1 /*
   2  * Copyright (c) 1999, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_solaris.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "os_share_solaris.hpp"
  37 #include "prims/jniFastGetField.hpp"
  38 #include "prims/jvm.h"
  39 #include "prims/jvm_misc.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/extendedPC.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/interfaceSupport.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/javaCalls.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/osThread.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.inline.hpp"
  52 #include "runtime/timer.hpp"
  53 #include "utilities/events.hpp"
  54 #include "utilities/vmError.hpp"
  55 
  56 // put OS-includes here
  57 # include <sys/types.h>
  58 # include <sys/mman.h>
  59 # include <pthread.h>
  60 # include <signal.h>
  61 # include <setjmp.h>
  62 # include <errno.h>
  63 # include <dlfcn.h>
  64 # include <stdio.h>
  65 # include <unistd.h>
  66 # include <sys/resource.h>
  67 # include <thread.h>
  68 # include <sys/stat.h>
  69 # include <sys/time.h>
  70 # include <sys/filio.h>
  71 # include <sys/utsname.h>
  72 # include <sys/systeminfo.h>
  73 # include <sys/socket.h>
  74 # include <sys/trap.h>
  75 # include <sys/lwp.h>
  76 # include <poll.h>
  77 # include <sys/lwp.h>
  78 # include <procfs.h>     //  see comment in <sys/procfs.h>
  79 
  80 #ifndef AMD64
  81 // QQQ seems useless at this point
  82 # define _STRUCTURED_PROC 1  //  this gets us the new structured proc interfaces of 5.6 & later
  83 #endif // AMD64
  84 # include <sys/procfs.h>     //  see comment in <sys/procfs.h>
  85 
  86 
  87 #define MAX_PATH (2 * K)
  88 
  89 // Minimum stack sizes for the VM.  It's easier to document a constant value
  90 // but it's different for x86 and sparc because the page sizes are different.
  91 #ifdef AMD64
  92 size_t os::Posix::_compiler_thread_min_stack_allowed = 394 * K;
  93 size_t os::Posix::_java_thread_min_stack_allowed = 224 * K;
  94 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 224 * K;
  95 #define REG_SP REG_RSP
  96 #define REG_PC REG_RIP
  97 #define REG_FP REG_RBP
  98 #else
  99 size_t os::Posix::_compiler_thread_min_stack_allowed = 64 * K;
 100 size_t os::Posix::_java_thread_min_stack_allowed = 64 * K;
 101 size_t os::Posix::_vm_internal_thread_min_stack_allowed = 64 * K;
 102 #define REG_SP UESP
 103 #define REG_PC EIP
 104 #define REG_FP EBP
 105 // 4900493 counter to prevent runaway LDTR refresh attempt
 106 
 107 static volatile int ldtr_refresh = 0;
 108 // the libthread instruction that faults because of the stale LDTR
 109 
 110 static const unsigned char movlfs[] = { 0x8e, 0xe0    // movl %eax,%fs
 111                        };
 112 #endif // AMD64
 113 
 114 char* os::non_memory_address_word() {
 115   // Must never look like an address returned by reserve_memory,
 116   // even in its subfields (as defined by the CPU immediate fields,
 117   // if the CPU splits constants across multiple instructions).
 118   return (char*) -1;
 119 }
 120 
 121 //
 122 // Validate a ucontext retrieved from walking a uc_link of a ucontext.
 123 // There are issues with libthread giving out uc_links for different threads
 124 // on the same uc_link chain and bad or circular links.
 125 //
 126 bool os::Solaris::valid_ucontext(Thread* thread, const ucontext_t* valid, const ucontext_t* suspect) {
 127   if (valid >= suspect ||
 128       valid->uc_stack.ss_flags != suspect->uc_stack.ss_flags ||
 129       valid->uc_stack.ss_sp    != suspect->uc_stack.ss_sp    ||
 130       valid->uc_stack.ss_size  != suspect->uc_stack.ss_size) {
 131     DEBUG_ONLY(tty->print_cr("valid_ucontext: failed test 1");)
 132     return false;
 133   }
 134 
 135   if (thread->is_Java_thread()) {
 136     if (!valid_stack_address(thread, (address)suspect)) {
 137       DEBUG_ONLY(tty->print_cr("valid_ucontext: uc_link not in thread stack");)
 138       return false;
 139     }
 140     if (!valid_stack_address(thread,  (address) suspect->uc_mcontext.gregs[REG_SP])) {
 141       DEBUG_ONLY(tty->print_cr("valid_ucontext: stackpointer not in thread stack");)
 142       return false;
 143     }
 144   }
 145   return true;
 146 }
 147 
 148 // We will only follow one level of uc_link since there are libthread
 149 // issues with ucontext linking and it is better to be safe and just
 150 // let caller retry later.
