1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows Vista or Server 2008 to use InitOnceExecuteOnce
  26 #define _WIN32_WINNT 0x0600
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "logging/log.hpp"
  39 #include "memory/allocation.inline.hpp"
  40 #include "memory/filemap.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "os_windows.inline.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm.h"
  46 #include "prims/jvm_misc.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/atomic.hpp"
  49 #include "runtime/extendedPC.hpp"
  50 #include "runtime/globals.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.inline.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_windows.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/decoder.hpp"
  71 #include "utilities/defaultStream.hpp"
  72 #include "utilities/events.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 #ifdef _DEBUG
  78 #include <crtdbg.h>
  79 #endif
  80 
  81 
  82 #include <windows.h>
  83 #include <sys/types.h>
  84 #include <sys/stat.h>
  85 #include <sys/timeb.h>
  86 #include <objidl.h>
  87 #include <shlobj.h>
  88 
  89 #include <malloc.h>
  90 #include <signal.h>
  91 #include <direct.h>
  92 #include <errno.h>
  93 #include <fcntl.h>
  94 #include <io.h>
  95 #include <process.h>              // For _beginthreadex(), _endthreadex()
  96 #include <imagehlp.h>             // For os::dll_address_to_function_name
  97 // for enumerating dll libraries
  98 #include <vdmdbg.h>
  99 
 100 // for timer info max values which include all bits
 101 #define ALL_64_BITS CONST64(-1)
 102 
 103 // For DLL loading/load error detection
 104 // Values of PE COFF
 105 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 106 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 107 
 108 static HANDLE main_process;
 109 static HANDLE main_thread;
 110 static int    main_thread_id;
 111 
 112 static FILETIME process_creation_time;
 113 static FILETIME process_exit_time;
 114 static FILETIME process_user_time;
 115 static FILETIME process_kernel_time;
 116 
 117 #ifdef _M_IA64
 118   #define __CPU__ ia64
 119 #else
 120   #ifdef _M_AMD64
 121     #define __CPU__ amd64
 122   #else
 123     #define __CPU__ i486
 124   #endif
 125 #endif
 126 
 127 // save DLL module handle, used by GetModuleFileName
 128 
 129 HINSTANCE vm_lib_handle;
 130 
 131 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 132   switch (reason) {
 133   case DLL_PROCESS_ATTACH:
 134     vm_lib_handle = hinst;
 135     if (ForceTimeHighResolution) {
 136       timeBeginPeriod(1L);
 137     }
 138     break;
 139   case DLL_PROCESS_DETACH:
 140     if (ForceTimeHighResolution) {
 141       timeEndPeriod(1L);
 142     }
 143     break;
 144   default:
 145     break;
 146   }
 147   return true;
 148 }
 149 
 150 static inline double fileTimeAsDouble(FILETIME* time) {
 151   const double high  = (double) ((unsigned int) ~0);
 152   const double split = 10000000.0;
 153   double result = (time->dwLowDateTime / split) +
 154                    time->dwHighDateTime * (high/split);
 155   return result;
 156 }
 157 
 158 // Implementation of os
 159 
 160 bool os::unsetenv(const char* name) {
 161   assert(name != NULL, "Null pointer");
 162   return (SetEnvironmentVariable(name, NULL) == TRUE);
 163 }
 164 
 165 // No setuid programs under Windows.
 166 bool os::have_special_privileges() {
 167   return false;
 168 }
 169 
 170 
 171 // This method is  a periodic task to check for misbehaving JNI applications
 172 // under CheckJNI, we can add any periodic checks here.
 173 // For Windows at the moment does nothing
 174 void os::run_periodic_checks() {
 175   return;
 176 }
 177 
 178 // previous UnhandledExceptionFilter, if there is one
 179 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 180 
 181 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 182 
 183 void os::init_system_properties_values() {
 184   // sysclasspath, java_home, dll_dir
 185   {
 186     char *home_path;
 187     char *dll_path;
 188     char *pslash;
 189     char *bin = "\\bin";
 190     char home_dir[MAX_PATH + 1];
 191     char *alt_home_dir = ::getenv("_ALT_JAVA_HOME_DIR");
 192 
 193     if (alt_home_dir != NULL)  {
 194       strncpy(home_dir, alt_home_dir, MAX_PATH + 1);
 195       home_dir[MAX_PATH] = '\0';
 196     } else {
 197       os::jvm_path(home_dir, sizeof(home_dir));
 198       // Found the full path to jvm.dll.
 199       // Now cut the path to <java_home>/jre if we can.
 200       *(strrchr(home_dir, '\\')) = '\0';  // get rid of \jvm.dll
 201       pslash = strrchr(home_dir, '\\');
 202       if (pslash != NULL) {
 203         *pslash = '\0';                   // get rid of \{client|server}
 204         pslash = strrchr(home_dir, '\\');
 205         if (pslash != NULL) {
 206           *pslash = '\0';                 // get rid of \bin
 207         }
 208       }
 209     }
 210 
 211     home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 212     if (home_path == NULL) {
 213       return;
 214     }
 215     strcpy(home_path, home_dir);
 216     Arguments::set_java_home(home_path);
 217     FREE_C_HEAP_ARRAY(char, home_path);
 218 
 219     dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1,
 220                                 mtInternal);
 221     if (dll_path == NULL) {
 222       return;
 223     }
 224     strcpy(dll_path, home_dir);
 225     strcat(dll_path, bin);
 226     Arguments::set_dll_dir(dll_path);
 227     FREE_C_HEAP_ARRAY(char, dll_path);
 228 
 229     if (!set_boot_path('\\', ';')) {
 230       return;
 231     }
 232   }
 233 
 234 // library_path
 235 #define EXT_DIR "\\lib\\ext"
 236 #define BIN_DIR "\\bin"
 237 #define PACKAGE_DIR "\\Sun\\Java"
 238   {
 239     // Win32 library search order (See the documentation for LoadLibrary):
 240     //
 241     // 1. The directory from which application is loaded.
 242     // 2. The system wide Java Extensions directory (Java only)
 243     // 3. System directory (GetSystemDirectory)
 244     // 4. Windows directory (GetWindowsDirectory)
 245     // 5. The PATH environment variable
 246     // 6. The current directory
 247 
 248     char *library_path;
 249     char tmp[MAX_PATH];
 250     char *path_str = ::getenv("PATH");
 251 
 252     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 253                                     sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 254 
 255     library_path[0] = '\0';
 256 
 257     GetModuleFileName(NULL, tmp, sizeof(tmp));
 258     *(strrchr(tmp, '\\')) = '\0';
 259     strcat(library_path, tmp);
 260 
 261     GetWindowsDirectory(tmp, sizeof(tmp));
 262     strcat(library_path, ";");
 263     strcat(library_path, tmp);
 264     strcat(library_path, PACKAGE_DIR BIN_DIR);
 265 
 266     GetSystemDirectory(tmp, sizeof(tmp));
 267     strcat(library_path, ";");
 268     strcat(library_path, tmp);
 269 
 270     GetWindowsDirectory(tmp, sizeof(tmp));
 271     strcat(library_path, ";");
 272     strcat(library_path, tmp);
 273 
 274     if (path_str) {
 275       strcat(library_path, ";");
 276       strcat(library_path, path_str);
 277     }
 278 
 279     strcat(library_path, ";.");
 280 
 281     Arguments::set_library_path(library_path);
 282     FREE_C_HEAP_ARRAY(char, library_path);
 283   }
 284 
 285   // Default extensions directory
 286   {
 287     char path[MAX_PATH];
 288     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 289     GetWindowsDirectory(path, MAX_PATH);
 290     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 291             path, PACKAGE_DIR, EXT_DIR);
 292     Arguments::set_ext_dirs(buf);
 293   }
 294   #undef EXT_DIR
 295   #undef BIN_DIR
 296   #undef PACKAGE_DIR
 297 
 298 #ifndef _WIN64
 299   // set our UnhandledExceptionFilter and save any previous one
 300   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 301 #endif
 302 
 303   // Done
 304   return;
 305 }
 306 
 307 void os::breakpoint() {
 308   DebugBreak();
 309 }
 310 
 311 // Invoked from the BREAKPOINT Macro
 312 extern "C" void breakpoint() {
 313   os::breakpoint();
 314 }
 315 
 316 // RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 317 // So far, this method is only used by Native Memory Tracking, which is
 318 // only supported on Windows XP or later.
 319 //
 320 int os::get_native_stack(address* stack, int frames, int toSkip) {
 321   int captured = RtlCaptureStackBackTrace(toSkip + 1, frames, (PVOID*)stack, NULL);
 322   for (int index = captured; index < frames; index ++) {
 323     stack[index] = NULL;
 324   }
 325   return captured;
 326 }
 327 
 328 
 329 // os::current_stack_base()
 330 //
 331 //   Returns the base of the stack, which is the stack's
 332 //   starting address.  This function must be called
 333 //   while running on the stack of the thread being queried.
 334 
 335 address os::current_stack_base() {
 336   MEMORY_BASIC_INFORMATION minfo;
 337   address stack_bottom;
 338   size_t stack_size;
 339 
 340   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 341   stack_bottom =  (address)minfo.AllocationBase;
 342   stack_size = minfo.RegionSize;
 343 
 344   // Add up the sizes of all the regions with the same
 345   // AllocationBase.
 346   while (1) {
 347     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 348     if (stack_bottom == (address)minfo.AllocationBase) {
 349       stack_size += minfo.RegionSize;
 350     } else {
 351       break;
 352     }
 353   }
 354 
 355 #ifdef _M_IA64
 356   // IA64 has memory and register stacks
 357   //
 358   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 359   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 360   // growing downwards, 2MB summed up)
 361   //
 362   // ...
 363   // ------- top of stack (high address) -----
 364   // |
 365   // |      1MB
 366   // |      Backing Store (Register Stack)
 367   // |
 368   // |         / \
 369   // |          |
 370   // |          |
 371   // |          |
 372   // ------------------------ stack base -----
 373   // |      1MB
 374   // |      Memory Stack
 375   // |
 376   // |          |
 377   // |          |
 378   // |          |
 379   // |         \ /
 380   // |
 381   // ----- bottom of stack (low address) -----
 382   // ...
 383 
 384   stack_size = stack_size / 2;
 385 #endif
 386   return stack_bottom + stack_size;
 387 }
 388 
 389 size_t os::current_stack_size() {
 390   size_t sz;
 391   MEMORY_BASIC_INFORMATION minfo;
 392   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 393   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 394   return sz;
 395 }
 396 
 397 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 398   const struct tm* time_struct_ptr = localtime(clock);
 399   if (time_struct_ptr != NULL) {
 400     *res = *time_struct_ptr;
 401     return res;
 402   }
 403   return NULL;
 404 }
 405 
 406 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 407 
 408 // Thread start routine for all newly created threads
 409 static unsigned __stdcall thread_native_entry(Thread* thread) {
 410   // Try to randomize the cache line index of hot stack frames.
 411   // This helps when threads of the same stack traces evict each other's
 412   // cache lines. The threads can be either from the same JVM instance, or
 413   // from different JVM instances. The benefit is especially true for
 414   // processors with hyperthreading technology.
 415   static int counter = 0;
 416   int pid = os::current_process_id();
 417   _alloca(((pid ^ counter++) & 7) * 128);
 418 
 419   thread->initialize_thread_current();
 420 
 421   OSThread* osthr = thread->osthread();
 422   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 423 
 424   if (UseNUMA) {
 425     int lgrp_id = os::numa_get_group_id();
 426     if (lgrp_id != -1) {
 427       thread->set_lgrp_id(lgrp_id);
 428     }
 429   }
 430 
 431   // Diagnostic code to investigate JDK-6573254
 432   int res = 30115;  // non-java thread
 433   if (thread->is_Java_thread()) {
 434     res = 20115;    // java thread
 435   }
 436 
 437   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ").", os::current_thread_id());
 438 
 439   // Install a win32 structured exception handler around every thread created
 440   // by VM, so VM can generate error dump when an exception occurred in non-
 441   // Java thread (e.g. VM thread).
 442   __try {
 443     thread->run();
 444   } __except(topLevelExceptionFilter(
 445                                      (_EXCEPTION_POINTERS*)_exception_info())) {
 446     // Nothing to do.
 447   }
 448 
 449   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ").", os::current_thread_id());
 450 
 451   // One less thread is executing
 452   // When the VMThread gets here, the main thread may have already exited
 453   // which frees the CodeHeap containing the Atomic::add code
 454   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 455     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 456   }
 457 
 458   // If a thread has not deleted itself ("delete this") as part of its
 459   // termination sequence, we have to ensure thread-local-storage is
 460   // cleared before we actually terminate. No threads should ever be
 461   // deleted asynchronously with respect to their termination.
 462   if (Thread::current_or_null_safe() != NULL) {
 463     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 464     thread->clear_thread_current();
 465   }
 466 
 467   // Thread must not return from exit_process_or_thread(), but if it does,
 468   // let it proceed to exit normally
 469   return (unsigned)os::win32::exit_process_or_thread(os::win32::EPT_THREAD, res);
 470 }
 471 
 472 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle,
 473                                   int thread_id) {
 474   // Allocate the OSThread object
 475   OSThread* osthread = new OSThread(NULL, NULL);
 476   if (osthread == NULL) return NULL;
 477 
 478   // Initialize support for Java interrupts
 479   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 480   if (interrupt_event == NULL) {
 481     delete osthread;
 482     return NULL;
 483   }
 484   osthread->set_interrupt_event(interrupt_event);
 485 
 486   // Store info on the Win32 thread into the OSThread
 487   osthread->set_thread_handle(thread_handle);
 488   osthread->set_thread_id(thread_id);
 489 
 490   if (UseNUMA) {
 491     int lgrp_id = os::numa_get_group_id();
 492     if (lgrp_id != -1) {
 493       thread->set_lgrp_id(lgrp_id);
 494     }
 495   }
 496 
 497   // Initial thread state is INITIALIZED, not SUSPENDED
 498   osthread->set_state(INITIALIZED);
 499 
 500   return osthread;
 501 }
 502 
 503 
 504 bool os::create_attached_thread(JavaThread* thread) {
 505 #ifdef ASSERT
 506   thread->verify_not_published();
 507 #endif
 508   HANDLE thread_h;
 509   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 510                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 511     fatal("DuplicateHandle failed\n");
 512   }
 513   OSThread* osthread = create_os_thread(thread, thread_h,
 514                                         (int)current_thread_id());
 515   if (osthread == NULL) {
 516     return false;
 517   }
 518 
 519   // Initial thread state is RUNNABLE
 520   osthread->set_state(RUNNABLE);
 521 
 522   thread->set_osthread(osthread);
 523 
 524   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ").",
 525     os::current_thread_id());
 526 
 527   return true;
 528 }
 529 
 530 bool os::create_main_thread(JavaThread* thread) {
 531 #ifdef ASSERT
 532   thread->verify_not_published();
 533 #endif
 534   if (_starting_thread == NULL) {
 535     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 536     if (_starting_thread == NULL) {
 537       return false;
 538     }
 539   }
 540 
 541   // The primordial thread is runnable from the start)
 542   _starting_thread->set_state(RUNNABLE);
 543 
 544   thread->set_osthread(_starting_thread);
 545   return true;
 546 }
 547 
 548 // Helper function to trace _beginthreadex attributes,
 549 //  similar to os::Posix::describe_pthread_attr()
 550 static char* describe_beginthreadex_attributes(char* buf, size_t buflen,
 551                                                size_t stacksize, unsigned initflag) {
 552   stringStream ss(buf, buflen);
 553   if (stacksize == 0) {
 554     ss.print("stacksize: default, ");
 555   } else {
 556     ss.print("stacksize: " SIZE_FORMAT "k, ", stacksize / 1024);
 557   }
 558   ss.print("flags: ");
 559   #define PRINT_FLAG(f) if (initflag & f) ss.print( #f " ");
 560   #define ALL(X) \
 561     X(CREATE_SUSPENDED) \
 562     X(STACK_SIZE_PARAM_IS_A_RESERVATION)
 563   ALL(PRINT_FLAG)
 564   #undef ALL
 565   #undef PRINT_FLAG
 566   return buf;
 567 }
 568 
 569 // Allocate and initialize a new OSThread
 570 bool os::create_thread(Thread* thread, ThreadType thr_type,
 571                        size_t stack_size) {
 572   unsigned thread_id;
 573 
 574   // Allocate the OSThread object
 575   OSThread* osthread = new OSThread(NULL, NULL);
 576   if (osthread == NULL) {
 577     return false;
 578   }
 579 
 580   // Initialize support for Java interrupts
 581   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 582   if (interrupt_event == NULL) {
 583     delete osthread;
 584     return NULL;
 585   }
 586   osthread->set_interrupt_event(interrupt_event);
 587   osthread->set_interrupted(false);
 588 
 589   thread->set_osthread(osthread);
 590 
 591   if (stack_size == 0) {
 592     switch (thr_type) {
 593     case os::java_thread:
 594       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 595       if (JavaThread::stack_size_at_create() > 0) {
 596         stack_size = JavaThread::stack_size_at_create();
 597       }
 598       break;
 599     case os::compiler_thread:
 600       if (CompilerThreadStackSize > 0) {
 601         stack_size = (size_t)(CompilerThreadStackSize * K);
 602         break;
 603       } // else fall through:
 604         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 605     case os::vm_thread:
 606     case os::pgc_thread:
 607     case os::cgc_thread:
 608     case os::watcher_thread:
 609       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 610       break;
 611     }
 612   }
 613 
 614   // Create the Win32 thread
 615   //
 616   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 617   // does not specify stack size. Instead, it specifies the size of
 618   // initially committed space. The stack size is determined by
 619   // PE header in the executable. If the committed "stack_size" is larger
 620   // than default value in the PE header, the stack is rounded up to the
 621   // nearest multiple of 1MB. For example if the launcher has default
 622   // stack size of 320k, specifying any size less than 320k does not
 623   // affect the actual stack size at all, it only affects the initial
 624   // commitment. On the other hand, specifying 'stack_size' larger than
 625   // default value may cause significant increase in memory usage, because
 626   // not only the stack space will be rounded up to MB, but also the
 627   // entire space is committed upfront.
 628   //
 629   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 630   // for CreateThread() that can treat 'stack_size' as stack size. However we
 631   // are not supposed to call CreateThread() directly according to MSDN
 632   // document because JVM uses C runtime library. The good news is that the
 633   // flag appears to work with _beginthredex() as well.
 634 
 635   const unsigned initflag = CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION;
 636   HANDLE thread_handle =
 637     (HANDLE)_beginthreadex(NULL,
 638                            (unsigned)stack_size,
 639                            (unsigned (__stdcall *)(void*)) thread_native_entry,
 640                            thread,
 641                            initflag,
 642                            &thread_id);
 643 
 644   char buf[64];
 645   if (thread_handle != NULL) {
 646     log_info(os, thread)("Thread started (tid: %u, attributes: %s)",
 647       thread_id, describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 648   } else {
 649     log_warning(os, thread)("Failed to start thread - _beginthreadex failed (%s) for attributes: %s.",
 650       os::errno_name(errno), describe_beginthreadex_attributes(buf, sizeof(buf), stack_size, initflag));
 651   }
 652 
 653   if (thread_handle == NULL) {
 654     // Need to clean up stuff we've allocated so far
 655     CloseHandle(osthread->interrupt_event());
 656     thread->set_osthread(NULL);
 657     delete osthread;
 658     return NULL;
 659   }
 660 
 661   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 662 
 663   // Store info on the Win32 thread into the OSThread
 664   osthread->set_thread_handle(thread_handle);
 665   osthread->set_thread_id(thread_id);
 666 
 667   // Initial thread state is INITIALIZED, not SUSPENDED
 668   osthread->set_state(INITIALIZED);
 669 
 670   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 671   return true;
 672 }
 673 
 674 
 675 // Free Win32 resources related to the OSThread
 676 void os::free_thread(OSThread* osthread) {
 677   assert(osthread != NULL, "osthread not set");
 678 
 679   // We are told to free resources of the argument thread,
 680   // but we can only really operate on the current thread.
 681   assert(Thread::current()->osthread() == osthread,
 682          "os::free_thread but not current thread");
 683 
 684   CloseHandle(osthread->thread_handle());
 685   CloseHandle(osthread->interrupt_event());
 686   delete osthread;
 687 }
 688 
 689 static jlong first_filetime;
 690 static jlong initial_performance_count;
 691 static jlong performance_frequency;
 692 
 693 
 694 jlong as_long(LARGE_INTEGER x) {
 695   jlong result = 0; // initialization to avoid warning
 696   set_high(&result, x.HighPart);
 697   set_low(&result, x.LowPart);
 698   return result;
 699 }
 700 
 701 
 702 jlong os::elapsed_counter() {
 703   LARGE_INTEGER count;
 704   QueryPerformanceCounter(&count);
 705   return as_long(count) - initial_performance_count;
 706 }
 707 
 708 
 709 jlong os::elapsed_frequency() {
 710   return performance_frequency;
 711 }
 712 
 713 
 714 julong os::available_memory() {
 715   return win32::available_memory();
 716 }
 717 
 718 julong os::win32::available_memory() {
 719   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 720   // value if total memory is larger than 4GB
 721   MEMORYSTATUSEX ms;
 722   ms.dwLength = sizeof(ms);
 723   GlobalMemoryStatusEx(&ms);
 724 
 725   return (julong)ms.ullAvailPhys;
 726 }
 727 
 728 julong os::physical_memory() {
 729   return win32::physical_memory();
 730 }
 731 
 732 bool os::has_allocatable_memory_limit(julong* limit) {
 733   MEMORYSTATUSEX ms;
 734   ms.dwLength = sizeof(ms);
 735   GlobalMemoryStatusEx(&ms);
 736 #ifdef _LP64
 737   *limit = (julong)ms.ullAvailVirtual;
 738   return true;
 739 #else
 740   // Limit to 1400m because of the 2gb address space wall
 741   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 742   return true;
 743 #endif
 744 }
 745 
 746 int os::active_processor_count() {
 747   DWORD_PTR lpProcessAffinityMask = 0;
 748   DWORD_PTR lpSystemAffinityMask = 0;
 749   int proc_count = processor_count();
 750   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 751       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 752     // Nof active processors is number of bits in process affinity mask
 753     int bitcount = 0;
 754     while (lpProcessAffinityMask != 0) {
 755       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 756       bitcount++;
 757     }
 758     return bitcount;
 759   } else {
 760     return proc_count;
 761   }
 762 }
 763 
 764 void os::set_native_thread_name(const char *name) {
 765 
 766   // See: http://msdn.microsoft.com/en-us/library/xcb2z8hs.aspx
 767   //
 768   // Note that unfortunately this only works if the process
 769   // is already attached to a debugger; debugger must observe
 770   // the exception below to show the correct name.
 771 
 772   const DWORD MS_VC_EXCEPTION = 0x406D1388;
 773   struct {
 774     DWORD dwType;     // must be 0x1000
 775     LPCSTR szName;    // pointer to name (in user addr space)
 776     DWORD dwThreadID; // thread ID (-1=caller thread)
 777     DWORD dwFlags;    // reserved for future use, must be zero
 778   } info;
 779 
 780   info.dwType = 0x1000;
 781   info.szName = name;
 782   info.dwThreadID = -1;
 783   info.dwFlags = 0;
 784 
 785   __try {
 786     RaiseException (MS_VC_EXCEPTION, 0, sizeof(info)/sizeof(DWORD), (const ULONG_PTR*)&info );
 787   } __except(EXCEPTION_CONTINUE_EXECUTION) {}
 788 }
 789 
 790 bool os::distribute_processes(uint length, uint* distribution) {
 791   // Not yet implemented.
