTEGER count;
 802   QueryPerformanceFrequency(&count);
 803   performance_frequency = as_long(count);
 804   QueryPerformanceCounter(&count);
 805   initial_performance_count = as_long(count);
 806 }
 807 
 808 
 809 double os::elapsedTime() {
 810   return (double) elapsed_counter() / (double) elapsed_frequency();
 811 }
 812 
 813 
 814 // Windows format:
 815 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 816 // Java format:
 817 //   Java standards require the number of milliseconds since 1/1/1970
 818 
 819 // Constant offset - calculated using offset()
 820 static jlong  _offset   = 116444736000000000;
 821 // Fake time counter for reproducible results when debugging
 822 static jlong  fake_time = 0;
 823 
 824 #ifdef ASSERT
 825 // Just to be safe, recalculate the offset in debug mode
 826 static jlong _calculated_offset = 0;
 827 static int   _has_calculated_offset = 0;
 828 
 829 jlong offset() {
 830   if (_has_calculated_offset) return _calculated_offset;
 831   SYSTEMTIME java_origin;
 832   java_origin.wYear          = 1970;
 833   java_origin.wMonth         = 1;
 834   java_origin.wDayOfWeek     = 0; // ignored
 835   java_origin.wDay           = 1;
 836   java_origin.wHour          = 0;
 837   java_origin.wMinute        = 0;
 838   java_origin.wSecond        = 0;
 839   java_origin.wMilliseconds  = 0;
 840   FILETIME jot;
 841   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 842     fatal("Error = %d\nWindows error", GetLastError());
 843   }
 844   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 845   _has_calculated_offset = 1;
 846   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 847   return _calculated_offset;
 848 }
 849 #else
 850 jlong offset() {
 851   return _offset;
 852 }
 853 #endif
 854 
 855 jlong windows_to_java_time(FILETIME wt) {
 856   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 857   return (a - offset()) / 10000;
 858 }
 859 
 860 // Returns time ticks in (10th of micro seconds)
 861 jlong windows_to_time_ticks(FILETIME wt) {
 862   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 863   return (a - offset());
 864 }
 865 
 866 FILETIME java_to_windows_time(jlong l) {
 867   jlong a = (l * 10000) + offset();
 868   FILETIME result;
 869   result.dwHighDateTime = high(a);
 870   result.dwLowDateTime  = low(a);
 871   return result;
 872 }
 873 
 874 bool os::supports_vtime() { return true; }
 875 bool os::enable_vtime() { return false; }
 876 bool os::vtime_enabled() { return false; }
 877 
 878 double os::elapsedVTime() {
 879   FILETIME created;
 880   FILETIME exited;
 881   FILETIME kernel;
 882   FILETIME user;
 883   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 884     // the resolution of windows_to_java_time() should be sufficient (ms)
 885     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 886   } else {
 887     return elapsedTime();
 888   }
 889 }
 890 
 891 jlong os::javaTimeMillis() {
 892   if (UseFakeTimers) {
 893     return fake_time++;
 894   } else {
 895     FILETIME wt;
 896     GetSystemTimeAsFileTime(&wt);
 897     return windows_to_java_time(wt);
 898   }
 899 }
 900 
 901 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 902   FILETIME wt;
 903   GetSystemTimeAsFileTime(&wt);
 904   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 905   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 906   seconds = secs;
 907   nanos = jlong(ticks - (secs*10000000)) * 100;
 908 }
 909 
 910 jlong os::javaTimeNanos() {
 911     LARGE_INTEGER current_count;
 912     QueryPerformanceCounter(&current_count);
 913     double current = as_long(current_count);
 914     double freq = performance_frequency;
 915     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 916     return time;
 917 }
 918 
 919 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 920   jlong freq = performance_frequency;
 921   if (freq < NANOSECS_PER_SEC) {
 922     // the performance counter is 64 bits and we will
 923     // be multiplying it -- so no wrap in 64 bits
 924     info_ptr->max_value = ALL_64_BITS;
 925   } else if (freq > NANOSECS_PER_SEC) {
 926     // use the max value the counter can reach to
 927     // determine the max value which could be returned
 928     julong max_counter = (julong)ALL_64_BITS;
 929     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 930   } else {
 931     // the performance counter is 64 bits and we will
 932     // be using it directly -- so no wrap in 64 bits
 933     info_ptr->max_value = ALL_64_BITS;
 934   }
 935 
 936   // using a counter, so no skipping
 937   info_ptr->may_skip_backward = false;
 938   info_ptr->may_skip_forward = false;
 939 
 940   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 941 }
 942 
 943 char* os::local_time_string(char *buf, size_t buflen) {
 944   SYSTEMTIME st;
 945   GetLocalTime(&st);
 946   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 947                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 948   return buf;
 949 }
 950 
 951 bool os::getTimesSecs(double* process_real_time,
 952                       double* process_user_time,
 953                       double* process_system_time) {
 954   HANDLE h_process = GetCurrentProcess();
 955   FILETIME create_time, exit_time, kernel_time, user_time;
 956   BOOL result = GetProcessTimes(h_process,
 957                                 &create_time,
 958                                 &exit_time,
 959                                 &kernel_time,
 960                                 &user_time);
 961   if (result != 0) {
 962     FILETIME wt;
 963     GetSystemTimeAsFileTime(&wt);
 964     jlong rtc_millis = windows_to_java_time(wt);
 965     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 966     *process_user_time =
 967       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 968     *process_system_time =
 969       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 970     return true;
 971   } else {
 972     return false;
 973   }
 974 }
 975 
 976 void os::shutdown() {
 977   // allow PerfMemory to attempt cleanup of any persistent resources
 978   perfMemory_exit();
 979 
 980   // flush buffered output, finish log files
 981   ostream_abort();
 982 
 983   // Check for abort hook
 984   abort_hook_t abort_hook = Arguments::abort_hook();
 985   if (abort_hook != NULL) {
 986     abort_hook();
 987   }
 988 }
 989 
 990 
 991 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 992                                          PMINIDUMP_EXCEPTION_INFORMATION,
 993                                          PMINIDUMP_USER_STREAM_INFORMATION,
 994                                          PMINIDUMP_CALLBACK_INFORMATION);
 995 
 996 static HANDLE dumpFile = NULL;
 997 
 998 // Check if dump file can be created.
 999 void os::check_dump_limit(char* buffer, size_t buffsz) {
1000   bool status = true;
1001   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1002     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1003     status = false;
1004   }
1005 
1006 #ifndef ASSERT
1007   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1008     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1009     status = false;
1010   }
1011 #endif
1012 
1013   if (status) {
1014     const char* cwd = get_current_directory(NULL, 0);
1015     int pid = current_process_id();
1016     if (cwd != NULL) {
1017       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1018     } else {
1019       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1020     }
1021 
1022     if (dumpFile == NULL &&
1023        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1024                  == INVALID_HANDLE_VALUE) {
1025       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1026       status = false;
1027     }
1028   }
1029   VMError::record_coredump_status(buffer, status);
1030 }
1031 
1032 void os::abort(bool dump_core, void* siginfo, const void* context) {
1033   HINSTANCE dbghelp;
1034   EXCEPTION_POINTERS ep;
1035   MINIDUMP_EXCEPTION_INFORMATION mei;
1036   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1037 
1038   HANDLE hProcess = GetCurrentProcess();
1039   DWORD processId = GetCurrentProcessId();
1040   MINIDUMP_TYPE dumpType;
1041 
1042   shutdown();
1043   if (!dump_core || dumpFile == NULL) {
1044     if (dumpFile != NULL) {
1045       CloseHandle(dumpFile);
1046     }
1047     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1048   }
1049 
1050   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1051 
1052   if (dbghelp == NULL) {
1053     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1054     CloseHandle(dumpFile);
1055     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1056   }
1057 
1058   _MiniDumpWriteDump =
1059       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1060                                     PMINIDUMP_EXCEPTION_INFORMATION,
1061                                     PMINIDUMP_USER_STREAM_INFORMATION,
1062                                     PMINIDUMP_CALLBACK_INFORMATION),
1063                                     GetProcAddress(dbghelp,
1064                                     "MiniDumpWriteDump"));
1065 
1066   if (_MiniDumpWriteDump == NULL) {
1067     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1068     CloseHandle(dumpFile);
1069     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1070   }
1071 
1072   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1073     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1074 
1075   if (siginfo != NULL && context != NULL) {
1076     ep.ContextRecord = (PCONTEXT) context;
1077     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1078 
1079     mei.ThreadId = GetCurrentThreadId();
1080     mei.ExceptionPointers = &ep;
1081     pmei = &mei;
1082   } else {
1083     pmei = NULL;
1084   }
1085 
1086   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1087   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1088   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1089       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1090     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1091   }
1092   CloseHandle(dumpFile);
1093   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1094 }
1095 
1096 // Die immediately, no exit hook, no abort hook, no cleanup.
1097 void os::die() {
1098   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1099 }
1100 
1101 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1102 //  * dirent_md.c       1.15 00/02/02
1103 //
1104 // The declarations for DIR and struct dirent are in jvm_win32.h.
1105 
1106 // Caller must have already run dirname through JVM_NativePath, which removes
1107 // duplicate slashes and converts all instances of '/' into '\\'.
1108 
1109 DIR * os::opendir(const char *dirname) {
1110   assert(dirname != NULL, "just checking");   // hotspot change
1111   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1112   DWORD fattr;                                // hotspot change
1113   char alt_dirname[4] = { 0, 0, 0, 0 };
1114 
1115   if (dirp == 0) {
1116     errno = ENOMEM;
1117     return 0;
1118   }
1119 
1120   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1121   // as a directory in FindFirstFile().  We detect this case here and
1122   // prepend the current drive name.
1123   //
1124   if (dirname[1] == '\0' && dirname[0] == '\\') {
1125     alt_dirname[0] = _getdrive() + 'A' - 1;
1126     alt_dirname[1] = ':';
1127     alt_dirname[2] = '\\';
1128     alt_dirname[3] = '\0';
1129     dirname = alt_dirname;
1130   }
1131 
1132   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1133   if (dirp->path == 0) {
1134     free(dirp);
1135     errno = ENOMEM;
1136     return 0;
1137   }
1138   strcpy(dirp->path, dirname);
1139 
1140   fattr = GetFileAttributes(dirp->path);
1141   if (fattr == 0xffffffff) {
1142     free(dirp->path);
1143     free(dirp);
1144     errno = ENOENT;
1145     return 0;
1146   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOTDIR;
1150     return 0;
1151   }
1152 
1153   // Append "*.*", or possibly "\\*.*", to path
1154   if (dirp->path[1] == ':' &&
1155       (dirp->path[2] == '\0' ||
1156       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1157     // No '\\' needed for cases like "Z:" or "Z:\"
1158     strcat(dirp->path, "*.*");
1159   } else {
1160     strcat(dirp->path, "\\*.*");
1161   }
1162 
1163   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1164   if (dirp->handle == INVALID_HANDLE_VALUE) {
1165     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1166       free(dirp->path);
1167       free(dirp);
1168       errno = EACCES;
1169       return 0;
1170     }
1171   }
1172   return dirp;
1173 }
1174 
1175 // parameter dbuf unused on Windows
1176 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1177   assert(dirp != NULL, "just checking");      // hotspot change
1178   if (dirp->handle == INVALID_HANDLE_VALUE) {
1179     return 0;
1180   }
1181 
1182   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1183 
1184   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1185     if (GetLastError() == ERROR_INVALID_HANDLE) {
1186       errno = EBADF;
1187       return 0;
1188     }
1189     FindClose(dirp->handle);
1190     dirp->handle = INVALID_HANDLE_VALUE;
1191   }
1192 
1193   return &dirp->dirent;
1194 }
1195 
1196 int os::closedir(DIR *dirp) {
1197   assert(dirp != NULL, "just checking");      // hotspot change
1198   if (dirp->handle != INVALID_HANDLE_VALUE) {
1199     if (!FindClose(dirp->handle)) {
1200       errno = EBADF;
1201       return -1;
1202     }
1203     dirp->handle = INVALID_HANDLE_VALUE;
1204   }
1205   free(dirp->path);
1206   free(dirp);
1207   return 0;
1208 }
1209 
1210 // This must be hard coded because it's the system's temporary
1211 // directory not the java application's temp directory, ala java.io.tmpdir.
1212 const char* os::get_temp_directory() {
1213   static char path_buf[MAX_PATH];
1214   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1215     return path_buf;
1216   } else {
1217     path_buf[0] = '\0';
1218     return path_buf;
1219   }
1220 }
1221 
1222 static bool file_exists(const char* filename) {
1223   if (filename == NULL || strlen(filename) == 0) {
1224     return false;
1225   }
1226   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1227 }
1228 
1229 bool os::dll_build_name(char *buffer, size_t buflen,
1230                         const char* pname, const char* fname) {
1231   bool retval = false;
1232   const size_t pnamelen = pname ? strlen(pname) : 0;
1233   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1234 
1235   // Return error on buffer overflow.
1236   if (pnamelen + strlen(fname) + 10 > buflen) {
1237     return retval;
1238   }
1239 
1240   if (pnamelen == 0) {
1241     jio_snprintf(buffer, buflen, "%s.dll", fname);
1242     retval = true;
1243   } else if (c == ':' || c == '\\') {
1244     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1245     retval = true;
1246   } else if (strchr(pname, *os::path_separator()) != NULL) {
1247     int n;
1248     char** pelements = split_path(pname, &n);
1249     if (pelements == NULL) {
1250       return false;
1251     }
1252     for (int i = 0; i < n; i++) {
1253       char* path = pelements[i];
1254       // Really shouldn't be NULL, but check can't hurt
1255       size_t plen = (path == NULL) ? 0 : strlen(path);
1256       if (plen == 0) {
1257         continue; // skip the empty path values
1258       }
1259       const char lastchar = path[plen - 1];
1260       if (lastchar == ':' || lastchar == '\\') {
1261         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1262       } else {
1263         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1264       }
1265       if (file_exists(buffer)) {
1266         retval = true;
1267         break;
1268       }
1269     }
1270     // release the storage
1271     for (int i = 0; i < n; i++) {
1272       if (pelements[i] != NULL) {
1273         FREE_C_HEAP_ARRAY(char, pelements[i]);
1274       }
1275     }
1276     if (pelements != NULL) {
1277       FREE_C_HEAP_ARRAY(char*, pelements);
1278     }
1279   } else {
1280     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1281     retval = true;
1282   }
1283   return retval;
1284 }
1285 
1286 // Needs to be in os specific directory because windows requires another
1287 // header file <direct.h>
1288 const char* os::get_current_directory(char *buf, size_t buflen) {
1289   int n = static_cast<int>(buflen);
1290   if (buflen > INT_MAX)  n = INT_MAX;
1291   return _getcwd(buf, n);
1292 }
1293 
1294 //-----------------------------------------------------------
1295 // Helper functions for fatal error handler
1296 #ifdef _WIN64
1297 // Helper routine which returns true if address in
1298 // within the NTDLL address space.
1299 //
1300 static bool _addr_in_ntdll(address addr) {
1301   HMODULE hmod;
1302   MODULEINFO minfo;
1303 
1304   hmod = GetModuleHandle("NTDLL.DLL");
1305   if (hmod == NULL) return false;
1306   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1307                                           &minfo, sizeof(MODULEINFO))) {
1308     return false;
1309   }
1310 
1311   if ((addr >= minfo.lpBaseOfDll) &&
1312       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1313     return true;
1314   } else {
1315     return false;
1316   }
1317 }
1318 #endif
1319 
1320 struct _modinfo {
1321   address addr;
1322   char*   full_path;   // point to a char buffer
1323   int     buflen;      // size of the buffer
1324   address base_addr;
1325 };
1326 
1327 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1328                                   address top_address, void * param) {
1329   struct _modinfo *pmod = (struct _modinfo *)param;
1330   if (!pmod) return -1;
1331 
1332   if (base_addr   <= pmod->addr &&
1333       top_address > pmod->addr) {
1334     // if a buffer is provided, copy path name to the buffer
1335     if (pmod->full_path) {
1336       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1337     }
1338     pmod->base_addr = base_addr;
1339     return 1;
1340   }
1341   return 0;
1342 }
1343 
1344 bool os::dll_address_to_library_name(address addr, char* buf,
1345                                      int buflen, int* offset) {
1346   // buf is not optional, but offset is optional
1347   assert(buf != NULL, "sanity check");
1348 
1349 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1350 //       return the full path to the DLL file, sometimes it returns path
1351 //       to the corresponding PDB file (debug info); sometimes it only
1352 //       returns partial path, which makes life painful.