 151 const ucontext_t* os::Solaris::get_valid_uc_in_signal_handler(Thread *thread,
 152   const ucontext_t *uc) {
 153 
 154   const ucontext_t *retuc = NULL;
 155 
 156   if (uc != NULL) {
 157     if (uc->uc_link == NULL) {
 158       // cannot validate without uc_link so accept current ucontext
 159       retuc = uc;
 160     } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 161       // first ucontext is valid so try the next one
 162       uc = uc->uc_link;
 163       if (uc->uc_link == NULL) {
 164         // cannot validate without uc_link so accept current ucontext
 165         retuc = uc;
 166       } else if (os::Solaris::valid_ucontext(thread, uc, uc->uc_link)) {
 167         // the ucontext one level down is also valid so return it
 168         retuc = uc;
 169       }
 170     }
 171   }
 172   return retuc;
 173 }
 174 
 175 // Assumes ucontext is valid
 176 ExtendedPC os::Solaris::ucontext_get_ExtendedPC(const ucontext_t *uc) {
 177   return ExtendedPC((address)uc->uc_mcontext.gregs[REG_PC]);
 178 }
 179 
 180 void os::Solaris::ucontext_set_pc(ucontext_t* uc, address pc) {
 181   uc->uc_mcontext.gregs [REG_PC]  = (greg_t) pc;
 182 }
 183 
 184 // Assumes ucontext is valid
 185 intptr_t* os::Solaris::ucontext_get_sp(const ucontext_t *uc) {
 186   return (intptr_t*)uc->uc_mcontext.gregs[REG_SP];
 187 }
 188 
 189 // Assumes ucontext is valid
 190 intptr_t* os::Solaris::ucontext_get_fp(const ucontext_t *uc) {
 191   return (intptr_t*)uc->uc_mcontext.gregs[REG_FP];
 192 }
 193 
 194 address os::Solaris::ucontext_get_pc(const ucontext_t *uc) {
 195   return (address) uc->uc_mcontext.gregs[REG_PC];
 196 }
 197 
 198 // For Forte Analyzer AsyncGetCallTrace profiling support - thread
 199 // is currently interrupted by SIGPROF.
 200 //
 201 // The difference between this and os::fetch_frame_from_context() is that
 202 // here we try to skip nested signal frames.
 203 // This method is also used for stack overflow signal handling.
 204 ExtendedPC os::Solaris::fetch_frame_from_ucontext(Thread* thread,
 205   const ucontext_t* uc, intptr_t** ret_sp, intptr_t** ret_fp) {
 206 
 207   assert(thread != NULL, "just checking");
 208   assert(ret_sp != NULL, "just checking");
 209   assert(ret_fp != NULL, "just checking");
 210 
 211   const ucontext_t *luc = os::Solaris::get_valid_uc_in_signal_handler(thread, uc);
 212   return os::fetch_frame_from_context(luc, ret_sp, ret_fp);
 213 }
 214 
 215 ExtendedPC os::fetch_frame_from_context(const void* ucVoid,
 216                     intptr_t** ret_sp, intptr_t** ret_fp) {
 217 
 218   ExtendedPC  epc;
 219   const ucontext_t *uc = (const ucontext_t*)ucVoid;
 220 
 221   if (uc != NULL) {
 222     epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 223     if (ret_sp) *ret_sp = os::Solaris::ucontext_get_sp(uc);
 224     if (ret_fp) *ret_fp = os::Solaris::ucontext_get_fp(uc);
 225   } else {
 226     // construct empty ExtendedPC for return value checking
 227     epc = ExtendedPC(NULL);
 228     if (ret_sp) *ret_sp = (intptr_t *)NULL;
 229     if (ret_fp) *ret_fp = (intptr_t *)NULL;
 230   }
 231 
 232   return epc;
 233 }
 234 
 235 frame os::fetch_frame_from_context(const void* ucVoid) {
 236   intptr_t* sp;
 237   intptr_t* fp;
 238   ExtendedPC epc = fetch_frame_from_context(ucVoid, &sp, &fp);
 239   return frame(sp, fp, epc.pc());
 240 }
 241 
 242 frame os::fetch_frame_from_ucontext(Thread* thread, void* ucVoid) {
 243   intptr_t* sp;
 244   intptr_t* fp;
 245   ExtendedPC epc = os::Solaris::fetch_frame_from_ucontext(thread, (ucontext_t*)ucVoid, &sp, &fp);
 246   return frame(sp, fp, epc.pc());
 247 }
 248 
 249 bool os::Solaris::get_frame_at_stack_banging_point(JavaThread* thread, ucontext_t* uc, frame* fr) {
 250  address pc = (address) os::Solaris::ucontext_get_pc(uc);
 251   if (Interpreter::contains(pc)) {
 252     // interpreter performs stack banging after the fixed frame header has
 253     // been generated while the compilers perform it before. To maintain
 254     // semantic consistency between interpreted and compiled frames, the
 255     // method returns the Java sender of the current frame.