 792   return false;
 793 }
 794 
 795 bool os::bind_to_processor(uint processor_id) {
 796   // Not yet implemented.
 797   return false;
 798 }
 799 
 800 void os::win32::initialize_performance_counter() {
 801   LARGE_INTEGER count;
 802   QueryPerformanceFrequency(&count);
 803   performance_frequency = as_long(count);
 804   QueryPerformanceCounter(&count);
 805   initial_performance_count = as_long(count);
 806 }
 807 
 808 
 809 double os::elapsedTime() {
 810   return (double) elapsed_counter() / (double) elapsed_frequency();
 811 }
 812 
 813 
 814 // Windows format:
 815 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 816 // Java format:
 817 //   Java standards require the number of milliseconds since 1/1/1970
 818 
 819 // Constant offset - calculated using offset()
 820 static jlong  _offset   = 116444736000000000;
 821 // Fake time counter for reproducible results when debugging
 822 static jlong  fake_time = 0;
 823 
 824 #ifdef ASSERT
 825 // Just to be safe, recalculate the offset in debug mode
 826 static jlong _calculated_offset = 0;
 827 static int   _has_calculated_offset = 0;
 828 
 829 jlong offset() {
 830   if (_has_calculated_offset) return _calculated_offset;
 831   SYSTEMTIME java_origin;
 832   java_origin.wYear          = 1970;
 833   java_origin.wMonth         = 1;
 834   java_origin.wDayOfWeek     = 0; // ignored
 835   java_origin.wDay           = 1;
 836   java_origin.wHour          = 0;
 837   java_origin.wMinute        = 0;
 838   java_origin.wSecond        = 0;
 839   java_origin.wMilliseconds  = 0;
 840   FILETIME jot;
 841   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 842     fatal("Error = %d\nWindows error", GetLastError());
 843   }
 844   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 845   _has_calculated_offset = 1;
 846   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 847   return _calculated_offset;
 848 }
 849 #else
 850 jlong offset() {
 851   return _offset;
 852 }
 853 #endif
 854 
 855 jlong windows_to_java_time(FILETIME wt) {
 856   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 857   return (a - offset()) / 10000;
 858 }
 859 
 860 // Returns time ticks in (10th of micro seconds)
 861 jlong windows_to_time_ticks(FILETIME wt) {
 862   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 863   return (a - offset());
 864 }
 865 
 866 FILETIME java_to_windows_time(jlong l) {
 867   jlong a = (l * 10000) + offset();
 868   FILETIME result;
 869   result.dwHighDateTime = high(a);
 870   result.dwLowDateTime  = low(a);
 871   return result;
 872 }
 873 
 874 bool os::supports_vtime() { return true; }
 875 bool os::enable_vtime() { return false; }
 876 bool os::vtime_enabled() { return false; }
 877 
 878 double os::elapsedVTime() {
 879   FILETIME created;
 880   FILETIME exited;
 881   FILETIME kernel;
 882   FILETIME user;
 883   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 884     // the resolution of windows_to_java_time() should be sufficient (ms)
 885     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 886   } else {
 887     return elapsedTime();
 888   }
 889 }
 890 
 891 jlong os::javaTimeMillis() {
 892   if (UseFakeTimers) {
 893     return fake_time++;
 894   } else {
 895     FILETIME wt;
 896     GetSystemTimeAsFileTime(&wt);
 897     return windows_to_java_time(wt);
 898   }
 899 }
 900 
 901 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
 902   FILETIME wt;
 903   GetSystemTimeAsFileTime(&wt);
 904   jlong ticks = windows_to_time_ticks(wt); // 10th of micros
 905   jlong secs = jlong(ticks / 10000000); // 10000 * 1000
 906   seconds = secs;
 907   nanos = jlong(ticks - (secs*10000000)) * 100;
 908 }
 909 
 910 jlong os::javaTimeNanos() {
 911     LARGE_INTEGER current_count;
 912     QueryPerformanceCounter(&current_count);
 913     double current = as_long(current_count);
 914     double freq = performance_frequency;
 915     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 916     return time;
 917 }
 918 
 919 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 920   jlong freq = performance_frequency;
 921   if (freq < NANOSECS_PER_SEC) {
 922     // the performance counter is 64 bits and we will
 923     // be multiplying it -- so no wrap in 64 bits
 924     info_ptr->max_value = ALL_64_BITS;
 925   } else if (freq > NANOSECS_PER_SEC) {
 926     // use the max value the counter can reach to
 927     // determine the max value which could be returned
 928     julong max_counter = (julong)ALL_64_BITS;
 929     info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 930   } else {
 931     // the performance counter is 64 bits and we will
 932     // be using it directly -- so no wrap in 64 bits
 933     info_ptr->max_value = ALL_64_BITS;
 934   }
 935 
 936   // using a counter, so no skipping
 937   info_ptr->may_skip_backward = false;
 938   info_ptr->may_skip_forward = false;
 939 
 940   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 941 }
 942 
 943 char* os::local_time_string(char *buf, size_t buflen) {
 944   SYSTEMTIME st;
 945   GetLocalTime(&st);
 946   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 947                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 948   return buf;
 949 }
 950 
 951 bool os::getTimesSecs(double* process_real_time,
 952                       double* process_user_time,
 953                       double* process_system_time) {
 954   HANDLE h_process = GetCurrentProcess();
 955   FILETIME create_time, exit_time, kernel_time, user_time;
 956   BOOL result = GetProcessTimes(h_process,
 957                                 &create_time,
 958                                 &exit_time,
 959                                 &kernel_time,
 960                                 &user_time);
 961   if (result != 0) {
 962     FILETIME wt;
 963     GetSystemTimeAsFileTime(&wt);
 964     jlong rtc_millis = windows_to_java_time(wt);
 965     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 966     *process_user_time =
 967       (double) jlong_from(user_time.dwHighDateTime, user_time.dwLowDateTime) / (10 * MICROUNITS);
 968     *process_system_time =
 969       (double) jlong_from(kernel_time.dwHighDateTime, kernel_time.dwLowDateTime) / (10 * MICROUNITS);
 970     return true;
 971   } else {
 972     return false;
 973   }
 974 }
 975 
 976 void os::shutdown() {
 977   // allow PerfMemory to attempt cleanup of any persistent resources
 978   perfMemory_exit();
 979 
 980   // flush buffered output, finish log files
 981   ostream_abort();
 982 
 983   // Check for abort hook
 984   abort_hook_t abort_hook = Arguments::abort_hook();
 985   if (abort_hook != NULL) {
 986     abort_hook();
 987   }
 988 }
 989 
 990 
 991 static BOOL (WINAPI *_MiniDumpWriteDump)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
 992                                          PMINIDUMP_EXCEPTION_INFORMATION,
 993                                          PMINIDUMP_USER_STREAM_INFORMATION,
 994                                          PMINIDUMP_CALLBACK_INFORMATION);
 995 
 996 static HANDLE dumpFile = NULL;
 997 
 998 // Check if dump file can be created.
 999 void os::check_dump_limit(char* buffer, size_t buffsz) {
1000   bool status = true;
1001   if (!FLAG_IS_DEFAULT(CreateCoredumpOnCrash) && !CreateCoredumpOnCrash) {
1002     jio_snprintf(buffer, buffsz, "CreateCoredumpOnCrash is disabled from command line");
1003     status = false;
1004   }
1005 
1006 #ifndef ASSERT
1007   if (!os::win32::is_windows_server() && FLAG_IS_DEFAULT(CreateCoredumpOnCrash)) {
1008     jio_snprintf(buffer, buffsz, "Minidumps are not enabled by default on client versions of Windows");
1009     status = false;
1010   }
1011 #endif
1012 
1013   if (status) {
1014     const char* cwd = get_current_directory(NULL, 0);
1015     int pid = current_process_id();
1016     if (cwd != NULL) {
1017       jio_snprintf(buffer, buffsz, "%s\\hs_err_pid%u.mdmp", cwd, pid);
1018     } else {
1019       jio_snprintf(buffer, buffsz, ".\\hs_err_pid%u.mdmp", pid);
1020     }
1021 
1022     if (dumpFile == NULL &&
1023        (dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL))
1024                  == INVALID_HANDLE_VALUE) {
1025       jio_snprintf(buffer, buffsz, "Failed to create minidump file (0x%x).", GetLastError());
1026       status = false;
1027     }
1028   }
1029   VMError::record_coredump_status(buffer, status);
1030 }
1031 
1032 void os::abort(bool dump_core, void* siginfo, const void* context) {
1033   HINSTANCE dbghelp;
1034   EXCEPTION_POINTERS ep;
1035   MINIDUMP_EXCEPTION_INFORMATION mei;
1036   MINIDUMP_EXCEPTION_INFORMATION* pmei;
1037 
1038   HANDLE hProcess = GetCurrentProcess();
1039   DWORD processId = GetCurrentProcessId();
1040   MINIDUMP_TYPE dumpType;
1041 
1042   shutdown();
1043   if (!dump_core || dumpFile == NULL) {
1044     if (dumpFile != NULL) {
1045       CloseHandle(dumpFile);
1046     }
1047     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1048   }
1049 
1050   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
1051 
1052   if (dbghelp == NULL) {
1053     jio_fprintf(stderr, "Failed to load dbghelp.dll\n");
1054     CloseHandle(dumpFile);
1055     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1056   }
1057 
1058   _MiniDumpWriteDump =
1059       CAST_TO_FN_PTR(BOOL(WINAPI *)(HANDLE, DWORD, HANDLE, MINIDUMP_TYPE,
1060                                     PMINIDUMP_EXCEPTION_INFORMATION,
1061                                     PMINIDUMP_USER_STREAM_INFORMATION,
1062                                     PMINIDUMP_CALLBACK_INFORMATION),
1063                                     GetProcAddress(dbghelp,
1064                                     "MiniDumpWriteDump"));
1065 
1066   if (_MiniDumpWriteDump == NULL) {
1067     jio_fprintf(stderr, "Failed to find MiniDumpWriteDump() in module dbghelp.dll.\n");
1068     CloseHandle(dumpFile);
1069     win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1070   }
1071 
1072   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData |
1073     MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo | MiniDumpWithUnloadedModules);
1074 
1075   if (siginfo != NULL && context != NULL) {
1076     ep.ContextRecord = (PCONTEXT) context;
1077     ep.ExceptionRecord = (PEXCEPTION_RECORD) siginfo;
1078 
1079     mei.ThreadId = GetCurrentThreadId();
1080     mei.ExceptionPointers = &ep;
1081     pmei = &mei;
1082   } else {
1083     pmei = NULL;
1084   }
1085 
1086   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1087   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1088   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1089       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1090     jio_fprintf(stderr, "Call to MiniDumpWriteDump() failed (Error 0x%x)\n", GetLastError());
1091   }
1092   CloseHandle(dumpFile);
1093   win32::exit_process_or_thread(win32::EPT_PROCESS, 1);
1094 }
1095 
1096 // Die immediately, no exit hook, no abort hook, no cleanup.
1097 void os::die() {
1098   win32::exit_process_or_thread(win32::EPT_PROCESS_DIE, -1);
1099 }
1100 
1101 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1102 //  * dirent_md.c       1.15 00/02/02
1103 //
1104 // The declarations for DIR and struct dirent are in jvm_win32.h.
1105 
1106 // Caller must have already run dirname through JVM_NativePath, which removes
1107 // duplicate slashes and converts all instances of '/' into '\\'.
1108 
1109 DIR * os::opendir(const char *dirname) {
1110   assert(dirname != NULL, "just checking");   // hotspot change
1111   DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1112   DWORD fattr;                                // hotspot change
1113   char alt_dirname[4] = { 0, 0, 0, 0 };
1114 
1115   if (dirp == 0) {
1116     errno = ENOMEM;
1117     return 0;
1118   }
1119 
1120   // Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1121   // as a directory in FindFirstFile().  We detect this case here and
1122   // prepend the current drive name.
1123   //
1124   if (dirname[1] == '\0' && dirname[0] == '\\') {
1125     alt_dirname[0] = _getdrive() + 'A' - 1;
1126     alt_dirname[1] = ':';
1127     alt_dirname[2] = '\\';
1128     alt_dirname[3] = '\0';
1129     dirname = alt_dirname;
1130   }
1131 
1132   dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1133   if (dirp->path == 0) {
1134     free(dirp);
1135     errno = ENOMEM;
1136     return 0;
1137   }
1138   strcpy(dirp->path, dirname);
1139 
1140   fattr = GetFileAttributes(dirp->path);
1141   if (fattr == 0xffffffff) {
1142     free(dirp->path);
1143     free(dirp);
1144     errno = ENOENT;
1145     return 0;
1146   } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1147     free(dirp->path);
1148     free(dirp);
1149     errno = ENOTDIR;
1150     return 0;
1151   }
1152 
1153   // Append "*.*", or possibly "\\*.*", to path
1154   if (dirp->path[1] == ':' &&
1155       (dirp->path[2] == '\0' ||
1156       (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1157     // No '\\' needed for cases like "Z:" or "Z:\"
1158     strcat(dirp->path, "*.*");
1159   } else {
1160     strcat(dirp->path, "\\*.*");
1161   }
1162 
1163   dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1164   if (dirp->handle == INVALID_HANDLE_VALUE) {
1165     if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1166       free(dirp->path);
1167       free(dirp);
1168       errno = EACCES;
1169       return 0;
1170     }
1171   }
1172   return dirp;
1173 }
1174 
1175 // parameter dbuf unused on Windows
1176 struct dirent * os::readdir(DIR *dirp, dirent *dbuf) {
1177   assert(dirp != NULL, "just checking");      // hotspot change
1178   if (dirp->handle == INVALID_HANDLE_VALUE) {
1179     return 0;
1180   }
1181 
1182   strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1183 
1184   if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1185     if (GetLastError() == ERROR_INVALID_HANDLE) {
1186       errno = EBADF;
1187       return 0;
1188     }
1189     FindClose(dirp->handle);
1190     dirp->handle = INVALID_HANDLE_VALUE;
1191   }
1192 
1193   return &dirp->dirent;
1194 }
1195 
1196 int os::closedir(DIR *dirp) {
1197   assert(dirp != NULL, "just checking");      // hotspot change
1198   if (dirp->handle != INVALID_HANDLE_VALUE) {
1199     if (!FindClose(dirp->handle)) {
1200       errno = EBADF;
1201       return -1;
1202     }
1203     dirp->handle = INVALID_HANDLE_VALUE;
1204   }
1205   free(dirp->path);
1206   free(dirp);
1207   return 0;
1208 }
1209 
1210 // This must be hard coded because it's the system's temporary
1211 // directory not the java application's temp directory, ala java.io.tmpdir.
1212 const char* os::get_temp_directory() {
1213   static char path_buf[MAX_PATH];
1214   if (GetTempPath(MAX_PATH, path_buf) > 0) {
1215     return path_buf;
1216   } else {
1217     path_buf[0] = '\0';
1218     return path_buf;
1219   }
1220 }
1221 
1222 static bool file_exists(const char* filename) {
1223   if (filename == NULL || strlen(filename) == 0) {
1224     return false;
1225   }
1226   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1227 }
1228 
1229 bool os::dll_build_name(char *buffer, size_t buflen,
1230                         const char* pname, const char* fname) {
1231   bool retval = false;
1232   const size_t pnamelen = pname ? strlen(pname) : 0;
1233   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1234 
1235   // Return error on buffer overflow.
1236   if (pnamelen + strlen(fname) + 10 > buflen) {
1237     return retval;
1238   }
1239 
1240   if (pnamelen == 0) {
1241     jio_snprintf(buffer, buflen, "%s.dll", fname);
1242     retval = true;
1243   } else if (c == ':' || c == '\\') {
1244     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1245     retval = true;
1246   } else if (strchr(pname, *os::path_separator()) != NULL) {
1247     int n;
1248     char** pelements = split_path(pname, &n);
1249     if (pelements == NULL) {
1250       return false;
1251     }
1252     for (int i = 0; i < n; i++) {
1253       char* path = pelements[i];
1254       // Really shouldn't be NULL, but check can't hurt
1255       size_t plen = (path == NULL) ? 0 : strlen(path);
1256       if (plen == 0) {
1257         continue; // skip the empty path values
1258       }
1259       const char lastchar = path[plen - 1];
1260       if (lastchar == ':' || lastchar == '\\') {
1261         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1262       } else {
1263         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1264       }
1265       if (file_exists(buffer)) {
1266         retval = true;
1267         break;
1268       }
1269     }
1270     // release the storage
1271     for (int i = 0; i < n; i++) {
1272       if (pelements[i] != NULL) {
1273         FREE_C_HEAP_ARRAY(char, pelements[i]);
1274       }
1275     }
1276     if (pelements != NULL) {
1277       FREE_C_HEAP_ARRAY(char*, pelements);
1278     }
1279   } else {
1280     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1281     retval = true;
1282   }
1283   return retval;
1284 }
1285 
1286 // Needs to be in os specific directory because windows requires another
1287 // header file <direct.h>
1288 const char* os::get_current_directory(char *buf, size_t buflen) {
1289   int n = static_cast<int>(buflen);
1290   if (buflen > INT_MAX)  n = INT_MAX;
1291   return _getcwd(buf, n);
1292 }
1293 
1294 //-----------------------------------------------------------
1295 // Helper functions for fatal error handler
1296 #ifdef _WIN64
1297 // Helper routine which returns true if address in
1298 // within the NTDLL address space.
1299 //
1300 static bool _addr_in_ntdll(address addr) {
1301   HMODULE hmod;
1302   MODULEINFO minfo;
1303 
1304   hmod = GetModuleHandle("NTDLL.DLL");
1305   if (hmod == NULL) return false;
1306   if (!GetModuleInformation(GetCurrentProcess(), hmod,
1307                                           &minfo, sizeof(MODULEINFO))) {
1308     return false;
1309   }
1310 
1311   if ((addr >= minfo.lpBaseOfDll) &&
1312       (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage))) {
1313     return true;
1314   } else {
1315     return false;
1316   }
1317 }
1318 #endif
1319 
1320 struct _modinfo {
1321   address addr;
1322   char*   full_path;   // point to a char buffer
1323   int     buflen;      // size of the buffer
1324   address base_addr;
1325 };
1326 
1327 static int _locate_module_by_addr(const char * mod_fname, address base_addr,
1328                                   address top_address, void * param) {
1329   struct _modinfo *pmod = (struct _modinfo *)param;
1330   if (!pmod) return -1;
1331 
1332   if (base_addr   <= pmod->addr &&
1333       top_address > pmod->addr) {
1334     // if a buffer is provided, copy path name to the buffer
1335     if (pmod->full_path) {
1336       jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1337     }
1338     pmod->base_addr = base_addr;
1339     return 1;
1340   }
1341   return 0;
1342 }
1343 
1344 bool os::dll_address_to_library_name(address addr, char* buf,
1345                                      int buflen, int* offset) {
1346   // buf is not optional, but offset is optional
1347   assert(buf != NULL, "sanity check");
1348 
1349 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1350 //       return the full path to the DLL file, sometimes it returns path
1351 //       to the corresponding PDB file (debug info); sometimes it only
1352 //       returns partial path, which makes life painful.