1353 
1354   struct _modinfo mi;
1355   mi.addr      = addr;
1356   mi.full_path = buf;
1357   mi.buflen    = buflen;
1358   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1359     // buf already contains path name
1360     if (offset) *offset = addr - mi.base_addr;
1361     return true;
1362   }
1363 
1364   buf[0] = '\0';
1365   if (offset) *offset = -1;
1366   return false;
1367 }
1368 
1369 bool os::dll_address_to_function_name(address addr, char *buf,
1370                                       int buflen, int *offset,
1371                                       bool demangle) {
1372   // buf is not optional, but offset is optional
1373   assert(buf != NULL, "sanity check");
1374 
1375   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1376     return true;
1377   }
1378   if (offset != NULL)  *offset  = -1;
1379   buf[0] = '\0';
1380   return false;
1381 }
1382 
1383 // save the start and end address of jvm.dll into param[0] and param[1]
1384 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1385                            address top_address, void * param) {
1386   if (!param) return -1;
1387 
1388   if (base_addr   <= (address)_locate_jvm_dll &&
1389       top_address > (address)_locate_jvm_dll) {
1390     ((address*)param)[0] = base_addr;
1391     ((address*)param)[1] = top_address;
1392     return 1;
1393   }
1394   return 0;
1395 }
1396 
1397 address vm_lib_location[2];    // start and end address of jvm.dll
1398 
1399 // check if addr is inside jvm.dll
1400 bool os::address_is_in_vm(address addr) {
1401   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1402     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1403       assert(false, "Can't find jvm module.");
1404       return false;
1405     }
1406   }
1407 
1408   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1409 }
1410 
1411 // print module info; param is outputStream*
1412 static int _print_module(const char* fname, address base_address,
1413                          address top_address, void* param) {
1414   if (!param) return -1;
1415 
1416   outputStream* st = (outputStream*)param;
1417 
1418   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1419   return 0;
1420 }
1421 
1422 // Loads .dll/.so and
1423 // in case of error it checks if .dll/.so was built for the
1424 // same architecture as Hotspot is running on
1425 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1426   void * result = LoadLibrary(name);
1427   if (result != NULL) {
1428     return result;
1429   }
1430 
1431   DWORD errcode = GetLastError();
1432   if (errcode == ERROR_MOD_NOT_FOUND) {
1433     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1434     ebuf[ebuflen - 1] = '\0';
1435     return NULL;
1436   }
1437 
1438   // Parsing dll below
1439   // If we can read dll-info and find that dll was built
1440   // for an architecture other than Hotspot is running in
1441   // - then print to buffer "DLL was built for a different architecture"
1442   // else call os::lasterror to obtain system error message
1443 
1444   // Read system error message into ebuf
1445   // It may or may not be overwritten below (in the for loop and just above)
1446   lasterror(ebuf, (size_t) ebuflen);
1447   ebuf[ebuflen - 1] = '\0';
1448   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1449   if (fd < 0) {
1450     return NULL;
1451   }
1452 
1453   uint32_t signature_offset;
1454   uint16_t lib_arch = 0;
1455   bool failed_to_get_lib_arch =
1456     ( // Go to position 3c in the dll
1457      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1458      ||
1459      // Read location of signature
1460      (sizeof(signature_offset) !=
1461      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1462      ||
1463      // Go to COFF File Header in dll
1464      // that is located after "signature" (4 bytes long)
1465      (os::seek_to_file_offset(fd,
1466      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1467      ||
1468      // Read field that contains code of architecture
1469      // that dll was built for
1470      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1471     );
1472 
1473   ::close(fd);
1474   if (failed_to_get_lib_arch) {
1475     // file i/o error - report os::lasterror(...) msg
1476     return NULL;
1477   }
1478 
1479   typedef struct {
1480     uint16_t arch_code;
1481     char* arch_name;
1482   } arch_t;
1483 
1484   static const arch_t arch_array[] = {
1485     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1486     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1487     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1488   };
1489 #if   (defined _M_IA64)
1490   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1491 #elif (defined _M_AMD64)
1492   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1493 #elif (defined _M_IX86)
1494   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1495 #else
1496   #error Method os::dll_load requires that one of following \
1497          is defined :_M_IA64,_M_AMD64 or _M_IX86
1498 #endif
1499 
1500 
1501   // Obtain a string for printf operation
1502   // lib_arch_str shall contain string what platform this .dll was built for
1503   // running_arch_str shall string contain what platform Hotspot was built for
1504   char *running_arch_str = NULL, *lib_arch_str = NULL;
1505   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1506     if (lib_arch == arch_array[i].arch_code) {
1507       lib_arch_str = arch_array[i].arch_name;
1508     }
1509     if (running_arch == arch_array[i].arch_code) {
1510       running_arch_str = arch_array[i].arch_name;
1511     }
1512   }
1513 
1514   assert(running_arch_str,
1515          "Didn't find running architecture code in arch_array");
1516 
1517   // If the architecture is right
1518   // but some other error took place - report os::lasterror(...) msg
1519   if (lib_arch == running_arch) {
1520     return NULL;
1521   }
1522 
1523   if (lib_arch_str != NULL) {
1524     ::_snprintf(ebuf, ebuflen - 1,
1525                 "Can't load %s-bit .dll on a %s-bit platform",
1526                 lib_arch_str, running_arch_str);
1527   } else {
1528     // don't know what architecture this dll was build for
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1531                 lib_arch, running_arch_str);
1532   }
1533 
1534   return NULL;
1535 }
1536 
1537 void os::print_dll_info(outputStream *st) {
1538   st->print_cr("Dynamic libraries:");
1539   get_loaded_modules_info(_print_module, (void *)st);
1540 }
1541 
1542 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1543   HANDLE   hProcess;
1544 
1545 # define MAX_NUM_MODULES 128
1546   HMODULE     modules[MAX_NUM_MODULES];
1547   static char filename[MAX_PATH];
1548   int         result = 0;
1549 
1550   int pid = os::current_process_id();
1551   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1552                          FALSE, pid);
1553   if (hProcess == NULL) return 0;
1554 
1555   DWORD size_needed;
1556   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1557     CloseHandle(hProcess);
1558     return 0;
1559   }
1560 
1561   // number of modules that are currently loaded
1562   int num_modules = size_needed / sizeof(HMODULE);
1563 
1564   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1565     // Get Full pathname:
1566     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1567       filename[0] = '\0';
1568     }
1569 
1570     MODULEINFO modinfo;
1571     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1572       modinfo.lpBaseOfDll = NULL;
1573       modinfo.SizeOfImage = 0;
1574     }
1575 
1576     // Invoke callback function
1577     result = callback(filename, (address)modinfo.lpBaseOfDll,
1578                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1579     if (result) break;
1580   }
1581 
1582   CloseHandle(hProcess);
1583   return result;
1584 }
1585 
1586 bool os::get_host_name(char* buf, size_t buflen) {
1587   DWORD size = (DWORD)buflen;
1588   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1589 }
1590 
1591 void os::get_summary_os_info(char* buf, size_t buflen) {
1592   stringStream sst(buf, buflen);
1593   os::win32::print_windows_version(&sst);
1594   // chop off newline character
1595   char* nl = strchr(buf, '\n');
1596   if (nl != NULL) *nl = '\0';
1597 }
1598 
1599 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1600   int ret = vsnprintf(buf, len, fmt, args);
1601   // Get the correct buffer size if buf is too small
1602   if (ret < 0) {
1603     return _vscprintf(fmt, args);
1604   }
1605   return ret;
1606 }
1607 
1608 static inline time_t get_mtime(const char* filename) {
1609   struct stat st;
1610   int ret = os::stat(filename, &st);
1611   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1612   return st.st_mtime;
1613 }
1614 
1615 int os::compare_file_modified_times(const char* file1, const char* file2) {
1616   time_t t1 = get_mtime(file1);
1617   time_t t2 = get_mtime(file2);
1618   return t1 - t2;
1619 }
1620 
1621 void os::print_os_info_brief(outputStream* st) {
1622   os::print_os_info(st);
1623 }
1624 
1625 void os::print_os_info(outputStream* st) {
1626 #ifdef ASSERT
1627   char buffer[1024];
1628   st->print("HostName: ");
1629   if (get_host_name(buffer, sizeof(buffer))) {
1630     st->print("%s ", buffer);
1631   } else {
1632     st->print("N/A ");
1633   }
1634 #endif
1635   st->print("OS:");
1636   os::win32::print_windows_version(st);
1637 }
1638 
1639 void os::win32::print_windows_version(outputStream* st) {
1640   OSVERSIONINFOEX osvi;
1641   VS_FIXEDFILEINFO *file_info;
1642   TCHAR kernel32_path[MAX_PATH];
1643   UINT len, ret;
1644 
1645   // Use the GetVersionEx information to see if we're on a server or
1646   // workstation edition of Windows. Starting with Windows 8.1 we can't
1647   // trust the OS version information returned by this API.
1648   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1649   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1650   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1651     st->print_cr("Call to GetVersionEx failed");
1652     return;
1653   }
1654   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1655 
1656   // Get the full path to \Windows\System32\kernel32.dll and use that for
1657   // determining what version of Windows we're running on.
1658   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1659   ret = GetSystemDirectory(kernel32_path, len);
1660   if (ret == 0 || ret > len) {
1661     st->print_cr("Call to GetSystemDirectory failed");
1662     return;
1663   }
1664   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1665 
1666   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1667   if (version_size == 0) {
1668     st->print_cr("Call to GetFileVersionInfoSize failed");
1669     return;
1670   }
1671 
1672   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1673   if (version_info == NULL) {
1674     st->print_cr("Failed to allocate version_info");
1675     return;
1676   }
1677 
1678   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1679     os::free(version_info);
1680     st->print_cr("Call to GetFileVersionInfo failed");
1681     return;
1682   }
1683 
1684   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1685     os::free(version_info);
1686     st->print_cr("Call to VerQueryValue failed");
1687     return;
1688   }
1689 
1690   int major_version = HIWORD(file_info->dwProductVersionMS);
1691   int minor_version = LOWORD(file_info->dwProductVersionMS);
1692   int build_number = HIWORD(file_info->dwProductVersionLS);
1693   int build_minor = LOWORD(file_info->dwProductVersionLS);
1694   int os_vers = major_version * 1000 + minor_version;
1695   os::free(version_info);
1696 
1697   st->print(" Windows ");
1698   switch (os_vers) {
1699 
1700   case 6000:
1701     if (is_workstation) {
1702       st->print("Vista");
1703     } else {
1704       st->print("Server 2008");
1705     }
1706     break;
1707 
1708   case 6001:
1709     if (is_workstation) {
1710       st->print("7");
1711     } else {
1712       st->print("Server 2008 R2");
1713     }
1714     break;
1715 
1716   case 6002:
1717     if (is_workstation) {
1718       st->print("8");
1719     } else {
1720       st->print("Server 2012");
1721     }
1722     break;
1723 
1724   case 6003:
1725     if (is_workstation) {
1726       st->print("8.1");
1727     } else {
1728       st->print("Server 2012 R2");
1729     }
1730     break;
1731 
1732   case 10000:
1733     if (is_workstation) {
1734       st->print("10");
1735     } else {
1736       st->print("Server 2016");
1737     }
1738     break;
1739 
1740   default:
1741     // Unrecognized windows, print out its major and minor versions
1742     st->print("%d.%d", major_version, minor_version);
1743     break;
1744   }
1745 
1746   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1747   // find out whether we are running on 64 bit processor or not
1748   SYSTEM_INFO si;
1749   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1750   GetNativeSystemInfo(&si);
1751   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1752     st->print(" , 64 bit");
1753   }
1754 
1755   st->print(" Build %d", build_number);
1756   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1757   st->cr();
1758 }
1759 
1760 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1761   // Nothing to do for now.
1762 }
1763 
1764 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1765   HKEY key;
1766   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1767                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1768   if (status == ERROR_SUCCESS) {
1769     DWORD size = (DWORD)buflen;
1770     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1771     if (status != ERROR_SUCCESS) {
1772         strncpy(buf, "## __CPU__", buflen);
1773     }
1774     RegCloseKey(key);
1775   } else {
1776     // Put generic cpu info to return
1777     strncpy(buf, "## __CPU__", buflen);
1778   }
1779 }
1780 
1781 void os::print_memory_info(outputStream* st) {
1782   st->print("Memory:");
1783   st->print(" %dk page", os::vm_page_size()>>10);
1784 
1785   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1786   // value if total memory is larger than 4GB
1787   MEMORYSTATUSEX ms;
1788   ms.dwLength = sizeof(ms);
1789   GlobalMemoryStatusEx(&ms);
1790 
1791   st->print(", physical %uk", os::physical_memory() >> 10);
1792   st->print("(%uk free)", os::available_memory() >> 10);
1793 
1794   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1795   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1796   st->cr();
1797 }
1798 
1799 void os::print_siginfo(outputStream *st, const void* siginfo) {
1800   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1801   st->print("siginfo:");
1802 
1803   char tmp[64];
1804   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1805     strcpy(tmp, "EXCEPTION_??");
1806   }
1807   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1808 
1809   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1810        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1811        er->NumberParameters >= 2) {
1812     switch (er->ExceptionInformation[0]) {
1813     case 0: st->print(", reading address"); break;
1814     case 1: st->print(", writing address"); break;
1815     case 8: st->print(", data execution prevention violation at address"); break;
1816     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1817                        er->ExceptionInformation[0]);
1818     }
1819     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1820   } else {
1821     int num = er->NumberParameters;
1822     if (num > 0) {
1823       st->print(", ExceptionInformation=");
1824       for (int i = 0; i < num; i++) {
1825         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1826       }
1827     }
1828   }
1829   st->cr();
1830 }
1831 
1832 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1833   // do nothing
1834 }
1835 
1836 static char saved_jvm_path[MAX_PATH] = {0};
1837 
1838 // Find the full path to the current module, jvm.dll
1839 void os::jvm_path(char *buf, jint buflen) {
1840   // Error checking.
1841   if (buflen < MAX_PATH) {
1842     assert(false, "must use a large-enough buffer");
1843     buf[0] = '\0';
1844     return;
1845   }
1846   // Lazy resolve the path to current module.
1847   if (saved_jvm_path[0] != 0) {
1848     strcpy(buf, saved_jvm_path);
1849     return;
1850   }
1851 
1852   buf[0] = '\0';
1853   if (Arguments::sun_java_launcher_is_altjvm()) {
1854     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1855     // for a JAVA_HOME environment variable and fix up the path so it
1856     // looks like jvm.dll is installed there (append a fake suffix
1857     // hotspot/jvm.dll).
1858     char* java_home_var = ::getenv("JAVA_HOME");
1859     if (java_home_var != NULL && java_home_var[0] != 0 &&
1860         strlen(java_home_var) < (size_t)buflen) {
1861       strncpy(buf, java_home_var, buflen);
1862 
1863       // determine if this is a legacy image or modules image
1864       // modules image doesn't have "jre" subdirectory
1865       size_t len = strlen(buf);
1866       char* jrebin_p = buf + len;
1867       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1868       if (0 != _access(buf, 0)) {
1869         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1870       }
1871       len = strlen(buf);
1872       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1873     }
1874   }
1875 
1876   if (buf[0] == '\0') {
1877     GetModuleFileName(vm_lib_handle, buf, buflen);
1878   }
1879   strncpy(saved_jvm_path, buf, MAX_PATH);
1880   saved_jvm_path[MAX_PATH - 1] = '\0';
1881 }
1882 
1883 
1884 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1885 #ifndef _WIN64
1886   st->print("_");
1887 #endif
1888 }
1889 
1890 
1891 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1892 #ifndef _WIN64
1893   st->print("@%d", args_size  * sizeof(int));
1894 #endif
1895 }
1896 
1897 // This method is a copy of JDK's sysGetLastErrorString
1898 // from src/windows/hpi/src/system_md.c
1899 
1900 size_t os::lasterror(char* buf, size_t len) {
1901   DWORD errval;
1902 
1903   if ((errval = GetLastError()) != 0) {
1904     // DOS error
1905     size_t n = (size_t)FormatMessage(
1906                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1907                                      NULL,
1908                                      errval,
1909                                      0,
1910                                      buf,
1911                                      (DWORD)len,
1912                                      NULL);
1913     if (n > 3) {
1914       // Drop final '.', CR, LF
1915       if (buf[n - 1] == '\n') n--;
1916       if (buf[n - 1] == '\r') n--;
1917       if (buf[n - 1] == '.') n--;
1918       buf[n] = '\0';
1919     }
1920     return n;
1921   }
1922 
1923   if (errno != 0) {
1924     // C runtime error that has no corresponding DOS error code
1925     const char* s = os::strerror(errno);
1926     size_t n = strlen(s);
1927     if (n >= len) n = len - 1;
1928     strncpy(buf, s, n);
1929     buf[n] = '\0';
1930     return n;
1931   }
1932 
1933   return 0;
1934 }
1935 
1936 int os::get_last_error() {
1937   DWORD error = GetLastError();
1938   if (error == 0) {
1939     error = errno;
1940   }
1941   return (int)error;
1942 }
1943 
1944 WindowsSemaphore::WindowsSemaphore(uint value) {
1945   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1946 
1947   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1948 }
1949 
1950 WindowsSemaphore::~WindowsSemaphore() {
1951   ::CloseHandle(_semaphore);
1952 }
1953 
1954 void WindowsSemaphore::signal(uint count) {
1955   if (count > 0) {
1956     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1957 
1958     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1959   }
1960 }
1961 
1962 void WindowsSemaphore::wait() {
1963   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1964   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1965   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1966 }
1967 
1968 // sun.misc.Signal
1969 // NOTE that this is a workaround for an apparent kernel bug where if
1970 // a signal handler for SIGBREAK is installed then that signal handler
1971 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1972 // See bug 4416763.
1973 static void (*sigbreakHandler)(int) = NULL;
1974 
1975 static void UserHandler(int sig, void *siginfo, void *context) {
1976   os::signal_notify(sig);
1977   // We need to reinstate the signal handler each time...
1978   os::signal(sig, (void*)UserHandler);
1979 }
1980 
1981 void* os::user_handler() {
1982   return (void*) UserHandler;
1983 }
1984 
1985 void* os::signal(int signal_number, void* handler) {
1986   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1987     void (*oldHandler)(int) = sigbreakHandler;
1988     sigbreakHandler = (void (*)(int)) handler;
1989     return (void*) oldHandler;
1990   } else {
1991     return (void*)::signal(signal_number, (void (*)(int))handler);
1992   }
1993 }
1994 
1995 void os::signal_raise(int signal_number) {
1996   raise(signal_number);
1997 }
1998 
1999 // The Win32 C runtime library maps all console control events other than ^C
2000 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2001 // logoff, and shutdown events.  We therefore install our own console handler
2002 // that raises SIGTERM for the latter cases.
2003 //
2004 static BOOL WINAPI consoleHandler(DWORD event) {
2005   switch (event) {
2006   case CTRL_C_EVENT:
2007     if (is_error_reported()) {
2008       // Ctrl-C is pressed during error reporting, likely because the error
2009       // handler fails to abort. Let VM die immediately.
2010       os::die();
2011     }
2012 
2013     os::signal_raise(SIGINT);
2014     return TRUE;
2015     break;
2016   case CTRL_BREAK_EVENT:
2017     if (sigbreakHandler != NULL) {
2018       (*sigbreakHandler)(SIGBREAK);
2019     }
2020     return TRUE;
2021     break;
2022   case CTRL_LOGOFF_EVENT: {
2023     // Don't terminate JVM if it is running in a non-interactive session,
2024     // such as a service process.
2025     USEROBJECTFLAGS flags;
2026     HANDLE handle = GetProcessWindowStation();
2027     if (handle != NULL &&
2028         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2029         sizeof(USEROBJECTFLAGS), NULL)) {
2030       // If it is a non-interactive session, let next handler to deal
2031       // with it.