 256     *fr = os::fetch_frame_from_ucontext(thread, uc);
 257     if (!fr->is_first_java_frame()) {
 258       assert(fr->safe_for_sender(thread), "Safety check");
 259       *fr = fr->java_sender();
 260     }
 261   } else {
 262     // more complex code with compiled code
 263     assert(!Interpreter::contains(pc), "Interpreted methods should have been handled above");
 264     CodeBlob* cb = CodeCache::find_blob(pc);
 265     if (cb == NULL || !cb->is_nmethod() || cb->is_frame_complete_at(pc)) {
 266       // Not sure where the pc points to, fallback to default
 267       // stack overflow handling
 268       return false;
 269     } else {
 270       // in compiled code, the stack banging is performed just after the return pc
 271       // has been pushed on the stack
 272       intptr_t* fp = os::Solaris::ucontext_get_fp(uc);
 273       intptr_t* sp = os::Solaris::ucontext_get_sp(uc);
 274       *fr = frame(sp + 1, fp, (address)*sp);
 275       if (!fr->is_java_frame()) {
 276         assert(fr->safe_for_sender(thread), "Safety check");
 277         *fr = fr->java_sender();
 278       }
 279     }
 280   }
 281   assert(fr->is_java_frame(), "Safety check");
 282   return true;
 283 }
 284 
 285 frame os::get_sender_for_C_frame(frame* fr) {
 286   return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
 287 }
 288 
 289 extern "C" intptr_t *_get_current_sp();  // in .il file
 290 
 291 address os::current_stack_pointer() {
 292   return (address)_get_current_sp();
 293 }
 294 
 295 extern "C" intptr_t *_get_current_fp();  // in .il file
 296 
 297 frame os::current_frame() {
 298   intptr_t* fp = _get_current_fp();  // it's inlined so want current fp
 299   // fp is for os::current_frame. We want the fp for our caller.
 300   frame myframe((intptr_t*)os::current_stack_pointer(),
 301                 (intptr_t*)fp,
 302                 CAST_FROM_FN_PTR(address, os::current_frame));
 303   frame caller_frame = os::get_sender_for_C_frame(&myframe);
 304 
 305   if (os::is_first_C_frame(&caller_frame)) {
 306     // stack is not walkable
 307     frame ret; // This will be a null useless frame
 308     return ret;
 309   } else {
 310     // return frame for our caller's caller
 311     return os::get_sender_for_C_frame(&caller_frame);
 312   }
 313 }
 314 
 315 #ifndef AMD64
 316 
 317 // Detecting SSE support by OS
 318 // From solaris_i486.s
 319 extern "C" bool sse_check();
 320 extern "C" bool sse_unavailable();
 321 
 322 enum { SSE_UNKNOWN, SSE_NOT_SUPPORTED, SSE_SUPPORTED};
 323 static int sse_status = SSE_UNKNOWN;
 324 
 325 
 326 static void  check_for_sse_support() {
 327   if (!VM_Version::supports_sse()) {
 328     sse_status = SSE_NOT_SUPPORTED;
 329     return;
 330   }
 331   // looking for _sse_hw in libc.so, if it does not exist or
 332   // the value (int) is 0, OS has no support for SSE
 333   int *sse_hwp;
 334   void *h;
 335 
 336   if ((h=dlopen("/usr/lib/libc.so", RTLD_LAZY)) == NULL) {
 337     //open failed, presume no support for SSE
 338     sse_status = SSE_NOT_SUPPORTED;
 339     return;
 340   }
 341   if ((sse_hwp = (int *)dlsym(h, "_sse_hw")) == NULL) {
 342     sse_status = SSE_NOT_SUPPORTED;
 343   } else if (*sse_hwp == 0) {
 344     sse_status = SSE_NOT_SUPPORTED;
 345   }
 346   dlclose(h);
 347 
 348   if (sse_status == SSE_UNKNOWN) {
 349     bool (*try_sse)() = (bool (*)())sse_check;
 350     sse_status = (*try_sse)() ? SSE_SUPPORTED : SSE_NOT_SUPPORTED;
 351   }
 352 
 353 }
 354 
 355 #endif // AMD64
 356 
 357 bool os::supports_sse() {
 358 #ifdef AMD64
 359   return true;
 360 #else
 361   if (sse_status == SSE_UNKNOWN)
 362     check_for_sse_support();
 363   return sse_status == SSE_SUPPORTED;
 364 #endif // AMD64
 365 }
 366 
 367 bool os::is_allocatable(size_t bytes) {
 368 #ifdef AMD64
 369   return true;
 370 #else
 371 
 372   if (bytes < 2 * G) {
 373     return true;
 374   }
 375 
 376   char* addr = reserve_memory(bytes, NULL);
 377 
 378   if (addr != NULL) {
 379     release_memory(addr, bytes);
 380   }
 381 
 382   return addr != NULL;
 383 #endif // AMD64
 384 
 385 }
 386 
 387 extern "C" JNIEXPORT int
 388 JVM_handle_solaris_signal(int sig, siginfo_t* info, void* ucVoid,
 389                           int abort_if_unrecognized) {
 390   ucontext_t* uc = (ucontext_t*) ucVoid;
 391 
 392 #ifndef AMD64
 393   if (sig == SIGILL && info->si_addr == (caddr_t)sse_check) {
 394     // the SSE instruction faulted. supports_sse() need return false.