1353 
1354   struct _modinfo mi;
1355   mi.addr      = addr;
1356   mi.full_path = buf;
1357   mi.buflen    = buflen;
1358   if (get_loaded_modules_info(_locate_module_by_addr, (void *)&mi)) {
1359     // buf already contains path name
1360     if (offset) *offset = addr - mi.base_addr;
1361     return true;
1362   }
1363 
1364   buf[0] = '\0';
1365   if (offset) *offset = -1;
1366   return false;
1367 }
1368 
1369 bool os::dll_address_to_function_name(address addr, char *buf,
1370                                       int buflen, int *offset,
1371                                       bool demangle) {
1372   // buf is not optional, but offset is optional
1373   assert(buf != NULL, "sanity check");
1374 
1375   if (Decoder::decode(addr, buf, buflen, offset, demangle)) {
1376     return true;
1377   }
1378   if (offset != NULL)  *offset  = -1;
1379   buf[0] = '\0';
1380   return false;
1381 }
1382 
1383 // save the start and end address of jvm.dll into param[0] and param[1]
1384 static int _locate_jvm_dll(const char* mod_fname, address base_addr,
1385                            address top_address, void * param) {
1386   if (!param) return -1;
1387 
1388   if (base_addr   <= (address)_locate_jvm_dll &&
1389       top_address > (address)_locate_jvm_dll) {
1390     ((address*)param)[0] = base_addr;
1391     ((address*)param)[1] = top_address;
1392     return 1;
1393   }
1394   return 0;
1395 }
1396 
1397 address vm_lib_location[2];    // start and end address of jvm.dll
1398 
1399 // check if addr is inside jvm.dll
1400 bool os::address_is_in_vm(address addr) {
1401   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1402     if (!get_loaded_modules_info(_locate_jvm_dll, (void *)vm_lib_location)) {
1403       assert(false, "Can't find jvm module.");
1404       return false;
1405     }
1406   }
1407 
1408   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1409 }
1410 
1411 // print module info; param is outputStream*
1412 static int _print_module(const char* fname, address base_address,
1413                          address top_address, void* param) {
1414   if (!param) return -1;
1415 
1416   outputStream* st = (outputStream*)param;
1417 
1418   st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base_address, top_address, fname);
1419   return 0;
1420 }
1421 
1422 // Loads .dll/.so and
1423 // in case of error it checks if .dll/.so was built for the
1424 // same architecture as Hotspot is running on
1425 void * os::dll_load(const char *name, char *ebuf, int ebuflen) {
1426   void * result = LoadLibrary(name);
1427   if (result != NULL) {
1428     return result;
1429   }
1430 
1431   DWORD errcode = GetLastError();
1432   if (errcode == ERROR_MOD_NOT_FOUND) {
1433     strncpy(ebuf, "Can't find dependent libraries", ebuflen - 1);
1434     ebuf[ebuflen - 1] = '\0';
1435     return NULL;
1436   }
1437 
1438   // Parsing dll below
1439   // If we can read dll-info and find that dll was built
1440   // for an architecture other than Hotspot is running in
1441   // - then print to buffer "DLL was built for a different architecture"
1442   // else call os::lasterror to obtain system error message
1443 
1444   // Read system error message into ebuf
1445   // It may or may not be overwritten below (in the for loop and just above)
1446   lasterror(ebuf, (size_t) ebuflen);
1447   ebuf[ebuflen - 1] = '\0';
1448   int fd = ::open(name, O_RDONLY | O_BINARY, 0);
1449   if (fd < 0) {
1450     return NULL;
1451   }
1452 
1453   uint32_t signature_offset;
1454   uint16_t lib_arch = 0;
1455   bool failed_to_get_lib_arch =
1456     ( // Go to position 3c in the dll
1457      (os::seek_to_file_offset(fd, IMAGE_FILE_PTR_TO_SIGNATURE) < 0)
1458      ||
1459      // Read location of signature
1460      (sizeof(signature_offset) !=
1461      (os::read(fd, (void*)&signature_offset, sizeof(signature_offset))))
1462      ||
1463      // Go to COFF File Header in dll
1464      // that is located after "signature" (4 bytes long)
1465      (os::seek_to_file_offset(fd,
1466      signature_offset + IMAGE_FILE_SIGNATURE_LENGTH) < 0)
1467      ||
1468      // Read field that contains code of architecture
1469      // that dll was built for
1470      (sizeof(lib_arch) != (os::read(fd, (void*)&lib_arch, sizeof(lib_arch))))
1471     );
1472 
1473   ::close(fd);
1474   if (failed_to_get_lib_arch) {
1475     // file i/o error - report os::lasterror(...) msg
1476     return NULL;
1477   }
1478 
1479   typedef struct {
1480     uint16_t arch_code;
1481     char* arch_name;
1482   } arch_t;
1483 
1484   static const arch_t arch_array[] = {
1485     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1486     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1487     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1488   };
1489 #if   (defined _M_IA64)
1490   static const uint16_t running_arch = IMAGE_FILE_MACHINE_IA64;
1491 #elif (defined _M_AMD64)
1492   static const uint16_t running_arch = IMAGE_FILE_MACHINE_AMD64;
1493 #elif (defined _M_IX86)
1494   static const uint16_t running_arch = IMAGE_FILE_MACHINE_I386;
1495 #else
1496   #error Method os::dll_load requires that one of following \
1497          is defined :_M_IA64,_M_AMD64 or _M_IX86
1498 #endif
1499 
1500 
1501   // Obtain a string for printf operation
1502   // lib_arch_str shall contain string what platform this .dll was built for
1503   // running_arch_str shall string contain what platform Hotspot was built for
1504   char *running_arch_str = NULL, *lib_arch_str = NULL;
1505   for (unsigned int i = 0; i < ARRAY_SIZE(arch_array); i++) {
1506     if (lib_arch == arch_array[i].arch_code) {
1507       lib_arch_str = arch_array[i].arch_name;
1508     }
1509     if (running_arch == arch_array[i].arch_code) {
1510       running_arch_str = arch_array[i].arch_name;
1511     }
1512   }
1513 
1514   assert(running_arch_str,
1515          "Didn't find running architecture code in arch_array");
1516 
1517   // If the architecture is right
1518   // but some other error took place - report os::lasterror(...) msg
1519   if (lib_arch == running_arch) {
1520     return NULL;
1521   }
1522 
1523   if (lib_arch_str != NULL) {
1524     ::_snprintf(ebuf, ebuflen - 1,
1525                 "Can't load %s-bit .dll on a %s-bit platform",
1526                 lib_arch_str, running_arch_str);
1527   } else {
1528     // don't know what architecture this dll was build for
1529     ::_snprintf(ebuf, ebuflen - 1,
1530                 "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1531                 lib_arch, running_arch_str);
1532   }
1533 
1534   return NULL;
1535 }
1536 
1537 void os::print_dll_info(outputStream *st) {
1538   st->print_cr("Dynamic libraries:");
1539   get_loaded_modules_info(_print_module, (void *)st);
1540 }
1541 
1542 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1543   HANDLE   hProcess;
1544 
1545 # define MAX_NUM_MODULES 128
1546   HMODULE     modules[MAX_NUM_MODULES];
1547   static char filename[MAX_PATH];
1548   int         result = 0;
1549 
1550   int pid = os::current_process_id();
1551   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1552                          FALSE, pid);
1553   if (hProcess == NULL) return 0;
1554 
1555   DWORD size_needed;
1556   if (!EnumProcessModules(hProcess, modules, sizeof(modules), &size_needed)) {
1557     CloseHandle(hProcess);
1558     return 0;
1559   }
1560 
1561   // number of modules that are currently loaded
1562   int num_modules = size_needed / sizeof(HMODULE);
1563 
1564   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1565     // Get Full pathname:
1566     if (!GetModuleFileNameEx(hProcess, modules[i], filename, sizeof(filename))) {
1567       filename[0] = '\0';
1568     }
1569 
1570     MODULEINFO modinfo;
1571     if (!GetModuleInformation(hProcess, modules[i], &modinfo, sizeof(modinfo))) {
1572       modinfo.lpBaseOfDll = NULL;
1573       modinfo.SizeOfImage = 0;
1574     }
1575 
1576     // Invoke callback function
1577     result = callback(filename, (address)modinfo.lpBaseOfDll,
1578                       (address)((u8)modinfo.lpBaseOfDll + (u8)modinfo.SizeOfImage), param);
1579     if (result) break;
1580   }
1581 
1582   CloseHandle(hProcess);
1583   return result;
1584 }
1585 
1586 bool os::get_host_name(char* buf, size_t buflen) {
1587   DWORD size = (DWORD)buflen;
1588   return (GetComputerNameEx(ComputerNameDnsHostname, buf, &size) == TRUE);
1589 }
1590 
1591 void os::get_summary_os_info(char* buf, size_t buflen) {
1592   stringStream sst(buf, buflen);
1593   os::win32::print_windows_version(&sst);
1594   // chop off newline character
1595   char* nl = strchr(buf, '\n');
1596   if (nl != NULL) *nl = '\0';
1597 }
1598 
1599 int os::log_vsnprintf(char* buf, size_t len, const char* fmt, va_list args) {
1600   int ret = vsnprintf(buf, len, fmt, args);
1601   // Get the correct buffer size if buf is too small
1602   if (ret < 0) {
1603     return _vscprintf(fmt, args);
1604   }
1605   return ret;
1606 }
1607 
1608 static inline time_t get_mtime(const char* filename) {
1609   struct stat st;
1610   int ret = os::stat(filename, &st);
1611   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
1612   return st.st_mtime;
1613 }
1614 
1615 int os::compare_file_modified_times(const char* file1, const char* file2) {
1616   time_t t1 = get_mtime(file1);
1617   time_t t2 = get_mtime(file2);
1618   return t1 - t2;
1619 }
1620 
1621 void os::print_os_info_brief(outputStream* st) {
1622   os::print_os_info(st);
1623 }
1624 
1625 void os::print_os_info(outputStream* st) {
1626 #ifdef ASSERT
1627   char buffer[1024];
1628   st->print("HostName: ");
1629   if (get_host_name(buffer, sizeof(buffer))) {
1630     st->print("%s ", buffer);
1631   } else {
1632     st->print("N/A ");
1633   }
1634 #endif
1635   st->print("OS:");
1636   os::win32::print_windows_version(st);
1637 }
1638 
1639 void os::win32::print_windows_version(outputStream* st) {
1640   OSVERSIONINFOEX osvi;
1641   VS_FIXEDFILEINFO *file_info;
1642   TCHAR kernel32_path[MAX_PATH];
1643   UINT len, ret;
1644 
1645   // Use the GetVersionEx information to see if we're on a server or
1646   // workstation edition of Windows. Starting with Windows 8.1 we can't
1647   // trust the OS version information returned by this API.
1648   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1649   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1650   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1651     st->print_cr("Call to GetVersionEx failed");
1652     return;
1653   }
1654   bool is_workstation = (osvi.wProductType == VER_NT_WORKSTATION);
1655 
1656   // Get the full path to \Windows\System32\kernel32.dll and use that for
1657   // determining what version of Windows we're running on.
1658   len = MAX_PATH - (UINT)strlen("\\kernel32.dll") - 1;
1659   ret = GetSystemDirectory(kernel32_path, len);
1660   if (ret == 0 || ret > len) {
1661     st->print_cr("Call to GetSystemDirectory failed");
1662     return;
1663   }
1664   strncat(kernel32_path, "\\kernel32.dll", MAX_PATH - ret);
1665 
1666   DWORD version_size = GetFileVersionInfoSize(kernel32_path, NULL);
1667   if (version_size == 0) {
1668     st->print_cr("Call to GetFileVersionInfoSize failed");
1669     return;
1670   }
1671 
1672   LPTSTR version_info = (LPTSTR)os::malloc(version_size, mtInternal);
1673   if (version_info == NULL) {
1674     st->print_cr("Failed to allocate version_info");
1675     return;
1676   }
1677 
1678   if (!GetFileVersionInfo(kernel32_path, NULL, version_size, version_info)) {
1679     os::free(version_info);
1680     st->print_cr("Call to GetFileVersionInfo failed");
1681     return;
1682   }
1683 
1684   if (!VerQueryValue(version_info, TEXT("\\"), (LPVOID*)&file_info, &len)) {
1685     os::free(version_info);
1686     st->print_cr("Call to VerQueryValue failed");
1687     return;
1688   }
1689 
1690   int major_version = HIWORD(file_info->dwProductVersionMS);
1691   int minor_version = LOWORD(file_info->dwProductVersionMS);
1692   int build_number = HIWORD(file_info->dwProductVersionLS);
1693   int build_minor = LOWORD(file_info->dwProductVersionLS);
1694   int os_vers = major_version * 1000 + minor_version;
1695   os::free(version_info);
1696 
1697   st->print(" Windows ");
1698   switch (os_vers) {
1699 
1700   case 6000:
1701     if (is_workstation) {
1702       st->print("Vista");
1703     } else {
1704       st->print("Server 2008");
1705     }
1706     break;
1707 
1708   case 6001:
1709     if (is_workstation) {
1710       st->print("7");
1711     } else {
1712       st->print("Server 2008 R2");
1713     }
1714     break;
1715 
1716   case 6002:
1717     if (is_workstation) {
1718       st->print("8");
1719     } else {
1720       st->print("Server 2012");
1721     }
1722     break;
1723 
1724   case 6003:
1725     if (is_workstation) {
1726       st->print("8.1");
1727     } else {
1728       st->print("Server 2012 R2");
1729     }
1730     break;
1731 
1732   case 10000:
1733     if (is_workstation) {
1734       st->print("10");
1735     } else {
1736       st->print("Server 2016");
1737     }
1738     break;
1739 
1740   default:
1741     // Unrecognized windows, print out its major and minor versions
1742     st->print("%d.%d", major_version, minor_version);
1743     break;
1744   }
1745 
1746   // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1747   // find out whether we are running on 64 bit processor or not
1748   SYSTEM_INFO si;
1749   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1750   GetNativeSystemInfo(&si);
1751   if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1752     st->print(" , 64 bit");
1753   }
1754 
1755   st->print(" Build %d", build_number);
1756   st->print(" (%d.%d.%d.%d)", major_version, minor_version, build_number, build_minor);
1757   st->cr();
1758 }
1759 
1760 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1761   // Nothing to do for now.
1762 }
1763 
1764 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1765   HKEY key;
1766   DWORD status = RegOpenKey(HKEY_LOCAL_MACHINE,
1767                "HARDWARE\\DESCRIPTION\\System\\CentralProcessor\\0", &key);
1768   if (status == ERROR_SUCCESS) {
1769     DWORD size = (DWORD)buflen;
1770     status = RegQueryValueEx(key, "ProcessorNameString", NULL, NULL, (byte*)buf, &size);
1771     if (status != ERROR_SUCCESS) {
1772         strncpy(buf, "## __CPU__", buflen);
1773     }
1774     RegCloseKey(key);
1775   } else {
1776     // Put generic cpu info to return
1777     strncpy(buf, "## __CPU__", buflen);
1778   }
1779 }
1780 
1781 void os::print_memory_info(outputStream* st) {
1782   st->print("Memory:");
1783   st->print(" %dk page", os::vm_page_size()>>10);
1784 
1785   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1786   // value if total memory is larger than 4GB
1787   MEMORYSTATUSEX ms;
1788   ms.dwLength = sizeof(ms);
1789   GlobalMemoryStatusEx(&ms);
1790 
1791   st->print(", physical %uk", os::physical_memory() >> 10);
1792   st->print("(%uk free)", os::available_memory() >> 10);
1793 
1794   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1795   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1796   st->cr();
1797 }
1798 
1799 void os::print_siginfo(outputStream *st, const void* siginfo) {
1800   const EXCEPTION_RECORD* const er = (EXCEPTION_RECORD*)siginfo;
1801   st->print("siginfo:");
1802 
1803   char tmp[64];
1804   if (os::exception_name(er->ExceptionCode, tmp, sizeof(tmp)) == NULL) {
1805     strcpy(tmp, "EXCEPTION_??");
1806   }
1807   st->print(" %s (0x%x)", tmp, er->ExceptionCode);
1808 
1809   if ((er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION ||
1810        er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR) &&
1811        er->NumberParameters >= 2) {
1812     switch (er->ExceptionInformation[0]) {
1813     case 0: st->print(", reading address"); break;
1814     case 1: st->print(", writing address"); break;
1815     case 8: st->print(", data execution prevention violation at address"); break;
1816     default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1817                        er->ExceptionInformation[0]);
1818     }
1819     st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1820   } else {
1821     int num = er->NumberParameters;
1822     if (num > 0) {
1823       st->print(", ExceptionInformation=");
1824       for (int i = 0; i < num; i++) {
1825         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1826       }
1827     }
1828   }
1829   st->cr();
1830 }
1831 
1832 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1833   // do nothing
1834 }
1835 
1836 static char saved_jvm_path[MAX_PATH] = {0};
1837 
1838 // Find the full path to the current module, jvm.dll
1839 void os::jvm_path(char *buf, jint buflen) {
1840   // Error checking.
1841   if (buflen < MAX_PATH) {
1842     assert(false, "must use a large-enough buffer");
1843     buf[0] = '\0';
1844     return;
1845   }
1846   // Lazy resolve the path to current module.
1847   if (saved_jvm_path[0] != 0) {
1848     strcpy(buf, saved_jvm_path);
1849     return;
1850   }
1851 
1852   buf[0] = '\0';
1853   if (Arguments::sun_java_launcher_is_altjvm()) {
1854     // Support for the java launcher's '-XXaltjvm=<path>' option. Check
1855     // for a JAVA_HOME environment variable and fix up the path so it
1856     // looks like jvm.dll is installed there (append a fake suffix
1857     // hotspot/jvm.dll).
1858     char* java_home_var = ::getenv("JAVA_HOME");
1859     if (java_home_var != NULL && java_home_var[0] != 0 &&
1860         strlen(java_home_var) < (size_t)buflen) {
1861       strncpy(buf, java_home_var, buflen);
1862 
1863       // determine if this is a legacy image or modules image
1864       // modules image doesn't have "jre" subdirectory
1865       size_t len = strlen(buf);
1866       char* jrebin_p = buf + len;
1867       jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1868       if (0 != _access(buf, 0)) {
1869         jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1870       }
1871       len = strlen(buf);
1872       jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1873     }
1874   }
1875 
1876   if (buf[0] == '\0') {
1877     GetModuleFileName(vm_lib_handle, buf, buflen);
1878   }
1879   strncpy(saved_jvm_path, buf, MAX_PATH);
1880   saved_jvm_path[MAX_PATH - 1] = '\0';
1881 }
1882 
1883 
1884 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1885 #ifndef _WIN64
1886   st->print("_");
1887 #endif
1888 }
1889 
1890 
1891 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1892 #ifndef _WIN64
1893   st->print("@%d", args_size  * sizeof(int));
1894 #endif
1895 }
1896 
1897 // This method is a copy of JDK's sysGetLastErrorString
1898 // from src/windows/hpi/src/system_md.c
1899 
1900 size_t os::lasterror(char* buf, size_t len) {
1901   DWORD errval;
1902 
1903   if ((errval = GetLastError()) != 0) {
1904     // DOS error
1905     size_t n = (size_t)FormatMessage(
1906                                      FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1907                                      NULL,
1908                                      errval,
1909                                      0,
1910                                      buf,
1911                                      (DWORD)len,
1912                                      NULL);
1913     if (n > 3) {
1914       // Drop final '.', CR, LF
1915       if (buf[n - 1] == '\n') n--;
1916       if (buf[n - 1] == '\r') n--;
1917       if (buf[n - 1] == '.') n--;
1918       buf[n] = '\0';
1919     }
1920     return n;
1921   }
1922 
1923   if (errno != 0) {
1924     // C runtime error that has no corresponding DOS error code
1925     const char* s = os::strerror(errno);
1926     size_t n = strlen(s);
1927     if (n >= len) n = len - 1;
1928     strncpy(buf, s, n);
1929     buf[n] = '\0';
1930     return n;
1931   }
1932 
1933   return 0;
1934 }
1935 
1936 int os::get_last_error() {
1937   DWORD error = GetLastError();
1938   if (error == 0) {
1939     error = errno;
1940   }
1941   return (int)error;
1942 }
1943 
1944 WindowsSemaphore::WindowsSemaphore(uint value) {
1945   _semaphore = ::CreateSemaphore(NULL, value, LONG_MAX, NULL);
1946 
1947   guarantee(_semaphore != NULL, "CreateSemaphore failed with error code: %lu", GetLastError());
1948 }
1949 
1950 WindowsSemaphore::~WindowsSemaphore() {
1951   ::CloseHandle(_semaphore);
1952 }
1953 
1954 void WindowsSemaphore::signal(uint count) {
1955   if (count > 0) {
1956     BOOL ret = ::ReleaseSemaphore(_semaphore, count, NULL);
1957 
1958     assert(ret != 0, "ReleaseSemaphore failed with error code: %lu", GetLastError());
1959   }
1960 }
1961 
1962 void WindowsSemaphore::wait() {
1963   DWORD ret = ::WaitForSingleObject(_semaphore, INFINITE);
1964   assert(ret != WAIT_FAILED,   "WaitForSingleObject failed with error code: %lu", GetLastError());
1965   assert(ret == WAIT_OBJECT_0, "WaitForSingleObject failed with return value: %lu", ret);
1966 }
1967 
1968 // sun.misc.Signal
1969 // NOTE that this is a workaround for an apparent kernel bug where if
1970 // a signal handler for SIGBREAK is installed then that signal handler
1971 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1972 // See bug 4416763.
1973 static void (*sigbreakHandler)(int) = NULL;
1974 
1975 static void UserHandler(int sig, void *siginfo, void *context) {
1976   os::signal_notify(sig);
1977   // We need to reinstate the signal handler each time...
1978   os::signal(sig, (void*)UserHandler);
1979 }
1980 
1981 void* os::user_handler() {
1982   return (void*) UserHandler;
1983 }
1984 
1985 void* os::signal(int signal_number, void* handler) {
1986   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1987     void (*oldHandler)(int) = sigbreakHandler;
1988     sigbreakHandler = (void (*)(int)) handler;
1989     return (void*) oldHandler;
1990   } else {
1991     return (void*)::signal(signal_number, (void (*)(int))handler);
1992   }
1993 }
1994 
1995 void os::signal_raise(int signal_number) {
1996   raise(signal_number);
1997 }
1998 
1999 // The Win32 C runtime library maps all console control events other than ^C
2000 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
2001 // logoff, and shutdown events.  We therefore install our own console handler
2002 // that raises SIGTERM for the latter cases.
2003 //
2004 static BOOL WINAPI consoleHandler(DWORD event) {
2005   switch (event) {
2006   case CTRL_C_EVENT:
2007     if (is_error_reported()) {
2008       // Ctrl-C is pressed during error reporting, likely because the error
2009       // handler fails to abort. Let VM die immediately.
2010       os::die();
2011     }
2012 
2013     os::signal_raise(SIGINT);
2014     return TRUE;
2015     break;
2016   case CTRL_BREAK_EVENT:
2017     if (sigbreakHandler != NULL) {
2018       (*sigbreakHandler)(SIGBREAK);
2019     }
2020     return TRUE;
2021     break;
2022   case CTRL_LOGOFF_EVENT: {
2023     // Don't terminate JVM if it is running in a non-interactive session,
2024     // such as a service process.
2025     USEROBJECTFLAGS flags;
2026     HANDLE handle = GetProcessWindowStation();
2027     if (handle != NULL &&
2028         GetUserObjectInformation(handle, UOI_FLAGS, &flags,
2029         sizeof(USEROBJECTFLAGS), NULL)) {
2030       // If it is a non-interactive session, let next handler to deal
2031       // with it.
2032       if ((flags.dwFlags & WSF_VISIBLE) == 0) {
2033         return FALSE;
2034       }
2035     }
2036   }
2037   case CTRL_CLOSE_EVENT:
2038   case CTRL_SHUTDOWN_EVENT:
2039     os::signal_raise(SIGTERM);
2040     return TRUE;
2041     break;
2042   default:
2043     break;
2044   }
2045   return FALSE;
2046 }
2047 
2048 // The following code is moved from os.cpp for making this
2049 // code platform specific, which it is by its very nature.
2050 
2051 // Return maximum OS signal used + 1 for internal use only
2052 // Used as exit signal for signal_thread
2053 int os::sigexitnum_pd() {
2054   return NSIG;
2055 }
2056 
2057 // a counter for each possible signal value, including signal_thread exit signal
2058 static volatile jint pending_signals[NSIG+1] = { 0 };
2059 static HANDLE sig_sem = NULL;
2060 
2061 void os::signal_init_pd() {
2062   // Initialize signal structures
2063   memset((void*)pending_signals, 0, sizeof(pending_signals));
2064 
2065   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2066 
2067   // Programs embedding the VM do not want it to attempt to receive
2068   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2069   // shutdown hooks mechanism introduced in 1.3.  For example, when
2070   // the VM is run as part of a Windows NT service (i.e., a servlet
2071   // engine in a web server), the correct behavior is for any console
2072   // control handler to return FALSE, not TRUE, because the OS's
2073   // "final" handler for such events allows the process to continue if
2074   // it is a service (while terminating it if it is not a service).
2075   // To make this behavior uniform and the mechanism simpler, we
2076   // completely disable the VM's usage of these console events if -Xrs
2077   // (=ReduceSignalUsage) is specified.  This means, for example, that
2078   // the CTRL-BREAK thread dump mechanism is also disabled in this
2079   // case.  See bugs 4323062, 4345157, and related bugs.
2080 
2081   if (!ReduceSignalUsage) {
2082     // Add a CTRL-C handler
2083     SetConsoleCtrlHandler(consoleHandler, TRUE);
2084   }
2085 }
2086 
2087 void os::signal_notify(int signal_number) {
2088   BOOL ret;
2089   if (sig_sem != NULL) {
2090     Atomic::inc(&pending_signals[signal_number]);
2091     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2092     assert(ret != 0, "ReleaseSemaphore() failed");
2093   }
2094 }
2095 
2096 static int check_pending_signals(bool wait_for_signal) {
2097   DWORD ret;
2098   while (true) {
2099     for (int i = 0; i < NSIG + 1; i++) {
2100       jint n = pending_signals[i];
2101       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2102         return i;
2103       }
2104     }
2105     if (!wait_for_signal) {
2106       return -1;
2107     }
2108 
2109     JavaThread *thread = JavaThread::current();
2110 
2111     ThreadBlockInVM tbivm(thread);
2112 
2113     bool threadIsSuspended;
2114     do {
2115       thread->set_suspend_equivalent();
2116       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2117       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2118       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2119 
2120       // were we externally suspended while we were waiting?
2121       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2122       if (threadIsSuspended) {
2123         // The semaphore has been incremented, but while we were waiting
2124         // another thread suspended us. We don't want to continue running
2125         // while suspended because that would surprise the thread that
2126         // suspended us.
2127         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2128         assert(ret != 0, "ReleaseSemaphore() failed");
2129 
2130         thread->java_suspend_self();
2131       }
2132     } while (threadIsSuspended);
2133   }
2134 }
2135 
2136 int os::signal_lookup() {
2137   return check_pending_signals(false);
2138 }
2139 
2140 int os::signal_wait() {
2141   return check_pending_signals(true);
2142 }
2143 
2144 // Implicit OS exception handling
2145 
2146 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo,
2147                       address handler) {
2148     JavaThread* thread = (JavaThread*) Thread::current_or_null();
2149   // Save pc in thread
2150 #ifdef _M_IA64
2151   // Do not blow up if no thread info available.
2152   if (thread) {
2153     // Saving PRECISE pc (with slot information) in thread.