2032       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2033         return FALSE;
2034       }
2035     }
2036   }
2037   case CTRL_CLOSE_EVENT:
2038   case CTRL_SHUTDOWN_EVENT:
2039     os::signal_raise(SIGTERM);
2040     return TRUE;
2041     break;
2042   default:
2043     break;
2044   }
2045   return FALSE;
2046 }
2047 
2048 // The following code is moved from os.cpp for making this
2049 // code platform specific, which it is by its very nature.
2050 
2051 // Return maximum OS signal used + 1 for internal use only
2052 // Used as exit signal for signal_thread
2053 int os::sigexitnum_pd() {
2054   return NSIG;
2055 }
2056 
2057 // a counter for each possible signal value, including signal_thread exit signal
2058 static volatile jint pending_signals[NSIG+1] = { 0 };
2059 static HANDLE sig_sem = NULL;
2060 
2061 void os::signal_init_pd() {
2062   // Initialize signal structures
2063   memset((void*)pending_signals, 0, sizeof(pending_signals));
2064 
2065   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2066 
2067   // Programs embedding the VM do not want it to attempt to receive
2068   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2069   // shutdown hooks mechanism introduced in 1.3.  For example, when
2070   // the VM is run as part of a Windows NT service (i.e., a servlet
2071   // engine in a web server), the correct behavior is for any console
2072   // control handler to return FALSE, not TRUE, because the OS's
2073   // "final" handler for such events allows the process to continue if
2074   // it is a service (while terminating it if it is not a service).
2075   // To make this behavior uniform and the mechanism simpler, we
2076   // completely disable the VM's usage of these console events if -Xrs
2077   // (=ReduceSignalUsage) is specified.  This means, for example, that
2078   // the CTRL-BREAK thread dump mechanism is also disabled in this
2079   // case.  See bugs 4323062, 4345157, and related bugs.
2080 
2081   if (!ReduceSignalUsage) {
2082     // Add a CTRL-C handler
2083     SetConsoleCtrlHandler(consoleHandler, TRUE);
2084   }
2085 }
2086 
2087 void os::signal_notify(int signal_number) {
2088   BOOL ret;
2089   if (sig_sem != NULL) {
2090     Atomic::inc(&pending_signals[signal_number]);
2091     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2092     assert(ret != 0, "ReleaseSemaphore() failed");
2093   }
2094 }
2095 
2096 static int check_pending_signals(bool wait_for_signal) {
2097   DWORD ret;
2098   while (true) {
2099     for (int i = 0; i < NSIG + 1; i++) {
2100       jint n = pending_signals[i];
2101       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2102         return i;
2103       }
2104     }
2105     if (!wait_for_signal) {
2106       return -1;
2107     }
2108 
2109     JavaThread *thread = JavaThread::current();
2110 
2111     ThreadBlockInVM tbivm(thread);
2112 
2113     bool threadIsSuspended;
2114     do {
2115       thread->set_suspend_equivalent();
2116       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2117       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2118       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2119 
2120       // were we externally suspended while we were waiting?
2121       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2122       if (threadIsSuspended) {
2123         // The semaphore has been incremented, but while we were waiting
2124         // another thread suspended us. We don't want to continue running
2125         // while suspended because that would surprise the thread that
2126         // suspended us.
2127         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2128         assert(ret != 0, "ReleaseSemaphore() failed");
2129 
2130         thread->java_suspend_self();
2131       }
2132     } while (threadIsSuspended);
2133   }
2134 }
2135 
2136 int os::signal_lookup() {
2137   return check_pending_signals(false);
2138 }
2139 
2140 int os::signal_wait() {
2141   return check_pending_signals(true);
2142 }
2143 
2144 // Implicit OS exception handling
2145 
2146 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2147                       address handler) {
2148     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2149   // Save pc in thread
2150 #ifdef _M_IA64
2151   // Do not blow up if no thread info available.
2152   if (thread) {
2153     // Saving PRECISE pc (with slot information) in thread.
2154     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2155     // Convert precise PC into "Unix" format
2156     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2157     thread->set_saved_exception_pc((address)precise_pc);
2158   }
2159   // Set pc to handler
2160   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2161   // Clear out psr.ri (= Restart Instruction) in order to continue
2162   // at the beginning of the target bundle.
2163   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2164   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2165 #else
2166   #ifdef _M_AMD64
2167   // Do not blow up if no thread info available.
2168   if (thread) {
2169     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2170   }
2171   // Set pc to handler
2172   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2173   #else
2174   // Do not blow up if no thread info available.
2175   if (thread) {
2176     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2177   }
2178   // Set pc to handler
2179   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2180   #endif
2181 #endif
2182 
2183   // Continue the execution
2184   return EXCEPTION_CONTINUE_EXECUTION;
2185 }
2186 
2187 
2188 // Used for PostMortemDump
2189 extern "C" void safepoints();
2190 extern "C" void find(int x);
2191 extern "C" void events();
2192 
2193 // According to Windows API documentation, an illegal instruction sequence should generate
2194 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2195 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2196 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2197 
2198 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2199 
2200 // From "Execution Protection in the Windows Operating System" draft 0.35
2201 // Once a system header becomes available, the "real" define should be
2202 // included or copied here.
2203 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2204 
2205 // Handle NAT Bit consumption on IA64.
2206 #ifdef _M_IA64
2207   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2208 #endif
2209 
2210 // Windows Vista/2008 heap corruption check
2211 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2212 
2213 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2214 // C++ compiler contain this error code. Because this is a compiler-generated
2215 // error, the code is not listed in the Win32 API header files.
2216 // The code is actually a cryptic mnemonic device, with the initial "E"
2217 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2218 // ASCII values of "msc".
2219 
2220 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2221 
2222 #define def_excpt(val) { #val, (val) }
2223 
2224 static const struct { char* name; uint number; } exceptlabels[] = {
2225     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2226     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2227     def_excpt(EXCEPTION_BREAKPOINT),
2228     def_excpt(EXCEPTION_SINGLE_STEP),
2229     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2230     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2231     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2232     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2233     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2234     def_excpt(EXCEPTION_FLT_OVERFLOW),
2235     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2236     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2237     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2238     def_excpt(EXCEPTION_INT_OVERFLOW),
2239     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2240     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2241     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2242     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2243     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2244     def_excpt(EXCEPTION_STACK_OVERFLOW),
2245     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2246     def_excpt(EXCEPTION_GUARD_PAGE),
2247     def_excpt(EXCEPTION_INVALID_HANDLE),
2248     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2249     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2250 #ifdef _M_IA64
2251     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2252 #endif
2253 };
2254 
2255 #undef def_excpt
2256 
2257 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2258   uint code = static_cast<uint>(exception_code);
2259   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2260     if (exceptlabels[i].number == code) {
2261       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2262       return buf;
2263     }
2264   }
2265 
2266   return NULL;
2267 }
2268 
2269 //-----------------------------------------------------------------------------
2270 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2271   // handle exception caused by idiv; should only happen for -MinInt/-1
2272   // (division by zero is handled explicitly)
2273 #ifdef _M_IA64
2274   assert(0, "Fix Handle_IDiv_Exception");
2275 #else
2276   #ifdef  _M_AMD64
2277   PCONTEXT ctx = exceptionInfo->ContextRecord;
2278   address pc = (address)ctx->Rip;
2279   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2280   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2281   if (pc[0] == 0xF7) {
2282     // set correct result values and continue after idiv instruction
2283     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2284   } else {
2285     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2286   }
2287   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2288   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2289   // idiv opcode (0xF7).
2290   ctx->Rdx = (DWORD)0;             // remainder
2291   // Continue the execution
2292   #else
2293   PCONTEXT ctx = exceptionInfo->ContextRecord;
2294   address pc = (address)ctx->Eip;
2295   assert(pc[0] == 0xF7, "not an idiv opcode");
2296   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2297   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2298   // set correct result values and continue after idiv instruction
2299   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2300   ctx->Eax = (DWORD)min_jint;      // result
2301   ctx->Edx = (DWORD)0;             // remainder
2302   // Continue the execution
2303   #endif
2304 #endif
2305   return EXCEPTION_CONTINUE_EXECUTION;
2306 }
2307 
2308 //-----------------------------------------------------------------------------
2309 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2310   PCONTEXT ctx = exceptionInfo->ContextRecord;
2311 #ifndef  _WIN64
2312   // handle exception caused by native method modifying control word
2313   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2314 
2315   switch (exception_code) {
2316   case EXCEPTION_FLT_DENORMAL_OPERAND:
2317   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2318   case EXCEPTION_FLT_INEXACT_RESULT:
2319   case EXCEPTION_FLT_INVALID_OPERATION:
2320   case EXCEPTION_FLT_OVERFLOW:
2321   case EXCEPTION_FLT_STACK_CHECK:
2322   case EXCEPTION_FLT_UNDERFLOW:
2323     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2324     if (fp_control_word != ctx->FloatSave.ControlWord) {
2325       // Restore FPCW and mask out FLT exceptions
2326       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2327       // Mask out pending FLT exceptions
2328       ctx->FloatSave.StatusWord &=  0xffffff00;
2329       return EXCEPTION_CONTINUE_EXECUTION;
2330     }
2331   }
2332 
2333   if (prev_uef_handler != NULL) {
2334     // We didn't handle this exception so pass it to the previous
2335     // UnhandledExceptionFilter.
2336     return (prev_uef_handler)(exceptionInfo);
2337   }
2338 #else // !_WIN64
2339   // On Windows, the mxcsr control bits are non-volatile across calls
2340   // See also CR 6192333
2341   //
2342   jint MxCsr = INITIAL_MXCSR;
2343   // we can't use StubRoutines::addr_mxcsr_std()
2344   // because in Win64 mxcsr is not saved there
2345   if (MxCsr != ctx->MxCsr) {
2346     ctx->MxCsr = MxCsr;
2347     return EXCEPTION_CONTINUE_EXECUTION;
2348   }
2349 #endif // !_WIN64
2350 
2351   return EXCEPTION_CONTINUE_SEARCH;
2352 }
2353 
2354 static inline void report_error(Thread* t, DWORD exception_code,
2355                                 address addr, void* siginfo, void* context) {
2356   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2357 
2358   // If UseOsErrorReporting, this will return here and save the error file
2359   // somewhere where we can find it in the minidump.
2360 }
2361 
2362 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2363         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2364   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2365   address addr = (address) exceptionRecord->ExceptionInformation[1];
2366   if (Interpreter::contains(pc)) {
2367     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2368     if (!fr->is_first_java_frame()) {
2369       *fr = fr->java_sender();
2370     }
2371   } else {
2372     // more complex code with compiled code
2373     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2374     CodeBlob* cb = CodeCache::find_blob(pc);
2375     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2376       // Not sure where the pc points to, fallback to default
2377       // stack overflow handling
2378       return false;
2379     } else {
2380       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2381       // in compiled code, the stack banging is performed just after the return pc
2382       // has been pushed on the stack
2383       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2384       if (!fr->is_java_frame()) {
2385         *fr = fr->java_sender();
2386       }
2387     }
2388   }
2389   assert(fr->is_java_frame(), "Safety check");
2390   return true;
2391 }
2392 
2393 //-----------------------------------------------------------------------------
2394 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2395   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2396   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2397 #ifdef _M_IA64
2398   // On Itanium, we need the "precise pc", which has the slot number coded
2399   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2400   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2401   // Convert the pc to "Unix format", which has the slot number coded
2402   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2403   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2404   // information is saved in the Unix format.
2405   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2406 #else
2407   #ifdef _M_AMD64
2408   address pc = (address) exceptionInfo->ContextRecord->Rip;
2409   #else
2410   address pc = (address) exceptionInfo->ContextRecord->Eip;
2411   #endif
2412 #endif
2413   Thread* t = Thread::current_or_null_safe();
2414 
2415   // Handle SafeFetch32 and SafeFetchN exceptions.
2416   if (StubRoutines::is_safefetch_fault(pc)) {
2417     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2418   }
2419 
2420 #ifndef _WIN64
2421   // Execution protection violation - win32 running on AMD64 only
2422   // Handled first to avoid misdiagnosis as a "normal" access violation;
2423   // This is safe to do because we have a new/unique ExceptionInformation
2424   // code for this condition.
2425   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2426     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2427     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2428     address addr = (address) exceptionRecord->ExceptionInformation[1];
2429 
2430     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2431       int page_size = os::vm_page_size();
2432 
2433       // Make sure the pc and the faulting address are sane.
2434       //
2435       // If an instruction spans a page boundary, and the page containing
2436       // the beginning of the instruction is executable but the following
2437       // page is not, the pc and the faulting address might be slightly
2438       // different - we still want to unguard the 2nd page in this case.
2439       //
2440       // 15 bytes seems to be a (very) safe value for max instruction size.
2441       bool pc_is_near_addr =
2442         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2443       bool instr_spans_page_boundary =
2444         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2445                          (intptr_t) page_size) > 0);
2446 
2447       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2448         static volatile address last_addr =
2449           (address) os::non_memory_address_word();
2450 
2451         // In conservative mode, don't unguard unless the address is in the VM
2452         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2453             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2454 
2455           // Set memory to RWX and retry
2456           address page_start =
2457             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2458           bool res = os::protect_memory((char*) page_start, page_size,
2459                                         os::MEM_PROT_RWX);
2460 
2461           log_debug(os)("Execution protection violation "
2462                         "at " INTPTR_FORMAT
2463                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2464                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2465 
2466           // Set last_addr so if we fault again at the same address, we don't
2467           // end up in an endless loop.
2468           //
2469           // There are two potential complications here.  Two threads trapping
2470           // at the same address at the same time could cause one of the
2471           // threads to think it already unguarded, and abort the VM.  Likely
2472           // very rare.
2473           //
2474           // The other race involves two threads alternately trapping at
2475           // different addresses and failing to unguard the page, resulting in
2476           // an endless loop.  This condition is probably even more unlikely
2477           // than the first.
2478           //
2479           // Although both cases could be avoided by using locks or thread
2480           // local last_addr, these solutions are unnecessary complication:
2481           // this handler is a best-effort safety net, not a complete solution.
2482           // It is disabled by default and should only be used as a workaround
2483           // in case we missed any no-execute-unsafe VM code.
2484 
2485           last_addr = addr;
2486 
2487           return EXCEPTION_CONTINUE_EXECUTION;
2488         }
2489       }
2490 
2491       // Last unguard failed or not unguarding
2492       tty->print_raw_cr("Execution protection violation");
2493       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2494                    exceptionInfo->ContextRecord);
2495       return EXCEPTION_CONTINUE_SEARCH;
2496     }
2497   }
2498 #endif // _WIN64
2499 
2500   // Check to see if we caught the safepoint code in the
2501   // process of write protecting the memory serialization page.
2502   // It write enables the page immediately after protecting it
2503   // so just return.
2504   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2505     if (t != NULL && t->is_Java_thread()) {
2506       JavaThread* thread = (JavaThread*) t;
2507       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2508       address addr = (address) exceptionRecord->ExceptionInformation[1];
2509       if (os::is_memory_serialize_page(thread, addr)) {
2510         // Block current thread until the memory serialize page permission restored.
2511         os::block_on_serialize_page_trap();
2512         return EXCEPTION_CONTINUE_EXECUTION;
2513       }
2514     }
2515   }
2516 
2517   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2518       VM_Version::is_cpuinfo_segv_addr(pc)) {
2519     // Verify that OS save/restore AVX registers.
2520     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2521   }
2522 
2523   if (t != NULL && t->is_Java_thread()) {
2524     JavaThread* thread = (JavaThread*) t;
2525     bool in_java = thread->thread_state() == _thread_in_Java;
2526 
2527     // Handle potential stack overflows up front.
2528     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2529 #ifdef _M_IA64
2530       // Use guard page for register stack.
2531       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2532       address addr = (address) exceptionRecord->ExceptionInformation[1];
2533       // Check for a register stack overflow on Itanium
2534       if (thread->addr_inside_register_stack_red_zone(addr)) {
2535         // Fatal red zone violation happens if the Java program
2536         // catches a StackOverflow error and does so much processing
2537         // that it runs beyond the unprotected yellow guard zone. As
2538         // a result, we are out of here.
2539         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2540       } else if(thread->addr_inside_register_stack(addr)) {
2541         // Disable the yellow zone which sets the state that
2542         // we've got a stack overflow problem.
2543         if (thread->stack_yellow_reserved_zone_enabled()) {
2544           thread->disable_stack_yellow_reserved_zone();
2545         }
2546         // Give us some room to process the exception.
2547         thread->disable_register_stack_guard();
2548         // Tracing with +Verbose.
2549         if (Verbose) {
2550           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2551           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2552           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2553           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2554                         thread->register_stack_base(),
2555                         thread->register_stack_base() + thread->stack_size());
2556         }
2557 
2558         // Reguard the permanent register stack red zone just to be sure.
2559         // We saw Windows silently disabling this without telling us.
2560         thread->enable_register_stack_red_zone();
2561 
2562         return Handle_Exception(exceptionInfo,
2563                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2564       }
2565 #endif
2566       if (thread->stack_guards_enabled()) {
2567         if (in_java) {
2568           frame fr;
2569           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2570           address addr = (address) exceptionRecord->ExceptionInformation[1];
2571           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2572             assert(fr.is_java_frame(), "Must be a Java frame");
2573             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2574           }
2575         }
2576         // Yellow zone violation.  The o/s has unprotected the first yellow
2577         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2578         // update the enabled status, even if the zone contains only one page.
2579         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2580         thread->disable_stack_yellow_reserved_zone();
2581         // If not in java code, return and hope for the best.
2582         return in_java
2583             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2584             :  EXCEPTION_CONTINUE_EXECUTION;
2585       } else {
2586         // Fatal red zone violation.
2587         thread->disable_stack_red_zone();
2588         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2589         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2590                       exceptionInfo->ContextRecord);
2591         return EXCEPTION_CONTINUE_SEARCH;
2592       }
2593     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2594       // Either stack overflow or null pointer exception.
2595       if (in_java) {
2596         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2597         address addr = (address) exceptionRecord->ExceptionInformation[1];
2598         address stack_end = thread->stack_end();
2599         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2600           // Stack overflow.