 395     uc->uc_mcontext.gregs[EIP] = (greg_t)sse_unavailable;
 396     return true;
 397   }
 398 #endif // !AMD64
 399 
 400   Thread* t = Thread::current_or_null_safe();
 401 
 402   // Must do this before SignalHandlerMark, if crash protection installed we will longjmp away
 403   // (no destructors can be run)
 404   os::WatcherThreadCrashProtection::check_crash_protection(sig, t);
 405 
 406   SignalHandlerMark shm(t);
 407 
 408   if(sig == SIGPIPE || sig == SIGXFSZ) {
 409     if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 410       return true;
 411     } else {
 412       // Ignoring SIGPIPE/SIGXFSZ - see bugs 4229104 or 6499219
 413       return true;
 414     }
 415   }
 416 
 417   JavaThread* thread = NULL;
 418   VMThread* vmthread = NULL;
 419 
 420   if (os::Solaris::signal_handlers_are_installed) {
 421     if (t != NULL ){
 422       if(t->is_Java_thread()) {
 423         thread = (JavaThread*)t;
 424       }
 425       else if(t->is_VM_thread()){
 426         vmthread = (VMThread *)t;
 427       }
 428     }
 429   }
 430 
 431   if (sig == os::Solaris::SIGasync()) {
 432     if(thread || vmthread){
 433       OSThread::SR_handler(t, uc);
 434       return true;
 435     } else if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 436       return true;
 437     } else {
 438       // If os::Solaris::SIGasync not chained, and this is a non-vm and
 439       // non-java thread
 440       return true;
 441     }
 442   }
 443 
 444   if (info == NULL || info->si_code <= 0 || info->si_code == SI_NOINFO) {
 445     // can't decode this kind of signal
 446     info = NULL;
 447   } else {
 448     assert(sig == info->si_signo, "bad siginfo");
 449   }
 450 
 451   // decide if this trap can be handled by a stub
 452   address stub = NULL;
 453 
 454   address pc          = NULL;
 455 
 456   //%note os_trap_1
 457   if (info != NULL && uc != NULL && thread != NULL) {
 458     // factor me: getPCfromContext
 459     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 460 
 461     if (StubRoutines::is_safefetch_fault(pc)) {
 462       os::Solaris::ucontext_set_pc(uc, StubRoutines::continuation_for_safefetch_fault(pc));
 463       return true;
 464     }
 465 
 466     // Handle ALL stack overflow variations here
 467     if (sig == SIGSEGV && info->si_code == SEGV_ACCERR) {
 468       address addr = (address) info->si_addr;
 469       if (thread->in_stack_yellow_reserved_zone(addr)) {
 470         if (thread->thread_state() == _thread_in_Java) {
 471           if (thread->in_stack_reserved_zone(addr)) {
 472             frame fr;
 473             if (os::Solaris::get_frame_at_stack_banging_point(thread, uc, &fr)) {
 474               assert(fr.is_java_frame(), "Must be Java frame");
 475               frame activation = SharedRuntime::look_for_reserved_stack_annotated_method(thread, fr);
 476               if (activation.sp() != NULL) {
 477                 thread->disable_stack_reserved_zone();
 478                 if (activation.is_interpreted_frame()) {
 479                   thread->set_reserved_stack_activation((address)(
 480                     activation.fp() + frame::interpreter_frame_initial_sp_offset));
 481                 } else {
 482                   thread->set_reserved_stack_activation((address)activation.unextended_sp());
 483                 }
 484                 return true;
 485               }
 486             }
 487           }
 488           // Throw a stack overflow exception.  Guard pages will be reenabled
 489           // while unwinding the stack.
 490           thread->disable_stack_yellow_reserved_zone();
 491           stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW);
 492         } else {
 493           // Thread was in the vm or native code.  Return and try to finish.
 494           thread->disable_stack_yellow_reserved_zone();
 495           return true;
 496         }
 497       } else if (thread->in_stack_red_zone(addr)) {
 498         // Fatal red zone violation.  Disable the guard pages and fall through
 499         // to handle_unexpected_exception way down below.
 500         thread->disable_stack_red_zone();
 501         tty->print_raw_cr("An irrecoverable stack overflow has occurred.");
 502       }
 503     }
 504 
 505     if ((sig == SIGSEGV) && VM_Version::is_cpuinfo_segv_addr(pc)) {
 506       // Verify that OS save/restore AVX registers.
 507       stub = VM_Version::cpuinfo_cont_addr();
 508     }
 509 
 510     if (thread->thread_state() == _thread_in_vm) {
 511       if (sig == SIGBUS && info->si_code == BUS_OBJERR && thread->doing_unsafe_access()) {
 512         address next_pc = Assembler::locate_next_instruction(pc);
 513         stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 514       }
 515     }
 516 
 517     if (thread->thread_state() == _thread_in_Java) {
 518       // Support Safepoint Polling
 519       if ( sig == SIGSEGV && os::is_poll_address((address)info->si_addr)) {
 520         stub = SharedRuntime::get_poll_stub(pc);
 521       }
 522       else if (sig == SIGBUS && info->si_code == BUS_OBJERR) {
 523         // BugId 4454115: A read from a MappedByteBuffer can fault
 524         // here if the underlying file has been truncated.
 525         // Do not crash the VM in such a case.