2154     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2155     // Convert precise PC into "Unix" format
2156     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2157     thread->set_saved_exception_pc((address)precise_pc);
2158   }
2159   // Set pc to handler
2160   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2161   // Clear out psr.ri (= Restart Instruction) in order to continue
2162   // at the beginning of the target bundle.
2163   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2164   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2165 #else
2166   #ifdef _M_AMD64
2167   // Do not blow up if no thread info available.
2168   if (thread) {
2169     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2170   }
2171   // Set pc to handler
2172   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2173   #else
2174   // Do not blow up if no thread info available.
2175   if (thread) {
2176     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2177   }
2178   // Set pc to handler
2179   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2180   #endif
2181 #endif
2182 
2183   // Continue the execution
2184   return EXCEPTION_CONTINUE_EXECUTION;
2185 }
2186 
2187 
2188 // Used for PostMortemDump
2189 extern "C" void safepoints();
2190 extern "C" void find(int x);
2191 extern "C" void events();
2192 
2193 // According to Windows API documentation, an illegal instruction sequence should generate
2194 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2195 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2196 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2197 
2198 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2199 
2200 // From "Execution Protection in the Windows Operating System" draft 0.35
2201 // Once a system header becomes available, the "real" define should be
2202 // included or copied here.
2203 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2204 
2205 // Handle NAT Bit consumption on IA64.
2206 #ifdef _M_IA64
2207   #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2208 #endif
2209 
2210 // Windows Vista/2008 heap corruption check
2211 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2212 
2213 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2214 // C++ compiler contain this error code. Because this is a compiler-generated
2215 // error, the code is not listed in the Win32 API header files.
2216 // The code is actually a cryptic mnemonic device, with the initial "E"
2217 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2218 // ASCII values of "msc".
2219 
2220 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2221 
2222 #define def_excpt(val) { #val, (val) }
2223 
2224 static const struct { char* name; uint number; } exceptlabels[] = {
2225     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2226     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2227     def_excpt(EXCEPTION_BREAKPOINT),
2228     def_excpt(EXCEPTION_SINGLE_STEP),
2229     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2230     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2231     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2232     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2233     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2234     def_excpt(EXCEPTION_FLT_OVERFLOW),
2235     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2236     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2237     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2238     def_excpt(EXCEPTION_INT_OVERFLOW),
2239     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2240     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2241     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2242     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2243     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2244     def_excpt(EXCEPTION_STACK_OVERFLOW),
2245     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2246     def_excpt(EXCEPTION_GUARD_PAGE),
2247     def_excpt(EXCEPTION_INVALID_HANDLE),
2248     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2249     def_excpt(EXCEPTION_HEAP_CORRUPTION)
2250 #ifdef _M_IA64
2251     , def_excpt(EXCEPTION_REG_NAT_CONSUMPTION)
2252 #endif
2253 };
2254 
2255 #undef def_excpt
2256 
2257 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2258   uint code = static_cast<uint>(exception_code);
2259   for (uint i = 0; i < ARRAY_SIZE(exceptlabels); ++i) {
2260     if (exceptlabels[i].number == code) {
2261       jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2262       return buf;
2263     }
2264   }
2265 
2266   return NULL;
2267 }
2268 
2269 //-----------------------------------------------------------------------------
2270 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2271   // handle exception caused by idiv; should only happen for -MinInt/-1
2272   // (division by zero is handled explicitly)
2273 #ifdef _M_IA64
2274   assert(0, "Fix Handle_IDiv_Exception");
2275 #else
2276   #ifdef  _M_AMD64
2277   PCONTEXT ctx = exceptionInfo->ContextRecord;
2278   address pc = (address)ctx->Rip;
2279   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && pc[1] == 0xF7 || pc[0] == 0xF7, "not an idiv opcode");
2280   assert(pc[0] >= Assembler::REX && pc[0] <= Assembler::REX_WRXB && (pc[2] & ~0x7) == 0xF8 || (pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2281   if (pc[0] == 0xF7) {
2282     // set correct result values and continue after idiv instruction
2283     ctx->Rip = (DWORD64)pc + 2;        // idiv reg, reg  is 2 bytes
2284   } else {
2285     ctx->Rip = (DWORD64)pc + 3;        // REX idiv reg, reg  is 3 bytes
2286   }
2287   // Do not set ctx->Rax as it already contains the correct value (either 32 or 64 bit, depending on the operation)
2288   // this is the case because the exception only happens for -MinValue/-1 and -MinValue is always in rax because of the
2289   // idiv opcode (0xF7).
2290   ctx->Rdx = (DWORD)0;             // remainder
2291   // Continue the execution
2292   #else
2293   PCONTEXT ctx = exceptionInfo->ContextRecord;
2294   address pc = (address)ctx->Eip;
2295   assert(pc[0] == 0xF7, "not an idiv opcode");
2296   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2297   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2298   // set correct result values and continue after idiv instruction
2299   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2300   ctx->Eax = (DWORD)min_jint;      // result
2301   ctx->Edx = (DWORD)0;             // remainder
2302   // Continue the execution
2303   #endif
2304 #endif
2305   return EXCEPTION_CONTINUE_EXECUTION;
2306 }
2307 
2308 //-----------------------------------------------------------------------------
2309 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2310   PCONTEXT ctx = exceptionInfo->ContextRecord;
2311 #ifndef  _WIN64
2312   // handle exception caused by native method modifying control word
2313   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2314 
2315   switch (exception_code) {
2316   case EXCEPTION_FLT_DENORMAL_OPERAND:
2317   case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2318   case EXCEPTION_FLT_INEXACT_RESULT:
2319   case EXCEPTION_FLT_INVALID_OPERATION:
2320   case EXCEPTION_FLT_OVERFLOW:
2321   case EXCEPTION_FLT_STACK_CHECK:
2322   case EXCEPTION_FLT_UNDERFLOW:
2323     jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2324     if (fp_control_word != ctx->FloatSave.ControlWord) {
2325       // Restore FPCW and mask out FLT exceptions
2326       ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2327       // Mask out pending FLT exceptions
2328       ctx->FloatSave.StatusWord &=  0xffffff00;
2329       return EXCEPTION_CONTINUE_EXECUTION;
2330     }
2331   }
2332 
2333   if (prev_uef_handler != NULL) {
2334     // We didn't handle this exception so pass it to the previous
2335     // UnhandledExceptionFilter.
2336     return (prev_uef_handler)(exceptionInfo);
2337   }
2338 #else // !_WIN64
2339   // On Windows, the mxcsr control bits are non-volatile across calls
2340   // See also CR 6192333
2341   //
2342   jint MxCsr = INITIAL_MXCSR;
2343   // we can't use StubRoutines::addr_mxcsr_std()
2344   // because in Win64 mxcsr is not saved there
2345   if (MxCsr != ctx->MxCsr) {
2346     ctx->MxCsr = MxCsr;
2347     return EXCEPTION_CONTINUE_EXECUTION;
2348   }
2349 #endif // !_WIN64
2350 
2351   return EXCEPTION_CONTINUE_SEARCH;
2352 }
2353 
2354 static inline void report_error(Thread* t, DWORD exception_code,
2355                                 address addr, void* siginfo, void* context) {
2356   VMError::report_and_die(t, exception_code, addr, siginfo, context);
2357 
2358   // If UseOsErrorReporting, this will return here and save the error file
2359   // somewhere where we can find it in the minidump.
2360 }
2361 
2362 bool os::win32::get_frame_at_stack_banging_point(JavaThread* thread,
2363         struct _EXCEPTION_POINTERS* exceptionInfo, address pc, frame* fr) {
2364   PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2365   address addr = (address) exceptionRecord->ExceptionInformation[1];
2366   if (Interpreter::contains(pc)) {
2367     *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2368     if (!fr->is_first_java_frame()) {
2369       // get_frame_at_stack_banging_point() is only called when we
2370       // have well defined stacks so java_sender() calls do not need
2371       // to assert safe_for_sender() first.
2372       *fr = fr->java_sender();
2373     }
2374   } else {
2375     // more complex code with compiled code
2376     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
2377     CodeBlob* cb = CodeCache::find_blob(pc);
2378     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
2379       // Not sure where the pc points to, fallback to default
2380       // stack overflow handling
2381       return false;
2382     } else {
2383       *fr = os::fetch_frame_from_context((void*)exceptionInfo->ContextRecord);
2384       // in compiled code, the stack banging is performed just after the return pc
2385       // has been pushed on the stack
2386       *fr = frame(fr->sp() + 1, fr->fp(), (address)*(fr->sp()));
2387       if (!fr->is_java_frame()) {
2388         // get_frame_at_stack_banging_point() is only called when we
2389         // have well defined stacks so java_sender() calls do not need
2390         // to assert safe_for_sender() first.
2391         *fr = fr->java_sender();
2392       }
2393     }
2394   }
2395   assert(fr->is_java_frame(), "Safety check");
2396   return true;
2397 }
2398 
2399 //-----------------------------------------------------------------------------
2400 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2401   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2402   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2403 #ifdef _M_IA64
2404   // On Itanium, we need the "precise pc", which has the slot number coded
2405   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2406   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2407   // Convert the pc to "Unix format", which has the slot number coded
2408   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2409   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2410   // information is saved in the Unix format.
2411   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2412 #else
2413   #ifdef _M_AMD64
2414   address pc = (address) exceptionInfo->ContextRecord->Rip;
2415   #else
2416   address pc = (address) exceptionInfo->ContextRecord->Eip;
2417   #endif
2418 #endif
2419   Thread* t = Thread::current_or_null_safe();
2420 
2421   // Handle SafeFetch32 and SafeFetchN exceptions.
2422   if (StubRoutines::is_safefetch_fault(pc)) {
2423     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2424   }
2425 
2426 #ifndef _WIN64
2427   // Execution protection violation - win32 running on AMD64 only
2428   // Handled first to avoid misdiagnosis as a "normal" access violation;
2429   // This is safe to do because we have a new/unique ExceptionInformation
2430   // code for this condition.
2431   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2432     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2433     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2434     address addr = (address) exceptionRecord->ExceptionInformation[1];
2435 
2436     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2437       int page_size = os::vm_page_size();
2438 
2439       // Make sure the pc and the faulting address are sane.
2440       //
2441       // If an instruction spans a page boundary, and the page containing
2442       // the beginning of the instruction is executable but the following
2443       // page is not, the pc and the faulting address might be slightly
2444       // different - we still want to unguard the 2nd page in this case.
2445       //
2446       // 15 bytes seems to be a (very) safe value for max instruction size.
2447       bool pc_is_near_addr =
2448         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2449       bool instr_spans_page_boundary =
2450         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2451                          (intptr_t) page_size) > 0);
2452 
2453       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2454         static volatile address last_addr =
2455           (address) os::non_memory_address_word();
2456 
2457         // In conservative mode, don't unguard unless the address is in the VM
2458         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2459             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2460 
2461           // Set memory to RWX and retry
2462           address page_start =
2463             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2464           bool res = os::protect_memory((char*) page_start, page_size,
2465                                         os::MEM_PROT_RWX);
2466 
2467           log_debug(os)("Execution protection violation "
2468                         "at " INTPTR_FORMAT
2469                         ", unguarding " INTPTR_FORMAT ": %s", p2i(addr),
2470                         p2i(page_start), (res ? "success" : os::strerror(errno)));
2471 
2472           // Set last_addr so if we fault again at the same address, we don't
2473           // end up in an endless loop.
2474           //
2475           // There are two potential complications here.  Two threads trapping
2476           // at the same address at the same time could cause one of the
2477           // threads to think it already unguarded, and abort the VM.  Likely
2478           // very rare.
2479           //
2480           // The other race involves two threads alternately trapping at
2481           // different addresses and failing to unguard the page, resulting in
2482           // an endless loop.  This condition is probably even more unlikely
2483           // than the first.
2484           //
2485           // Although both cases could be avoided by using locks or thread
2486           // local last_addr, these solutions are unnecessary complication:
2487           // this handler is a best-effort safety net, not a complete solution.
2488           // It is disabled by default and should only be used as a workaround
2489           // in case we missed any no-execute-unsafe VM code.
2490 
2491           last_addr = addr;
2492 
2493           return EXCEPTION_CONTINUE_EXECUTION;
2494         }
2495       }
2496 
2497       // Last unguard failed or not unguarding
2498       tty->print_raw_cr("Execution protection violation");
2499       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2500                    exceptionInfo->ContextRecord);
2501       return EXCEPTION_CONTINUE_SEARCH;
2502     }
2503   }
2504 #endif // _WIN64
2505 
2506   // Check to see if we caught the safepoint code in the
2507   // process of write protecting the memory serialization page.
2508   // It write enables the page immediately after protecting it
2509   // so just return.
2510   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2511     if (t != NULL && t->is_Java_thread()) {
2512       JavaThread* thread = (JavaThread*) t;
2513       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2514       address addr = (address) exceptionRecord->ExceptionInformation[1];
2515       if (os::is_memory_serialize_page(thread, addr)) {
2516         // Block current thread until the memory serialize page permission restored.
2517         os::block_on_serialize_page_trap();
2518         return EXCEPTION_CONTINUE_EXECUTION;
2519       }
2520     }
2521   }
2522 
2523   if ((exception_code == EXCEPTION_ACCESS_VIOLATION) &&
2524       VM_Version::is_cpuinfo_segv_addr(pc)) {
2525     // Verify that OS save/restore AVX registers.
2526     return Handle_Exception(exceptionInfo, VM_Version::cpuinfo_cont_addr());
2527   }
2528 
2529   if (t != NULL && t->is_Java_thread()) {
2530     JavaThread* thread = (JavaThread*) t;
2531     bool in_java = thread->thread_state() == _thread_in_Java;
2532 
2533     // Handle potential stack overflows up front.
2534     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2535 #ifdef _M_IA64
2536       // Use guard page for register stack.
2537       PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2538       address addr = (address) exceptionRecord->ExceptionInformation[1];
2539       // Check for a register stack overflow on Itanium
2540       if (thread->addr_inside_register_stack_red_zone(addr)) {
2541         // Fatal red zone violation happens if the Java program
2542         // catches a StackOverflow error and does so much processing
2543         // that it runs beyond the unprotected yellow guard zone. As
2544         // a result, we are out of here.
2545         fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2546       } else if(thread->addr_inside_register_stack(addr)) {
2547         // Disable the yellow zone which sets the state that
2548         // we've got a stack overflow problem.
2549         if (thread->stack_yellow_reserved_zone_enabled()) {
2550           thread->disable_stack_yellow_reserved_zone();
2551         }
2552         // Give us some room to process the exception.
2553         thread->disable_register_stack_guard();
2554         // Tracing with +Verbose.
2555         if (Verbose) {
2556           tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2557           tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2558           tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2559           tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2560                         thread->register_stack_base(),
2561                         thread->register_stack_base() + thread->stack_size());
2562         }
2563 
2564         // Reguard the permanent register stack red zone just to be sure.
2565         // We saw Windows silently disabling this without telling us.
2566         thread->enable_register_stack_red_zone();
2567 
2568         return Handle_Exception(exceptionInfo,
2569                                 SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2570       }
2571 #endif
2572       if (thread->stack_guards_enabled()) {
2573         if (in_java) {
2574           frame fr;
2575           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2576           address addr = (address) exceptionRecord->ExceptionInformation[1];
2577           if (os::win32::get_frame_at_stack_banging_point(thread, exceptionInfo, pc, &fr)) {
2578             assert(fr.is_java_frame(), "Must be a Java frame");
2579             SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
2580           }
2581         }
2582         // Yellow zone violation.  The o/s has unprotected the first yellow
2583         // zone page for us.  Note:  must call disable_stack_yellow_zone to
2584         // update the enabled status, even if the zone contains only one page.
2585         assert(thread->thread_state() != _thread_in_vm, "Undersized StackShadowPages");
2586         thread->disable_stack_yellow_reserved_zone();
2587         // If not in java code, return and hope for the best.
2588         return in_java
2589             ? Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2590             :  EXCEPTION_CONTINUE_EXECUTION;
2591       } else {
2592         // Fatal red zone violation.
2593         thread->disable_stack_red_zone();
2594         tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2595         report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2596                       exceptionInfo->ContextRecord);
2597         return EXCEPTION_CONTINUE_SEARCH;
2598       }
2599     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2600       // Either stack overflow or null pointer exception.
2601       if (in_java) {
2602         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2603         address addr = (address) exceptionRecord->ExceptionInformation[1];
2604         address stack_end = thread->stack_end();
2605         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2606           // Stack overflow.
2607           assert(!os::uses_stack_guard_pages(),
2608                  "should be caught by red zone code above.");
2609           return Handle_Exception(exceptionInfo,
2610                                   SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2611         }
2612         // Check for safepoint polling and implicit null
2613         // We only expect null pointers in the stubs (vtable)
2614         // the rest are checked explicitly now.
2615         CodeBlob* cb = CodeCache::find_blob(pc);
2616         if (cb != NULL) {
2617           if (os::is_poll_address(addr)) {
2618             address stub = SharedRuntime::get_poll_stub(pc);
2619             return Handle_Exception(exceptionInfo, stub);
2620           }
2621         }
2622         {
2623 #ifdef _WIN64
2624           // If it's a legal stack address map the entire region in
2625           //
2626           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2627           address addr = (address) exceptionRecord->ExceptionInformation[1];
2628           if (addr > thread->stack_reserved_zone_base() && addr < thread->stack_base()) {
2629             addr = (address)((uintptr_t)addr &
2630                              (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2631             os::commit_memory((char *)addr, thread->stack_base() - addr,
2632                               !ExecMem);
2633             return EXCEPTION_CONTINUE_EXECUTION;
2634           } else
2635 #endif
2636           {
2637             // Null pointer exception.
2638 #ifdef _M_IA64
2639             // Process implicit null checks in compiled code. Note: Implicit null checks
2640             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2641             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2642               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2643               // Handle implicit null check in UEP method entry
2644               if (cb && (cb->is_frame_complete_at(pc) ||
2645                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2646                 if (Verbose) {
2647                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2648                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2649                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2650                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2651                                 *(bundle_start + 1), *bundle_start);
2652                 }
2653                 return Handle_Exception(exceptionInfo,
2654                                         SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2655               }
2656             }
2657 
2658             // Implicit null checks were processed above.  Hence, we should not reach
2659             // here in the usual case => die!
2660             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2661             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2662                          exceptionInfo->ContextRecord);
2663             return EXCEPTION_CONTINUE_SEARCH;
2664 
2665 #else // !IA64
2666 
2667             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr)) {
2668               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2669               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2670             }
2671             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2672                          exceptionInfo->ContextRecord);
2673             return EXCEPTION_CONTINUE_SEARCH;
2674 #endif
2675           }
2676         }
2677       }
2678 
2679 #ifdef _WIN64
2680       // Special care for fast JNI field accessors.
2681       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2682       // in and the heap gets shrunk before the field access.
2683       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2684         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2685         if (addr != (address)-1) {
2686           return Handle_Exception(exceptionInfo, addr);
2687         }
2688       }
2689 #endif
2690 
2691       // Stack overflow or null pointer exception in native code.
2692       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2693                    exceptionInfo->ContextRecord);
2694       return EXCEPTION_CONTINUE_SEARCH;
2695     } // /EXCEPTION_ACCESS_VIOLATION
2696     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2697 #if defined _M_IA64
2698     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2699               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2700       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2701 
2702       // Compiled method patched to be non entrant? Following conditions must apply:
2703       // 1. must be first instruction in bundle
2704       // 2. must be a break instruction with appropriate code
2705       if ((((uint64_t) pc & 0x0F) == 0) &&
2706           (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2707         return Handle_Exception(exceptionInfo,
2708                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2709       }
2710     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2711 #endif
2712 
2713 
2714     if (in_java) {
2715       switch (exception_code) {
2716       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2717         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2718 
2719       case EXCEPTION_INT_OVERFLOW:
2720         return Handle_IDiv_Exception(exceptionInfo);
2721 
2722       } // switch
2723     }
2724     if (((thread->thread_state() == _thread_in_Java) ||
2725          (thread->thread_state() == _thread_in_native)) &&
2726          exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION) {
2727       LONG result=Handle_FLT_Exception(exceptionInfo);
2728       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2729     }
2730   }
2731 
2732   if (exception_code != EXCEPTION_BREAKPOINT) {
2733     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2734                  exceptionInfo->ContextRecord);
2735   }
2736   return EXCEPTION_CONTINUE_SEARCH;
2737 }
2738 
2739 #ifndef _WIN64
2740 // Special care for fast JNI accessors.
2741 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2742 // the heap gets shrunk before the field access.
2743 // Need to install our own structured exception handler since native code may
2744 // install its own.
2745 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2746   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2747   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2748     address pc = (address) exceptionInfo->ContextRecord->Eip;
2749     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2750     if (addr != (address)-1) {
2751       return Handle_Exception(exceptionInfo, addr);
2752     }
2753   }
2754   return EXCEPTION_CONTINUE_SEARCH;
2755 }
2756 
2757 #define DEFINE_FAST_GETFIELD(Return, Fieldname, Result)                     \
2758   Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env,           \
2759                                                      jobject obj,           \
2760                                                      jfieldID fieldID) {    \
2761     __try {                                                                 \
2762       return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env,       \
2763                                                                  obj,       \
2764                                                                  fieldID);  \
2765     } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)        \
2766                                               _exception_info())) {         \
2767     }                                                                       \
2768     return 0;                                                               \
2769   }
2770 
2771 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2772 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2773 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2774 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2775 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2776 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2777 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2778 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2779 
2780 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2781   switch (type) {
2782   case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2783   case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2784   case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2785   case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2786   case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2787   case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2788   case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2789   case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2790   default:        ShouldNotReachHere();
2791   }
2792   return (address)-1;
2793 }
2794 #endif
2795 
2796 // Virtual Memory
2797 
2798 int os::vm_page_size() { return os::win32::vm_page_size(); }
2799 int os::vm_allocation_granularity() {
2800   return os::win32::vm_allocation_granularity();
2801 }
2802 
2803 // Windows large page support is available on Windows 2003. In order to use
2804 // large page memory, the administrator must first assign additional privilege
2805 // to the user:
2806 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2807 //   + select Local Policies -> User Rights Assignment
2808 //   + double click "Lock pages in memory", add users and/or groups
2809 //   + reboot
2810 // Note the above steps are needed for administrator as well, as administrators
2811 // by default do not have the privilege to lock pages in memory.
2812 //
2813 // Note about Windows 2003: although the API supports committing large page
2814 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2815 // scenario, I found through experiment it only uses large page if the entire
2816 // memory region is reserved and committed in a single VirtualAlloc() call.
2817 // This makes Windows large page support more or less like Solaris ISM, in
2818 // that the entire heap must be committed upfront. This probably will change
2819 // in the future, if so the code below needs to be revisited.