2601           assert(!os::uses_stack_guard_pages(),
2602                  "should be caught by red zone code above.");
2603           return Handle_Exception(exceptionInfo,
2604                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2605         }
2606         // Check for safepoint polling and implicit null
2607         // We only expect null pointers in the stubs (vtable)
2608         // the rest are checked explicitly now.
2609         CodeBlob* cb = CodeCache::find_blob(pc);
2610         if (cb != NULL) {
2611           if (os::is_poll_address(addr)) {
2612             address stub = SharedRuntime::get_poll_stub(pc);
2613             return Handle_Exception(exceptionInfo, stub);
2614           }
2615         }
2616         {
2617 #ifdef _WIN64
2618           // If it's a legal stack address map the entire region in
2619           //
2620           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2621           address addr = (address) exceptionRecord->ExceptionInformation[1];
2622           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2623             addr = (address)((uintptr_t)addr &
2624                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2625             os::commit_memory((char *)addr, thread->stack_base() - addr,
2626                               !ExecMem);
2627             return EXCEPTION_CONTINUE_EXECUTION;
2628           } else
2629 #endif
2630           {
2631             // Null pointer exception.
2632 #ifdef _M_IA64
2633             // Process implicit null checks in compiled code. Note: Implicit null checks
2634             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2635             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2636               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2637               // Handle implicit null check in UEP method entry
2638               if (cb && (cb->is_frame_complete_at(pc) ||
2639                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2640                 if (Verbose) {
2641                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2642                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2643                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2644                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2645                                 *(bundle_start + 1), *bundle_start);
2646                 }
2647                 return Handle_Exception(exceptionInfo,
2648                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2649               }
2650             }
2651 
2652             // Implicit null checks were processed above.  Hence, we should not reach
2653             // here in the usual case => die!
2654             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2655             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2656                          exceptionInfo->ContextRecord);
2657             return EXCEPTION_CONTINUE_SEARCH;
2658 
2659 #else // !IA64
2660 
2661             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2662               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2663               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2664             }
2665             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2666                          exceptionInfo->ContextRecord);
2667             return EXCEPTION_CONTINUE_SEARCH;
2668 #endif
2669           }
2670         }
2671       }
2672 
2673 #ifdef _WIN64
2674       // Special care for fast JNI field accessors.
2675       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2676       // in and the heap gets shrunk before the field access.
2677       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2678         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2679         if (addr != (address)-1) {
2680           return Handle_Exception(exceptionInfo, addr);
2681         }
2682       }
2683 #endif
2684 
2685       // Stack overflow or null pointer exception in native code.
2686       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2687                    exceptionInfo->ContextRecord);
2688       return EXCEPTION_CONTINUE_SEARCH;
2689     } // /EXCEPTION_ACCESS_VIOLATION
2690     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2691 #if defined _M_IA64
2692     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2693               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2694       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2695 
2696       // Compiled method patched to be non entrant? Following conditions must apply:
2697       // 1. must be first instruction in bundle
2698       // 2. must be a break instruction with appropriate code
2699       if ((((uint64_t) pc & 0x0F) == 0) &&
2700           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2701         return Handle_Exception(exceptionInfo,
2702                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2703       }
2704     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2705 #endif
2706 
2707 
2708     if (in_java) {
2709       switch (exception_code) {
2710       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2711         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2712 
2713       case EXCEPTION_INT_OVERFLOW:
2714         return Handle_IDiv_Exception(exceptionInfo);
2715 
2716       } // switch
2717     }
2718     if (((thread->thread_state() == _thread_in_Java) ||
2719          (thread->thread_state() == _thread_in_native)) &&
2720          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2721       LONG result=Handle_FLT_Exception(exceptionInfo);
2722       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2723     }
2724   }
2725 
2726   if (exception_code != EXCEPTION_BREAKPOINT) {
2727     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2728                  exceptionInfo->ContextRecord);
2729   }
2730   return EXCEPTION_CONTINUE_SEARCH;
2731 }
2732 
2733 #ifndef _WIN64
2734 // Special care for fast JNI accessors.
2735 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2736 // the heap gets shrunk before the field access.
2737 // Need to install our own structured exception handler since native code may
2738 // install its own.
2739 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2740   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2741   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2742     address pc = (address) exceptionInfo->ContextRecord->Eip;
2743     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2744     if (addr != (address)-1) {
2745       return Handle_Exception(exceptionInfo, addr);
2746     }
2747   }
2748   return EXCEPTION_CONTINUE_SEARCH;
2749 }
2750 
2751 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2752   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2753                                                      jobject obj,           \
2754                                                      jfieldID fieldID) {    \
2755     __try {                                                                 \
2756       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2757                                                                  obj,       \
2758                                                                  fieldID);  \
2759     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2760                                               _exception_info())) {         \
2761     }                                                                       \
2762     return 0;                                                               \
2763   }
2764 
2765 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2766 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2767 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2768 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2769 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2770 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2771 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2772 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2773 
2774 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2775   switch (type) {
2776   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2777   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2778   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2779   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2780   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2781   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2782   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2783   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2784   default:        ShouldNotReachHere();
2785   }
2786   return (address)-1;
2787 }
2788 #endif
2789 
2790 // Virtual Memory
2791 
2792 int os::vm_page_size() { return os::win32::vm_page_size(); }
2793 int os::vm_allocation_granularity() {
2794   return os::win32::vm_allocation_granularity();
2795 }
2796 
2797 // Windows large page support is available on Windows 2003. In order to use
2798 // large page memory, the administrator must first assign additional privilege
2799 // to the user:
2800 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2801 //   + select Local Policies -> User Rights Assignment
2802 //   + double click "Lock pages in memory", add users and/or groups
2803 //   + reboot
2804 // Note the above steps are needed for administrator as well, as administrators
2805 // by default do not have the privilege to lock pages in memory.
2806 //
2807 // Note about Windows 2003: although the API supports committing large page
2808 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2809 // scenario, I found through experiment it only uses large page if the entire
2810 // memory region is reserved and committed in a single VirtualAlloc() call.
2811 // This makes Windows large page support more or less like Solaris ISM, in
2812 // that the entire heap must be committed upfront. This probably will change
2813 // in the future, if so the code below needs to be revisited.
2814 
2815 #ifndef MEM_LARGE_PAGES
2816   #define MEM_LARGE_PAGES 0x20000000
2817 #endif
2818 
2819 static HANDLE    _hProcess;
2820 static HANDLE    _hToken;
2821 
2822 // Container for NUMA node list info
2823 class NUMANodeListHolder {
2824  private:
2825   int *_numa_used_node_list;  // allocated below
2826   int _numa_used_node_count;
2827 
2828   void free_node_list() {
2829     if (_numa_used_node_list != NULL) {
2830       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2831     }
2832   }
2833 
2834  public:
2835   NUMANodeListHolder() {
2836     _numa_used_node_count = 0;
2837     _numa_used_node_list = NULL;
2838     // do rest of initialization in build routine (after function pointers are set up)
2839   }
2840 
2841   ~NUMANodeListHolder() {
2842     free_node_list();
2843   }
2844 
2845   bool build() {
2846     DWORD_PTR proc_aff_mask;
2847     DWORD_PTR sys_aff_mask;
2848     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2849     ULONG highest_node_number;
2850     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2851     free_node_list();
2852     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2853     for (unsigned int i = 0; i <= highest_node_number; i++) {
2854       ULONGLONG proc_mask_numa_node;
2855       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2856       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2857         _numa_used_node_list[_numa_used_node_count++] = i;
2858       }
2859     }
2860     return (_numa_used_node_count > 1);
2861   }
2862 
2863   int get_count() { return _numa_used_node_count; }
2864   int get_node_list_entry(int n) {
2865     // for indexes out of range, returns -1
2866     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2867   }
2868 
2869 } numa_node_list_holder;
2870 
2871 
2872 
2873 static size_t _large_page_size = 0;
2874 
2875 static bool request_lock_memory_privilege() {
2876   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2877                           os::current_process_id());
2878 
2879   LUID luid;
2880   if (_hProcess != NULL &&
2881       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2882       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2883 
2884     TOKEN_PRIVILEGES tp;
2885     tp.PrivilegeCount = 1;
2886     tp.Privileges[0].Luid = luid;
2887     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2888 
2889     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2890     // privilege. Check GetLastError() too. See MSDN document.
2891     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2892         (GetLastError() == ERROR_SUCCESS)) {
2893       return true;
2894     }
2895   }
2896 
2897   return false;
2898 }
2899 
2900 static void cleanup_after_large_page_init() {
2901   if (_hProcess) CloseHandle(_hProcess);
2902   _hProcess = NULL;
2903   if (_hToken) CloseHandle(_hToken);
2904   _hToken = NULL;
2905 }
2906 
2907 static bool numa_interleaving_init() {
2908   bool success = false;
2909   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2910 
2911   // print a warning if UseNUMAInterleaving flag is specified on command line
2912   bool warn_on_failure = use_numa_interleaving_specified;
2913 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2914 
2915   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2916   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2917   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2918 
2919   if (numa_node_list_holder.build()) {
2920     if (log_is_enabled(Debug, os, cpu)) {
2921       Log(os, cpu) log;
2922       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2923       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2924         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2925       }
2926     }
2927     success = true;
2928   } else {
2929     WARN("Process does not cover multiple NUMA nodes.");
2930   }
2931   if (!success) {
2932     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2933   }
2934   return success;
2935 #undef WARN
2936 }
2937 
2938 // this routine is used whenever we need to reserve a contiguous VA range
2939 // but we need to make separate VirtualAlloc calls for each piece of the range
2940 // Reasons for doing this:
2941 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2942 //  * UseNUMAInterleaving requires a separate node for each piece
2943 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2944                                          DWORD prot,
2945                                          bool should_inject_error = false) {
2946   char * p_buf;
2947   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2948   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2949   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2950 
2951   // first reserve enough address space in advance since we want to be
2952   // able to break a single contiguous virtual address range into multiple
2953   // large page commits but WS2003 does not allow reserving large page space
2954   // so we just use 4K pages for reserve, this gives us a legal contiguous
2955   // address space. then we will deallocate that reservation, and re alloc
2956   // using large pages
2957   const size_t size_of_reserve = bytes + chunk_size;
2958   if (bytes > size_of_reserve) {
2959     // Overflowed.
2960     return NULL;
2961   }
2962   p_buf = (char *) VirtualAlloc(addr,
2963                                 size_of_reserve,  // size of Reserve
2964                                 MEM_RESERVE,
2965                                 PAGE_READWRITE);
2966   // If reservation failed, return NULL
2967   if (p_buf == NULL) return NULL;
2968   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2969   os::release_memory(p_buf, bytes + chunk_size);
2970 
2971   // we still need to round up to a page boundary (in case we are using large pages)
2972   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2973   // instead we handle this in the bytes_to_rq computation below
2974   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2975 
2976   // now go through and allocate one chunk at a time until all bytes are
2977   // allocated
2978   size_t  bytes_remaining = bytes;
2979   // An overflow of align_size_up() would have been caught above
2980   // in the calculation of size_of_reserve.
2981   char * next_alloc_addr = p_buf;
2982   HANDLE hProc = GetCurrentProcess();
2983 
2984 #ifdef ASSERT
2985   // Variable for the failure injection
2986   long ran_num = os::random();
2987   size_t fail_after = ran_num % bytes;
2988 #endif
2989 
2990   int count=0;
2991   while (bytes_remaining) {
2992     // select bytes_to_rq to get to the next chunk_size boundary
2993 
2994     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2995     // Note allocate and commit
2996     char * p_new;
2997 
2998 #ifdef ASSERT
2999     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3000 #else
3001     const bool inject_error_now = false;
3002 #endif
3003 
3004     if (inject_error_now) {
3005       p_new = NULL;
3006     } else {
3007       if (!UseNUMAInterleaving) {
3008         p_new = (char *) VirtualAlloc(next_alloc_addr,
3009                                       bytes_to_rq,
3010                                       flags,
3011                                       prot);
3012       } else {
3013         // get the next node to use from the used_node_list
3014         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3015         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3016         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
3017       }
3018     }
3019 
3020     if (p_new == NULL) {
3021       // Free any allocated pages
3022       if (next_alloc_addr > p_buf) {
3023         // Some memory was committed so release it.
3024         size_t bytes_to_release = bytes - bytes_remaining;
3025         // NMT has yet to record any individual blocks, so it
3026         // need to create a dummy 'reserve' record to match
3027         // the release.
3028         MemTracker::record_virtual_memory_reserve((address)p_buf,
3029                                                   bytes_to_release, CALLER_PC);
3030         os::release_memory(p_buf, bytes_to_release);
3031       }
3032 #ifdef ASSERT
3033       if (should_inject_error) {
3034         log_develop_debug(pagesize)("Reserving pages individually failed.");
3035       }
3036 #endif
3037       return NULL;
3038     }
3039 
3040     bytes_remaining -= bytes_to_rq;
3041     next_alloc_addr += bytes_to_rq;
3042     count++;
3043   }
3044   // Although the memory is allocated individually, it is returned as one.
3045   // NMT records it as one block.
3046   if ((flags & MEM_COMMIT) != 0) {
3047     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3048   } else {
3049     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3050   }
3051 
3052   // made it this far, success
3053   return p_buf;
3054 }
3055 
3056 
3057 
3058 void os::large_page_init() {
3059   if (!UseLargePages) return;
3060 
3061   // print a warning if any large page related flag is specified on command line
3062   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3063                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3064   bool success = false;
3065 
3066 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3067   if (request_lock_memory_privilege()) {
3068     size_t s = GetLargePageMinimum();
3069     if (s) {
3070 #if defined(IA32) || defined(AMD64)
3071       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3072         WARN("JVM cannot use large pages bigger than 4mb.");
3073       } else {
3074 #endif
3075         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3076           _large_page_size = LargePageSizeInBytes;
3077         } else {
3078           _large_page_size = s;
3079         }
3080         success = true;
3081 #if defined(IA32) || defined(AMD64)
3082       }
3083 #endif
3084     } else {
3085       WARN("Large page is not supported by the processor.");
3086     }
3087   } else {
3088     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3089   }
3090 #undef WARN
3091 
3092   const size_t default_page_size = (size_t) vm_page_size();
3093   if (success && _large_page_size > default_page_size) {
3094     _page_sizes[0] = _large_page_size;
3095     _page_sizes[1] = default_page_size;
3096     _page_sizes[2] = 0;
3097   }
3098 
3099   cleanup_after_large_page_init();
3100   UseLargePages = success;
3101 }
3102 
3103 // On win32, one cannot release just a part of reserved memory, it's an
3104 // all or nothing deal.  When we split a reservation, we must break the
3105 // reservation into two reservations.
3106 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3107                                   bool realloc) {
3108   if (size > 0) {
3109     release_memory(base, size);
3110     if (realloc) {
3111       reserve_memory(split, base);
3112     }
3113     if (size != split) {
3114       reserve_memory(size - split, base + split);
3115     }
3116   }
3117 }
3118 
3119 // Multiple threads can race in this code but it's not possible to unmap small sections of
3120 // virtual space to get requested alignment, like posix-like os's.
3121 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3122 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3123   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3124          "Alignment must be a multiple of allocation granularity (page size)");
3125   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3126 
3127   size_t extra_size = size + alignment;
3128   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3129 
3130   char* aligned_base = NULL;
3131 
3132   do {
3133     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3134     if (extra_base == NULL) {
3135       return NULL;
3136     }
3137     // Do manual alignment
3138     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3139 
3140     os::release_memory(extra_base, extra_size);
3141 
3142     aligned_base = os::reserve_memory(size, aligned_base);
3143 
3144   } while (aligned_base == NULL);
3145 
3146   return aligned_base;
3147 }
3148 
3149 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3150   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3151          "reserve alignment");
3152   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3153   char* res;
3154   // note that if UseLargePages is on, all the areas that require interleaving
3155   // will go thru reserve_memory_special rather than thru here.
3156   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3157   if (!use_individual) {
3158     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3159   } else {
3160     elapsedTimer reserveTimer;
3161     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3162     // in numa interleaving, we have to allocate pages individually
3163     // (well really chunks of NUMAInterleaveGranularity size)
3164     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3165     if (res == NULL) {
3166       warning("NUMA page allocation failed");
3167     }
3168     if (Verbose && PrintMiscellaneous) {
3169       reserveTimer.stop();
3170       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3171                     reserveTimer.milliseconds(), reserveTimer.ticks());
3172     }
3173   }
3174   assert(res == NULL || addr == NULL || addr == res,
3175          "Unexpected address from reserve.");
3176 
3177   return res;
3178 }
3179 
3180 // Reserve memory at an arbitrary address, only if that area is
3181 // available (and not reserved for something else).
3182 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3183   // Windows os::reserve_memory() fails of the requested address range is
3184   // not avilable.
3185   return reserve_memory(bytes, requested_addr);
3186 }
3187 
3188 size_t os::large_page_size() {
3189   return _large_page_size;
3190 }
3191 
3192 bool os::can_commit_large_page_memory() {
3193   // Windows only uses large page memory when the entire region is reserved
3194   // and committed in a single VirtualAlloc() call. This may change in the
3195   // future, but with Windows 2003 it's not possible to commit on demand.
3196   return false;
3197 }
3198 
3199 bool os::can_execute_large_page_memory() {
3200   return true;
3201 }
3202 
3203 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3204                                  bool exec) {
3205   assert(UseLargePages, "only for large pages");
3206 
3207   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3208     return NULL; // Fallback to small pages.