 526         CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
 527         if (cb != NULL) {
 528           CompiledMethod* nm = cb->as_compiled_method_or_null();
 529           if (nm != NULL && nm->has_unsafe_access()) {
 530             address next_pc = Assembler::locate_next_instruction(pc);
 531             stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
 532           }
 533         }
 534       }
 535       else
 536       if (sig == SIGFPE && info->si_code == FPE_INTDIV) {
 537         // integer divide by zero
 538         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 539       }
 540 #ifndef AMD64
 541       else if (sig == SIGFPE && info->si_code == FPE_FLTDIV) {
 542         // floating-point divide by zero
 543         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO);
 544       }
 545       else if (sig == SIGFPE && info->si_code == FPE_FLTINV) {
 546         // The encoding of D2I in i486.ad can cause an exception prior
 547         // to the fist instruction if there was an invalid operation
 548         // pending. We want to dismiss that exception. From the win_32
 549         // side it also seems that if it really was the fist causing
 550         // the exception that we do the d2i by hand with different
 551         // rounding. Seems kind of weird. QQQ TODO
 552         // Note that we take the exception at the NEXT floating point instruction.
 553         if (pc[0] == 0xDB) {
 554             assert(pc[0] == 0xDB, "not a FIST opcode");
 555             assert(pc[1] == 0x14, "not a FIST opcode");
 556             assert(pc[2] == 0x24, "not a FIST opcode");
 557             return true;
 558         } else {
 559             assert(pc[-3] == 0xDB, "not an flt invalid opcode");
 560             assert(pc[-2] == 0x14, "not an flt invalid opcode");
 561             assert(pc[-1] == 0x24, "not an flt invalid opcode");
 562         }
 563       }
 564       else if (sig == SIGFPE ) {
 565         tty->print_cr("caught SIGFPE, info 0x%x.", info->si_code);
 566       }
 567 #endif // !AMD64
 568 
 569         // QQQ It doesn't seem that we need to do this on x86 because we should be able
 570         // to return properly from the handler without this extra stuff on the back side.
 571 
 572       else if (sig == SIGSEGV && info->si_code > 0 && !MacroAssembler::needs_explicit_null_check((intptr_t)info->si_addr)) {
 573         // Determination of interpreter/vtable stub/compiled code null exception
 574         stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
 575       }
 576     }
 577 
 578     // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
 579     // and the heap gets shrunk before the field access.
 580     if ((sig == SIGSEGV) || (sig == SIGBUS)) {
 581       address addr = JNI_FastGetField::find_slowcase_pc(pc);
 582       if (addr != (address)-1) {
 583         stub = addr;
 584       }
 585     }
 586 
 587     // Check to see if we caught the safepoint code in the
 588     // process of write protecting the memory serialization page.
 589     // It write enables the page immediately after protecting it
 590     // so we can just return to retry the write.
 591     if ((sig == SIGSEGV) &&
 592         os::is_memory_serialize_page(thread, (address)info->si_addr)) {
 593       // Block current thread until the memory serialize page permission restored.
 594       os::block_on_serialize_page_trap();
 595       return true;
 596     }
 597   }
 598 
 599   // Execution protection violation
 600   //
 601   // Preventative code for future versions of Solaris which may
 602   // enable execution protection when running the 32-bit VM on AMD64.
 603   //
 604   // This should be kept as the last step in the triage.  We don't
 605   // have a dedicated trap number for a no-execute fault, so be
 606   // conservative and allow other handlers the first shot.
 607   //
 608   // Note: We don't test that info->si_code == SEGV_ACCERR here.
 609   // this si_code is so generic that it is almost meaningless; and
 610   // the si_code for this condition may change in the future.
 611   // Furthermore, a false-positive should be harmless.
 612   if (UnguardOnExecutionViolation > 0 &&
 613       (sig == SIGSEGV || sig == SIGBUS) &&
 614       uc->uc_mcontext.gregs[TRAPNO] == T_PGFLT) {  // page fault
 615     int page_size = os::vm_page_size();
 616     address addr = (address) info->si_addr;
 617     address pc = (address) uc->uc_mcontext.gregs[REG_PC];
 618     // Make sure the pc and the faulting address are sane.
 619     //
 620     // If an instruction spans a page boundary, and the page containing
 621     // the beginning of the instruction is executable but the following
 622     // page is not, the pc and the faulting address might be slightly
 623     // different - we still want to unguard the 2nd page in this case.
 624     //
 625     // 15 bytes seems to be a (very) safe value for max instruction size.
 626     bool pc_is_near_addr =
 627       (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
 628     bool instr_spans_page_boundary =
 629       (align_size_down((intptr_t) pc ^ (intptr_t) addr,
 630                        (intptr_t) page_size) > 0);
 631 
 632     if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
 633       static volatile address last_addr =
 634         (address) os::non_memory_address_word();
 635 
 636       // In conservative mode, don't unguard unless the address is in the VM
 637       if (addr != last_addr &&
 638           (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
 639 
 640         // Make memory rwx and retry
 641         address page_start =
 642           (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
 643         bool res = os::protect_memory((char*) page_start, page_size,
 644                                       os::MEM_PROT_RWX);
 645 
 646         log_debug(os)("Execution protection violation "
 647                       "at " INTPTR_FORMAT
 648                       ", unguarding " INTPTR_FORMAT ": %s, errno=%d", p2i(addr),
 649                       p2i(page_start), (res ? "success" : "failed"), errno);
 650         stub = pc;
 651 
 652         // Set last_addr so if we fault again at the same address, we don't end
 653         // up in an endless loop.