2820 
2821 #ifndef MEM_LARGE_PAGES
2822   #define MEM_LARGE_PAGES 0x20000000
2823 #endif
2824 
2825 static HANDLE    _hProcess;
2826 static HANDLE    _hToken;
2827 
2828 // Container for NUMA node list info
2829 class NUMANodeListHolder {
2830  private:
2831   int *_numa_used_node_list;  // allocated below
2832   int _numa_used_node_count;
2833 
2834   void free_node_list() {
2835     if (_numa_used_node_list != NULL) {
2836       FREE_C_HEAP_ARRAY(int, _numa_used_node_list);
2837     }
2838   }
2839 
2840  public:
2841   NUMANodeListHolder() {
2842     _numa_used_node_count = 0;
2843     _numa_used_node_list = NULL;
2844     // do rest of initialization in build routine (after function pointers are set up)
2845   }
2846 
2847   ~NUMANodeListHolder() {
2848     free_node_list();
2849   }
2850 
2851   bool build() {
2852     DWORD_PTR proc_aff_mask;
2853     DWORD_PTR sys_aff_mask;
2854     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2855     ULONG highest_node_number;
2856     if (!GetNumaHighestNodeNumber(&highest_node_number)) return false;
2857     free_node_list();
2858     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2859     for (unsigned int i = 0; i <= highest_node_number; i++) {
2860       ULONGLONG proc_mask_numa_node;
2861       if (!GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2862       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2863         _numa_used_node_list[_numa_used_node_count++] = i;
2864       }
2865     }
2866     return (_numa_used_node_count > 1);
2867   }
2868 
2869   int get_count() { return _numa_used_node_count; }
2870   int get_node_list_entry(int n) {
2871     // for indexes out of range, returns -1
2872     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2873   }
2874 
2875 } numa_node_list_holder;
2876 
2877 
2878 
2879 static size_t _large_page_size = 0;
2880 
2881 static bool request_lock_memory_privilege() {
2882   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2883                           os::current_process_id());
2884 
2885   LUID luid;
2886   if (_hProcess != NULL &&
2887       OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2888       LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2889 
2890     TOKEN_PRIVILEGES tp;
2891     tp.PrivilegeCount = 1;
2892     tp.Privileges[0].Luid = luid;
2893     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2894 
2895     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2896     // privilege. Check GetLastError() too. See MSDN document.
2897     if (AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2898         (GetLastError() == ERROR_SUCCESS)) {
2899       return true;
2900     }
2901   }
2902 
2903   return false;
2904 }
2905 
2906 static void cleanup_after_large_page_init() {
2907   if (_hProcess) CloseHandle(_hProcess);
2908   _hProcess = NULL;
2909   if (_hToken) CloseHandle(_hToken);
2910   _hToken = NULL;
2911 }
2912 
2913 static bool numa_interleaving_init() {
2914   bool success = false;
2915   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2916 
2917   // print a warning if UseNUMAInterleaving flag is specified on command line
2918   bool warn_on_failure = use_numa_interleaving_specified;
2919 #define WARN(msg) if (warn_on_failure) { warning(msg); }
2920 
2921   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2922   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2923   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2924 
2925   if (numa_node_list_holder.build()) {
2926     if (log_is_enabled(Debug, os, cpu)) {
2927       Log(os, cpu) log;
2928       log.debug("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2929       for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2930         log.debug("  %d ", numa_node_list_holder.get_node_list_entry(i));
2931       }
2932     }
2933     success = true;
2934   } else {
2935     WARN("Process does not cover multiple NUMA nodes.");
2936   }
2937   if (!success) {
2938     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2939   }
2940   return success;
2941 #undef WARN
2942 }
2943 
2944 // this routine is used whenever we need to reserve a contiguous VA range
2945 // but we need to make separate VirtualAlloc calls for each piece of the range
2946 // Reasons for doing this:
2947 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2948 //  * UseNUMAInterleaving requires a separate node for each piece
2949 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags,
2950                                          DWORD prot,
2951                                          bool should_inject_error = false) {
2952   char * p_buf;
2953   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2954   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2955   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2956 
2957   // first reserve enough address space in advance since we want to be
2958   // able to break a single contiguous virtual address range into multiple
2959   // large page commits but WS2003 does not allow reserving large page space
2960   // so we just use 4K pages for reserve, this gives us a legal contiguous
2961   // address space. then we will deallocate that reservation, and re alloc
2962   // using large pages
2963   const size_t size_of_reserve = bytes + chunk_size;
2964   if (bytes > size_of_reserve) {
2965     // Overflowed.
2966     return NULL;
2967   }
2968   p_buf = (char *) VirtualAlloc(addr,
2969                                 size_of_reserve,  // size of Reserve
2970                                 MEM_RESERVE,
2971                                 PAGE_READWRITE);
2972   // If reservation failed, return NULL
2973   if (p_buf == NULL) return NULL;
2974   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2975   os::release_memory(p_buf, bytes + chunk_size);
2976 
2977   // we still need to round up to a page boundary (in case we are using large pages)
2978   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2979   // instead we handle this in the bytes_to_rq computation below
2980   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2981 
2982   // now go through and allocate one chunk at a time until all bytes are
2983   // allocated
2984   size_t  bytes_remaining = bytes;
2985   // An overflow of align_size_up() would have been caught above
2986   // in the calculation of size_of_reserve.
2987   char * next_alloc_addr = p_buf;
2988   HANDLE hProc = GetCurrentProcess();
2989 
2990 #ifdef ASSERT
2991   // Variable for the failure injection
2992   long ran_num = os::random();
2993   size_t fail_after = ran_num % bytes;
2994 #endif
2995 
2996   int count=0;
2997   while (bytes_remaining) {
2998     // select bytes_to_rq to get to the next chunk_size boundary
2999 
3000     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
3001     // Note allocate and commit
3002     char * p_new;
3003 
3004 #ifdef ASSERT
3005     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
3006 #else
3007     const bool inject_error_now = false;
3008 #endif
3009 
3010     if (inject_error_now) {
3011       p_new = NULL;
3012     } else {
3013       if (!UseNUMAInterleaving) {
3014         p_new = (char *) VirtualAlloc(next_alloc_addr,
3015                                       bytes_to_rq,
3016                                       flags,
3017                                       prot);
3018       } else {
3019         // get the next node to use from the used_node_list
3020         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
3021         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
3022         p_new = (char *)VirtualAllocExNuma(hProc, next_alloc_addr, bytes_to_rq, flags, prot, node);
3023       }
3024     }
3025 
3026     if (p_new == NULL) {
3027       // Free any allocated pages
3028       if (next_alloc_addr > p_buf) {
3029         // Some memory was committed so release it.
3030         size_t bytes_to_release = bytes - bytes_remaining;
3031         // NMT has yet to record any individual blocks, so it
3032         // need to create a dummy 'reserve' record to match
3033         // the release.
3034         MemTracker::record_virtual_memory_reserve((address)p_buf,
3035                                                   bytes_to_release, CALLER_PC);
3036         os::release_memory(p_buf, bytes_to_release);
3037       }
3038 #ifdef ASSERT
3039       if (should_inject_error) {
3040         log_develop_debug(pagesize)("Reserving pages individually failed.");
3041       }
3042 #endif
3043       return NULL;
3044     }
3045 
3046     bytes_remaining -= bytes_to_rq;
3047     next_alloc_addr += bytes_to_rq;
3048     count++;
3049   }
3050   // Although the memory is allocated individually, it is returned as one.
3051   // NMT records it as one block.
3052   if ((flags & MEM_COMMIT) != 0) {
3053     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, CALLER_PC);
3054   } else {
3055     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, CALLER_PC);
3056   }
3057 
3058   // made it this far, success
3059   return p_buf;
3060 }
3061 
3062 
3063 
3064 void os::large_page_init() {
3065   if (!UseLargePages) return;
3066 
3067   // print a warning if any large page related flag is specified on command line
3068   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3069                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3070   bool success = false;
3071 
3072 #define WARN(msg) if (warn_on_failure) { warning(msg); }
3073   if (request_lock_memory_privilege()) {
3074     size_t s = GetLargePageMinimum();
3075     if (s) {
3076 #if defined(IA32) || defined(AMD64)
3077       if (s > 4*M || LargePageSizeInBytes > 4*M) {
3078         WARN("JVM cannot use large pages bigger than 4mb.");
3079       } else {
3080 #endif
3081         if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3082           _large_page_size = LargePageSizeInBytes;
3083         } else {
3084           _large_page_size = s;
3085         }
3086         success = true;
3087 #if defined(IA32) || defined(AMD64)
3088       }
3089 #endif
3090     } else {
3091       WARN("Large page is not supported by the processor.");
3092     }
3093   } else {
3094     WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3095   }
3096 #undef WARN
3097 
3098   const size_t default_page_size = (size_t) vm_page_size();
3099   if (success && _large_page_size > default_page_size) {
3100     _page_sizes[0] = _large_page_size;
3101     _page_sizes[1] = default_page_size;
3102     _page_sizes[2] = 0;
3103   }
3104 
3105   cleanup_after_large_page_init();
3106   UseLargePages = success;
3107 }
3108 
3109 // On win32, one cannot release just a part of reserved memory, it's an
3110 // all or nothing deal.  When we split a reservation, we must break the
3111 // reservation into two reservations.
3112 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3113                                   bool realloc) {
3114   if (size > 0) {
3115     release_memory(base, size);
3116     if (realloc) {
3117       reserve_memory(split, base);
3118     }
3119     if (size != split) {
3120       reserve_memory(size - split, base + split);
3121     }
3122   }
3123 }
3124 
3125 // Multiple threads can race in this code but it's not possible to unmap small sections of
3126 // virtual space to get requested alignment, like posix-like os's.
3127 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3128 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3129   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3130          "Alignment must be a multiple of allocation granularity (page size)");
3131   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3132 
3133   size_t extra_size = size + alignment;
3134   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3135 
3136   char* aligned_base = NULL;
3137 
3138   do {
3139     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3140     if (extra_base == NULL) {
3141       return NULL;
3142     }
3143     // Do manual alignment
3144     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3145 
3146     os::release_memory(extra_base, extra_size);
3147 
3148     aligned_base = os::reserve_memory(size, aligned_base);
3149 
3150   } while (aligned_base == NULL);
3151 
3152   return aligned_base;
3153 }
3154 
3155 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3156   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3157          "reserve alignment");
3158   assert(bytes % os::vm_page_size() == 0, "reserve page size");
3159   char* res;
3160   // note that if UseLargePages is on, all the areas that require interleaving
3161   // will go thru reserve_memory_special rather than thru here.
3162   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3163   if (!use_individual) {
3164     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3165   } else {
3166     elapsedTimer reserveTimer;
3167     if (Verbose && PrintMiscellaneous) reserveTimer.start();
3168     // in numa interleaving, we have to allocate pages individually
3169     // (well really chunks of NUMAInterleaveGranularity size)
3170     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3171     if (res == NULL) {
3172       warning("NUMA page allocation failed");
3173     }
3174     if (Verbose && PrintMiscellaneous) {
3175       reserveTimer.stop();
3176       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3177                     reserveTimer.milliseconds(), reserveTimer.ticks());
3178     }
3179   }
3180   assert(res == NULL || addr == NULL || addr == res,
3181          "Unexpected address from reserve.");
3182 
3183   return res;
3184 }
3185 
3186 // Reserve memory at an arbitrary address, only if that area is
3187 // available (and not reserved for something else).
3188 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3189   // Windows os::reserve_memory() fails of the requested address range is
3190   // not avilable.
3191   return reserve_memory(bytes, requested_addr);
3192 }
3193 
3194 size_t os::large_page_size() {
3195   return _large_page_size;
3196 }
3197 
3198 bool os::can_commit_large_page_memory() {
3199   // Windows only uses large page memory when the entire region is reserved
3200   // and committed in a single VirtualAlloc() call. This may change in the
3201   // future, but with Windows 2003 it's not possible to commit on demand.
3202   return false;
3203 }
3204 
3205 bool os::can_execute_large_page_memory() {
3206   return true;
3207 }
3208 
3209 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr,
3210                                  bool exec) {
3211   assert(UseLargePages, "only for large pages");
3212 
3213   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3214     return NULL; // Fallback to small pages.
3215   }
3216 
3217   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3218   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3219 
3220   // with large pages, there are two cases where we need to use Individual Allocation
3221   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3222   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3223   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3224     log_debug(pagesize)("Reserving large pages individually.");
3225 
3226     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3227     if (p_buf == NULL) {
3228       // give an appropriate warning message
3229       if (UseNUMAInterleaving) {
3230         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3231       }
3232       if (UseLargePagesIndividualAllocation) {
3233         warning("Individually allocated large pages failed, "
3234                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3235       }
3236       return NULL;
3237     }
3238 
3239     return p_buf;
3240 
3241   } else {
3242     log_debug(pagesize)("Reserving large pages in a single large chunk.");
3243 
3244     // normal policy just allocate it all at once
3245     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3246     char * res = (char *)VirtualAlloc(addr, bytes, flag, prot);
3247     if (res != NULL) {
3248       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, CALLER_PC);
3249     }
3250 
3251     return res;
3252   }
3253 }
3254 
3255 bool os::release_memory_special(char* base, size_t bytes) {
3256   assert(base != NULL, "Sanity check");
3257   return release_memory(base, bytes);
3258 }
3259 
3260 void os::print_statistics() {
3261 }
3262 
3263 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3264   int err = os::get_last_error();
3265   char buf[256];
3266   size_t buf_len = os::lasterror(buf, sizeof(buf));
3267   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3268           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3269           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3270 }
3271 
3272 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3273   if (bytes == 0) {
3274     // Don't bother the OS with noops.
3275     return true;
3276   }
3277   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3278   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3279   // Don't attempt to print anything if the OS call fails. We're
3280   // probably low on resources, so the print itself may cause crashes.
3281 
3282   // unless we have NUMAInterleaving enabled, the range of a commit
3283   // is always within a reserve covered by a single VirtualAlloc
3284   // in that case we can just do a single commit for the requested size
3285   if (!UseNUMAInterleaving) {
3286     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3287       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3288       return false;
3289     }
3290     if (exec) {
3291       DWORD oldprot;
3292       // Windows doc says to use VirtualProtect to get execute permissions
3293       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3294         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3295         return false;
3296       }
3297     }
3298     return true;
3299   } else {
3300 
3301     // when NUMAInterleaving is enabled, the commit might cover a range that
3302     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3303     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3304     // returns represents the number of bytes that can be committed in one step.
3305     size_t bytes_remaining = bytes;
3306     char * next_alloc_addr = addr;
3307     while (bytes_remaining > 0) {
3308       MEMORY_BASIC_INFORMATION alloc_info;
3309       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3310       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3311       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3312                        PAGE_READWRITE) == NULL) {
3313         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3314                                             exec);)
3315         return false;
3316       }
3317       if (exec) {
3318         DWORD oldprot;
3319         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3320                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3321           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3322                                               exec);)
3323           return false;
3324         }
3325       }
3326       bytes_remaining -= bytes_to_rq;
3327       next_alloc_addr += bytes_to_rq;
3328     }
3329   }
3330   // if we made it this far, return true
3331   return true;
3332 }
3333 
3334 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3335                           bool exec) {
3336   // alignment_hint is ignored on this OS
3337   return pd_commit_memory(addr, size, exec);
3338 }
3339 
3340 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3341                                   const char* mesg) {
3342   assert(mesg != NULL, "mesg must be specified");
3343   if (!pd_commit_memory(addr, size, exec)) {
3344     warn_fail_commit_memory(addr, size, exec);
3345     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
3346   }
3347 }
3348 
3349 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3350                                   size_t alignment_hint, bool exec,
3351                                   const char* mesg) {
3352   // alignment_hint is ignored on this OS
3353   pd_commit_memory_or_exit(addr, size, exec, mesg);
3354 }
3355 
3356 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3357   if (bytes == 0) {
3358     // Don't bother the OS with noops.
3359     return true;
3360   }
3361   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3362   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3363   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3364 }
3365 
3366 bool os::pd_release_memory(char* addr, size_t bytes) {
3367   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3368 }
3369 
3370 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3371   return os::commit_memory(addr, size, !ExecMem);
3372 }
3373 
3374 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3375   return os::uncommit_memory(addr, size);
3376 }
3377 
3378 static bool protect_pages_individually(char* addr, size_t bytes, unsigned int p, DWORD *old_status) {
3379   uint count = 0;
3380   bool ret = false;
3381   size_t bytes_remaining = bytes;
3382   char * next_protect_addr = addr;
3383 
3384   // Use VirtualQuery() to get the chunk size.
3385   while (bytes_remaining) {
3386     MEMORY_BASIC_INFORMATION alloc_info;
3387     if (VirtualQuery(next_protect_addr, &alloc_info, sizeof(alloc_info)) == 0) {
3388       return false;
3389     }
3390 
3391     size_t bytes_to_protect = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3392     // We used different API at allocate_pages_individually() based on UseNUMAInterleaving,
3393     // but we don't distinguish here as both cases are protected by same API.
3394     ret = VirtualProtect(next_protect_addr, bytes_to_protect, p, old_status) != 0;
3395     warning("Failed protecting pages individually for chunk #%u", count);
3396     if (!ret) {
3397       return false;
3398     }
3399 
3400     bytes_remaining -= bytes_to_protect;
3401     next_protect_addr += bytes_to_protect;
3402     count++;
3403   }
3404   return ret;
3405 }
3406 
3407 // Set protections specified
3408 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3409                         bool is_committed) {
3410   unsigned int p = 0;
3411   switch (prot) {
3412   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3413   case MEM_PROT_READ: p = PAGE_READONLY; break;
3414   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3415   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3416   default:
3417     ShouldNotReachHere();
3418   }
3419 
3420   DWORD old_status;
3421 
3422   // Strange enough, but on Win32 one can change protection only for committed
3423   // memory, not a big deal anyway, as bytes less or equal than 64K
3424   if (!is_committed) {
3425     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3426                           "cannot commit protection page");
3427   }
3428   // One cannot use os::guard_memory() here, as on Win32 guard page
3429   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3430   //
3431   // Pages in the region become guard pages. Any attempt to access a guard page
3432   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3433   // the guard page status. Guard pages thus act as a one-time access alarm.
3434   bool ret;
3435   if (UseNUMAInterleaving) {
3436     // If UseNUMAInterleaving is enabled, the pages may have been allocated a chunk at a time,
3437     // so we must protect the chunks individually.
3438     ret = protect_pages_individually(addr, bytes, p, &old_status);
3439   } else {
3440     ret = VirtualProtect(addr, bytes, p, &old_status) != 0;
3441   }
3442 #ifdef ASSERT
3443   if (!ret) {
3444     int err = os::get_last_error();
3445     char buf[256];
3446     size_t buf_len = os::lasterror(buf, sizeof(buf));
3447     warning("INFO: os::protect_memory(" PTR_FORMAT ", " SIZE_FORMAT
3448           ") failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3449           buf_len != 0 ? buf : "<no_error_string>", err);
3450   }
3451 #endif
3452   return ret;
3453 }
3454 
3455 bool os::guard_memory(char* addr, size_t bytes) {
3456   DWORD old_status;
3457   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3458 }
3459 
3460 bool os::unguard_memory(char* addr, size_t bytes) {
3461   DWORD old_status;
3462   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3463 }
3464 
3465 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3466 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3467 void os::numa_make_global(char *addr, size_t bytes)    { }
3468 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3469 bool os::numa_topology_changed()                       { return false; }
3470 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3471 int os::numa_get_group_id()                            { return 0; }
3472 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3473   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3474     // Provide an answer for UMA systems
3475     ids[0] = 0;
3476     return 1;
3477   } else {
3478     // check for size bigger than actual groups_num
3479     size = MIN2(size, numa_get_groups_num());
3480     for (int i = 0; i < (int)size; i++) {
3481       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3482     }
3483     return size;
3484   }
3485 }
3486 
3487 bool os::get_page_info(char *start, page_info* info) {
3488   return false;
3489 }
3490 
3491 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3492                      page_info* page_found) {
3493   return end;
3494 }
3495 
3496 char* os::non_memory_address_word() {
3497   // Must never look like an address returned by reserve_memory,
3498   // even in its subfields (as defined by the CPU immediate fields,
3499   // if the CPU splits constants across multiple instructions).
3500   return (char*)-1;
3501 }
3502 
3503 #define MAX_ERROR_COUNT 100
3504 #define SYS_THREAD_ERROR 0xffffffffUL
3505 
3506 void os::pd_start_thread(Thread* thread) {
3507   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3508   // Returns previous suspend state:
3509   // 0:  Thread was not suspended
3510   // 1:  Thread is running now
3511   // >1: Thread is still suspended.
3512   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3513 }
3514 
3515 class HighResolutionInterval : public CHeapObj<mtThread> {
3516   // The default timer resolution seems to be 10 milliseconds.
3517   // (Where is this written down?)
3518   // If someone wants to sleep for only a fraction of the default,
3519   // then we set the timer resolution down to 1 millisecond for
3520   // the duration of their interval.
3521   // We carefully set the resolution back, since otherwise we
3522   // seem to incur an overhead (3%?) that we don't need.
3523   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3524   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3525   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3526   // timeBeginPeriod() if the relative error exceeded some threshold.
3527   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3528   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3529   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3530   // resolution timers running.
3531  private:
3532   jlong resolution;
3533  public:
3534   HighResolutionInterval(jlong ms) {
3535     resolution = ms % 10L;
3536     if (resolution != 0) {
3537       MMRESULT result = timeBeginPeriod(1L);
3538     }
3539   }
3540   ~HighResolutionInterval() {
3541     if (resolution != 0) {
3542       MMRESULT result = timeEndPeriod(1L);
3543     }
3544     resolution = 0L;
3545   }
3546 };
3547 
3548 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3549   jlong limit = (jlong) MAXDWORD;
3550 
3551   while (ms > limit) {
3552     int res;
3553     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT) {
3554       return res;
3555     }
3556     ms -= limit;
3557   }
3558 
3559   assert(thread == Thread::current(), "thread consistency check");
3560   OSThread* osthread = thread->osthread();
3561   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3562   int result;
3563   if (interruptable) {
3564     assert(thread->is_Java_thread(), "must be java thread");
3565     JavaThread *jt = (JavaThread *) thread;
3566     ThreadBlockInVM tbivm(jt);
3567 
3568     jt->set_suspend_equivalent();
3569     // cleared by handle_special_suspend_equivalent_condition() or
3570     // java_suspend_self() via check_and_wait_while_suspended()
3571 
3572     HANDLE events[1];
3573     events[0] = osthread->interrupt_event();
3574     HighResolutionInterval *phri=NULL;
3575     if (!ForceTimeHighResolution) {
3576       phri = new HighResolutionInterval(ms);
3577     }
3578     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3579       result = OS_TIMEOUT;
3580     } else {
3581       ResetEvent(osthread->interrupt_event());
3582       osthread->set_interrupted(false);
3583       result = OS_INTRPT;
3584     }
3585     delete phri; //if it is NULL, harmless
3586 
3587     // were we externally suspended while we were waiting?
3588     jt->check_and_wait_while_suspended();
3589   } else {
3590     assert(!thread->is_Java_thread(), "must not be java thread");
3591     Sleep((long) ms);
3592     result = OS_TIMEOUT;
3593   }
3594   return result;
3595 }
3596 
3597 // Short sleep, direct OS call.
3598 //
3599 // ms = 0, means allow others (if any) to run.
3600 //
3601 void os::naked_short_sleep(jlong ms) {
3602   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3603   Sleep(ms);
3604 }
3605 
3606 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3607 void os::infinite_sleep() {
3608   while (true) {    // sleep forever ...
3609     Sleep(100000);  // ... 100 seconds at a time
3610   }
3611 }
3612 
3613 typedef BOOL (WINAPI * STTSignature)(void);
3614 
3615 void os::naked_yield() {
3616   // Consider passing back the return value from SwitchToThread().
3617   SwitchToThread();
3618 }
3619 
3620 // Win32 only gives you access to seven real priorities at a time,
3621 // so we compress Java's ten down to seven.  It would be better
3622 // if we dynamically adjusted relative priorities.