3209   }
3210 
3211   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3212   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3213 
3214   // with large pages, there are two cases where we need to use Individual Allocation
3215   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3216   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3217   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3218     log_debug(pagesize)("Reserving large pages individually.");
3219 
3220     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3221     if (p_buf == NULL) {
3222       // give an appropriate warning message
3223       if (UseNUMAInterleaving) {
3224         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3225       }
3226       if (UseLargePagesIndividualAllocation) {
3227         warning("Individually allocated large pages failed, "
3228                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3229       }
3230       return NULL;
3231     }
3232 
3233     return p_buf;
3234 
3235   } else {
3236     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3237 
3238     // normal policy just allocate it all at once
3239     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3240     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3241     if (res != NULL) {
3242       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3243     }
3244 
3245     return res;
3246   }
3247 }
3248 
3249 bool os::release_memory_special(char* base, size_t bytes) {
3250   assert(base != NULL, "Sanity check");
3251   return release_memory(base, bytes);
3252 }
3253 
3254 void os::print_statistics() {
3255 }
3256 
3257 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3258   int err = os::get_last_error();
3259   char buf[256];
3260   size_t buf_len = os::lasterror(buf, sizeof(buf));
3261   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3262           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3263           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3264 }
3265 
3266 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3267   if (bytes == 0) {
3268     // Don't bother the OS with noops.
3269     return true;
3270   }
3271   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3272   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3273   // Don't attempt to print anything if the OS call fails. We're
3274   // probably low on resources, so the print itself may cause crashes.
3275 
3276   // unless we have NUMAInterleaving enabled, the range of a commit
3277   // is always within a reserve covered by a single VirtualAlloc
3278   // in that case we can just do a single commit for the requested size
3279   if (!UseNUMAInterleaving) {
3280     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3281       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3282       return false;
3283     }
3284     if (exec) {
3285       DWORD oldprot;
3286       // Windows doc says to use VirtualProtect to get execute permissions
3287       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3288         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3289         return false;
3290       }
3291     }
3292     return true;
3293   } else {
3294 
3295     // when NUMAInterleaving is enabled, the commit might cover a range that
3296     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3297     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3298     // returns represents the number of bytes that can be committed in one step.
3299     size_t bytes_remaining = bytes;
3300     char * next_alloc_addr = addr;
3301     while (bytes_remaining > 0) {
3302       MEMORY_BASIC_INFORMATION alloc_info;
3303       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3304       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3305       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3306                        PAGE_READWRITE) == NULL) {
3307         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3308                                             exec);)
3309         return false;
3310       }
3311       if (exec) {
3312         DWORD oldprot;
3313         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3314                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3315           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3316                                               exec);)
3317           return false;
3318         }
3319       }
3320       bytes_remaining -= bytes_to_rq;
3321       next_alloc_addr += bytes_to_rq;
3322     }
3323   }
3324   // if we made it this far, return true
3325   return true;
3326 }
3327 
3328 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3329                           bool exec) {
3330   // alignment_hint is ignored on this OS
3331   return pd_commit_memory(addr, size, exec);
3332 }
3333 
3334 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3335                                   const char* mesg) {
3336   assert(mesg != NULL, "mesg must be specified");
3337   if (!pd_commit_memory(addr, size, exec)) {
3338     warn_fail_commit_memory(addr, size, exec);
3339     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3340   }
3341 }
3342 
3343 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3344                                   size_t alignment_hint, bool exec,
3345                                   const char* mesg) {
3346   // alignment_hint is ignored on this OS
3347   pd_commit_memory_or_exit(addr, size, exec, mesg);
3348 }
3349 
3350 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3351   if (bytes == 0) {
3352     // Don't bother the OS with noops.
3353     return true;
3354   }
3355   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3356   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3357   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3358 }
3359 
3360 bool os::pd_release_memory(char* addr, size_t bytes) {
3361   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3362 }
3363 
3364 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3365   return os::commit_memory(addr, size, !ExecMem);
3366 }
3367 
3368 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3369   return os::uncommit_memory(addr, size);
3370 }
3371 
3372 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3373   uint count = 0;
3374   bool ret = false;
3375   size_t bytes_remaining = bytes;
3376   char * next_protect_addr = addr;
3377 
3378   // Use VirtualQuery() to get the chunk size.
3379   while (bytes_remaining) {
3380     MEMORY_BASIC_INFORMATION alloc_info;
3381     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3382       return false;
3383     }
3384 
3385     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3386     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3387     // but we don't distinguish here as both cases are protected by same API.
3388     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3389     warning("Failed protecting pages individually for chunk #%u", count);
3390     if (!ret) {
3391       return false;
3392     }
3393 
3394     bytes_remaining -= bytes_to_protect;
3395     next_protect_addr += bytes_to_protect;
3396     count++;
3397   }
3398   return ret;
3399 }
3400 
3401 // Set protections specified
3402 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3403                         bool is_committed) {
3404   unsigned int p = 0;
3405   switch (prot) {
3406   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3407   case MEM_PROT_READ: p = PAGE_READONLY; break;
3408   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3409   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3410   default:
3411     ShouldNotReachHere();
3412   }
3413 
3414   DWORD old_status;
3415 
3416   // Strange enough, but on Win32 one can change protection only for committed
3417   // memory, not a big deal anyway, as bytes less or equal than 64K
3418   if (!is_committed) {
3419     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3420                           "cannot commit protection page");
3421   }
3422   // One cannot use os::guard_memory() here, as on Win32 guard page
3423   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3424   //
3425   // Pages in the region become guard pages. Any attempt to access a guard page
3426   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3427   // the guard page status. Guard pages thus act as a one-time access alarm.
3428   bool ret;
3429   if (UseNUMAInterleaving) {
3430     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3431     // so we must protect the chunks individually.
3432     ret = protect_pages_individually(addr, bytes, p, &old_status);
3433   } else {
3434     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3435   }
3436 #ifdef ASSERT
3437   if (!ret) {
3438     int err = os::get_last_error();
3439     char buf[256];
3440     size_t buf_len = os::lasterror(buf, sizeof(buf));
3441     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3442           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3443           buf_len != 0 ? buf : "<no_error_string>", err);
3444   }
3445 #endif
3446   return ret;
3447 }
3448 
3449 bool os::guard_memory(char* addr, size_t bytes) {
3450   DWORD old_status;
3451   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3452 }
3453 
3454 bool os::unguard_memory(char* addr, size_t bytes) {
3455   DWORD old_status;
3456   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3457 }
3458 
3459 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3460 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3461 void os::numa_make_global(char *addr, size_t bytes)    { }
3462 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3463 bool os::numa_topology_changed()                       { return false; }
3464 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3465 int os::numa_get_group_id()                            { return 0; }
3466 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3467   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3468     // Provide an answer for UMA systems
3469     ids[0] = 0;
3470     return 1;
3471   } else {
3472     // check for size bigger than actual groups_num
3473     size = MIN2(size, numa_get_groups_num());
3474     for (int i = 0; i < (int)size; i++) {
3475       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3476     }
3477     return size;
3478   }
3479 }
3480 
3481 bool os::get_page_info(char *start, page_info* info) {
3482   return false;
3483 }
3484 
3485 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3486                      page_info* page_found) {
3487   return end;
3488 }
3489 
3490 char* os::non_memory_address_word() {
3491   // Must never look like an address returned by reserve_memory,
3492   // even in its subfields (as defined by the CPU immediate fields,
3493   // if the CPU splits constants across multiple instructions).
3494   return (char*)-1;
3495 }
3496 
3497 #define MAX_ERROR_COUNT 100
3498 #define SYS_THREAD_ERROR 0xffffffffUL
3499 
3500 void os::pd_start_thread(Thread* thread) {
3501   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3502   // Returns previous suspend state:
3503   // 0:  Thread was not suspended
3504   // 1:  Thread is running now
3505   // >1: Thread is still suspended.
3506   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3507 }
3508 
3509 class HighResolutionInterval : public CHeapObj<mtThread> {
3510   // The default timer resolution seems to be 10 milliseconds.
3511   // (Where is this written down?)
3512   // If someone wants to sleep for only a fraction of the default,
3513   // then we set the timer resolution down to 1 millisecond for
3514   // the duration of their interval.
3515   // We carefully set the resolution back, since otherwise we
3516   // seem to incur an overhead (3%?) that we don't need.
3517   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3518   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3519   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3520   // timeBeginPeriod() if the relative error exceeded some threshold.
3521   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3522   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3523   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3524   // resolution timers running.
3525  private:
3526   jlong resolution;
3527  public:
3528   HighResolutionInterval(jlong ms) {
3529     resolution = ms % 10L;
3530     if (resolution != 0) {
3531       MMRESULT result = timeBeginPeriod(1L);
3532     }
3533   }
3534   ~HighResolutionInterval() {
3535     if (resolution != 0) {
3536       MMRESULT result = timeEndPeriod(1L);
3537     }
3538     resolution = 0L;
3539   }
3540 };
3541 
3542 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3543   jlong limit = (jlong) MAXDWORD;
3544 
3545   while (ms > limit) {
3546     int res;
3547     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3548       return res;
3549     }
3550     ms -= limit;
3551   }
3552 
3553   assert(thread == Thread::current(), "thread consistency check");
3554   OSThread* osthread = thread->osthread();
3555   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3556   int result;
3557   if (interruptable) {
3558     assert(thread->is_Java_thread(), "must be java thread");
3559     JavaThread *jt = (JavaThread *) thread;
3560     ThreadBlockInVM tbivm(jt);
3561 
3562     jt->set_suspend_equivalent();
3563     // cleared by handle_special_suspend_equivalent_condition() or
3564     // java_suspend_self() via check_and_wait_while_suspended()
3565 
3566     HANDLE events[1];
3567     events[0] = osthread->interrupt_event();
3568     HighResolutionInterval *phri=NULL;
3569     if (!ForceTimeHighResolution) {
3570       phri = new HighResolutionInterval(ms);
3571     }
3572     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3573       result = OS_TIMEOUT;
3574     } else {
3575       ResetEvent(osthread->interrupt_event());
3576       osthread->set_interrupted(false);
3577       result = OS_INTRPT;
3578     }
3579     delete phri; //if it is NULL, harmless
3580 
3581     // were we externally suspended while we were waiting?
3582     jt->check_and_wait_while_suspended();
3583   } else {
3584     assert(!thread->is_Java_thread(), "must not be java thread");
3585     Sleep((long) ms);
3586     result = OS_TIMEOUT;
3587   }
3588   return result;
3589 }
3590 
3591 // Short sleep, direct OS call.
3592 //
3593 // ms = 0, means allow others (if any) to run.
3594 //
3595 void os::naked_short_sleep(jlong ms) {
3596   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3597   Sleep(ms);
3598 }
3599 
3600 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3601 void os::infinite_sleep() {
3602   while (true) {    // sleep forever ...
3603     Sleep(100000);  // ... 100 seconds at a time
3604   }
3605 }
3606 
3607 typedef BOOL (WINAPI * STTSignature)(void);
3608 
3609 void os::naked_yield() {
3610   // Consider passing back the return value from SwitchToThread().
3611   SwitchToThread();
3612 }
3613 
3614 // Win32 only gives you access to seven real priorities at a time,
3615 // so we compress Java's ten down to seven.  It would be better
3616 // if we dynamically adjusted relative priorities.
3617 
3618 int os::java_to_os_priority[CriticalPriority + 1] = {
3619   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3620   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3621   THREAD_PRIORITY_LOWEST,                       // 2
3622   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3623   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3624   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3625   THREAD_PRIORITY_NORMAL,                       // 6
3626   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3627   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3628   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3629   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3630   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3631 };
3632 
3633 int prio_policy1[CriticalPriority + 1] = {
3634   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3635   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3636   THREAD_PRIORITY_LOWEST,                       // 2
3637   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3638   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3639   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3640   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3641   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3642   THREAD_PRIORITY_HIGHEST,                      // 8
3643   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3644   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3645   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3646 };
3647 
3648 static int prio_init() {
3649   // If ThreadPriorityPolicy is 1, switch tables
3650   if (ThreadPriorityPolicy == 1) {
3651     int i;
3652     for (i = 0; i < CriticalPriority + 1; i++) {
3653       os::java_to_os_priority[i] = prio_policy1[i];
3654     }
3655   }
3656   if (UseCriticalJavaThreadPriority) {
3657     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3658   }
3659   return 0;
3660 }
3661 
3662 OSReturn os::set_native_priority(Thread* thread, int priority) {
3663   if (!UseThreadPriorities) return OS_OK;
3664   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3665   return ret ? OS_OK : OS_ERR;
3666 }
3667 
3668 OSReturn os::get_native_priority(const Thread* const thread,
3669                                  int* priority_ptr) {
3670   if (!UseThreadPriorities) {
3671     *priority_ptr = java_to_os_priority[NormPriority];
3672     return OS_OK;
3673   }
3674   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3675   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3676     assert(false, "GetThreadPriority failed");
3677     return OS_ERR;
3678   }
3679   *priority_ptr = os_prio;
3680   return OS_OK;
3681 }
3682 
3683 
3684 // Hint to the underlying OS that a task switch would not be good.
3685 // Void return because it's a hint and can fail.
3686 void os::hint_no_preempt() {}
3687 
3688 void os::interrupt(Thread* thread) {
3689   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3690          Threads_lock->owned_by_self(),
3691          "possibility of dangling Thread pointer");
3692 
3693   OSThread* osthread = thread->osthread();
3694   osthread->set_interrupted(true);
3695   // More than one thread can get here with the same value of osthread,
3696   // resulting in multiple notifications.  We do, however, want the store
3697   // to interrupted() to be visible to other threads before we post
3698   // the interrupt event.
3699   OrderAccess::release();
3700   SetEvent(osthread->interrupt_event());
3701   // For JSR166:  unpark after setting status
3702   if (thread->is_Java_thread()) {
3703     ((JavaThread*)thread)->parker()->unpark();
3704   }
3705 
3706   ParkEvent * ev = thread->_ParkEvent;
3707   if (ev != NULL) ev->unpark();
3708 }
3709 
3710 
3711 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3712   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3713          "possibility of dangling Thread pointer");
3714 
3715   OSThread* osthread = thread->osthread();
3716   // There is no synchronization between the setting of the interrupt
3717   // and it being cleared here. It is critical - see 6535709 - that
3718   // we only clear the interrupt state, and reset the interrupt event,
3719   // if we are going to report that we were indeed interrupted - else
3720   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3721   // depending on the timing. By checking thread interrupt event to see
3722   // if the thread gets real interrupt thus prevent spurious wakeup.
3723   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3724   if (interrupted && clear_interrupted) {
3725     osthread->set_interrupted(false);
3726     ResetEvent(osthread->interrupt_event());
3727   } // Otherwise leave the interrupted state alone
3728 
3729   return interrupted;
3730 }
3731 
3732 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3733 ExtendedPC os::get_thread_pc(Thread* thread) {
3734   CONTEXT context;
3735   context.ContextFlags = CONTEXT_CONTROL;
3736   HANDLE handle = thread->osthread()->thread_handle();
3737 #ifdef _M_IA64
3738   assert(0, "Fix get_thread_pc");
3739   return ExtendedPC(NULL);
3740 #else
3741   if (GetThreadContext(handle, &context)) {
3742 #ifdef _M_AMD64
3743     return ExtendedPC((address) context.Rip);
3744 #else
3745     return ExtendedPC((address) context.Eip);
3746 #endif
3747   } else {
3748     return ExtendedPC(NULL);
3749   }
3750 #endif
3751 }
3752 
3753 // GetCurrentThreadId() returns DWORD
3754 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3755 
3756 static int _initial_pid = 0;
3757 
3758 int os::current_process_id() {
3759   return (_initial_pid ? _initial_pid : _getpid());
3760 }
3761 
3762 int    os::win32::_vm_page_size              = 0;
3763 int    os::win32::_vm_allocation_granularity = 0;
3764 int    os::win32::_processor_type            = 0;
3765 // Processor level is not available on non-NT systems, use vm_version instead
3766 int    os::win32::_processor_level           = 0;
3767 julong os::win32::_physical_memory           = 0;
3768 size_t os::win32::_default_stack_size        = 0;
3769 
3770 intx          os::win32::_os_thread_limit    = 0;
3771 volatile intx os::win32::_os_thread_count    = 0;
3772 
3773 bool   os::win32::_is_windows_server         = false;
3774 
3775 // 6573254
3776 // Currently, the bug is observed across all the supported Windows releases,
3777 // including the latest one (as of this writing - Windows Server 2012 R2)
3778 bool   os::win32::_has_exit_bug              = true;
3779 
3780 void os::win32::initialize_system_info() {
3781   SYSTEM_INFO si;
3782   GetSystemInfo(&si);
3783   _vm_page_size    = si.dwPageSize;
3784   _vm_allocation_granularity = si.dwAllocationGranularity;
3785   _processor_type  = si.dwProcessorType;
3786   _processor_level = si.wProcessorLevel;
3787   set_processor_count(si.dwNumberOfProcessors);
3788 
3789   MEMORYSTATUSEX ms;
3790   ms.dwLength = sizeof(ms);
3791 
3792   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3793   // dwMemoryLoad (% of memory in use)
3794   GlobalMemoryStatusEx(&ms);
3795   _physical_memory = ms.ullTotalPhys;
3796 
3797   if (FLAG_IS_DEFAULT(MaxRAM)) {
3798     // Adjust MaxRAM according to the maximum virtual address space available.
3799     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3800   }
3801 
3802   OSVERSIONINFOEX oi;
3803   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3804   GetVersionEx((OSVERSIONINFO*)&oi);
3805   switch (oi.dwPlatformId) {
3806   case VER_PLATFORM_WIN32_NT:
3807     {
3808       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3809       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3810           oi.wProductType == VER_NT_SERVER) {
3811         _is_windows_server = true;
3812       }
3813     }
3814     break;
3815   default: fatal("Unknown platform");
3816   }
3817 
3818   _default_stack_size = os::current_stack_size();
3819   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3820   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3821          "stack size not a multiple of page size");
3822 
3823   initialize_performance_counter();
3824 }
3825 
3826 
3827 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3828                                       int ebuflen) {
3829   char path[MAX_PATH];
3830   DWORD size;
3831   DWORD pathLen = (DWORD)sizeof(path);
3832   HINSTANCE result = NULL;
3833 
3834   // only allow library name without path component
3835   assert(strchr(name, '\\') == NULL, "path not allowed");
3836   assert(strchr(name, ':') == NULL, "path not allowed");
3837   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3838     jio_snprintf(ebuf, ebuflen,
3839                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3840     return NULL;
3841   }
3842 
3843   // search system directory
3844   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3845     if (size >= pathLen) {
3846       return NULL; // truncated
3847     }
3848     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3849       return NULL; // truncated
3850     }
3851     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3852       return result;
3853     }
3854   }
3855 
3856   // try Windows directory
3857   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3858     if (size >= pathLen) {
3859       return NULL; // truncated
3860     }
3861     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3862       return NULL; // truncated
3863     }
3864     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3865       return result;
3866     }
3867   }
3868 
3869   jio_snprintf(ebuf, ebuflen,
3870                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3871   return NULL;
3872 }
3873 
3874 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3875 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3876 
3877 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3878   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3879   return TRUE;
3880 }
3881 
3882 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3883   // Basic approach:
3884   //  - Each exiting thread registers its intent to exit and then does so.