 654         //
 655         // There are two potential complications here.  Two threads trapping at
 656         // the same address at the same time could cause one of the threads to
 657         // think it already unguarded, and abort the VM.  Likely very rare.
 658         //
 659         // The other race involves two threads alternately trapping at
 660         // different addresses and failing to unguard the page, resulting in
 661         // an endless loop.  This condition is probably even more unlikely than
 662         // the first.
 663         //
 664         // Although both cases could be avoided by using locks or thread local
 665         // last_addr, these solutions are unnecessary complication: this
 666         // handler is a best-effort safety net, not a complete solution.  It is
 667         // disabled by default and should only be used as a workaround in case
 668         // we missed any no-execute-unsafe VM code.
 669 
 670         last_addr = addr;
 671       }
 672     }
 673   }
 674 
 675   if (stub != NULL) {
 676     // save all thread context in case we need to restore it
 677 
 678     if (thread != NULL) thread->set_saved_exception_pc(pc);
 679     // 12/02/99: On Sparc it appears that the full context is also saved
 680     // but as yet, no one looks at or restores that saved context
 681     os::Solaris::ucontext_set_pc(uc, stub);
 682     return true;
 683   }
 684 
 685   // signal-chaining
 686   if (os::Solaris::chained_handler(sig, info, ucVoid)) {
 687     return true;
 688   }
 689 
 690 #ifndef AMD64
 691   // Workaround (bug 4900493) for Solaris kernel bug 4966651.
 692   // Handle an undefined selector caused by an attempt to assign
 693   // fs in libthread getipriptr(). With the current libthread design every 512
 694   // thread creations the LDT for a private thread data structure is extended
 695   // and thre is a hazard that and another thread attempting a thread creation
 696   // will use a stale LDTR that doesn't reflect the structure's growth,
 697   // causing a GP fault.
 698   // Enforce the probable limit of passes through here to guard against an
 699   // infinite loop if some other move to fs caused the GP fault. Note that
 700   // this loop counter is ultimately a heuristic as it is possible for
 701   // more than one thread to generate this fault at a time in an MP system.
 702   // In the case of the loop count being exceeded or if the poll fails
 703   // just fall through to a fatal error.
 704   // If there is some other source of T_GPFLT traps and the text at EIP is
 705   // unreadable this code will loop infinitely until the stack is exausted.
 706   // The key to diagnosis in this case is to look for the bottom signal handler
 707   // frame.
 708 
 709   if(! IgnoreLibthreadGPFault) {
 710     if (sig == SIGSEGV && uc->uc_mcontext.gregs[TRAPNO] == T_GPFLT) {
 711       const unsigned char *p =
 712                         (unsigned const char *) uc->uc_mcontext.gregs[EIP];
 713 
 714       // Expected instruction?
 715 
 716       if(p[0] == movlfs[0] && p[1] == movlfs[1]) {
 717 
 718         Atomic::inc(&ldtr_refresh);
 719 
 720         // Infinite loop?
 721 
 722         if(ldtr_refresh < ((2 << 16) / PAGESIZE)) {
 723 
 724           // No, force scheduling to get a fresh view of the LDTR
 725 
 726           if(poll(NULL, 0, 10) == 0) {
 727 
 728             // Retry the move
 729 
 730             return false;
 731           }
 732         }
 733       }
 734     }
 735   }
 736 #endif // !AMD64
 737 
 738   if (!abort_if_unrecognized) {
 739     // caller wants another chance, so give it to him
 740     return false;
 741   }
 742 
 743   if (!os::Solaris::libjsig_is_loaded) {
 744     struct sigaction oldAct;
 745     sigaction(sig, (struct sigaction *)0, &oldAct);
 746     if (oldAct.sa_sigaction != signalHandler) {
 747       void* sighand = oldAct.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
 748                                           : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
 749       warning("Unexpected Signal %d occurred under user-defined signal handler %#lx", sig, (long)sighand);
 750     }
 751   }
 752 
 753   if (pc == NULL && uc != NULL) {
 754     pc = (address) uc->uc_mcontext.gregs[REG_PC];
 755   }
 756 
 757   // unmask current signal
 758   sigset_t newset;
 759   sigemptyset(&newset);
 760   sigaddset(&newset, sig);
 761   sigprocmask(SIG_UNBLOCK, &newset, NULL);
 762 
 763   // Determine which sort of error to throw.  Out of swap may signal
 764   // on the thread stack, which could get a mapping error when touched.