3623 
3624 int os::java_to_os_priority[CriticalPriority + 1] = {
3625   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3626   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3627   THREAD_PRIORITY_LOWEST,                       // 2
3628   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3629   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3630   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3631   THREAD_PRIORITY_NORMAL,                       // 6
3632   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3633   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3634   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3635   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3636   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3637 };
3638 
3639 int prio_policy1[CriticalPriority + 1] = {
3640   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3641   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3642   THREAD_PRIORITY_LOWEST,                       // 2
3643   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3644   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3645   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3646   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3647   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3648   THREAD_PRIORITY_HIGHEST,                      // 8
3649   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3650   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3651   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3652 };
3653 
3654 static int prio_init() {
3655   // If ThreadPriorityPolicy is 1, switch tables
3656   if (ThreadPriorityPolicy == 1) {
3657     int i;
3658     for (i = 0; i < CriticalPriority + 1; i++) {
3659       os::java_to_os_priority[i] = prio_policy1[i];
3660     }
3661   }
3662   if (UseCriticalJavaThreadPriority) {
3663     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3664   }
3665   return 0;
3666 }
3667 
3668 OSReturn os::set_native_priority(Thread* thread, int priority) {
3669   if (!UseThreadPriorities) return OS_OK;
3670   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3671   return ret ? OS_OK : OS_ERR;
3672 }
3673 
3674 OSReturn os::get_native_priority(const Thread* const thread,
3675                                  int* priority_ptr) {
3676   if (!UseThreadPriorities) {
3677     *priority_ptr = java_to_os_priority[NormPriority];
3678     return OS_OK;
3679   }
3680   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3681   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3682     assert(false, "GetThreadPriority failed");
3683     return OS_ERR;
3684   }
3685   *priority_ptr = os_prio;
3686   return OS_OK;
3687 }
3688 
3689 
3690 // Hint to the underlying OS that a task switch would not be good.
3691 // Void return because it's a hint and can fail.
3692 void os::hint_no_preempt() {}
3693 
3694 void os::interrupt(Thread* thread) {
3695   assert(!thread->is_Java_thread() || Thread::current() == thread ||
3696          Threads_lock->owned_by_self(),
3697          "possibility of dangling Thread pointer");
3698 
3699   OSThread* osthread = thread->osthread();
3700   osthread->set_interrupted(true);
3701   // More than one thread can get here with the same value of osthread,
3702   // resulting in multiple notifications.  We do, however, want the store
3703   // to interrupted() to be visible to other threads before we post
3704   // the interrupt event.
3705   OrderAccess::release();
3706   SetEvent(osthread->interrupt_event());
3707   // For JSR166:  unpark after setting status
3708   if (thread->is_Java_thread()) {
3709     ((JavaThread*)thread)->parker()->unpark();
3710   }
3711 
3712   ParkEvent * ev = thread->_ParkEvent;
3713   if (ev != NULL) ev->unpark();
3714 }
3715 
3716 
3717 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3718   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3719          "possibility of dangling Thread pointer");
3720 
3721   OSThread* osthread = thread->osthread();
3722   // There is no synchronization between the setting of the interrupt
3723   // and it being cleared here. It is critical - see 6535709 - that
3724   // we only clear the interrupt state, and reset the interrupt event,
3725   // if we are going to report that we were indeed interrupted - else
3726   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3727   // depending on the timing. By checking thread interrupt event to see
3728   // if the thread gets real interrupt thus prevent spurious wakeup.
3729   bool interrupted = osthread->interrupted() && (WaitForSingleObject(osthread->interrupt_event(), 0) == WAIT_OBJECT_0);
3730   if (interrupted && clear_interrupted) {
3731     osthread->set_interrupted(false);
3732     ResetEvent(osthread->interrupt_event());
3733   } // Otherwise leave the interrupted state alone
3734 
3735   return interrupted;
3736 }
3737 
3738 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3739 ExtendedPC os::get_thread_pc(Thread* thread) {
3740   CONTEXT context;
3741   context.ContextFlags = CONTEXT_CONTROL;
3742   HANDLE handle = thread->osthread()->thread_handle();
3743 #ifdef _M_IA64
3744   assert(0, "Fix get_thread_pc");
3745   return ExtendedPC(NULL);
3746 #else
3747   if (GetThreadContext(handle, &context)) {
3748 #ifdef _M_AMD64
3749     return ExtendedPC((address) context.Rip);
3750 #else
3751     return ExtendedPC((address) context.Eip);
3752 #endif
3753   } else {
3754     return ExtendedPC(NULL);
3755   }
3756 #endif
3757 }
3758 
3759 // GetCurrentThreadId() returns DWORD
3760 intx os::current_thread_id()  { return GetCurrentThreadId(); }
3761 
3762 static int _initial_pid = 0;
3763 
3764 int os::current_process_id() {
3765   return (_initial_pid ? _initial_pid : _getpid());
3766 }
3767 
3768 int    os::win32::_vm_page_size              = 0;
3769 int    os::win32::_vm_allocation_granularity = 0;
3770 int    os::win32::_processor_type            = 0;
3771 // Processor level is not available on non-NT systems, use vm_version instead
3772 int    os::win32::_processor_level           = 0;
3773 julong os::win32::_physical_memory           = 0;
3774 size_t os::win32::_default_stack_size        = 0;
3775 
3776 intx          os::win32::_os_thread_limit    = 0;
3777 volatile intx os::win32::_os_thread_count    = 0;
3778 
3779 bool   os::win32::_is_windows_server         = false;
3780 
3781 // 6573254
3782 // Currently, the bug is observed across all the supported Windows releases,
3783 // including the latest one (as of this writing - Windows Server 2012 R2)
3784 bool   os::win32::_has_exit_bug              = true;
3785 
3786 void os::win32::initialize_system_info() {
3787   SYSTEM_INFO si;
3788   GetSystemInfo(&si);
3789   _vm_page_size    = si.dwPageSize;
3790   _vm_allocation_granularity = si.dwAllocationGranularity;
3791   _processor_type  = si.dwProcessorType;
3792   _processor_level = si.wProcessorLevel;
3793   set_processor_count(si.dwNumberOfProcessors);
3794 
3795   MEMORYSTATUSEX ms;
3796   ms.dwLength = sizeof(ms);
3797 
3798   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3799   // dwMemoryLoad (% of memory in use)
3800   GlobalMemoryStatusEx(&ms);
3801   _physical_memory = ms.ullTotalPhys;
3802 
3803   if (FLAG_IS_DEFAULT(MaxRAM)) {
3804     // Adjust MaxRAM according to the maximum virtual address space available.
3805     FLAG_SET_DEFAULT(MaxRAM, MIN2(MaxRAM, (uint64_t) ms.ullTotalVirtual));
3806   }
3807 
3808   OSVERSIONINFOEX oi;
3809   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3810   GetVersionEx((OSVERSIONINFO*)&oi);
3811   switch (oi.dwPlatformId) {
3812   case VER_PLATFORM_WIN32_NT:
3813     {
3814       int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3815       if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3816           oi.wProductType == VER_NT_SERVER) {
3817         _is_windows_server = true;
3818       }
3819     }
3820     break;
3821   default: fatal("Unknown platform");
3822   }
3823 
3824   _default_stack_size = os::current_stack_size();
3825   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3826   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3827          "stack size not a multiple of page size");
3828 
3829   initialize_performance_counter();
3830 }
3831 
3832 
3833 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf,
3834                                       int ebuflen) {
3835   char path[MAX_PATH];
3836   DWORD size;
3837   DWORD pathLen = (DWORD)sizeof(path);
3838   HINSTANCE result = NULL;
3839 
3840   // only allow library name without path component
3841   assert(strchr(name, '\\') == NULL, "path not allowed");
3842   assert(strchr(name, ':') == NULL, "path not allowed");
3843   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3844     jio_snprintf(ebuf, ebuflen,
3845                  "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3846     return NULL;
3847   }
3848 
3849   // search system directory
3850   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3851     if (size >= pathLen) {
3852       return NULL; // truncated
3853     }
3854     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3855       return NULL; // truncated
3856     }
3857     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3858       return result;
3859     }
3860   }
3861 
3862   // try Windows directory
3863   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3864     if (size >= pathLen) {
3865       return NULL; // truncated
3866     }
3867     if (jio_snprintf(path + size, pathLen - size, "\\%s", name) == -1) {
3868       return NULL; // truncated
3869     }
3870     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3871       return result;
3872     }
3873   }
3874 
3875   jio_snprintf(ebuf, ebuflen,
3876                "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3877   return NULL;
3878 }
3879 
3880 #define MAXIMUM_THREADS_TO_KEEP (16 * MAXIMUM_WAIT_OBJECTS)
3881 #define EXIT_TIMEOUT 300000 /* 5 minutes */
3882 
3883 static BOOL CALLBACK init_crit_sect_call(PINIT_ONCE, PVOID pcrit_sect, PVOID*) {
3884   InitializeCriticalSection((CRITICAL_SECTION*)pcrit_sect);
3885   return TRUE;
3886 }
3887 
3888 int os::win32::exit_process_or_thread(Ept what, int exit_code) {
3889   // Basic approach:
3890   //  - Each exiting thread registers its intent to exit and then does so.
3891   //  - A thread trying to terminate the process must wait for all
3892   //    threads currently exiting to complete their exit.
3893 
3894   if (os::win32::has_exit_bug()) {
3895     // The array holds handles of the threads that have started exiting by calling
3896     // _endthreadex().
3897     // Should be large enough to avoid blocking the exiting thread due to lack of
3898     // a free slot.
3899     static HANDLE handles[MAXIMUM_THREADS_TO_KEEP];
3900     static int handle_count = 0;
3901 
3902     static INIT_ONCE init_once_crit_sect = INIT_ONCE_STATIC_INIT;
3903     static CRITICAL_SECTION crit_sect;
3904     static volatile jint process_exiting = 0;
3905     int i, j;
3906     DWORD res;
3907     HANDLE hproc, hthr;
3908 
3909     // We only attempt to register threads until a process exiting
3910     // thread manages to set the process_exiting flag. Any threads
3911     // that come through here after the process_exiting flag is set
3912     // are unregistered and will be caught in the SuspendThread()
3913     // infinite loop below.
3914     bool registered = false;
3915 
3916     // The first thread that reached this point, initializes the critical section.
3917     if (!InitOnceExecuteOnce(&init_once_crit_sect, init_crit_sect_call, &crit_sect, NULL)) {
3918       warning("crit_sect initialization failed in %s: %d\n", __FILE__, __LINE__);
3919     } else if (OrderAccess::load_acquire(&process_exiting) == 0) {
3920       if (what != EPT_THREAD) {
3921         // Atomically set process_exiting before the critical section
3922         // to increase the visibility between racing threads.
3923         Atomic::cmpxchg((jint)GetCurrentThreadId(), &process_exiting, 0);
3924       }
3925       EnterCriticalSection(&crit_sect);
3926 
3927       if (what == EPT_THREAD && OrderAccess::load_acquire(&process_exiting) == 0) {
3928         // Remove from the array those handles of the threads that have completed exiting.
3929         for (i = 0, j = 0; i < handle_count; ++i) {
3930           res = WaitForSingleObject(handles[i], 0 /* don't wait */);
3931           if (res == WAIT_TIMEOUT) {
3932             handles[j++] = handles[i];
3933           } else {
3934             if (res == WAIT_FAILED) {
3935               warning("WaitForSingleObject failed (%u) in %s: %d\n",
3936                       GetLastError(), __FILE__, __LINE__);
3937             }
3938             // Don't keep the handle, if we failed waiting for it.
3939             CloseHandle(handles[i]);
3940           }
3941         }
3942 
3943         // If there's no free slot in the array of the kept handles, we'll have to
3944         // wait until at least one thread completes exiting.
3945         if ((handle_count = j) == MAXIMUM_THREADS_TO_KEEP) {
3946           // Raise the priority of the oldest exiting thread to increase its chances
3947           // to complete sooner.
3948           SetThreadPriority(handles[0], THREAD_PRIORITY_ABOVE_NORMAL);
3949           res = WaitForMultipleObjects(MAXIMUM_WAIT_OBJECTS, handles, FALSE, EXIT_TIMEOUT);
3950           if (res >= WAIT_OBJECT_0 && res < (WAIT_OBJECT_0 + MAXIMUM_WAIT_OBJECTS)) {
3951             i = (res - WAIT_OBJECT_0);
3952             handle_count = MAXIMUM_THREADS_TO_KEEP - 1;
3953             for (; i < handle_count; ++i) {
3954               handles[i] = handles[i + 1];
3955             }
3956           } else {
3957             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
3958                     (res == WAIT_FAILED ? "failed" : "timed out"),
3959                     GetLastError(), __FILE__, __LINE__);
3960             // Don't keep handles, if we failed waiting for them.
3961             for (i = 0; i < MAXIMUM_THREADS_TO_KEEP; ++i) {
3962               CloseHandle(handles[i]);
3963             }
3964             handle_count = 0;
3965           }
3966         }
3967 
3968         // Store a duplicate of the current thread handle in the array of handles.
3969         hproc = GetCurrentProcess();
3970         hthr = GetCurrentThread();
3971         if (!DuplicateHandle(hproc, hthr, hproc, &handles[handle_count],
3972                              0, FALSE, DUPLICATE_SAME_ACCESS)) {
3973           warning("DuplicateHandle failed (%u) in %s: %d\n",
3974                   GetLastError(), __FILE__, __LINE__);
3975 
3976           // We can't register this thread (no more handles) so this thread
3977           // may be racing with a thread that is calling exit(). If the thread
3978           // that is calling exit() has managed to set the process_exiting
3979           // flag, then this thread will be caught in the SuspendThread()
3980           // infinite loop below which closes that race. A small timing
3981           // window remains before the process_exiting flag is set, but it
3982           // is only exposed when we are out of handles.
3983         } else {
3984           ++handle_count;
3985           registered = true;
3986 
3987           // The current exiting thread has stored its handle in the array, and now
3988           // should leave the critical section before calling _endthreadex().
3989         }
3990 
3991       } else if (what != EPT_THREAD && handle_count > 0) {
3992         jlong start_time, finish_time, timeout_left;
3993         // Before ending the process, make sure all the threads that had called
3994         // _endthreadex() completed.
3995 
3996         // Set the priority level of the current thread to the same value as
3997         // the priority level of exiting threads.
3998         // This is to ensure it will be given a fair chance to execute if
3999         // the timeout expires.
4000         hthr = GetCurrentThread();
4001         SetThreadPriority(hthr, THREAD_PRIORITY_ABOVE_NORMAL);
4002         start_time = os::javaTimeNanos();
4003         finish_time = start_time + ((jlong)EXIT_TIMEOUT * 1000000L);
4004         for (i = 0; ; ) {
4005           int portion_count = handle_count - i;
4006           if (portion_count > MAXIMUM_WAIT_OBJECTS) {
4007             portion_count = MAXIMUM_WAIT_OBJECTS;
4008           }
4009           for (j = 0; j < portion_count; ++j) {
4010             SetThreadPriority(handles[i + j], THREAD_PRIORITY_ABOVE_NORMAL);
4011           }
4012           timeout_left = (finish_time - start_time) / 1000000L;
4013           if (timeout_left < 0) {
4014             timeout_left = 0;
4015           }
4016           res = WaitForMultipleObjects(portion_count, handles + i, TRUE, timeout_left);
4017           if (res == WAIT_FAILED || res == WAIT_TIMEOUT) {
4018             warning("WaitForMultipleObjects %s (%u) in %s: %d\n",
4019                     (res == WAIT_FAILED ? "failed" : "timed out"),
4020                     GetLastError(), __FILE__, __LINE__);
4021             // Reset portion_count so we close the remaining
4022             // handles due to this error.
4023             portion_count = handle_count - i;
4024           }
4025           for (j = 0; j < portion_count; ++j) {
4026             CloseHandle(handles[i + j]);
4027           }
4028           if ((i += portion_count) >= handle_count) {
4029             break;
4030           }
4031           start_time = os::javaTimeNanos();
4032         }
4033         handle_count = 0;
4034       }
4035 
4036       LeaveCriticalSection(&crit_sect);
4037     }
4038 
4039     if (!registered &&
4040         OrderAccess::load_acquire(&process_exiting) != 0 &&
4041         process_exiting != (jint)GetCurrentThreadId()) {
4042       // Some other thread is about to call exit(), so we don't let
4043       // the current unregistered thread proceed to exit() or _endthreadex()
4044       while (true) {
4045         SuspendThread(GetCurrentThread());
4046         // Avoid busy-wait loop, if SuspendThread() failed.
4047         Sleep(EXIT_TIMEOUT);
4048       }
4049     }
4050   }
4051 
4052   // We are here if either
4053   // - there's no 'race at exit' bug on this OS release;
4054   // - initialization of the critical section failed (unlikely);
4055   // - the current thread has registered itself and left the critical section;
4056   // - the process-exiting thread has raised the flag and left the critical section.
4057   if (what == EPT_THREAD) {
4058     _endthreadex((unsigned)exit_code);
4059   } else if (what == EPT_PROCESS) {
4060     ::exit(exit_code);
4061   } else {
4062     _exit(exit_code);
4063   }
4064 
4065   // Should not reach here
4066   return exit_code;
4067 }
4068 
4069 #undef EXIT_TIMEOUT
4070 
4071 void os::win32::setmode_streams() {
4072   _setmode(_fileno(stdin), _O_BINARY);
4073   _setmode(_fileno(stdout), _O_BINARY);
4074   _setmode(_fileno(stderr), _O_BINARY);
4075 }
4076 
4077 
4078 bool os::is_debugger_attached() {
4079   return IsDebuggerPresent() ? true : false;
4080 }
4081 
4082 
4083 void os::wait_for_keypress_at_exit(void) {
4084   if (PauseAtExit) {
4085     fprintf(stderr, "Press any key to continue...\n");
4086     fgetc(stdin);
4087   }
4088 }
4089 
4090 
4091 bool os::message_box(const char* title, const char* message) {
4092   int result = MessageBox(NULL, message, title,
4093                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
4094   return result == IDYES;
4095 }
4096 
4097 #ifndef PRODUCT
4098 #ifndef _WIN64
4099 // Helpers to check whether NX protection is enabled
4100 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
4101   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
4102       pex->ExceptionRecord->NumberParameters > 0 &&
4103       pex->ExceptionRecord->ExceptionInformation[0] ==
4104       EXCEPTION_INFO_EXEC_VIOLATION) {
4105     return EXCEPTION_EXECUTE_HANDLER;
4106   }
4107   return EXCEPTION_CONTINUE_SEARCH;
4108 }
4109 
4110 void nx_check_protection() {
4111   // If NX is enabled we'll get an exception calling into code on the stack
4112   char code[] = { (char)0xC3 }; // ret
4113   void *code_ptr = (void *)code;
4114   __try {
4115     __asm call code_ptr
4116   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
4117     tty->print_raw_cr("NX protection detected.");
4118   }
4119 }
4120 #endif // _WIN64
4121 #endif // PRODUCT
4122 
4123 // This is called _before_ the global arguments have been parsed
4124 void os::init(void) {
4125   _initial_pid = _getpid();
4126 
4127   init_random(1234567);
4128 
4129   win32::initialize_system_info();
4130   win32::setmode_streams();
4131   init_page_sizes((size_t) win32::vm_page_size());
4132 
4133   // This may be overridden later when argument processing is done.
4134   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation, false);
4135 
4136   // Initialize main_process and main_thread
4137   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
4138   if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
4139                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
4140     fatal("DuplicateHandle failed\n");
4141   }
4142   main_thread_id = (int) GetCurrentThreadId();
4143 
4144   // initialize fast thread access - only used for 32-bit
4145   win32::initialize_thread_ptr_offset();
4146 }
4147 
4148 // To install functions for atexit processing
4149 extern "C" {
4150   static void perfMemory_exit_helper() {
4151     perfMemory_exit();
4152   }
4153 }
4154 
4155 static jint initSock();
4156 
4157 // this is called _after_ the global arguments have been parsed
4158 jint os::init_2(void) {
4159   // Allocate a single page and mark it as readable for safepoint polling
4160   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
4161   guarantee(polling_page != NULL, "Reserve Failed for polling page");
4162 
4163   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
4164   guarantee(return_page != NULL, "Commit Failed for polling page");
4165 
4166   os::set_polling_page(polling_page);
4167   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4168 
4169   if (!UseMembar) {
4170     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
4171     guarantee(mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
4172 
4173     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
4174     guarantee(return_page != NULL, "Commit Failed for memory serialize page");
4175 
4176     os::set_memory_serialize_page(mem_serialize_page);
4177     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4178   }
4179 
4180   // Setup Windows Exceptions
4181 
4182   // for debugging float code generation bugs
4183   if (ForceFloatExceptions) {
4184 #ifndef  _WIN64
4185     static long fp_control_word = 0;
4186     __asm { fstcw fp_control_word }
4187     // see Intel PPro Manual, Vol. 2, p 7-16
4188     const long precision = 0x20;
4189     const long underflow = 0x10;
4190     const long overflow  = 0x08;
4191     const long zero_div  = 0x04;
4192     const long denorm    = 0x02;
4193     const long invalid   = 0x01;
4194     fp_control_word |= invalid;
4195     __asm { fldcw fp_control_word }
4196 #endif
4197   }
4198 
4199   // If stack_commit_size is 0, windows will reserve the default size,
4200   // but only commit a small portion of it.
4201   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
4202   size_t default_reserve_size = os::win32::default_stack_size();
4203   size_t actual_reserve_size = stack_commit_size;
4204   if (stack_commit_size < default_reserve_size) {
4205     // If stack_commit_size == 0, we want this too
4206     actual_reserve_size = default_reserve_size;
4207   }
4208 
4209   // Check minimum allowable stack size for thread creation and to initialize
4210   // the java system classes, including StackOverflowError - depends on page
4211   // size.  Add two 4K pages for compiler2 recursion in main thread.
4212   // Add in 4*BytesPerWord 4K pages to account for VM stack during
4213   // class initialization depending on 32 or 64 bit VM.
4214   size_t min_stack_allowed =
4215             (size_t)(JavaThread::stack_guard_zone_size() +
4216                      JavaThread::stack_shadow_zone_size() +
4217                      (4*BytesPerWord COMPILER2_PRESENT(+2)) * 4 * K);
4218 
4219   min_stack_allowed = align_size_up(min_stack_allowed, os::vm_page_size());
4220 
4221   if (actual_reserve_size < min_stack_allowed) {
4222     tty->print_cr("\nThe Java thread stack size specified is too small. "
4223                   "Specify at least %dk",
4224                   min_stack_allowed / K);
4225     return JNI_ERR;
4226   }
4227 
4228   JavaThread::set_stack_size_at_create(stack_commit_size);
4229 
4230   // Calculate theoretical max. size of Threads to guard gainst artifical
4231   // out-of-memory situations, where all available address-space has been
4232   // reserved by thread stacks.
4233   assert(actual_reserve_size != 0, "Must have a stack");
4234 
4235   // Calculate the thread limit when we should start doing Virtual Memory
4236   // banging. Currently when the threads will have used all but 200Mb of space.
4237   //
4238   // TODO: consider performing a similar calculation for commit size instead
4239   // as reserve size, since on a 64-bit platform we'll run into that more
4240   // often than running out of virtual memory space.  We can use the
4241   // lower value of the two calculations as the os_thread_limit.
4242   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
4243   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
4244 
4245   // at exit methods are called in the reverse order of their registration.
4246   // there is no limit to the number of functions registered. atexit does
4247   // not set errno.
4248 
4249   if (PerfAllowAtExitRegistration) {
4250     // only register atexit functions if PerfAllowAtExitRegistration is set.