3885   //  - A thread trying to terminate the process must wait for all
3886   //    threads currently exiting to complete their exit.
3887 
3888   if (os::win32::has_exit_bug()) {
3889     // The array holds handles of the threads that have started exiting by calling
3890     // _endthreadex().
3891     // Should be large enough to avoid blocking the exiting thread due to lack of
3892     // a free slot.
3893     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3894     static int handle_count = 0;
3895 
3896     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3897     static CRITICAL_SECTION crit_sect;
3898     static volatile jint process_exiting = 0;
3899     int i, j;
3900     DWORD res;
3901     HANDLE hproc, hthr;
3902 
3903     // We only attempt to register threads until a process exiting
3904     // thread manages to set the process_exiting flag. Any threads
3905     // that come through here after the process_exiting flag is set
3906     // are unregistered and will be caught in the SuspendThread()
3907     // infinite loop below.
3908     bool registered = false;
3909 
3910     // The first thread that reached this point, initializes the critical section.
3911     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3912       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3913     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3914       if (what != EPT_THREAD) {
3915         // Atomically set process_exiting before the critical section
3916         // to increase the visibility between racing threads.
3917         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3918       }
3919       EnterCriticalSection(&crit_sect);
3920 
3921       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3922         // Remove from the array those handles of the threads that have completed exiting.
3923         for (i = 0, j = 0; i < handle_count; ++i) {
3924           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3925           if (res == WAIT_TIMEOUT) {
3926             handles[j++] = handles[i];
3927           } else {
3928             if (res == WAIT_FAILED) {
3929               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3930                       GetLastError(), __FILE__, __LINE__);
3931             }
3932             // Don't keep the handle, if we failed waiting for it.
3933             CloseHandle(handles[i]);
3934           }
3935         }
3936 
3937         // If there's no free slot in the array of the kept handles, we'll have to
3938         // wait until at least one thread completes exiting.
3939         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3940           // Raise the priority of the oldest exiting thread to increase its chances
3941           // to complete sooner.
3942           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3943           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3944           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3945             i = (res - WAIT_OBJECT_0);
3946             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3947             for (; i < handle_count; ++i) {
3948               handles[i] = handles[i + 1];
3949             }
3950           } else {
3951             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3952                     (res == WAIT_FAILED ? "failed" : "timed out"),
3953                     GetLastError(), __FILE__, __LINE__);
3954             // Don't keep handles, if we failed waiting for them.
3955             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3956               CloseHandle(handles[i]);
3957             }
3958             handle_count = 0;
3959           }
3960         }
3961 
3962         // Store a duplicate of the current thread handle in the array of handles.
3963         hproc = GetCurrentProcess();
3964         hthr = GetCurrentThread();
3965         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3966                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3967           warning("DuplicateHandle failed (%u) in %s: %d\n",
3968                   GetLastError(), __FILE__, __LINE__);
3969 
3970           // We can't register this thread (no more handles) so this thread
3971           // may be racing with a thread that is calling exit(). If the thread
3972           // that is calling exit() has managed to set the process_exiting
3973           // flag, then this thread will be caught in the SuspendThread()
3974           // infinite loop below which closes that race. A small timing
3975           // window remains before the process_exiting flag is set, but it
3976           // is only exposed when we are out of handles.
3977         } else {
3978           ++handle_count;
3979           registered = true;
3980 
3981           // The current exiting thread has stored its handle in the array, and now
3982           // should leave the critical section before calling _endthreadex().
3983         }
3984 
3985       } else if (what != EPT_THREAD && handle_count > 0) {
3986         jlong start_time, finish_time, timeout_left;
3987         // Before ending the process, make sure all the threads that had called
3988         // _endthreadex() completed.
3989 
3990         // Set the priority level of the current thread to the same value as
3991         // the priority level of exiting threads.
3992         // This is to ensure it will be given a fair chance to execute if
3993         // the timeout expires.
3994         hthr = GetCurrentThread();
3995         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
3996         start_time = os::javaTimeNanos();
3997         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
3998         for (i = 0; ; ) {
3999           int portion_count = handle_count - i;
4000           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
4001             portion_count = MAXIMUM_WAIT_OBJECTS;
4002           }
4003           for (j = 0; j < portion_count; ++j) {
4004             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
4005           }
4006           timeout_left = (finish_time - start_time) / 1000000L;
4007           if (timeout_left < 0) {
4008             timeout_left = 0;
4009           }
4010           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
4011           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
4012             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4013                     (res == WAIT_FAILED ? "failed" : "timed out"),
4014                     GetLastError(), __FILE__, __LINE__);
4015             // Reset portion_count so we close the remaining
4016             // handles due to this error.
4017             portion_count = handle_count - i;
4018           }
4019           for (j = 0; j < portion_count; ++j) {
4020             CloseHandle(handles[i + j]);
4021           }
4022           if ((i += portion_count) >= handle_count) {
4023             break;
4024           }
4025           start_time = os::javaTimeNanos();
4026         }
4027         handle_count = 0;
4028       }
4029 
4030       LeaveCriticalSection(&crit_sect);
4031     }
4032 
4033     if (!registered &&
4034         OrderAccess::load_acquire(&process_exiting) != 0 &&
4035         process_exiting != (jint)GetCurrentThreadId()) {
4036       // Some other thread is about to call exit(), so we don't let
4037       // the current unregistered thread proceed to exit() or _endthreadex()
4038       while (true) {
4039         SuspendThread(GetCurrentThread());
4040         // Avoid busy-wait loop, if SuspendThread() failed.
4041         Sleep(EXIT_TIMEOUT);
4042       }
4043     }
4044   }
4045 
4046   // We are here if either
4047   // - there's no 'race at exit' bug on this OS release;
4048   // - initialization of the critical section failed (unlikely);
4049   // - the current thread has registered itself and left the critical section;
4050   // - the process-exiting thread has raised the flag and left the critical section.
4051   if (what == EPT_THREAD) {
4052     _endthreadex((unsigned)exit_code);
4053   } else if (what == EPT_PROCESS) {
4054     ::exit(exit_code);
4055   } else {
4056     _exit(exit_code);
4057   }
4058 
4059   // Should not reach here
4060   return exit_code;
4061 }
4062 
4063 #undef EXIT_TIMEOUT
4064 
4065 void os::win32::setmode_streams() {
4066   _setmode(_fileno(stdin), _O_BINARY);
4067   _setmode(_fileno(stdout), _O_BINARY);
4068   _setmode(_fileno(stderr), _O_BINARY);
4069 }
4070 
4071 
4072 bool os::is_debugger_attached() {
4073   return IsDebuggerPresent() ? true : false;
4074 }
4075 
4076 
4077 void os::wait_for_keypress_at_exit(void) {
4078   if (PauseAtExit) {
4079     fprintf(stderr, "Press any key to continue...\n");
4080     fgetc(stdin);
4081   }
4082 }
4083 
4084 
4085 bool os::message_box(const char* title, const char* message) {
4086   int result = MessageBox(NULL, message, title,
4087                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4088   return result == IDYES;
4089 }
4090 
4091 #ifndef PRODUCT
4092 #ifndef _WIN64
4093 // Helpers to check whether NX protection is enabled
4094 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4095   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4096       pex->ExceptionRecord->NumberParameters > 0 &&
4097       pex->ExceptionRecord->ExceptionInformation[0] ==
4098       EXCEPTION_INFO_EXEC_VIOLATION) {
4099     return EXCEPTION_EXECUTE_HANDLER;
4100   }
4101   return EXCEPTION_CONTINUE_SEARCH;
4102 }
4103 
4104 void nx_check_protection() {
4105   // If NX is enabled we'll get an exception calling into code on the stack
4106   char code[] = { (char)0xC3 }; // ret
4107   void *code_ptr = (void *)code;
4108   __try {
4109     __asm call code_ptr
4110   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4111     tty->print_raw_cr("NX protection detected.");
4112   }
4113 }
4114 #endif // _WIN64
4115 #endif // PRODUCT
4116 
4117 // This is called _before_ the global arguments have been parsed
4118 void os::init(void) {
4119   _initial_pid = _getpid();
4120 
4121   init_random(1234567);
4122 
4123   win32::initialize_system_info();
4124   win32::setmode_streams();
4125   init_page_sizes((size_t) win32::vm_page_size());
4126 
4127   // This may be overridden later when argument processing is done.
4128   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4129 
4130   // Initialize main_process and main_thread
4131   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4132   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4133                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4134     fatal("DuplicateHandle failed\n");
4135   }
4136   main_thread_id = (int) GetCurrentThreadId();
4137 
4138   // initialize fast thread access - only used for 32-bit
4139   win32::initialize_thread_ptr_offset();
4140 }
4141 
4142 // To install functions for atexit processing
4143 extern "C" {
4144   static void perfMemory_exit_helper() {
4145     perfMemory_exit();
4146   }
4147 }
4148 
4149 static jint initSock();
4150 
4151 // this is called _after_ the global arguments have been parsed
4152 jint os::init_2(void) {
4153   // Allocate a single page and mark it as readable for safepoint polling
4154   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4155   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4156 
4157   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4158   guarantee(return_page != NULL, "Commit Failed for polling page");
4159 
4160   os::set_polling_page(polling_page);
4161   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4162 
4163   if (!UseMembar) {
4164     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4165     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4166 
4167     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4168     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4169 
4170     os::set_memory_serialize_page(mem_serialize_page);
4171     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4172   }
4173 
4174   // Setup Windows Exceptions
4175 
4176   // for debugging float code generation bugs
4177   if (ForceFloatExceptions) {
4178 #ifndef  _WIN64
4179     static long fp_control_word = 0;
4180     __asm { fstcw fp_control_word }
4181     // see Intel PPro Manual, Vol. 2, p 7-16
4182     const long precision = 0x20;
4183     const long underflow = 0x10;
4184     const long overflow  = 0x08;
4185     const long zero_div  = 0x04;
4186     const long denorm    = 0x02;
4187     const long invalid   = 0x01;
4188     fp_control_word |= invalid;
4189     __asm { fldcw fp_control_word }
4190 #endif
4191   }
4192 
4193   // If stack_commit_size is 0, windows will reserve the default size,
4194   // but only commit a small portion of it.
4195   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4196   size_t default_reserve_size = os::win32::default_stack_size();
4197   size_t actual_reserve_size = stack_commit_size;
4198   if (stack_commit_size < default_reserve_size) {
4199     // If stack_commit_size == 0, we want this too
4200     actual_reserve_size = default_reserve_size;
4201   }
4202 
4203   // Check minimum allowable stack size for thread creation and to initialize
4204   // the java system classes, including StackOverflowError - depends on page
4205   // size.  Add two 4K pages for compiler2 recursion in main thread.
4206   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4207   // class initialization depending on 32 or 64 bit VM.
4208   size_t min_stack_allowed =
4209             (size_t)(JavaThread::stack_guard_zone_size() +
4210                      JavaThread::stack_shadow_zone_size() +
4211                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4212 
4213   min_stack_allowed = align_size_up(min_stack_allowed, os::vm_page_size());
4214 
4215   if (actual_reserve_size < min_stack_allowed) {
4216     tty->print_cr("\nThe Java thread stack size specified is too small. "
4217                   "Specify at least %dk",
4218                   min_stack_allowed / K);
4219     return JNI_ERR;
4220   }
4221 
4222   JavaThread::set_stack_size_at_create(stack_commit_size);
4223 
4224   // Calculate theoretical max. size of Threads to guard gainst artifical
4225   // out-of-memory situations, where all available address-space has been
4226   // reserved by thread stacks.
4227   assert(actual_reserve_size != 0, "Must have a stack");
4228 
4229   // Calculate the thread limit when we should start doing Virtual Memory
4230   // banging. Currently when the threads will have used all but 200Mb of space.
4231   //
4232   // TODO: consider performing a similar calculation for commit size instead
4233   // as reserve size, since on a 64-bit platform we'll run into that more
4234   // often than running out of virtual memory space.  We can use the
4235   // lower value of the two calculations as the os_thread_limit.
4236   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4237   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4238 
4239   // at exit methods are called in the reverse order of their registration.
4240   // there is no limit to the number of functions registered. atexit does
4241   // not set errno.
4242 
4243   if (PerfAllowAtExitRegistration) {
4244     // only register atexit functions if PerfAllowAtExitRegistration is set.
4245     // atexit functions can be delayed until process exit time, which
4246     // can be problematic for embedded VM situations. Embedded VMs should
4247     // call DestroyJavaVM() to assure that VM resources are released.
4248 
4249     // note: perfMemory_exit_helper atexit function may be removed in
4250     // the future if the appropriate cleanup code can be added to the
4251     // VM_Exit VMOperation's doit method.
4252     if (atexit(perfMemory_exit_helper) != 0) {
4253       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4254     }
4255   }
4256 
4257 #ifndef _WIN64
4258   // Print something if NX is enabled (win32 on AMD64)
4259   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4260 #endif
4261 
4262   // initialize thread priority policy
4263   prio_init();
4264 
4265   if (UseNUMA && !ForceNUMA) {
4266     UseNUMA = false; // We don't fully support this yet
4267   }
4268 
4269   if (UseNUMAInterleaving) {
4270     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4271     bool success = numa_interleaving_init();
4272     if (!success) UseNUMAInterleaving = false;
4273   }
4274 
4275   if (initSock() != JNI_OK) {
4276     return JNI_ERR;
4277   }
4278 
4279   return JNI_OK;
4280 }
4281 
4282 // Mark the polling page as unreadable
4283 void os::make_polling_page_unreadable(void) {
4284   DWORD old_status;
4285   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4286                       PAGE_NOACCESS, &old_status)) {
4287     fatal("Could not disable polling page");
4288   }
4289 }
4290 
4291 // Mark the polling page as readable
4292 void os::make_polling_page_readable(void) {
4293   DWORD old_status;
4294   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4295                       PAGE_READONLY, &old_status)) {
4296     fatal("Could not enable polling page");
4297   }
4298 }
4299 
4300 
4301 int os::stat(const char *path, struct stat *sbuf) {
4302   char pathbuf[MAX_PATH];
4303   if (strlen(path) > MAX_PATH - 1) {
4304     errno = ENAMETOOLONG;
4305     return -1;
4306   }
4307   os::native_path(strcpy(pathbuf, path));
4308   int ret = ::stat(pathbuf, sbuf);
4309   if (sbuf != NULL && UseUTCFileTimestamp) {
4310     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4311     // the system timezone and so can return different values for the
4312     // same file if/when daylight savings time changes.  This adjustment
4313     // makes sure the same timestamp is returned regardless of the TZ.
4314     //
4315     // See:
4316     // http://msdn.microsoft.com/library/
4317     //   default.asp?url=/library/en-us/sysinfo/base/
4318     //   time_zone_information_str.asp
4319     // and
4320     // http://msdn.microsoft.com/library/default.asp?url=
4321     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4322     //
4323     // NOTE: there is a insidious bug here:  If the timezone is changed
4324     // after the call to stat() but before 'GetTimeZoneInformation()', then
4325     // the adjustment we do here will be wrong and we'll return the wrong
4326     // value (which will likely end up creating an invalid class data
4327     // archive).  Absent a better API for this, or some time zone locking
4328     // mechanism, we'll have to live with this risk.
4329     TIME_ZONE_INFORMATION tz;
4330     DWORD tzid = GetTimeZoneInformation(&tz);
4331     int daylightBias =
4332       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4333     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4334   }
4335   return ret;
4336 }
4337 
4338 
4339 #define FT2INT64(ft) \
4340   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4341 
4342 
4343 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4344 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4345 // of a thread.
4346 //
4347 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4348 // the fast estimate available on the platform.
4349 
4350 // current_thread_cpu_time() is not optimized for Windows yet
4351 jlong os::current_thread_cpu_time() {
4352   // return user + sys since the cost is the same
4353   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4354 }
4355 
4356 jlong os::thread_cpu_time(Thread* thread) {
4357   // consistent with what current_thread_cpu_time() returns.
4358   return os::thread_cpu_time(thread, true /* user+sys */);
4359 }
4360 
4361 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4362   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4363 }
4364 
4365 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4366   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4367   // If this function changes, os::is_thread_cpu_time_supported() should too
4368   FILETIME CreationTime;
4369   FILETIME ExitTime;
4370   FILETIME KernelTime;
4371   FILETIME UserTime;
4372 
4373   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4374                       &ExitTime, &KernelTime, &UserTime) == 0) {
4375     return -1;
4376   } else if (user_sys_cpu_time) {
4377     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4378   } else {
4379     return FT2INT64(UserTime) * 100;
4380   }
4381 }
4382 
4383 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4384   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4385   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4386   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4387   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4388 }
4389 
4390 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4391   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4392   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4393   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4394   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4395 }
4396 
4397 bool os::is_thread_cpu_time_supported() {
4398   // see os::thread_cpu_time
4399   FILETIME CreationTime;
4400   FILETIME ExitTime;
4401   FILETIME KernelTime;
4402   FILETIME UserTime;
4403 
4404   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4405                       &KernelTime, &UserTime) == 0) {
4406     return false;
4407   } else {
4408     return true;
4409   }
4410 }
4411 
4412 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4413 // It does have primitives (PDH API) to get CPU usage and run queue length.
4414 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4415 // If we wanted to implement loadavg on Windows, we have a few options:
4416 //
4417 // a) Query CPU usage and run queue length and "fake" an answer by
4418 //    returning the CPU usage if it's under 100%, and the run queue
4419 //    length otherwise.  It turns out that querying is pretty slow
4420 //    on Windows, on the order of 200 microseconds on a fast machine.