 765   address addr = (address) info->si_addr;
 766   if (sig == SIGBUS && info->si_code == BUS_OBJERR && info->si_errno == ENOMEM) {
 767     vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "Out of swap space to map in thread stack.");
 768   }
 769 
 770   VMError::report_and_die(t, sig, pc, info, ucVoid);
 771 
 772   ShouldNotReachHere();
 773   return false;
 774 }
 775 
 776 void os::print_context(outputStream *st, const void *context) {
 777   if (context == NULL) return;
 778 
 779   const ucontext_t *uc = (const ucontext_t*)context;
 780   st->print_cr("Registers:");
 781 #ifdef AMD64
 782   st->print(  "RAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RAX]);
 783   st->print(", RBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBX]);
 784   st->print(", RCX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RCX]);
 785   st->print(", RDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDX]);
 786   st->cr();
 787   st->print(  "RSP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSP]);
 788   st->print(", RBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RBP]);
 789   st->print(", RSI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RSI]);
 790   st->print(", RDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RDI]);
 791   st->cr();
 792   st->print(  "R8 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R8]);
 793   st->print(", R9 =" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R9]);
 794   st->print(", R10=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R10]);
 795   st->print(", R11=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R11]);
 796   st->cr();
 797   st->print(  "R12=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R12]);
 798   st->print(", R13=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R13]);
 799   st->print(", R14=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R14]);
 800   st->print(", R15=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_R15]);
 801   st->cr();
 802   st->print(  "RIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RIP]);
 803   st->print(", RFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[REG_RFL]);
 804 #else
 805   st->print(  "EAX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EAX]);
 806   st->print(", EBX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBX]);
 807   st->print(", ECX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ECX]);
 808   st->print(", EDX=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDX]);
 809   st->cr();
 810   st->print(  "ESP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[UESP]);
 811   st->print(", EBP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EBP]);
 812   st->print(", ESI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[ESI]);
 813   st->print(", EDI=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EDI]);
 814   st->cr();
 815   st->print(  "EIP=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EIP]);
 816   st->print(", EFLAGS=" INTPTR_FORMAT, uc->uc_mcontext.gregs[EFL]);
 817 #endif // AMD64
 818   st->cr();
 819   st->cr();
 820 
 821   intptr_t *sp = (intptr_t *)os::Solaris::ucontext_get_sp(uc);
 822   st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", sp);
 823   print_hex_dump(st, (address)sp, (address)(sp + 8*sizeof(intptr_t)), sizeof(intptr_t));
 824   st->cr();
 825 
 826   // Note: it may be unsafe to inspect memory near pc. For example, pc may
 827   // point to garbage if entry point in an nmethod is corrupted. Leave
 828   // this at the end, and hope for the best.
 829   ExtendedPC epc = os::Solaris::ucontext_get_ExtendedPC(uc);
 830   address pc = epc.pc();
 831   st->print_cr("Instructions: (pc=" PTR_FORMAT ")", pc);
 832   print_hex_dump(st, pc - 32, pc + 32, sizeof(char));
 833 }
 834 
 835 void os::print_register_info(outputStream *st, const void *context) {
 836   if (context == NULL) return;
 837 
 838   const ucontext_t *uc = (const ucontext_t*)context;
 839 
 840   st->print_cr("Register to memory mapping:");
 841   st->cr();
 842 
 843   // this is horrendously verbose but the layout of the registers in the
 844   // context does not match how we defined our abstract Register set, so
 845   // we can't just iterate through the gregs area
 846 
 847   // this is only for the "general purpose" registers
 848 
 849 #ifdef AMD64
 850   st->print("RAX="); print_location(st, uc->uc_mcontext.gregs[REG_RAX]);
 851   st->print("RBX="); print_location(st, uc->uc_mcontext.gregs[REG_RBX]);
 852   st->print("RCX="); print_location(st, uc->uc_mcontext.gregs[REG_RCX]);
 853   st->print("RDX="); print_location(st, uc->uc_mcontext.gregs[REG_RDX]);
 854   st->print("RSP="); print_location(st, uc->uc_mcontext.gregs[REG_RSP]);
 855   st->print("RBP="); print_location(st, uc->uc_mcontext.gregs[REG_RBP]);
 856   st->print("RSI="); print_location(st, uc->uc_mcontext.gregs[REG_RSI]);
 857   st->print("RDI="); print_location(st, uc->uc_mcontext.gregs[REG_RDI]);
 858   st->print("R8 ="); print_location(st, uc->uc_mcontext.gregs[REG_R8]);
 859   st->print("R9 ="); print_location(st, uc->uc_mcontext.gregs[REG_R9]);
 860   st->print("R10="); print_location(st, uc->uc_mcontext.gregs[REG_R10]);
 861   st->print("R11="); print_location(st, uc->uc_mcontext.gregs[REG_R11]);
 862   st->print("R12="); print_location(st, uc->uc_mcontext.gregs[REG_R12]);
 863   st->print("R13="); print_location(st, uc->uc_mcontext.gregs[REG_R13]);
 864   st->print("R14="); print_location(st, uc->uc_mcontext.gregs[REG_R14]);
 865   st->print("R15="); print_location(st, uc->uc_mcontext.gregs[REG_R15]);
 866 #else
 867   st->print("EAX="); print_location(st, uc->uc_mcontext.gregs[EAX]);
 868   st->print("EBX="); print_location(st, uc->uc_mcontext.gregs[EBX]);
 869   st->print("ECX="); print_location(st, uc->uc_mcontext.gregs[ECX]);
 870   st->print("EDX="); print_location(st, uc->uc_mcontext.gregs[EDX]);
 871   st->print("ESP="); print_location(st, uc->uc_mcontext.gregs[UESP]);
 872   st->print("EBP="); print_location(st, uc->uc_mcontext.gregs[EBP]);
 873   st->print("ESI="); print_location(st, uc->uc_mcontext.gregs[ESI]);
 874   st->print("EDI="); print_location(st, uc->uc_mcontext.gregs[EDI]);
 875 #endif
 876 
 877   st->cr();
 878 }
 879 
 880 
 881 #ifdef AMD64
 882 void os::Solaris::init_thread_fpu_state(void) {
 883   // Nothing to do
 884 }
 885 #else
 886 // From solaris_i486.s
 887 extern "C" void fixcw();
 888 
 889 void os::Solaris::init_thread_fpu_state(void) {
 890   // Set fpu to 53 bit precision. This happens too early to use a stub.