4251     // atexit functions can be delayed until process exit time, which
4252     // can be problematic for embedded VM situations. Embedded VMs should
4253     // call DestroyJavaVM() to assure that VM resources are released.
4254 
4255     // note: perfMemory_exit_helper atexit function may be removed in
4256     // the future if the appropriate cleanup code can be added to the
4257     // VM_Exit VMOperation's doit method.
4258     if (atexit(perfMemory_exit_helper) != 0) {
4259       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4260     }
4261   }
4262 
4263 #ifndef _WIN64
4264   // Print something if NX is enabled (win32 on AMD64)
4265   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4266 #endif
4267 
4268   // initialize thread priority policy
4269   prio_init();
4270 
4271   if (UseNUMA && !ForceNUMA) {
4272     UseNUMA = false; // We don't fully support this yet
4273   }
4274 
4275   if (UseNUMAInterleaving) {
4276     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4277     bool success = numa_interleaving_init();
4278     if (!success) UseNUMAInterleaving = false;
4279   }
4280 
4281   if (initSock() != JNI_OK) {
4282     return JNI_ERR;
4283   }
4284 
4285   return JNI_OK;
4286 }
4287 
4288 // Mark the polling page as unreadable
4289 void os::make_polling_page_unreadable(void) {
4290   DWORD old_status;
4291   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4292                       PAGE_NOACCESS, &old_status)) {
4293     fatal("Could not disable polling page");
4294   }
4295 }
4296 
4297 // Mark the polling page as readable
4298 void os::make_polling_page_readable(void) {
4299   DWORD old_status;
4300   if (!VirtualProtect((char *)_polling_page, os::vm_page_size(),
4301                       PAGE_READONLY, &old_status)) {
4302     fatal("Could not enable polling page");
4303   }
4304 }
4305 
4306 
4307 int os::stat(const char *path, struct stat *sbuf) {
4308   char pathbuf[MAX_PATH];
4309   if (strlen(path) > MAX_PATH - 1) {
4310     errno = ENAMETOOLONG;
4311     return -1;
4312   }
4313   os::native_path(strcpy(pathbuf, path));
4314   int ret = ::stat(pathbuf, sbuf);
4315   if (sbuf != NULL && UseUTCFileTimestamp) {
4316     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4317     // the system timezone and so can return different values for the
4318     // same file if/when daylight savings time changes.  This adjustment
4319     // makes sure the same timestamp is returned regardless of the TZ.
4320     //
4321     // See:
4322     // http://msdn.microsoft.com/library/
4323     //   default.asp?url=/library/en-us/sysinfo/base/
4324     //   time_zone_information_str.asp
4325     // and
4326     // http://msdn.microsoft.com/library/default.asp?url=
4327     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4328     //
4329     // NOTE: there is a insidious bug here:  If the timezone is changed
4330     // after the call to stat() but before 'GetTimeZoneInformation()', then
4331     // the adjustment we do here will be wrong and we'll return the wrong
4332     // value (which will likely end up creating an invalid class data
4333     // archive).  Absent a better API for this, or some time zone locking
4334     // mechanism, we'll have to live with this risk.
4335     TIME_ZONE_INFORMATION tz;
4336     DWORD tzid = GetTimeZoneInformation(&tz);
4337     int daylightBias =
4338       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4339     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4340   }
4341   return ret;
4342 }
4343 
4344 
4345 #define FT2INT64(ft) \
4346   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4347 
4348 
4349 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4350 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4351 // of a thread.
4352 //
4353 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4354 // the fast estimate available on the platform.
4355 
4356 // current_thread_cpu_time() is not optimized for Windows yet
4357 jlong os::current_thread_cpu_time() {
4358   // return user + sys since the cost is the same
4359   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4360 }
4361 
4362 jlong os::thread_cpu_time(Thread* thread) {
4363   // consistent with what current_thread_cpu_time() returns.
4364   return os::thread_cpu_time(thread, true /* user+sys */);
4365 }
4366 
4367 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4368   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4369 }
4370 
4371 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4372   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4373   // If this function changes, os::is_thread_cpu_time_supported() should too
4374   FILETIME CreationTime;
4375   FILETIME ExitTime;
4376   FILETIME KernelTime;
4377   FILETIME UserTime;
4378 
4379   if (GetThreadTimes(thread->osthread()->thread_handle(), &CreationTime,
4380                       &ExitTime, &KernelTime, &UserTime) == 0) {
4381     return -1;
4382   } else if (user_sys_cpu_time) {
4383     return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4384   } else {
4385     return FT2INT64(UserTime) * 100;
4386   }
4387 }
4388 
4389 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4390   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4391   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4392   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4393   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4394 }
4395 
4396 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4397   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4398   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4399   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4400   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4401 }
4402 
4403 bool os::is_thread_cpu_time_supported() {
4404   // see os::thread_cpu_time
4405   FILETIME CreationTime;
4406   FILETIME ExitTime;
4407   FILETIME KernelTime;
4408   FILETIME UserTime;
4409 
4410   if (GetThreadTimes(GetCurrentThread(), &CreationTime, &ExitTime,
4411                       &KernelTime, &UserTime) == 0) {
4412     return false;
4413   } else {
4414     return true;
4415   }
4416 }
4417 
4418 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4419 // It does have primitives (PDH API) to get CPU usage and run queue length.
4420 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4421 // If we wanted to implement loadavg on Windows, we have a few options:
4422 //
4423 // a) Query CPU usage and run queue length and "fake" an answer by
4424 //    returning the CPU usage if it's under 100%, and the run queue
4425 //    length otherwise.  It turns out that querying is pretty slow
4426 //    on Windows, on the order of 200 microseconds on a fast machine.
4427 //    Note that on the Windows the CPU usage value is the % usage
4428 //    since the last time the API was called (and the first call
4429 //    returns 100%), so we'd have to deal with that as well.
4430 //
4431 // b) Sample the "fake" answer using a sampling thread and store
4432 //    the answer in a global variable.  The call to loadavg would
4433 //    just return the value of the global, avoiding the slow query.
4434 //
4435 // c) Sample a better answer using exponential decay to smooth the
4436 //    value.  This is basically the algorithm used by UNIX kernels.
4437 //
4438 // Note that sampling thread starvation could affect both (b) and (c).
4439 int os::loadavg(double loadavg[], int nelem) {
4440   return -1;
4441 }
4442 
4443 
4444 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4445 bool os::dont_yield() {
4446   return DontYieldALot;
4447 }
4448 
4449 // This method is a slightly reworked copy of JDK's sysOpen
4450 // from src/windows/hpi/src/sys_api_md.c
4451 
4452 int os::open(const char *path, int oflag, int mode) {
4453   char pathbuf[MAX_PATH];
4454 
4455   if (strlen(path) > MAX_PATH - 1) {
4456     errno = ENAMETOOLONG;
4457     return -1;
4458   }
4459   os::native_path(strcpy(pathbuf, path));
4460   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4461 }
4462 
4463 FILE* os::open(int fd, const char* mode) {
4464   return ::_fdopen(fd, mode);
4465 }
4466 
4467 // Is a (classpath) directory empty?
4468 bool os::dir_is_empty(const char* path) {
4469   WIN32_FIND_DATA fd;
4470   HANDLE f = FindFirstFile(path, &fd);
4471   if (f == INVALID_HANDLE_VALUE) {
4472     return true;
4473   }
4474   FindClose(f);
4475   return false;
4476 }
4477 
4478 // create binary file, rewriting existing file if required
4479 int os::create_binary_file(const char* path, bool rewrite_existing) {
4480   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4481   if (!rewrite_existing) {
4482     oflags |= _O_EXCL;
4483   }
4484   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4485 }
4486 
4487 // return current position of file pointer
4488 jlong os::current_file_offset(int fd) {
4489   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4490 }
4491 
4492 // move file pointer to the specified offset
4493 jlong os::seek_to_file_offset(int fd, jlong offset) {
4494   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4495 }
4496 
4497 
4498 jlong os::lseek(int fd, jlong offset, int whence) {
4499   return (jlong) ::_lseeki64(fd, offset, whence);
4500 }
4501 
4502 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4503   OVERLAPPED ov;
4504   DWORD nread;
4505   BOOL result;
4506 
4507   ZeroMemory(&ov, sizeof(ov));
4508   ov.Offset = (DWORD)offset;
4509   ov.OffsetHigh = (DWORD)(offset >> 32);
4510 
4511   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4512 
4513   result = ReadFile(h, (LPVOID)buf, nBytes, &nread, &ov);
4514 
4515   return result ? nread : 0;
4516 }
4517 
4518 
4519 // This method is a slightly reworked copy of JDK's sysNativePath
4520 // from src/windows/hpi/src/path_md.c
4521 
4522 // Convert a pathname to native format.  On win32, this involves forcing all
4523 // separators to be '\\' rather than '/' (both are legal inputs, but Win95
4524 // sometimes rejects '/') and removing redundant separators.  The input path is
4525 // assumed to have been converted into the character encoding used by the local
4526 // system.  Because this might be a double-byte encoding, care is taken to
4527 // treat double-byte lead characters correctly.
4528 //
4529 // This procedure modifies the given path in place, as the result is never
4530 // longer than the original.  There is no error return; this operation always
4531 // succeeds.
4532 char * os::native_path(char *path) {
4533   char *src = path, *dst = path, *end = path;
4534   char *colon = NULL;  // If a drive specifier is found, this will
4535                        // point to the colon following the drive letter
4536 
4537   // Assumption: '/', '\\', ':', and drive letters are never lead bytes
4538   assert(((!::IsDBCSLeadByte('/')) && (!::IsDBCSLeadByte('\\'))
4539           && (!::IsDBCSLeadByte(':'))), "Illegal lead byte");
4540 
4541   // Check for leading separators
4542 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4543   while (isfilesep(*src)) {
4544     src++;
4545   }
4546 
4547   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4548     // Remove leading separators if followed by drive specifier.  This
4549     // hack is necessary to support file URLs containing drive
4550     // specifiers (e.g., "file://c:/path").  As a side effect,
4551     // "/c:/path" can be used as an alternative to "c:/path".
4552     *dst++ = *src++;
4553     colon = dst;
4554     *dst++ = ':';
4555     src++;
4556   } else {
4557     src = path;
4558     if (isfilesep(src[0]) && isfilesep(src[1])) {
4559       // UNC pathname: Retain first separator; leave src pointed at
4560       // second separator so that further separators will be collapsed
4561       // into the second separator.  The result will be a pathname
4562       // beginning with "\\\\" followed (most likely) by a host name.
4563       src = dst = path + 1;
4564       path[0] = '\\';     // Force first separator to '\\'
4565     }
4566   }
4567 
4568   end = dst;
4569 
4570   // Remove redundant separators from remainder of path, forcing all
4571   // separators to be '\\' rather than '/'. Also, single byte space
4572   // characters are removed from the end of the path because those
4573   // are not legal ending characters on this operating system.
4574   //
4575   while (*src != '\0') {
4576     if (isfilesep(*src)) {
4577       *dst++ = '\\'; src++;
4578       while (isfilesep(*src)) src++;
4579       if (*src == '\0') {
4580         // Check for trailing separator
4581         end = dst;
4582         if (colon == dst - 2) break;  // "z:\\"
4583         if (dst == path + 1) break;   // "\\"
4584         if (dst == path + 2 && isfilesep(path[0])) {
4585           // "\\\\" is not collapsed to "\\" because "\\\\" marks the
4586           // beginning of a UNC pathname.  Even though it is not, by
4587           // itself, a valid UNC pathname, we leave it as is in order
4588           // to be consistent with the path canonicalizer as well
4589           // as the win32 APIs, which treat this case as an invalid
4590           // UNC pathname rather than as an alias for the root
4591           // directory of the current drive.
4592           break;
4593         }
4594         end = --dst;  // Path does not denote a root directory, so
4595                       // remove trailing separator
4596         break;
4597       }
4598       end = dst;
4599     } else {
4600       if (::IsDBCSLeadByte(*src)) {  // Copy a double-byte character
4601         *dst++ = *src++;
4602         if (*src) *dst++ = *src++;
4603         end = dst;
4604       } else {  // Copy a single-byte character
4605         char c = *src++;
4606         *dst++ = c;
4607         // Space is not a legal ending character
4608         if (c != ' ') end = dst;
4609       }
4610     }
4611   }
4612 
4613   *end = '\0';
4614 
4615   // For "z:", add "." to work around a bug in the C runtime library
4616   if (colon == dst - 1) {
4617     path[2] = '.';
4618     path[3] = '\0';
4619   }
4620 
4621   return path;
4622 }
4623 
4624 // This code is a copy of JDK's sysSetLength
4625 // from src/windows/hpi/src/sys_api_md.c
4626 
4627 int os::ftruncate(int fd, jlong length) {
4628   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4629   long high = (long)(length >> 32);
4630   DWORD ret;
4631 
4632   if (h == (HANDLE)(-1)) {
4633     return -1;
4634   }
4635 
4636   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4637   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4638     return -1;
4639   }
4640 
4641   if (::SetEndOfFile(h) == FALSE) {
4642     return -1;
4643   }
4644 
4645   return 0;
4646 }
4647 
4648 int os::get_fileno(FILE* fp) {
4649   return _fileno(fp);
4650 }
4651 
4652 // This code is a copy of JDK's sysSync
4653 // from src/windows/hpi/src/sys_api_md.c
4654 // except for the legacy workaround for a bug in Win 98
4655 
4656 int os::fsync(int fd) {
4657   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4658 
4659   if ((!::FlushFileBuffers(handle)) &&
4660       (GetLastError() != ERROR_ACCESS_DENIED)) {
4661     // from winerror.h
4662     return -1;
4663   }
4664   return 0;
4665 }
4666 
4667 static int nonSeekAvailable(int, long *);
4668 static int stdinAvailable(int, long *);
4669 
4670 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4671 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4672 
4673 // This code is a copy of JDK's sysAvailable
4674 // from src/windows/hpi/src/sys_api_md.c
4675 
4676 int os::available(int fd, jlong *bytes) {
4677   jlong cur, end;
4678   struct _stati64 stbuf64;
4679 
4680   if (::_fstati64(fd, &stbuf64) >= 0) {
4681     int mode = stbuf64.st_mode;
4682     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4683       int ret;
4684       long lpbytes;
4685       if (fd == 0) {
4686         ret = stdinAvailable(fd, &lpbytes);
4687       } else {
4688         ret = nonSeekAvailable(fd, &lpbytes);
4689       }
4690       (*bytes) = (jlong)(lpbytes);
4691       return ret;
4692     }
4693     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4694       return FALSE;
4695     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4696       return FALSE;
4697     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4698       return FALSE;
4699     }
4700     *bytes = end - cur;
4701     return TRUE;
4702   } else {
4703     return FALSE;
4704   }
4705 }
4706 
4707 void os::flockfile(FILE* fp) {
4708   _lock_file(fp);
4709 }
4710 
4711 void os::funlockfile(FILE* fp) {
4712   _unlock_file(fp);
4713 }
4714 
4715 // This code is a copy of JDK's nonSeekAvailable
4716 // from src/windows/hpi/src/sys_api_md.c
4717 
4718 static int nonSeekAvailable(int fd, long *pbytes) {
4719   // This is used for available on non-seekable devices
4720   // (like both named and anonymous pipes, such as pipes
4721   //  connected to an exec'd process).
4722   // Standard Input is a special case.
4723   HANDLE han;
4724 
4725   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4726     return FALSE;
4727   }
4728 
4729   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4730     // PeekNamedPipe fails when at EOF.  In that case we
4731     // simply make *pbytes = 0 which is consistent with the
4732     // behavior we get on Solaris when an fd is at EOF.
4733     // The only alternative is to raise an Exception,
4734     // which isn't really warranted.
4735     //
4736     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4737       return FALSE;
4738     }
4739     *pbytes = 0;
4740   }
4741   return TRUE;
4742 }
4743 
4744 #define MAX_INPUT_EVENTS 2000
4745 
4746 // This code is a copy of JDK's stdinAvailable
4747 // from src/windows/hpi/src/sys_api_md.c
4748 
4749 static int stdinAvailable(int fd, long *pbytes) {
4750   HANDLE han;
4751   DWORD numEventsRead = 0;  // Number of events read from buffer
4752   DWORD numEvents = 0;      // Number of events in buffer
4753   DWORD i = 0;              // Loop index
4754   DWORD curLength = 0;      // Position marker
4755   DWORD actualLength = 0;   // Number of bytes readable
4756   BOOL error = FALSE;       // Error holder
4757   INPUT_RECORD *lpBuffer;   // Pointer to records of input events
4758 
4759   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4760     return FALSE;
4761   }
4762 
4763   // Construct an array of input records in the console buffer
4764   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4765   if (error == 0) {
4766     return nonSeekAvailable(fd, pbytes);
4767   }
4768 
4769   // lpBuffer must fit into 64K or else PeekConsoleInput fails
4770   if (numEvents > MAX_INPUT_EVENTS) {
4771     numEvents = MAX_INPUT_EVENTS;
4772   }
4773 
4774   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4775   if (lpBuffer == NULL) {
4776     return FALSE;
4777   }
4778 
4779   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4780   if (error == 0) {
4781     os::free(lpBuffer);
4782     return FALSE;
4783   }
4784 
4785   // Examine input records for the number of bytes available
4786   for (i=0; i<numEvents; i++) {
4787     if (lpBuffer[i].EventType == KEY_EVENT) {
4788 
4789       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4790                                       &(lpBuffer[i].Event);
4791       if (keyRecord->bKeyDown == TRUE) {
4792         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4793         curLength++;
4794         if (*keyPressed == '\r') {
4795           actualLength = curLength;
4796         }
4797       }
4798     }
4799   }
4800 
4801   if (lpBuffer != NULL) {
4802     os::free(lpBuffer);
4803   }
4804 
4805   *pbytes = (long) actualLength;
4806   return TRUE;
4807 }
4808 
4809 // Map a block of memory.
4810 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4811                         char *addr, size_t bytes, bool read_only,
4812                         bool allow_exec) {
4813   HANDLE hFile;
4814   char* base;
4815 
4816   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4817                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4818   if (hFile == NULL) {
4819     log_info(os)("CreateFile() failed: GetLastError->%ld.", GetLastError());
4820     return NULL;
4821   }
4822 
4823   if (allow_exec) {
4824     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4825     // unless it comes from a PE image (which the shared archive is not.)
4826     // Even VirtualProtect refuses to give execute access to mapped memory
4827     // that was not previously executable.
4828     //
4829     // Instead, stick the executable region in anonymous memory.  Yuck.
4830     // Penalty is that ~4 pages will not be shareable - in the future
4831     // we might consider DLLizing the shared archive with a proper PE
4832     // header so that mapping executable + sharing is possible.
4833 
4834     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4835                                 PAGE_READWRITE);
4836     if (base == NULL) {
4837       log_info(os)("VirtualAlloc() failed: GetLastError->%ld.", GetLastError());
4838       CloseHandle(hFile);
4839       return NULL;
4840     }
4841 
4842     DWORD bytes_read;
4843     OVERLAPPED overlapped;
4844     overlapped.Offset = (DWORD)file_offset;
4845     overlapped.OffsetHigh = 0;
4846     overlapped.hEvent = NULL;
4847     // ReadFile guarantees that if the return value is true, the requested
4848     // number of bytes were read before returning.
4849     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4850     if (!res) {
4851       log_info(os)("ReadFile() failed: GetLastError->%ld.", GetLastError());
4852       release_memory(base, bytes);
4853       CloseHandle(hFile);
4854       return NULL;
4855     }
4856   } else {
4857     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4858                                     NULL /* file_name */);
4859     if (hMap == NULL) {
4860       log_info(os)("CreateFileMapping() failed: GetLastError->%ld.", GetLastError());
4861       CloseHandle(hFile);
4862       return NULL;
4863     }
4864 
4865     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4866     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4867                                   (DWORD)bytes, addr);
4868     if (base == NULL) {
4869       log_info(os)("MapViewOfFileEx() failed: GetLastError->%ld.", GetLastError());
4870       CloseHandle(hMap);
4871       CloseHandle(hFile);
4872       return NULL;
4873     }
4874 
4875     if (CloseHandle(hMap) == 0) {
4876       log_info(os)("CloseHandle(hMap) failed: GetLastError->%ld.", GetLastError());
4877       CloseHandle(hFile);
4878       return base;
4879     }
4880   }
4881 
4882   if (allow_exec) {
4883     DWORD old_protect;
4884     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4885     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4886 
4887     if (!res) {
4888       log_info(os)("VirtualProtect() failed: GetLastError->%ld.", GetLastError());
4889       // Don't consider this a hard error, on IA32 even if the
4890       // VirtualProtect fails, we should still be able to execute
4891       CloseHandle(hFile);
4892       return base;
4893     }
4894   }
4895 
4896   if (CloseHandle(hFile) == 0) {
4897     log_info(os)("CloseHandle(hFile) failed: GetLastError->%ld.", GetLastError());
4898     return base;
4899   }
4900 
4901   return base;
4902 }
4903 
4904 
4905 // Remap a block of memory.
4906 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4907                           char *addr, size_t bytes, bool read_only,
4908                           bool allow_exec) {
4909   // This OS does not allow existing memory maps to be remapped so we
4910   // have to unmap the memory before we remap it.
4911   if (!os::unmap_memory(addr, bytes)) {
4912     return NULL;
4913   }
4914 
4915   // There is a very small theoretical window between the unmap_memory()
4916   // call above and the map_memory() call below where a thread in native
4917   // code may be able to access an address that is no longer mapped.
4918 
4919   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4920                         read_only, allow_exec);
4921 }
4922 
4923 
4924 // Unmap a block of memory.
4925 // Returns true=success, otherwise false.
4926 
4927 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4928   MEMORY_BASIC_INFORMATION mem_info;
4929   if (VirtualQuery(addr, &mem_info, sizeof(mem_info)) == 0) {
4930     log_info(os)("VirtualQuery() failed: GetLastError->%ld.", GetLastError());
4931     return false;
4932   }
4933 
4934   // Executable memory was not mapped using CreateFileMapping/MapViewOfFileEx.
4935   // Instead, executable region was allocated using VirtualAlloc(). See
4936   // pd_map_memory() above.
4937   //
4938   // The following flags should match the 'exec_access' flages used for
4939   // VirtualProtect() in pd_map_memory().
4940   if (mem_info.Protect == PAGE_EXECUTE_READ ||
4941       mem_info.Protect == PAGE_EXECUTE_READWRITE) {
4942     return pd_release_memory(addr, bytes);
4943   }
4944 
4945   BOOL result = UnmapViewOfFile(addr);
4946   if (result == 0) {
4947     log_info(os)("UnmapViewOfFile() failed: GetLastError->%ld.", GetLastError());
4948     return false;
4949   }
4950   return true;
4951 }
4952 
4953 void os::pause() {
4954   char filename[MAX_PATH];
4955   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4956     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4957   } else {
4958     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4959   }
4960 
4961   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4962   if (fd != -1) {
4963     struct stat buf;
4964     ::close(fd);
4965     while (::stat(filename, &buf) == 0) {
4966       Sleep(100);
4967     }
4968   } else {
4969     jio_fprintf(stderr,
4970                 "Could not open pause file '%s', continuing immediately.\n", filename);
4971   }
4972 }
4973 
4974 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4975   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4976 }
4977 
4978 // See the caveats for this class in os_windows.hpp
4979 // Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4980 // into this method and returns false. If no OS EXCEPTION was raised, returns
4981 // true.