4421 //    Note that on the Windows the CPU usage value is the % usage
4422 //    since the last time the API was called (and the first call
4423 //    returns 100%), so we'd have to deal with that as well.
4424 //
4425 // b) Sample the "fake" answer using a sampling thread and store
4426 //    the answer in a global variable.  The call to loadavg would
4427 //    just return the value of the global, avoiding the slow query.
4428 //
4429 // c) Sample a better answer using exponential decay to smooth the
4430 //    value.  This is basically the algorithm used by UNIX kernels.
4431 //
4432 // Note that sampling thread starvation could affect both (b) and (c).
4433 int os::loadavg(double loadavg[], int nelem) {
4434   return -1;
4435 }
4436 
4437 
4438 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4439 bool os::dont_yield() {
4440   return DontYieldALot;
4441 }
4442 
4443 // This method is a slightly reworked copy of JDK's sysOpen
4444 // from src/windows/hpi/src/sys_api_md.c
4445 
4446 int os::open(const char *path, int oflag, int mode) {
4447   char pathbuf[MAX_PATH];
4448 
4449   if (strlen(path) > MAX_PATH - 1) {
4450     errno = ENAMETOOLONG;
4451     return -1;
4452   }
4453   os::native_path(strcpy(pathbuf, path));
4454   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4455 }
4456 
4457 FILE* os::open(int fd, const char* mode) {
4458   return ::_fdopen(fd, mode);
4459 }
4460 
4461 // Is a (classpath) directory empty?
4462 bool os::dir_is_empty(const char* path) {
4463   WIN32_FIND_DATA fd;
4464   HANDLE f = FindFirstFile(path, &fd);
4465   if (f == INVALID_HANDLE_VALUE) {
4466     return true;
4467   }
4468   FindClose(f);
4469   return false;
4470 }
4471 
4472 // create binary file, rewriting existing file if required
4473 int os::create_binary_file(const char* path, bool rewrite_existing) {
4474   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4475   if (!rewrite_existing) {
4476     oflags |= _O_EXCL;
4477   }
4478   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4479 }
4480 
4481 // return current position of file pointer
4482 jlong os::current_file_offset(int fd) {
4483   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4484 }
4485 
4486 // move file pointer to the specified offset
4487 jlong os::seek_to_file_offset(int fd, jlong offset) {
4488   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4489 }
4490 
4491 
4492 jlong os::lseek(int fd, jlong offset, int whence) {
4493   return (jlong) ::_lseeki64(fd, offset, whence);
4494 }
4495 
4496 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4497   OVERLAPPED ov;
4498   DWORD nread;
4499   BOOL result;
4500 
4501   ZeroMemory(&ov, sizeof(ov));
4502   ov.Offset = (DWORD)offset;
4503   ov.OffsetHigh = (DWORD)(offset >> 32);
4504 
4505   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4506 
4507   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4508 
4509   return result ? nread : 0;
4510 }
4511 
4512 
4513 // This method is a slightly reworked copy of JDK's sysNativePath
4514 // from src/windows/hpi/src/path_md.c
4515 
4516 // Convert a pathname to native format.  On win32, this involves forcing all
4517 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4518 // sometimes rejects '/') and removing redundant separators.  The input path is
4519 // assumed to have been converted into the character encoding used by the local
4520 // system.  Because this might be a double-byte encoding, care is taken to
4521 // treat double-byte lead characters correctly.
4522 //
4523 // This procedure modifies the given path in place, as the result is never
4524 // longer than the original.  There is no error return; this operation always
4525 // succeeds.
4526 char * os::native_path(char *path) {
4527   char *src = path, *dst = path, *end = path;
4528   char *colon = NULL;  // If a drive specifier is found, this will
4529                        // point to the colon following the drive letter
4530 
4531   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4532   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4533           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4534 
4535   // Check for leading separators
4536 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4537   while (isfilesep(*src)) {
4538     src++;
4539   }
4540 
4541   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4542     // Remove leading separators if followed by drive specifier.  This
4543     // hack is necessary to support file URLs containing drive
4544     // specifiers (e.g., "file://c:/path").  As a side effect,
4545     // "/c:/path" can be used as an alternative to "c:/path".
4546     *dst++ = *src++;
4547     colon = dst;
4548     *dst++ = ':';
4549     src++;
4550   } else {
4551     src = path;
4552     if (isfilesep(src[0]) && isfilesep(src[1])) {
4553       // UNC pathname: Retain first separator; leave src pointed at
4554       // second separator so that further separators will be collapsed
4555       // into the second separator.  The result will be a pathname
4556       // beginning with "\\\\" followed (most likely) by a host name.
4557       src = dst = path + 1;
4558       path[0] = '\\';     // Force first separator to '\\'
4559     }
4560   }
4561 
4562   end = dst;
4563 
4564   // Remove redundant separators from remainder of path, forcing all
4565   // separators to be '\\' rather than '/'. Also, single byte space
4566   // characters are removed from the end of the path because those
4567   // are not legal ending characters on this operating system.
4568   //
4569   while (*src != '\0') {
4570     if (isfilesep(*src)) {
4571       *dst++ = '\\'; src++;
4572       while (isfilesep(*src)) src++;
4573       if (*src == '\0') {
4574         // Check for trailing separator
4575         end = dst;
4576         if (colon == dst - 2) break;  // "z:\\"
4577         if (dst == path + 1) break;   // "\\"
4578         if (dst == path + 2 && isfilesep(path[0])) {
4579           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4580           // beginning of a UNC pathname.  Even though it is not, by
4581           // itself, a valid UNC pathname, we leave it as is in order
4582           // to be consistent with the path canonicalizer as well
4583           // as the win32 APIs, which treat this case as an invalid
4584           // UNC pathname rather than as an alias for the root
4585           // directory of the current drive.
4586           break;
4587         }
4588         end = --dst;  // Path does not denote a root directory, so
4589                       // remove trailing separator
4590         break;
4591       }
4592       end = dst;
4593     } else {
4594       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4595         *dst++ = *src++;
4596         if (*src) *dst++ = *src++;
4597         end = dst;
4598       } else {  // Copy a single-byte character
4599         char c = *src++;
4600         *dst++ = c;
4601         // Space is not a legal ending character
4602         if (c != ' ') end = dst;
4603       }
4604     }
4605   }
4606 
4607   *end = '\0';
4608 
4609   // For "z:", add "." to work around a bug in the C runtime library
4610   if (colon == dst - 1) {
4611     path[2] = '.';
4612     path[3] = '\0';
4613   }
4614 
4615   return path;
4616 }
4617 
4618 // This code is a copy of JDK's sysSetLength
4619 // from src/windows/hpi/src/sys_api_md.c
4620 
4621 int os::ftruncate(int fd, jlong length) {
4622   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4623   long high = (long)(length >> 32);
4624   DWORD ret;
4625 
4626   if (h == (HANDLE)(-1)) {
4627     return -1;
4628   }
4629 
4630   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4631   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4632     return -1;
4633   }
4634 
4635   if (::SetEndOfFile(h) == FALSE) {
4636     return -1;
4637   }
4638 
4639   return 0;
4640 }
4641 
4642 int os::get_fileno(FILE* fp) {
4643   return _fileno(fp);
4644 }
4645 
4646 // This code is a copy of JDK's sysSync
4647 // from src/windows/hpi/src/sys_api_md.c
4648 // except for the legacy workaround for a bug in Win 98
4649 
4650 int os::fsync(int fd) {
4651   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4652 
4653   if ((!::FlushFileBuffers(handle)) &&
4654       (GetLastError() != ERROR_ACCESS_DENIED)) {
4655     // from winerror.h
4656     return -1;
4657   }
4658   return 0;
4659 }
4660 
4661 static int nonSeekAvailable(int, long *);
4662 static int stdinAvailable(int, long *);
4663 
4664 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4665 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4666 
4667 // This code is a copy of JDK's sysAvailable
4668 // from src/windows/hpi/src/sys_api_md.c
4669 
4670 int os::available(int fd, jlong *bytes) {
4671   jlong cur, end;
4672   struct _stati64 stbuf64;
4673 
4674   if (::_fstati64(fd, &stbuf64) >= 0) {
4675     int mode = stbuf64.st_mode;
4676     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4677       int ret;
4678       long lpbytes;
4679       if (fd == 0) {
4680         ret = stdinAvailable(fd, &lpbytes);
4681       } else {
4682         ret = nonSeekAvailable(fd, &lpbytes);
4683       }
4684       (*bytes) = (jlong)(lpbytes);
4685       return ret;
4686     }
4687     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4688       return FALSE;
4689     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4690       return FALSE;
4691     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4692       return FALSE;
4693     }
4694     *bytes = end - cur;
4695     return TRUE;
4696   } else {
4697     return FALSE;
4698   }
4699 }
4700 
4701 void os::flockfile(FILE* fp) {
4702   _lock_file(fp);
4703 }
4704 
4705 void os::funlockfile(FILE* fp) {
4706   _unlock_file(fp);
4707 }
4708 
4709 // This code is a copy of JDK's nonSeekAvailable
4710 // from src/windows/hpi/src/sys_api_md.c
4711 
4712 static int nonSeekAvailable(int fd, long *pbytes) {
4713   // This is used for available on non-seekable devices
4714   // (like both named and anonymous pipes, such as pipes
4715   //  connected to an exec'd process).
4716   // Standard Input is a special case.
4717   HANDLE han;
4718 
4719   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4720     return FALSE;
4721   }
4722 
4723   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4724     // PeekNamedPipe fails when at EOF.  In that case we
4725     // simply make *pbytes = 0 which is consistent with the
4726     // behavior we get on Solaris when an fd is at EOF.
4727     // The only alternative is to raise an Exception,
4728     // which isn't really warranted.
4729     //
4730     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4731       return FALSE;
4732     }
4733     *pbytes = 0;
4734   }
4735   return TRUE;
4736 }
4737 
4738 #define MAX_INPUT_EVENTS 2000
4739 
4740 // This code is a copy of JDK's stdinAvailable
4741 // from src/windows/hpi/src/sys_api_md.c
4742 
4743 static int stdinAvailable(int fd, long *pbytes) {
4744   HANDLE han;
4745   DWORD numEventsRead = 0;  // Number of events read from buffer
4746   DWORD numEvents = 0;      // Number of events in buffer
4747   DWORD i = 0;              // Loop index
4748   DWORD curLength = 0;      // Position marker
4749   DWORD actualLength = 0;   // Number of bytes readable
4750   BOOL error = FALSE;       // Error holder
4751   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4752 
4753   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4754     return FALSE;
4755   }
4756 
4757   // Construct an array of input records in the console buffer
4758   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4759   if (error == 0) {
4760     return nonSeekAvailable(fd, pbytes);
4761   }
4762 
4763   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4764   if (numEvents > MAX_INPUT_EVENTS) {
4765     numEvents = MAX_INPUT_EVENTS;
4766   }
4767 
4768   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4769   if (lpBuffer == NULL) {
4770     return FALSE;
4771   }
4772 
4773   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4774   if (error == 0) {
4775     os::free(lpBuffer);
4776     return FALSE;
4777   }
4778 
4779   // Examine input records for the number of bytes available
4780   for (i=0; i<numEvents; i++) {
4781     if (lpBuffer[i].EventType == KEY_EVENT) {
4782 
4783       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4784                                       &(lpBuffer[i].Event);
4785       if (keyRecord->bKeyDown == TRUE) {
4786         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4787         curLength++;
4788         if (*keyPressed == '\r') {
4789           actualLength = curLength;
4790         }
4791       }
4792     }
4793   }
4794 
4795   if (lpBuffer != NULL) {
4796     os::free(lpBuffer);
4797   }
4798 
4799   *pbytes = (long) actualLength;
4800   return TRUE;
4801 }
4802 
4803 // Map a block of memory.
4804 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4805                         char *addr, size_t bytes, bool read_only,
4806                         bool allow_exec) {
4807   HANDLE hFile;
4808   char* base;
4809 
4810   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4811                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4812   if (hFile == NULL) {
4813     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4814     return NULL;
4815   }
4816 
4817   if (allow_exec) {
4818     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4819     // unless it comes from a PE image (which the shared archive is not.)
4820     // Even VirtualProtect refuses to give execute access to mapped memory
4821     // that was not previously executable.
4822     //
4823     // Instead, stick the executable region in anonymous memory.  Yuck.
4824     // Penalty is that ~4 pages will not be shareable - in the future
4825     // we might consider DLLizing the shared archive with a proper PE
4826     // header so that mapping executable + sharing is possible.
4827 
4828     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4829                                 PAGE_READWRITE);
4830     if (base == NULL) {
4831       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4832       CloseHandle(hFile);
4833       return NULL;
4834     }
4835 
4836     DWORD bytes_read;
4837     OVERLAPPED overlapped;
4838     overlapped.Offset = (DWORD)file_offset;
4839     overlapped.OffsetHigh = 0;
4840     overlapped.hEvent = NULL;
4841     // ReadFile guarantees that if the return value is true, the requested
4842     // number of bytes were read before returning.
4843     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4844     if (!res) {
4845       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4846       release_memory(base, bytes);
4847       CloseHandle(hFile);
4848       return NULL;
4849     }
4850   } else {
4851     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4852                                     NULL /* file_name */);
4853     if (hMap == NULL) {
4854       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4855       CloseHandle(hFile);
4856       return NULL;
4857     }
4858 
4859     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4860     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4861                                   (DWORD)bytes, addr);
4862     if (base == NULL) {
4863       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4864       CloseHandle(hMap);
4865       CloseHandle(hFile);
4866       return NULL;
4867     }
4868 
4869     if (CloseHandle(hMap) == 0) {
4870       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4871       CloseHandle(hFile);
4872       return base;
4873     }
4874   }
4875 
4876   if (allow_exec) {
4877     DWORD old_protect;
4878     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4879     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4880 
4881     if (!res) {
4882       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4883       // Don't consider this a hard error, on IA32 even if the
4884       // VirtualProtect fails, we should still be able to execute
4885       CloseHandle(hFile);
4886       return base;
4887     }
4888   }
4889 
4890   if (CloseHandle(hFile) == 0) {
4891     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4892     return base;
4893   }
4894 
4895   return base;
4896 }
4897 
4898 
4899 // Remap a block of memory.
4900 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4901                           char *addr, size_t bytes, bool read_only,
4902                           bool allow_exec) {
4903   // This OS does not allow existing memory maps to be remapped so we
4904   // have to unmap the memory before we remap it.
4905   if (!os::unmap_memory(addr, bytes)) {
4906     return NULL;
4907   }
4908 
4909   // There is a very small theoretical window between the unmap_memory()
4910   // call above and the map_memory() call below where a thread in native
4911   // code may be able to access an address that is no longer mapped.
4912 
4913   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4914                         read_only, allow_exec);
4915 }
4916 
4917 
4918 // Unmap a block of memory.
4919 // Returns true=success, otherwise false.
4920 
4921 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4922   MEMORY_BASIC_INFORMATION mem_info;
4923   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4924     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4925     return false;
4926   }
4927 
4928   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4929   // Instead, executable region was allocated using VirtualAlloc(). See
4930   // pd_map_memory() above.
4931   //
4932   // The following flags should match the 'exec_access' flages used for
4933   // VirtualProtect() in pd_map_memory().
4934   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4935       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4936     return pd_release_memory(addr, bytes);
4937   }
4938 
4939   BOOL result = UnmapViewOfFile(addr);
4940   if (result == 0) {
4941     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4942     return false;
4943   }
4944   return true;
4945 }
4946 
4947 void os::pause() {
4948   char filename[MAX_PATH];
4949   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4950     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4951   } else {
4952     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4953   }
4954 
4955   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4956   if (fd != -1) {
4957     struct stat buf;
4958     ::close(fd);
4959     while (::stat(filename, &buf) == 0) {
4960       Sleep(100);
4961     }
4962   } else {
4963     jio_fprintf(stderr,
4964                 "Could not open pause file '%s', continuing immediately.\n", filename);
4965   }
4966 }
4967 
4968 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4969   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4970 }
4971 
4972 // See the caveats for this class in os_windows.hpp
4973 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4974 // into this method and returns false. If no OS EXCEPTION was raised, returns
4975 // true.
4976 // The callback is supposed to provide the method that should be protected.
4977 //
4978 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4979   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4980   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4981          "crash_protection already set?");
4982 
4983   bool success = true;
4984   __try {
4985     WatcherThread::watcher_thread()->set_crash_protection(this);
4986     cb.call();
4987   } __except(EXCEPTION_EXECUTE_HANDLER) {
4988     // only for protection, nothing to do
4989     success = false;
4990   }
4991   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4992   return success;
4993 }
4994 
4995 // An Event wraps a win32 "CreateEvent" kernel handle.
4996 //
4997 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4998 //
4999 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5000 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5001 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5002 //     In addition, an unpark() operation might fetch the handle field, but the
5003 //     event could recycle between the fetch and the SetEvent() operation.
5004 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5005 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5006 //     on an stale but recycled handle would be harmless, but in practice this might
5007 //     confuse other non-Sun code, so it's not a viable approach.
5008 //
5009 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5010 //     with the Event.  The event handle is never closed.  This could be construed
5011 //     as handle leakage, but only up to the maximum # of threads that have been extant
5012 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5013 //     permit a process to have hundreds of thousands of open handles.
5014 //
5015 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5016 //     and release unused handles.
5017 //
5018 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5019 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5020 //
5021 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5022 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5023 //
5024 // We use (2).
5025 //
5026 // TODO-FIXME:
5027 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5028 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5029 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5030 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5031 //     into a single win32 CreateEvent() handle.
5032 //
5033 // Assumption:
5034 //    Only one parker can exist on an event, which is why we allocate
5035 //    them per-thread. Multiple unparkers can coexist.
5036 //
5037 // _Event transitions in park()
5038 //   -1 => -1 : illegal
5039 //    1 =>  0 : pass - return immediately
5040 //    0 => -1 : block; then set _Event to 0 before returning
5041 //
5042 // _Event transitions in unpark()
5043 //    0 => 1 : just return
5044 //    1 => 1 : just return
5045 //   -1 => either 0 or 1; must signal target thread
5046 //         That is, we can safely transition _Event from -1 to either
5047 //         0 or 1.
5048 //
5049 // _Event serves as a restricted-range semaphore.