 891   fixcw();
 892 }
 893 
 894 // These routines are the initial value of atomic_xchg_entry(),
 895 // atomic_cmpxchg_entry(), atomic_inc_entry() and fence_entry()
 896 // until initialization is complete.
 897 // TODO - replace with .il implementation when compiler supports it.
 898 
 899 typedef jint  xchg_func_t        (jint,  volatile jint*);
 900 typedef jint  cmpxchg_func_t     (jint,  volatile jint*,  jint);
 901 typedef jlong cmpxchg_long_func_t(jlong, volatile jlong*, jlong);
 902 typedef jint  add_func_t         (jint,  volatile jint*);
 903 
 904 jint os::atomic_xchg_bootstrap(jint exchange_value, volatile jint* dest) {
 905   // try to use the stub:
 906   xchg_func_t* func = CAST_TO_FN_PTR(xchg_func_t*, StubRoutines::atomic_xchg_entry());
 907 
 908   if (func != NULL) {
 909     os::atomic_xchg_func = func;
 910     return (*func)(exchange_value, dest);
 911   }
 912   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 913 
 914   jint old_value = *dest;
 915   *dest = exchange_value;
 916   return old_value;
 917 }
 918 
 919 jint os::atomic_cmpxchg_bootstrap(jint exchange_value, volatile jint* dest, jint compare_value) {
 920   // try to use the stub:
 921   cmpxchg_func_t* func = CAST_TO_FN_PTR(cmpxchg_func_t*, StubRoutines::atomic_cmpxchg_entry());
 922 
 923   if (func != NULL) {
 924     os::atomic_cmpxchg_func = func;
 925     return (*func)(exchange_value, dest, compare_value);
 926   }
 927   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 928 
 929   jint old_value = *dest;
 930   if (old_value == compare_value)
 931     *dest = exchange_value;
 932   return old_value;
 933 }
 934 
 935 jlong os::atomic_cmpxchg_long_bootstrap(jlong exchange_value, volatile jlong* dest, jlong compare_value) {
 936   // try to use the stub:
 937   cmpxchg_long_func_t* func = CAST_TO_FN_PTR(cmpxchg_long_func_t*, StubRoutines::atomic_cmpxchg_long_entry());
 938 
 939   if (func != NULL) {
 940     os::atomic_cmpxchg_long_func = func;
 941     return (*func)(exchange_value, dest, compare_value);
 942   }
 943   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 944 
 945   jlong old_value = *dest;
 946   if (old_value == compare_value)
 947     *dest = exchange_value;
 948   return old_value;
 949 }
 950 
 951 jint os::atomic_add_bootstrap(jint add_value, volatile jint* dest) {
 952   // try to use the stub:
 953   add_func_t* func = CAST_TO_FN_PTR(add_func_t*, StubRoutines::atomic_add_entry());
 954 
 955   if (func != NULL) {
 956     os::atomic_add_func = func;
 957     return (*func)(add_value, dest);
 958   }
 959   assert(Threads::number_of_threads() == 0, "for bootstrap only");
 960 
 961   return (*dest) += add_value;
 962 }
 963 
 964 xchg_func_t*         os::atomic_xchg_func         = os::atomic_xchg_bootstrap;
 965 cmpxchg_func_t*      os::atomic_cmpxchg_func      = os::atomic_cmpxchg_bootstrap;
 966 cmpxchg_long_func_t* os::atomic_cmpxchg_long_func = os::atomic_cmpxchg_long_bootstrap;
 967 add_func_t*          os::atomic_add_func          = os::atomic_add_bootstrap;
 968 
 969 extern "C" void _solaris_raw_setup_fpu(address ptr);
 970 void os::setup_fpu() {
 971   address fpu_cntrl = StubRoutines::addr_fpu_cntrl_wrd_std();
 972   _solaris_raw_setup_fpu(fpu_cntrl);
 973 }
 974 #endif // AMD64
 975 
 976 #ifndef PRODUCT
 977 void os::verify_stack_alignment() {
 978 #ifdef AMD64
 979   assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
 980 #endif
 981 }
 982 #endif
 983 
 984 int os::extra_bang_size_in_bytes() {
 985   // JDK-8050147 requires the full cache line bang for x86.
 986   return VM_Version::L1_line_size();
 987 }