4982 // The callback is supposed to provide the method that should be protected.
4983 //
4984 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4985   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4986   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4987          "crash_protection already set?");
4988 
4989   bool success = true;
4990   __try {
4991     WatcherThread::watcher_thread()->set_crash_protection(this);
4992     cb.call();
4993   } __except(EXCEPTION_EXECUTE_HANDLER) {
4994     // only for protection, nothing to do
4995     success = false;
4996   }
4997   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4998   return success;
4999 }
5000 
5001 // An Event wraps a win32 "CreateEvent" kernel handle.
5002 //
5003 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
5004 //
5005 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
5006 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
5007 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
5008 //     In addition, an unpark() operation might fetch the handle field, but the
5009 //     event could recycle between the fetch and the SetEvent() operation.
5010 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
5011 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
5012 //     on an stale but recycled handle would be harmless, but in practice this might
5013 //     confuse other non-Sun code, so it's not a viable approach.
5014 //
5015 // 2:  Once a win32 event handle is associated with an Event, it remains associated
5016 //     with the Event.  The event handle is never closed.  This could be construed
5017 //     as handle leakage, but only up to the maximum # of threads that have been extant
5018 //     at any one time.  This shouldn't be an issue, as windows platforms typically
5019 //     permit a process to have hundreds of thousands of open handles.
5020 //
5021 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
5022 //     and release unused handles.
5023 //
5024 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
5025 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
5026 //
5027 // 5.  Use an RCU-like mechanism (Read-Copy Update).
5028 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
5029 //
5030 // We use (2).
5031 //
5032 // TODO-FIXME:
5033 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
5034 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
5035 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
5036 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
5037 //     into a single win32 CreateEvent() handle.
5038 //
5039 // Assumption:
5040 //    Only one parker can exist on an event, which is why we allocate
5041 //    them per-thread. Multiple unparkers can coexist.
5042 //
5043 // _Event transitions in park()
5044 //   -1 => -1 : illegal
5045 //    1 =>  0 : pass - return immediately
5046 //    0 => -1 : block; then set _Event to 0 before returning
5047 //
5048 // _Event transitions in unpark()
5049 //    0 => 1 : just return
5050 //    1 => 1 : just return
5051 //   -1 => either 0 or 1; must signal target thread
5052 //         That is, we can safely transition _Event from -1 to either
5053 //         0 or 1.
5054 //
5055 // _Event serves as a restricted-range semaphore.
5056 //   -1 : thread is blocked, i.e. there is a waiter
5057 //    0 : neutral: thread is running or ready,
5058 //        could have been signaled after a wait started
5059 //    1 : signaled - thread is running or ready
5060 //
5061 // Another possible encoding of _Event would be with
5062 // explicit "PARKED" == 01b and "SIGNALED" == 10b bits.
5063 //
5064 
5065 int os::PlatformEvent::park(jlong Millis) {
5066   // Transitions for _Event:
5067   //   -1 => -1 : illegal
5068   //    1 =>  0 : pass - return immediately
5069   //    0 => -1 : block; then set _Event to 0 before returning
5070 
5071   guarantee(_ParkHandle != NULL , "Invariant");
5072   guarantee(Millis > 0          , "Invariant");
5073 
5074   // CONSIDER: defer assigning a CreateEvent() handle to the Event until
5075   // the initial park() operation.
5076   // Consider: use atomic decrement instead of CAS-loop
5077 
5078   int v;
5079   for (;;) {
5080     v = _Event;
5081     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5082   }
5083   guarantee((v == 0) || (v == 1), "invariant");
5084   if (v != 0) return OS_OK;
5085 
5086   // Do this the hard way by blocking ...
5087   // TODO: consider a brief spin here, gated on the success of recent
5088   // spin attempts by this thread.
5089   //
5090   // We decompose long timeouts into series of shorter timed waits.
5091   // Evidently large timo values passed in WaitForSingleObject() are problematic on some
5092   // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
5093   // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
5094   // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
5095   // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
5096   // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
5097   // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
5098   // for the already waited time.  This policy does not admit any new outcomes.
5099   // In the future, however, we might want to track the accumulated wait time and
5100   // adjust Millis accordingly if we encounter a spurious wakeup.
5101 
5102   const int MAXTIMEOUT = 0x10000000;
5103   DWORD rv = WAIT_TIMEOUT;
5104   while (_Event < 0 && Millis > 0) {
5105     DWORD prd = Millis;     // set prd = MAX (Millis, MAXTIMEOUT)
5106     if (Millis > MAXTIMEOUT) {
5107       prd = MAXTIMEOUT;
5108     }
5109     rv = ::WaitForSingleObject(_ParkHandle, prd);
5110     assert(rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed");
5111     if (rv == WAIT_TIMEOUT) {
5112       Millis -= prd;
5113     }
5114   }
5115   v = _Event;
5116   _Event = 0;
5117   // see comment at end of os::PlatformEvent::park() below:
5118   OrderAccess::fence();
5119   // If we encounter a nearly simultanous timeout expiry and unpark()
5120   // we return OS_OK indicating we awoke via unpark().
5121   // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
5122   return (v >= 0) ? OS_OK : OS_TIMEOUT;
5123 }
5124 
5125 void os::PlatformEvent::park() {
5126   // Transitions for _Event:
5127   //   -1 => -1 : illegal
5128   //    1 =>  0 : pass - return immediately
5129   //    0 => -1 : block; then set _Event to 0 before returning
5130 
5131   guarantee(_ParkHandle != NULL, "Invariant");
5132   // Invariant: Only the thread associated with the Event/PlatformEvent
5133   // may call park().
5134   // Consider: use atomic decrement instead of CAS-loop
5135   int v;
5136   for (;;) {
5137     v = _Event;
5138     if (Atomic::cmpxchg(v-1, &_Event, v) == v) break;
5139   }
5140   guarantee((v == 0) || (v == 1), "invariant");
5141   if (v != 0) return;
5142 
5143   // Do this the hard way by blocking ...
5144   // TODO: consider a brief spin here, gated on the success of recent
5145   // spin attempts by this thread.
5146   while (_Event < 0) {
5147     DWORD rv = ::WaitForSingleObject(_ParkHandle, INFINITE);
5148     assert(rv == WAIT_OBJECT_0, "WaitForSingleObject failed");
5149   }
5150 
5151   // Usually we'll find _Event == 0 at this point, but as
5152   // an optional optimization we clear it, just in case can
5153   // multiple unpark() operations drove _Event up to 1.
5154   _Event = 0;
5155   OrderAccess::fence();
5156   guarantee(_Event >= 0, "invariant");
5157 }
5158 
5159 void os::PlatformEvent::unpark() {
5160   guarantee(_ParkHandle != NULL, "Invariant");
5161 
5162   // Transitions for _Event:
5163   //    0 => 1 : just return
5164   //    1 => 1 : just return
5165   //   -1 => either 0 or 1; must signal target thread
5166   //         That is, we can safely transition _Event from -1 to either
5167   //         0 or 1.
5168   // See also: "Semaphores in Plan 9" by Mullender & Cox
5169   //
5170   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5171   // that it will take two back-to-back park() calls for the owning
5172   // thread to block. This has the benefit of forcing a spurious return
5173   // from the first park() call after an unpark() call which will help
5174   // shake out uses of park() and unpark() without condition variables.
5175 
5176   if (Atomic::xchg(1, &_Event) >= 0) return;
5177 
5178   ::SetEvent(_ParkHandle);
5179 }
5180 
5181 
5182 // JSR166
5183 // -------------------------------------------------------
5184 
5185 // The Windows implementation of Park is very straightforward: Basic
5186 // operations on Win32 Events turn out to have the right semantics to
5187 // use them directly. We opportunistically resuse the event inherited
5188 // from Monitor.
5189 
5190 void Parker::park(bool isAbsolute, jlong time) {
5191   guarantee(_ParkEvent != NULL, "invariant");
5192   // First, demultiplex/decode time arguments
5193   if (time < 0) { // don't wait
5194     return;
5195   } else if (time == 0 && !isAbsolute) {
5196     time = INFINITE;
5197   } else if (isAbsolute) {
5198     time -= os::javaTimeMillis(); // convert to relative time
5199     if (time <= 0) {  // already elapsed
5200       return;
5201     }
5202   } else { // relative
5203     time /= 1000000;  // Must coarsen from nanos to millis
5204     if (time == 0) {  // Wait for the minimal time unit if zero
5205       time = 1;
5206     }
5207   }
5208 
5209   JavaThread* thread = JavaThread::current();
5210 
5211   // Don't wait if interrupted or already triggered
5212   if (Thread::is_interrupted(thread, false) ||
5213       WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
5214     ResetEvent(_ParkEvent);
5215     return;
5216   } else {
5217     ThreadBlockInVM tbivm(thread);
5218     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5219     thread->set_suspend_equivalent();
5220 
5221     WaitForSingleObject(_ParkEvent, time);
5222     ResetEvent(_ParkEvent);
5223 
5224     // If externally suspended while waiting, re-suspend
5225     if (thread->handle_special_suspend_equivalent_condition()) {
5226       thread->java_suspend_self();
5227     }
5228   }
5229 }
5230 
5231 void Parker::unpark() {
5232   guarantee(_ParkEvent != NULL, "invariant");
5233   SetEvent(_ParkEvent);
5234 }
5235 
5236 // Run the specified command in a separate process. Return its exit value,
5237 // or -1 on failure (e.g. can't create a new process).
5238 int os::fork_and_exec(char* cmd) {
5239   STARTUPINFO si;
5240   PROCESS_INFORMATION pi;
5241 
5242   memset(&si, 0, sizeof(si));
5243   si.cb = sizeof(si);
5244   memset(&pi, 0, sizeof(pi));
5245   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
5246                             cmd,    // command line
5247                             NULL,   // process security attribute
5248                             NULL,   // thread security attribute
5249                             TRUE,   // inherits system handles
5250                             0,      // no creation flags
5251                             NULL,   // use parent's environment block
5252                             NULL,   // use parent's starting directory
5253                             &si,    // (in) startup information
5254                             &pi);   // (out) process information
5255 
5256   if (rslt) {
5257     // Wait until child process exits.
5258     WaitForSingleObject(pi.hProcess, INFINITE);
5259 
5260     DWORD exit_code;
5261     GetExitCodeProcess(pi.hProcess, &exit_code);
5262 
5263     // Close process and thread handles.
5264     CloseHandle(pi.hProcess);
5265     CloseHandle(pi.hThread);
5266 
5267     return (int)exit_code;
5268   } else {
5269     return -1;
5270   }
5271 }
5272 
5273 bool os::find(address addr, outputStream* st) {
5274   int offset = -1;
5275   bool result = false;
5276   char buf[256];
5277   if (os::dll_address_to_library_name(addr, buf, sizeof(buf), &offset)) {
5278     st->print(PTR_FORMAT " ", addr);
5279     if (strlen(buf) < sizeof(buf) - 1) {
5280       char* p = strrchr(buf, '\\');
5281       if (p) {
5282         st->print("%s", p + 1);
5283       } else {
5284         st->print("%s", buf);
5285       }
5286     } else {
5287         // The library name is probably truncated. Let's omit the library name.
5288         // See also JDK-8147512.
5289     }
5290     if (os::dll_address_to_function_name(addr, buf, sizeof(buf), &offset)) {
5291       st->print("::%s + 0x%x", buf, offset);
5292     }
5293     st->cr();
5294     result = true;
5295   }
5296   return result;
5297 }
5298 
5299 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5300   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5301 
5302   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
5303     JavaThread* thread = JavaThread::current();
5304     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5305     address addr = (address) exceptionRecord->ExceptionInformation[1];
5306 
5307     if (os::is_memory_serialize_page(thread, addr)) {
5308       return EXCEPTION_CONTINUE_EXECUTION;
5309     }
5310   }
5311 
5312   return EXCEPTION_CONTINUE_SEARCH;
5313 }
5314 
5315 // We don't build a headless jre for Windows
5316 bool os::is_headless_jre() { return false; }
5317 
5318 static jint initSock() {
5319   WSADATA wsadata;
5320 
5321   if (WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5322     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5323                 ::GetLastError());
5324     return JNI_ERR;
5325   }
5326   return JNI_OK;
5327 }
5328 
5329 struct hostent* os::get_host_by_name(char* name) {
5330   return (struct hostent*)gethostbyname(name);
5331 }
5332 
5333 int os::socket_close(int fd) {
5334   return ::closesocket(fd);
5335 }
5336 
5337 int os::socket(int domain, int type, int protocol) {
5338   return ::socket(domain, type, protocol);
5339 }
5340 
5341 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5342   return ::connect(fd, him, len);
5343 }
5344 
5345 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5346   return ::recv(fd, buf, (int)nBytes, flags);
5347 }
5348 
5349 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5350   return ::send(fd, buf, (int)nBytes, flags);
5351 }
5352 
5353 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5354   return ::send(fd, buf, (int)nBytes, flags);
5355 }
5356 
5357 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5358 #if defined(IA32)
5359   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5360 #elif defined (AMD64)
5361   #define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5362 #endif
5363 
5364 // returns true if thread could be suspended,
5365 // false otherwise
5366 static bool do_suspend(HANDLE* h) {
5367   if (h != NULL) {
5368     if (SuspendThread(*h) != ~0) {
5369       return true;
5370     }
5371   }
5372   return false;
5373 }
5374 
5375 // resume the thread
5376 // calling resume on an active thread is a no-op
5377 static void do_resume(HANDLE* h) {
5378   if (h != NULL) {
5379     ResumeThread(*h);
5380   }
5381 }
5382 
5383 // retrieve a suspend/resume context capable handle
5384 // from the tid. Caller validates handle return value.
5385 void get_thread_handle_for_extended_context(HANDLE* h,
5386                                             OSThread::thread_id_t tid) {
5387   if (h != NULL) {
5388     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5389   }
5390 }
5391 
5392 // Thread sampling implementation
5393 //
5394 void os::SuspendedThreadTask::internal_do_task() {
5395   CONTEXT    ctxt;
5396   HANDLE     h = NULL;
5397 
5398   // get context capable handle for thread
5399   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5400 
5401   // sanity
5402   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5403     return;
5404   }
5405 
5406   // suspend the thread
5407   if (do_suspend(&h)) {
5408     ctxt.ContextFlags = sampling_context_flags;
5409     // get thread context
5410     GetThreadContext(h, &ctxt);
5411     SuspendedThreadTaskContext context(_thread, &ctxt);
5412     // pass context to Thread Sampling impl
5413     do_task(context);
5414     // resume thread
5415     do_resume(&h);
5416   }
5417 
5418   // close handle
5419   CloseHandle(h);
5420 }
5421 
5422 bool os::start_debugging(char *buf, int buflen) {
5423   int len = (int)strlen(buf);
5424   char *p = &buf[len];
5425 
5426   jio_snprintf(p, buflen-len,
5427              "\n\n"
5428              "Do you want to debug the problem?\n\n"
5429              "To debug, attach Visual Studio to process %d; then switch to thread 0x%x\n"
5430              "Select 'Yes' to launch Visual Studio automatically (PATH must include msdev)\n"
5431              "Otherwise, select 'No' to abort...",
5432              os::current_process_id(), os::current_thread_id());
5433 
5434   bool yes = os::message_box("Unexpected Error", buf);
5435 
5436   if (yes) {
5437     // os::breakpoint() calls DebugBreak(), which causes a breakpoint
5438     // exception. If VM is running inside a debugger, the debugger will
5439     // catch the exception. Otherwise, the breakpoint exception will reach
5440     // the default windows exception handler, which can spawn a debugger and
5441     // automatically attach to the dying VM.
5442     os::breakpoint();
5443     yes = false;
5444   }
5445   return yes;
5446 }
5447 
5448 void* os::get_default_process_handle() {
5449   return (void*)GetModuleHandle(NULL);
5450 }
5451 
5452 // Builds a platform dependent Agent_OnLoad_<lib_name> function name
5453 // which is used to find statically linked in agents.
5454 // Additionally for windows, takes into account __stdcall names.
5455 // Parameters:
5456 //            sym_name: Symbol in library we are looking for
5457 //            lib_name: Name of library to look in, NULL for shared libs.
5458 //            is_absolute_path == true if lib_name is absolute path to agent
5459 //                                     such as "C:/a/b/L.dll"
5460 //            == false if only the base name of the library is passed in
5461 //               such as "L"
5462 char* os::build_agent_function_name(const char *sym_name, const char *lib_name,
5463                                     bool is_absolute_path) {
5464   char *agent_entry_name;
5465   size_t len;
5466   size_t name_len;
5467   size_t prefix_len = strlen(JNI_LIB_PREFIX);
5468   size_t suffix_len = strlen(JNI_LIB_SUFFIX);
5469   const char *start;
5470 
5471   if (lib_name != NULL) {
5472     len = name_len = strlen(lib_name);
5473     if (is_absolute_path) {
5474       // Need to strip path, prefix and suffix
5475       if ((start = strrchr(lib_name, *os::file_separator())) != NULL) {
5476         lib_name = ++start;
5477       } else {
5478         // Need to check for drive prefix
5479         if ((start = strchr(lib_name, ':')) != NULL) {
5480           lib_name = ++start;
5481         }
5482       }
5483       if (len <= (prefix_len + suffix_len)) {
5484         return NULL;
5485       }
5486       lib_name += prefix_len;
5487       name_len = strlen(lib_name) - suffix_len;
5488     }
5489   }
5490   len = (lib_name != NULL ? name_len : 0) + strlen(sym_name) + 2;
5491   agent_entry_name = NEW_C_HEAP_ARRAY_RETURN_NULL(char, len, mtThread);
5492   if (agent_entry_name == NULL) {
5493     return NULL;
5494   }
5495   if (lib_name != NULL) {
5496     const char *p = strrchr(sym_name, '@');
5497     if (p != NULL && p != sym_name) {
5498       // sym_name == _Agent_OnLoad@XX
5499       strncpy(agent_entry_name, sym_name, (p - sym_name));
5500       agent_entry_name[(p-sym_name)] = '\0';
5501       // agent_entry_name == _Agent_OnLoad
5502       strcat(agent_entry_name, "_");
5503       strncat(agent_entry_name, lib_name, name_len);
5504       strcat(agent_entry_name, p);
5505       // agent_entry_name == _Agent_OnLoad_lib_name@XX
5506     } else {
5507       strcpy(agent_entry_name, sym_name);
5508       strcat(agent_entry_name, "_");
5509       strncat(agent_entry_name, lib_name, name_len);
5510     }
5511   } else {
5512     strcpy(agent_entry_name, sym_name);
5513   }
5514   return agent_entry_name;
5515 }
5516 
5517 #ifndef PRODUCT
5518 
5519 // test the code path in reserve_memory_special() that tries to allocate memory in a single
5520 // contiguous memory block at a particular address.
5521 // The test first tries to find a good approximate address to allocate at by using the same
5522 // method to allocate some memory at any address. The test then tries to allocate memory in
5523 // the vicinity (not directly after it to avoid possible by-chance use of that location)
5524 // This is of course only some dodgy assumption, there is no guarantee that the vicinity of
5525 // the previously allocated memory is available for allocation. The only actual failure
5526 // that is reported is when the test tries to allocate at a particular location but gets a
5527 // different valid one. A NULL return value at this point is not considered an error but may
5528 // be legitimate.
5529 // If -XX:+VerboseInternalVMTests is enabled, print some explanatory messages.
5530 void TestReserveMemorySpecial_test() {
5531   if (!UseLargePages) {
5532     if (VerboseInternalVMTests) {
5533       tty->print("Skipping test because large pages are disabled");
5534     }
5535     return;
5536   }
5537   // save current value of globals
5538   bool old_use_large_pages_individual_allocation = UseLargePagesIndividualAllocation;
5539   bool old_use_numa_interleaving = UseNUMAInterleaving;
5540 
5541   // set globals to make sure we hit the correct code path
5542   UseLargePagesIndividualAllocation = UseNUMAInterleaving = false;
5543 
5544   // do an allocation at an address selected by the OS to get a good one.
5545   const size_t large_allocation_size = os::large_page_size() * 4;
5546   char* result = os::reserve_memory_special(large_allocation_size, os::large_page_size(), NULL, false);
5547   if (result == NULL) {
5548     if (VerboseInternalVMTests) {
5549       tty->print("Failed to allocate control block with size " SIZE_FORMAT ". Skipping remainder of test.",
5550                           large_allocation_size);
5551     }
5552   } else {
5553     os::release_memory_special(result, large_allocation_size);
5554 
5555     // allocate another page within the recently allocated memory area which seems to be a good location. At least
5556     // we managed to get it once.
5557     const size_t expected_allocation_size = os::large_page_size();
5558     char* expected_location = result + os::large_page_size();
5559     char* actual_location = os::reserve_memory_special(expected_allocation_size, os::large_page_size(), expected_location, false);
5560     if (actual_location == NULL) {
5561       if (VerboseInternalVMTests) {
5562         tty->print("Failed to allocate any memory at " PTR_FORMAT " size " SIZE_FORMAT ". Skipping remainder of test.",
5563                             expected_location, large_allocation_size);
5564       }
5565     } else {
5566       // release memory
5567       os::release_memory_special(actual_location, expected_allocation_size);
5568       // only now check, after releasing any memory to avoid any leaks.
5569       assert(actual_location == expected_location,
5570              "Failed to allocate memory at requested location " PTR_FORMAT " of size " SIZE_FORMAT ", is " PTR_FORMAT " instead",
5571              expected_location, expected_allocation_size, actual_location);
5572     }
5573   }
5574 
5575   // restore globals
5576   UseLargePagesIndividualAllocation = old_use_large_pages_individual_allocation;
5577   UseNUMAInterleaving = old_use_numa_interleaving;
5578 }
5579 #endif // PRODUCT
5580 
5581 /*
5582   All the defined signal names for Windows.
5583 
5584   NOTE that not all of these names are accepted by FindSignal!
5585 
5586   For various reasons some of these may be rejected at runtime.
5587 
5588   Here are the names currently accepted by a user of sun.misc.Signal with
5589   1.4.1 (ignoring potential interaction with use of chaining, etc):
5590 
5591      (LIST TBD)
5592 
5593 */
5594 int os::get_signal_number(const char* name) {
5595   static const struct {
5596     char* name;
5597     int   number;
5598   } siglabels [] =
5599     // derived from version 6.0 VC98/include/signal.h
5600   {"ABRT",      SIGABRT,        // abnormal termination triggered by abort cl
5601   "FPE",        SIGFPE,         // floating point exception
5602   "SEGV",       SIGSEGV,        // segment violation
5603   "INT",        SIGINT,         // interrupt
5604   "TERM",       SIGTERM,        // software term signal from kill
5605   "BREAK",      SIGBREAK,       // Ctrl-Break sequence
5606   "ILL",        SIGILL};        // illegal instruction
5607   for (unsigned i = 0; i < ARRAY_SIZE(siglabels); ++i) {
5608     if (strcmp(name, siglabels[i].name) == 0) {
5609       return siglabels[i].number;
5610     }
5611   }
5612   return -1;
5613 }
5614 
5615 // Fast current thread access
5616 
5617 int os::win32::_thread_ptr_offset = 0;
5618 
5619 static void call_wrapper_dummy() {}
5620 
5621 // We need to call the os_exception_wrapper once so that it sets
5622 // up the offset from FS of the thread pointer.
5623 void os::win32::initialize_thread_ptr_offset() {
5624   os::os_exception_wrapper((java_call_t)call_wrapper_dummy,
5625                            NULL, NULL, NULL, NULL);
5626 }