5050 //   -1 : thread is blocked, i.e. there is a waiter
5051 //    0 : neutral: thread is running or ready,
5052 //        could have been signaled after a wait started
5053 //    1 : signaled - thread is running or ready
5054 //
5055 // Another possible encoding of _Event would be with
5056 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5057 //
5058 
5059 int os::PlatformEvent::park(jlong Millis) {
5060   // Transitions for _Event:
5061   //   -1 => -1 : illegal
5062   //    1 =>  0 : pass - return immediately
5063   //    0 => -1 : block; then set _Event to 0 before returning
5064 
5065   guarantee(_ParkHandle != NULL , "Invariant");
5066   guarantee(Millis > 0          , "Invariant");
5067 
5068   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5069   // the initial park() operation.
5070   // Consider: use atomic decrement instead of CAS-loop
5071 
5072   int v;
5073   for (;;) {
5074     v = _Event;
5075     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5076   }
5077   guarantee((v == 0) || (v == 1), "invariant");
5078   if (v != 0) return OS_OK;
5079 
5080   // Do this the hard way by blocking ...
5081   // TODO: consider a brief spin here, gated on the success of recent
5082   // spin attempts by this thread.
5083   //
5084   // We decompose long timeouts into series of shorter timed waits.
5085   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5086   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5087   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5088   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5089   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5090   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5091   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5092   // for the already waited time.  This policy does not admit any new outcomes.
5093   // In the future, however, we might want to track the accumulated wait time and
5094   // adjust Millis accordingly if we encounter a spurious wakeup.
5095 
5096   const int MAXTIMEOUT = 0x10000000;
5097   DWORD rv = WAIT_TIMEOUT;
5098   while (_Event < 0 && Millis > 0) {
5099     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5100     if (Millis > MAXTIMEOUT) {
5101       prd = MAXTIMEOUT;
5102     }
5103     rv = ::WaitForSingleObject(_ParkHandle, prd);
5104     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5105     if (rv == WAIT_TIMEOUT) {
5106       Millis -= prd;
5107     }
5108   }
5109   v = _Event;
5110   _Event = 0;
5111   // see comment at end of os::PlatformEvent::park() below:
5112   OrderAccess::fence();
5113   // If we encounter a nearly simultanous timeout expiry and unpark()
5114   // we return OS_OK indicating we awoke via unpark().
5115   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5116   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5117 }
5118 
5119 void os::PlatformEvent::park() {
5120   // Transitions for _Event:
5121   //   -1 => -1 : illegal
5122   //    1 =>  0 : pass - return immediately
5123   //    0 => -1 : block; then set _Event to 0 before returning
5124 
5125   guarantee(_ParkHandle != NULL, "Invariant");
5126   // Invariant: Only the thread associated with the Event/PlatformEvent
5127   // may call park().
5128   // Consider: use atomic decrement instead of CAS-loop
5129   int v;
5130   for (;;) {
5131     v = _Event;
5132     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5133   }
5134   guarantee((v == 0) || (v == 1), "invariant");
5135   if (v != 0) return;
5136 
5137   // Do this the hard way by blocking ...
5138   // TODO: consider a brief spin here, gated on the success of recent
5139   // spin attempts by this thread.
5140   while (_Event < 0) {
5141     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5142     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5143   }
5144 
5145   // Usually we'll find _Event == 0 at this point, but as
5146   // an optional optimization we clear it, just in case can
5147   // multiple unpark() operations drove _Event up to 1.
5148   _Event = 0;
5149   OrderAccess::fence();
5150   guarantee(_Event >= 0, "invariant");
5151 }
5152 
5153 void os::PlatformEvent::unpark() {
5154   guarantee(_ParkHandle != NULL, "Invariant");
5155 
5156   // Transitions for _Event:
5157   //    0 => 1 : just return
5158   //    1 => 1 : just return
5159   //   -1 => either 0 or 1; must signal target thread
5160   //         That is, we can safely transition _Event from -1 to either
5161   //         0 or 1.
5162   // See also: "Semaphores in Plan 9" by Mullender & Cox
5163   //
5164   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5165   // that it will take two back-to-back park() calls for the owning
5166   // thread to block. This has the benefit of forcing a spurious return
5167   // from the first park() call after an unpark() call which will help
5168   // shake out uses of park() and unpark() without condition variables.
5169 
5170   if (Atomic::xchg(1, &_Event) >= 0) return;
5171 
5172   ::SetEvent(_ParkHandle);
5173 }
5174 
5175 
5176 // JSR166
5177 // -------------------------------------------------------
5178 
5179 // The Windows implementation of Park is very straightforward: Basic
5180 // operations on Win32 Events turn out to have the right semantics to
5181 // use them directly. We opportunistically resuse the event inherited
5182 // from Monitor.
5183 
5184 void Parker::park(bool isAbsolute, jlong time) {
5185   guarantee(_ParkEvent != NULL, "invariant");
5186   // First, demultiplex/decode time arguments
5187   if (time < 0) { // don't wait
5188     return;
5189   } else if (time == 0 && !isAbsolute) {
5190     time = INFINITE;
5191   } else if (isAbsolute) {
5192     time -= os::javaTimeMillis(); // convert to relative time
5193     if (time <= 0) {  // already elapsed
5194       return;
5195     }
5196   } else { // relative
5197     time /= 1000000;  // Must coarsen from nanos to millis
5198     if (time == 0) {  // Wait for the minimal time unit if zero
5199       time = 1;
5200     }
5201   }
5202 
5203   JavaThread* thread = JavaThread::current();
5204 
5205   // Don't wait if interrupted or already triggered
5206   if (Thread::is_interrupted(thread, false) ||
5207       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5208     ResetEvent(_ParkEvent);
5209     return;
5210   } else {
5211     ThreadBlockInVM tbivm(thread);
5212     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5213     thread->set_suspend_equivalent();
5214 
5215     WaitForSingleObject(_ParkEvent, time);
5216     ResetEvent(_ParkEvent);
5217 
5218     // If externally suspended while waiting, re-suspend
5219     if (thread->handle_special_suspend_equivalent_condition()) {
5220       thread->java_suspend_self();
5221     }
5222   }
5223 }
5224 
5225 void Parker::unpark() {
5226   guarantee(_ParkEvent != NULL, "invariant");
5227   SetEvent(_ParkEvent);
5228 }
5229 
5230 // Run the specified command in a separate process. Return its exit value,
5231 // or -1 on failure (e.g. can't create a new process).
5232 int os::fork_and_exec(char* cmd) {
5233   STARTUPINFO si;
5234   PROCESS_INFORMATION pi;
5235 
5236   memset(&si, 0, sizeof(si));
5237   si.cb = sizeof(si);
5238   memset(&pi, 0, sizeof(pi));
5239   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5240                             cmd,    // command line
5241                             NULL,   // process security attribute
5242                             NULL,   // thread security attribute
5243                             TRUE,   // inherits system handles
5244                             0,      // no creation flags
5245                             NULL,   // use parent's environment block
5246                             NULL,   // use parent's starting directory
5247                             &si,    // (in) startup information
5248                             &pi);   // (out) process information
5249 
5250   if (rslt) {
5251     // Wait until child process exits.
5252     WaitForSingleObject(pi.hProcess, INFINITE);
5253 
5254     DWORD exit_code;
5255     GetExitCodeProcess(pi.hProcess, &exit_code);
5256 
5257     // Close process and thread handles.
5258     CloseHandle(pi.hProcess);
5259     CloseHandle(pi.hThread);
5260 
5261     return (int)exit_code;
5262   } else {
5263     return -1;
5264   }
5265 }
5266 
5267 bool os::find(address addr, outputStream* st) {
5268   int offset = -1;
5269   bool result = false;
5270   char buf[256];
5271   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5272     st->print(PTR_FORMAT " ", addr);
5273     if (strlen(buf) < sizeof(buf) - 1) {
5274       char* p = strrchr(buf, '\\');
5275       if (p) {
5276         st->print("%s", p + 1);
5277       } else {
5278         st->print("%s", buf);
5279       }
5280     } else {
5281         // The library name is probably truncated. Let's omit the library name.
5282         // See also JDK-8147512.
5283     }
5284     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5285       st->print("::%s + 0x%x", buf, offset);
5286     }
5287     st->cr();
5288     result = true;
5289   }
5290   return result;
5291 }
5292 
5293 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5294   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5295 
5296   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5297     JavaThread* thread = JavaThread::current();
5298     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5299     address addr = (address) exceptionRecord->ExceptionInformation[1];
5300 
5301     if (os::is_memory_serialize_page(thread, addr)) {
5302       return EXCEPTION_CONTINUE_EXECUTION;
5303     }
5304   }
5305 
5306   return EXCEPTION_CONTINUE_SEARCH;
5307 }
5308 
5309 // We don't build a headless jre for Windows
5310 bool os::is_headless_jre() { return false; }
5311 
5312 static jint initSock() {
5313   WSADATA wsadata;
5314 
5315   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5316     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5317                 ::GetLastError());
5318     return JNI_ERR;
5319   }
5320   return JNI_OK;
5321 }
5322 
5323 struct hostent* os::get_host_by_name(char* name) {
5324   return (struct hostent*)gethostbyname(name);
5325 }
5326 
5327 int os::socket_close(int fd) {
5328   return ::closesocket(fd);
5329 }
5330 
5331 int os::socket(int domain, int type, int protocol) {
5332   return ::socket(domain, type, protocol);
5333 }
5334 
5335 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5336   return ::connect(fd, him, len);
5337 }
5338 
5339 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5340   return ::recv(fd, buf, (int)nBytes, flags);
5341 }
5342 
5343 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5344   return ::send(fd, buf, (int)nBytes, flags);
5345 }
5346 
5347 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5348   return ::send(fd, buf, (int)nBytes, flags);
5349 }
5350 
5351 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5352 #if defined(IA32)
5353   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5354 #elif defined (AMD64)
5355   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5356 #endif
5357 
5358 // returns true if thread could be suspended,
5359 // false otherwise
5360 static bool do_suspend(HANDLE* h) {
5361   if (h != NULL) {
5362     if (SuspendThread(*h) != ~0) {
5363       return true;
5364     }
5365   }
5366   return false;
5367 }
5368 
5369 // resume the thread
5370 // calling resume on an active thread is a no-op
5371 static void do_resume(HANDLE* h) {
5372   if (h != NULL) {
5373     ResumeThread(*h);
5374   }
5375 }
5376 
5377 // retrieve a suspend/resume context capable handle
5378 // from the tid. Caller validates handle return value.
5379 void get_thread_handle_for_extended_context(HANDLE* h,
5380                                             OSThread::thread_id_t tid) {
5381   if (h != NULL) {
5382     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5383   }
5384 }
5385 
5386 // Thread sampling implementation
5387 //
5388 void os::SuspendedThreadTask::internal_do_task() {
5389   CONTEXT    ctxt;
5390   HANDLE     h = NULL;
5391 
5392   // get context capable handle for thread
5393   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5394 
5395   // sanity
5396   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5397     return;
5398   }
5399 
5400   // suspend the thread
5401   if (do_suspend(&h)) {
5402     ctxt.ContextFlags = sampling_context_flags;
5403     // get thread context
5404     GetThreadContext(h, &ctxt);
5405     SuspendedThreadTaskContext context(_thread, &ctxt);
5406     // pass context to Thread Sampling impl
5407     do_task(context);
5408     // resume thread
5409     do_resume(&h);
5410   }
5411 
5412   // close handle
5413   CloseHandle(h);
5414 }
5415 
5416 bool os::start_debugging(char *buf, int buflen) {
5417   int len = (int)strlen(buf);
5418   char *p = &buf[len];
5419 
5420   jio_snprintf(p, buflen-len,
5421              "\n\n"
5422              "Do you want to debug the problem?\n\n"
5423              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5424              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5425              "Otherwise, select 'No' to abort...",
5426              os::current_process_id(), os::current_thread_id());
5427 
5428   bool yes = os::message_box("Unexpected Error", buf);
5429 
5430   if (yes) {
5431     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5432     // exception. If VM is running inside a debugger, the debugger will
5433     // catch the exception. Otherwise, the breakpoint exception will reach
5434     // the default windows exception handler, which can spawn a debugger and
5435     // automatically attach to the dying VM.
5436     os::breakpoint();
5437     yes = false;
5438   }
5439   return yes;
5440 }
5441 
5442 void* os::get_default_process_handle() {
5443   return (void*)GetModuleHandle(NULL);
5444 }
5445 
5446 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5447 // which is used to find statically linked in agents.
5448 // Additionally for windows, takes into account __stdcall names.
5449 // Parameters:
5450 //            sym_name: Symbol in library we are looking for
5451 //            lib_name: Name of library to look in, NULL for shared libs.
5452 //            is_absolute_path == true if lib_name is absolute path to agent
5453 //                                     such as "C:/a/b/L.dll"
5454 //            == false if only the base name of the library is passed in
5455 //               such as "L"
5456 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5457                                     bool is_absolute_path) {
5458   char *agent_entry_name;
5459   size_t len;
5460   size_t name_len;
5461   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5462   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5463   const char *start;
5464 
5465   if (lib_name != NULL) {
5466     len = name_len = strlen(lib_name);
5467     if (is_absolute_path) {
5468       // Need to strip path, prefix and suffix
5469       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5470         lib_name = ++start;
5471       } else {
5472         // Need to check for drive prefix
5473         if ((start = strchr(lib_name, ':')) != NULL) {
5474           lib_name = ++start;
5475         }
5476       }
5477       if (len <= (prefix_len + suffix_len)) {
5478         return NULL;
5479       }
5480       lib_name += prefix_len;
5481       name_len = strlen(lib_name) - suffix_len;
5482     }
5483   }
5484   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5485   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5486   if (agent_entry_name == NULL) {
5487     return NULL;
5488   }
5489   if (lib_name != NULL) {
5490     const char *p = strrchr(sym_name, '@');
5491     if (p != NULL && p != sym_name) {
5492       // sym_name == _Agent_OnLoad@XX
5493       strncpy(agent_entry_name, sym_name, (p - sym_name));
5494       agent_entry_name[(p-sym_name)] = '\0';
5495       // agent_entry_name == _Agent_OnLoad
5496       strcat(agent_entry_name, "_");
5497       strncat(agent_entry_name, lib_name, name_len);
5498       strcat(agent_entry_name, p);
5499       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5500     } else {
5501       strcpy(agent_entry_name, sym_name);
5502       strcat(agent_entry_name, "_");
5503       strncat(agent_entry_name, lib_name, name_len);
5504     }
5505   } else {
5506     strcpy(agent_entry_name, sym_name);
5507   }
5508   return agent_entry_name;
5509 }
5510 
5511 #ifndef PRODUCT
5512 
5513 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5514 // contiguous memory block at a particular address.
5515 // The test first tries to find a good approximate address to allocate at by using the same
5516 // method to allocate some memory at any address. The test then tries to allocate memory in
5517 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5518 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5519 // the previously allocated memory is available for allocation. The only actual failure
5520 // that is reported is when the test tries to allocate at a particular location but gets a
5521 // different valid one. A NULL return value at this point is not considered an error but may
5522 // be legitimate.
5523 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5524 void TestReserveMemorySpecial_test() {
5525   if (!UseLargePages) {
5526     if (VerboseInternalVMTests) {
5527       tty->print("Skipping test because large pages are disabled");
5528     }
5529     return;
5530   }
5531   // save current value of globals
5532   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5533   bool old_use_numa_interleaving = UseNUMAInterleaving;
5534 
5535   // set globals to make sure we hit the correct code path
5536   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5537 
5538   // do an allocation at an address selected by the OS to get a good one.
5539   const size_t large_allocation_size = os::large_page_size() * 4;
5540   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5541   if (result == NULL) {
5542     if (VerboseInternalVMTests) {
5543       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5544                           large_allocation_size);
5545     }
5546   } else {
5547     os::release_memory_special(result, large_allocation_size);
5548 
5549     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5550     // we managed to get it once.
5551     const size_t expected_allocation_size = os::large_page_size();
5552     char* expected_location = result + os::large_page_size();
5553     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5554     if (actual_location == NULL) {
5555       if (VerboseInternalVMTests) {
5556         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5557                             expected_location, large_allocation_size);
5558       }
5559     } else {
5560       // release memory
5561       os::release_memory_special(actual_location, expected_allocation_size);
5562       // only now check, after releasing any memory to avoid any leaks.
5563       assert(actual_location == expected_location,
5564              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5565              expected_location, expected_allocation_size, actual_location);
5566     }
5567   }
5568 
5569   // restore globals
5570   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5571   UseNUMAInterleaving = old_use_numa_interleaving;
5572 }
5573 #endif // PRODUCT
5574 
5575 /*
5576   All the defined signal names for Windows.
5577 
5578   NOTE that not all of these names are accepted by FindSignal!
5579 
5580   For various reasons some of these may be rejected at runtime.
5581 
5582   Here are the names currently accepted by a user of sun.misc.Signal with
5583   1.4.1 (ignoring potential interaction with use of chaining, etc):
5584 
5585      (LIST TBD)
5586 
5587 */
5588 int os::get_signal_number(const char* name) {
5589   static const struct {
5590     char* name;
5591     int   number;
5592   } siglabels [] =
5593     // derived from version 6.0 VC98/include/signal.h
5594   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5595   "FPE",        SIGFPE,         // floating point exception
5596   "SEGV",       SIGSEGV,        // segment violation
5597   "INT",        SIGINT,         // interrupt
5598   "TERM",       SIGTERM,        // software term signal from kill
5599   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5600   "ILL",        SIGILL};        // illegal instruction
5601   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5602     if (strcmp(name, siglabels[i].name) == 0) {
5603       return siglabels[i].number;
5604     }
5605   }
5606   return -1;
5607 }
5608 
5609 // Fast current thread access
5610 
5611 int os::win32::_thread_ptr_offset = 0;
5612 
5613 static void call_wrapper_dummy() {}
5614 
5615 // We need to call the os_exception_wrapper once so that it sets
5616 // up the offset from FS of the thread pointer.
5617 void os::win32::initialize_thread_ptr_offset() {
5618   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5619                            NULL, NULL, NULL, NULL);
5620 }